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ABSTRACT: We predict a very large spin—orbit torque (SOT) capability of [CrXTe (X—S,Se, Te) ~
magnetic chromium-based transition-metal dichalcogenide (TMD) mono-
layers in their Janus forms CrXTe, with X = S, Se. The structural inversion Cr
symmetry breaking, inherent to Janus structures is responsible for a large SOT
response generated by giant Rashba splitting, equivalent to that obtained by
applying a transverse electric field of ~100 V nm™' in non-Janus CrTe,,
completely out of experimental reach. By performing transport simulations on
carefully derived Wannier tight-binding models, Janus systems are found to
exhibit an SOT performance comparable to the most efficient two-dimensional

magnetization
reversal

materials, while additionally allowing for field-free perpendicular magnetization
switching, due to their reduced in-plane symmetry. Altogether, our findings
evidence that magnetic Janus TMDs stand as suitable candidates for ultimate SOT-MRAM devices in an ultracompact self-induced

SOT scheme.
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he spin—orbit torque (SOT) mechanism represents an
innovative method to electrically manipulate the magnet-
ization of a magnetic material,"” providing remarkable energy-
efficiency, writing speed, and scalability prospects, which have
earned their insertion in magnetic random access memory
(MRAM) applications,”* among other developing technolo-
gies.””” SOT-MRAM prototype cells have been shown to
operate on the subnanosecond time scale,* "' with a power
consumption of merely 1% of their (already in commercial
use) spin-transfer torque counterpart.'”'’ Although next-
generation SOT-based technologies advance at a steady pace,
they still face issues regarding massive density and integration.
The development of SOT-MRAMSs remains limited to
multilayered devices, where SOT figures of merit are strongly
sensitive to interface quality; while additionally, a densely
packed SOT-MRAM requires electrical switching of magnets
with perpendicular magnetic anisotropy (PMA),"* which is
only achieved in conventional devices based on heavy metal/
ferromagnet bilayers with the assistance of an external
magnetic field.
van der Waals layered materials offer alternative paths to
overcome these issues. Atomically clean interfaces have been
shown to enhance both charge-to-spin conversion'>™'® and
tunneling magnetoresistance' "’ while reducing the cell
dimensions. Furthermore, precise control of crystal symmetries
enables novel SOT mechanisms that allow for field-free PMA
switching.ZI_24 Materials such as CrTe,”* *® and Fe,GeTe, (n
= 3, 4, 5> offer the most promising alternatives to
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overcome the usually low Curie temperature (T¢) of van der
Waals ferromagnets (FMs), where additional gating, strain, and
chemical composition engineering allow one to tune their
magnetic properties.30’34_36 New avenues for SOT devices are
opened when exploiting the metallic nature of these materials,
along with their strong spin—orbit coupling (SOC), over-
coming multilayer designs in favor of an all-in-one platform
where the FM acts as both the SOC material and the free
magnetization in a self-induced SOT scheme.”’™*' In this
context, Janus transition-metal dichalcogenide (TMD) mono-
layers stand out as the materials of choice.”” ™" Indeed, the
CrXTe ultrathin layers, similar to their non-Janus counterpart
CrTe,,* are expected to be magnetic with PMA under the
adequate experimental conditions, high Tc even exceding
room temperature, and are most stable in their metallic 1T
phase.***” Inversion symmetry forbids an SOT response in
CrTe,; however, this stepback is overcome by breaking the
symmetry between both chalcogen atoms, for instance, by
applying an electric field transversal to the crystal plane.
Another symmetry-breaking mechanism is obtained by
substituting one Te atom with S or Se, thus forming the
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Figure 1. (Middle panel) CrXTe Janus structure, lattice vectors, and Brillouin zone. (Left panel) Band structure and spin-textures of symmetric
CrTe, under the effect of an applied electric field [ =2 V nm™"]. The continuous band structure curves and black spin texture arrows are obtained
from the Wannier model, while the discrete band structure dots and yellow highlighted spin texture arrows are obtained from DFT calculations.

(Right panel) Band structure and spin textures of CrXTe [X = Se].

Janus CrXTe structures, where broken inversion symmetry is
manifest in the crystal field.

In this Letter, we predict an exceptional SOT performance
of chromium-based Janus TMD monolayers CrXTe (X = S,
Se), which allow for field-free switching of the perpendicular
magnetic state, representing a qualitative improvement over
other previously studied Janus TMDs.** We deploy a robust
end-to-end methodology, where starting from first-principles
simulations we build Wannier tight-binding models which fully
capture reciprocal space spin textures and perform quantum
transport simulations and critical field-free PMA switching
current calculations. We compare both the Janus and non-
Janus materials under electric field, demonstrating that Cr-
based Janus monolayers constitute an optimal SOT platform
for low-energy magnetization reversal.

We perform first-principles calculations of the selected
TMDs using density functional theory (DFT)**** with GGA-
PBE pseudopotentials™ and an effective Hubbard U correction
of 3.0 €V to localize the Cr-d orbitals.”" The usual metallic 1T
phase, displayed at the center of Figure 1, proves to be more
stable than the semiconducting 1H phase. Based on the
maximally localized Wannier functions,””*> we then derive
tight-binding models of the DFT ground state. Accurate
representations require a 22-orbital basis comprising the Cr-d
and the chalcogen-p bands, with the interactions expanded into
a 25 X 25 supercell. The ab initio band structure is thereby
represented with an impressive ~1 meV accuracy in a large
window of approximately — S eV to +4 eV about the Fermi
level. We also carefully derive the real-space spin operator in
the Wannier basis,>* resulting in a nonlocal spin that replicates
the ab initio spin texture with ~3% error, ensuring a precise
representation of the system’s symmetries (see sections S1 and
S4 in the Supporting Information). Overall, the comparison
between DFT results and those of the Wannier model yields an
excellent agreement, as shown in Figure 1. This demonstrates
the capability of our methodology, allowing to reach a DFT-
level accuracy via tight-binding models for general systems.

Note that the remarkable SOT capability of the low-
symmetry Janus systems is already apparent from its Fermi-
level spin textures, showing a prominent helical winding in
CrXTe, displayed in the right panel of Figure 1. This large
Rashba term comes from a strong inversion-symmetry
breaking due to a huge internal out-of-plane electric field
(~1-2 V nm™") caused by a charge imbalance at the two
inequivalent chalcogen atoms S/Se and Te (see section S2 in
the Supporting Infromation). In contrast, an external electric
field &, applied on CrTe, to break its innate inversion
symmetry is heavily screened due to its large dielectric

constant &c,r., reducing any applied field by a factor of
€Cite, & 0.02 inside the layer. This is apparent in the left panel

of Figure 1 where the odd-in-momentum Rashba helical
winding induced by the (heavily screened) external field is very
small compared to the visibly prominent even-in-momentum
spin texture stemming from the CrTe, centrosymmetric crystal
field. Achieving a Rashba term in CrTe, similar to that of the
Janus CrXTe would require an immense applied field
&, ® ecre, 1-2 Vnam™' & 50-100 V nm™". This illustrates

the remarkable SOT potential of Janus CrXTe already at this
ground-state level.

The magnetization dynamics, governed by the Landau—
Lifshitz—Gilbert equation, is driven by the spin—orbit torque
density T, which is determined by the nonequilibrium spin
density S as

T = h_ljexrf: XS (1)

where m is the magnetization direction unit vector, and J,, is
the exchange energy which couples the localized magnetic
moments with those of the itinerant electrons.' The exact form
of the nonequilibrium response is dictated by the subjacent
crystal symmetries via invariant theory.” Indeed, by removing
the degeneracy between both chalcogen atoms the point group
symmetry is reduced from D;; in CrTe,, where inversion
symmetry forbids an SOT response, to C;,, which has been
shown to allow for field-free PMA switching via unconven-
tional torques.”” The nonequilibrium spin density, expanded
up to first order, with respect to both the driving electric field (
&) and the magnetization direction (m) reads

S= )2 XE— g, mX(2xE) — x5 (mE)Z

+ A [ (Em, + Em )R + (Em, — Em))F] (2)
with y, the spin linear response coefficients, and 7, = A~ 'J .1,
the associated spin-torque conductivity. The terms propor-
tional to g and yp; represent the conventional field-like and
damping-like torques respectively, while yf,; corresponds to an
out-of-plane anisotropy of the damping-like torque. These
torques are general to arbitrary noncentrosymmetric systems
and drive the magnetization to an in-plane stationary state
along the 2 X & direction. Thus, additional fields are required
in order to switch a system with perpendicular magnetic
anisotropy. The term proportional to yj, represents the so-
called 3m torque, which is particular to systems with C,, (also
called 3m) symmetry. This contribution is related to a current-
induced in-plane magnetic anisotropy,”® which modifies the
stationary state of the magnetization inducing an out-of-plane
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instability, thus enabling field-free switching of a perpendicular
magnetization.”> We refer the reader to section SS in the
Supporting Information for a more-complete calculation of the
nonequilibrium spin density and our choices for the symmetry-
based expansion.

We calculate the nonequilibrium spin density at the Fermi
level (&), using the Kubo—Bastin formula,

S(e) = —2 / de f(e)lm Tels(e — A30,G*G-O ()
where §, H, and ; are the spin, Hamiltonian, and current
density operators, respectively, f is the Fermi—Dirac distribu-
tion, and G* = lim, ,o[H — & + in]~" represents the retarded
Green’s function. We numerically compute the Kubo—Bastin
formula by employing a kernel polynomial method expansion,
which includes the choice of a finite broadening (7 = 25
meV).”” Our calculations are made within the broad band
approximation, which suffices to compare the effect of
inversion symmetry breaking mechanisms for the different
systems. In order to discern the symmetry-allowed torque
contributions represented in eq 2, we compute the non-
equilibrium spin density in a set of 18 magnetization directions
for each material and disentangle their functional form with
respect to m. Note that each of these systems requires its own
ab initio and Wannier calculations as well; thus, we highlight
the computational capability of the developed workflow. The
exchange coupling ], is calculated as the average spectral
difference between the spin majority and spin minority density
of states.

The equilibrium electronic structure analysis of the systems
foresees an enhanced SOT response in Janus systems,
compared to those of the electric-field-assisted CrTe,. This is
further confirmed and quantified by our quantum transport
simulations.

An SOT response is activated in CrTe, by applying a
transversal electric field &,, as showcased for the field-like
torque in Figure 2a, while all other SOT components exhibit
the same tendency (see section S6 in the Supporting
Information). Indeed, while the SOT response is negligible
in the centrosymmetric system, it increases linearly with
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Figure 2. (a) Field-like spin-torque conductivity g in CrTe,,
computed as a function of the transversal electric field &,. Inset: 7g at
the Fermi level, exhibiting a linear dependence with &,. (b) 75 in

Janus CrXTe systems, showing much larger SOT than non-Janus
CrTe,.

respect to &,, as seen in the inset of Figure 2a. The linear
dependence persists through the entire &, range explored,
showing that even large symmetry-breaking applied fields up to
2 V nm™! remain perturbative, with respect to the internal
centrosymmetric crystal field. We observe a larger field-like
torque in the hole side of the spectrum, which can be
associated with larger Fermi contours closer to the Brillouin
zone edges, while at the Fermi level 7z compares moderately
to other two-dimensional systems, with values of the order of

10° Z(Qm) ™"
Janus CrXTe systems allow us to fully achieve the potential
of chromium-based TMDs for SOT applications. The strong

internal electric field generated by the asymmetric crystal
structure enables a field-like torque at the Fermi level of

~10° 2%(9. m) ' in Janus systems, 10—100 times larger than

the electric-field-assisted CrTe,, as shown in Figure 2b. This
huge SOT enhancement is present throughout a wide energy
window about the Fermi level, and holds for all torque
components (see section S6 in the Supporting Information).
The obtained values are comparable with the highest torques
reported in two-dimensional systems, which however rely on
spin transfer from a SOC material to a ferromagnet, thus being
highly susceptible to the interface quality."**~*

The SOT enhancement due to structural inversion
symmetry breaking comes at the expense of a modification
of the ferromagnetic properties. Our ab initio calculations
show that the ferromagnetic phase shifts to an in-plane
magnetic anisotropy for the Janus CrXTe systems. A PMA is
recovered by applying tensile strain, as shown in Figure 3a,
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Figure 3. (a) 7 in CrSTe for various strain values, exhibiting PMA
for strain larger than 1% (solid curves), and in-plane anisotropy
otherwise (dashed curves). (b) Critical switching current j. in Janus
CrXTe (+6% strain), and in non-Janus CrTe, (0% strain, and &, = 2
V nm™"). The star marks the overall optimal switching current (j* = 3
x 10° A em™). (c) Optimal switching current (right y-axis; filled
circles) and the corresponding spin-torque conductivities (left y-axis;
bars) for each system.

where a prominent enhancement of the spin-torque con-
ductivity is additionally observed. Indeed, the strain-induced
magnetic anisotropy shift in CrXTe is driven by the Te atom,
which presents larger SOC than its S/Se counterpart,***” thus
enhancing the SOT response.

We finally showcase the enormous potential of Cr-based
Janus TMDs for SOT applications by computing the critical
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PMA switchinég current. The critical switching current is
estimated as®”

. Mgpyo |
.=

\2Bpya — B

a
TpL \/ﬂ(Z + ap) (4)

Here, M, is the saturation magnetization, tz; the system’s
thickness, ¢ the longitudinal conductivity, and f = 7p/7py;
with all of these quantities obtained from our ab initio and
quantum transport results. For the remaining parameters—
namely, the Gilbert damping (a = 0.01) and the perpendicular
anisotropy field (Bpyy = 0.1 T)—we choose reasonable
constant values, noting that they are fairly tunable using
experimental conditions.”>®* Finally, B, represents an in-plane
effective magnetic field that drives the system out of the in-
plane stationary state along 2 X & (promoted by the field-like
and damping-like torques), allowing PMA switching. In
conventional systems, an applied external magnetic field B, is
required;65 however, the 3m torque serves this purpose in
CrXTe, allowing for field-free switching of a perpendicular
magnetic state.”” The existence of a nonzero 3m torque, which
we find roughly of the order of ~10% of the damping-like
torque throughout most of the explored energy range (see
section S6 in the Supporting Information), thus stands out as
one of the most remarkable features of the studied Cr-based
Janus materials, allowing for a truly all-in-one SOT platform
without the need for external maﬁnetic nor electric fields,
surpassing previous proposals.“"s‘s’6

Because j. gathers multiple magnetic and transport proper-
ties, it serves as an ultimate SOT figure of merit, providing a
direct grasp of the power efficiency gain. The potential of Janus
CrXTe systems is once again manifested, achieving critical
switching currents 10—100 times smaller than those of non-
Janus CrTe,, as shown in Figure 3b. The reduction of the
switching current is indeed the result of enhanced SOTs in the
Janus systems, evidenced in Figure 3¢, which shows 7y, 7
and 73, at the optimal j. energy value for each system.
Moreover, we note that the critical switching currents
calculated by eq 4 correspond to an upper bound for the
real values, as it is derived within a macrospin approximation,
whereas experimental evidence indicates that the switching
occurs via domain wall nucleation and propagation.””*® We
find an overall optimal switching current of j¥ = 3 X 10° A
cm™?, occurring for CrSeTe with +6% strain at 0.4 eV below
the Fermi level. Experimentally, such strain can appear
naturally by the substrate or the growth conditions (see
section S3 in the Supporting Information). This value is
already hi§hly competitive among van der Waals magnetic
materials,” ~’® where the reported critical switching currents
range from 5 X 10° A/cm? to 2.5 X 107 A/cm?, respectively, as
reported in Cr,Ge,Te4/ Ta® and Fe,GeTe,/Pt” heterostruc-
tures, while experimental conditions may result in further
reduction of the critical current.

Altogether, we have found that magnetic chromium-based
Janus TMDs offer a remarkable SOT performance. Concate-
nating ab initio and quantum transport methodologies, we
have shown that the large SOT response stems from huge
internal electric fields due to their asymmetric crystal structure,
yielding a competitive switching current with the additional
advantage of neither requiring assistance of external fields nor
the transmission of spin current through an imperfect interface.
Such results present magnetic Janus TMDs as eflicient
materials for designing ultimate SOT-MRAM technologies.
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