
This is the **accepted version** of the journal article:

Yang, Dawei; Wang, Jiaao; Lou, Chenjie; [et al.]. «Single-Atom Catalysts with Unsaturated Co-N₂ Active Sites Based on a C₂N 2D-Organic Framework for Efficient Sulfur Redox Reaction». *ACS energy letters*, Vol. 9, Issue 5 (May 2024), p. 2083-2091. DOI 10.1021/acsenergylett.4c00771

This version is available at <https://ddd.uab.cat/record/302102>

under the terms of the IN COPYRIGHT license

1
2
3
4 Single-Atom Catalysts with Unsaturated Co-N₂ Active Sites
5
6 Based on a C₂N 2D-Organic Framework for Efficient Sulfur
7
8 Redox Reaction
9
10

11
12 *Dawei Yang,^{†,‡} Jiaao Wang,[△] Chenjie Lou,[◊] Mengyao Li,[&] Chaoqi Zhang,[‡] Alberto Ramon,[‡]*
13
14 *Canhuang Li,[‡] Mingxue Tang,[◊] Graeme Henkelman,[△] Ming Xu,^{*,§} Junshan Li,^{//} Jordi Llorca,[§]*
15
16
17 *Jordi Arbiol,[‡] David Mitlin,^{*,○} Guangmin Zhou,^{*,#} Andreu Cabot^{*,‡,⊥}*
18
19

20
21 [†] Henan Province Key Laboratory of Photovoltaic Materials, School of Future Technology,
22
23 Henan University, Kaifeng, 475004, P. R. China.
24

25
26 [‡]Catalonia Institute for Energy Research – IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain.
27

28
29 [△]Department of Chemistry and the Oden Institute for Computational Engineering and Sciences,
30
31 The University of Texas at Austin, Austin, TX, 78712 USA.
32

33
34 [◊] Center for High Pressure Science and Technology Advanced Research, Beijing 100193,, P.
35
36 R. China.
37

38
39 [&] School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, P. R.
40
41 China.
42

43
44 [§] State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical
45
46 Technology, Beijing 100029, P. R. China.
47

48
49 ^{//} Institute for Advanced Study, Chengdu University, 610106, Chengdu, P. R. China.
50

51
52 [§] Institute of Energy Technologies, Department of Chemical Engineering and Barcelona
53
54 Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya,
55
56 EEBE, 08019, Barcelona, Spain.
57

58
59 [†]Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST
60

1
2
3
4 Campus UAB, Bellaterra, 08193 Barcelona, Spain.
5
6

7 ° Materials Science and Engineering Program & Texas Materials Institute, The University of
8
9 Texas at Austin, Austin, Texas 78712, United States.
10

11 # Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua
12
13 Shenzhen, International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
14
15

16 ⊥ ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
17
18

19 Email: mingxu@mail.buct.edu.cn
20
21

22 Email: david.mitlin2@utexas.edu
23
24

25 Email: guangminzhou@sz.tsinghua.edu.cn
26
27

28 Email: ocabot@irec.cat
29
30
31
32
33

34 Abstract

35

36 Lithium-sulfur battery (LSB) is a viable option for the next generation of energy storage
37 systems. However, the shuttle effect of lithium polysulfides (LiPS) and the poor electrical
38 conductivity of sulfur and lithium sulfides limit its deployment. Here, we report on a 2D-organic
39 framework, C₂N, loaded with cobalt single atoms (Co-SAs/C₂N) as an effective sulfur host in
40 LSB cathodes. Experimental results and density functional theory (DFT) calculations reveal
41 that unsaturated Co-N₂ active sites with an asymmetric electron distribution act as effective
42 polysulfide traps, accommodating electrons from polysulfide ions to form strong S_x²⁻-Co-N
43 bonds. Additionally, charge transfer between LiPS and unsaturated Co-N₂ active sites endows
44 immobilized LiPS with low free energy and low electrochemical decomposition energy
45 barriers,
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 thus accelerating the kinetic conversion of LiPS during the charge/discharge process. As a result,
4
5 S@Co-SAs/C₂N-based cathodes exhibit an excellent rate performance with capacities of up to
6
7 550 mAh g⁻¹ at 10C, impressive cycling stability with over 81% capacity retention over 2500
8
9 cycles at 3C, and an areal capacity of 7.2 mAh cm⁻² under a high sulfur loading of 8.1 mg cm⁻²,
10
11 twofold that of commercial lithium-ion batteries. This work highly emphasizes the potential
12
13 capabilities and promising prospects of single-atom catalysts with unsaturated coordination in
14
15 LSBs.
16
17
18

19
20
21
22 **Keywords:** 2D organic framework (C₂N), Co-N₂ active sites, single-atom catalysts, catalytic
23
24 conversion, lithium-sulfur batteries
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4 Sulfur has received much attention as a potential cathode material in Li-ion batteries owing to
5
6 its high theoretical capacity (1672 mAh g⁻¹) and energy density (2600 Wh kg⁻¹), and its low
7
8 cost and environmental friendliness.¹⁻³ However, the commercial deployment of lithium-sulfur
9 batteries (LSBs) has been hampered by several limitations. These limitations include the
10 electrical insulating nature of sulfur and lithium sulfide which limits the rate capability and
11
12 reduces the utilization of active material.^{4,5} Besides, the lithium polysulfides (LiPS) formed
13 during the electrochemical S₈-Li₂S redox reaction are soluble in conventional organic
14 electrolytes and can migrate to the anode. This LiPS shuttle effect reduces the energy efficiency
15 of the charge-discharge process, decreases the cathode active material, and corrodes the lithium
16 anode, which results in irreversible capacity degradation. Therefore, strategies to promote
17
18 charge transport at the cathode, immobilize the LiPS, and facilitate their reaction kinetics are
19
20 highly desired.^{6,7}

21
22
23
24
25
26
27
28
29
30 One effective approach to overcome some of these challenges is to combine sulfur with high
31
32 surface area and porous carbon-based materials to increase the cathode electrical conductivity
33
34 and at the same time confine the LiPS.⁸⁻¹⁰ However, the weak interaction between nonpolar
35
36 carbon and polar LiPS prevents fully suppressing their dissolution and migration. On the other
37
38 hand, some polar inorganic materials showing strong chemical interaction with polysulfides
39
40 have been proposed to more effectively anchor and confine LiPS.¹¹⁻¹³ However, even when
41
42 strongly bound to a cathode additive, the sluggish conversion kinetics of adsorbed LiPS results
43
44 in an accumulation of LiPS that are eventually released into the solution. Thus, in addition to
45
46 large surface area conductive additives and mechanisms for trapping LiPS, the integration of
47
48 electrocatalysts able to facilitate the LiPS redox reactions is required.

1
2
3
4 Carbon-supported single-atom catalysts (SACs), which are gaining great momentum in the field
5 of electrocatalysis due to their high activities with almost 100% atomic utilization and excellent
6 electrical conductivities, are an excellent candidate to overcome the kinetic limitations of the
7 Li-S reaction.¹⁴⁻¹⁷ In addition, some SACs also exhibit high sulfophilicity, which enables them
8 to contribute to the immobilization of LiPS. The electrocatalytic activity of SACs strongly
9 depends on the metal local environment, which is determined by the local coordination
10 configuration.¹⁸ M-N₄ moieties (M = Fe, Co, Ni, etc.) are the active sites of the commonly
11 reported SACs.¹⁹⁻²¹ SACs with M-N₄ moieties afford symmetrical electron distributions, which
12 limits the adsorption and activation of reaction intermediates, thus its catalytic performance.^{22,23}
13 Improved performances can be obtained with the asymmetrical electron distribution of M-N_x
14 (x≠4) coordination structures. While these electrocatalytic moieties have been previously
15 tested,¹⁵ there is a lack of understanding of the relationship between the electronic structure of
16 M-N_x SACs and electrocatalytic performance towards LiPS conversion.

17
18 Aside from the metal moiety, the carbon support also influences the electrocatalytic
19 performance. Two-dimensional (2D) carbon supports with high specific surface area and
20 lamellar structure can accommodate a massive density of SAC active sites. Recently, C₂N has
21 sparked significant interest as a novel 2D graphene-like covalent organic framework (COF)
22 characterized by a huge specific surface area and effective charge transfer.²⁴ C₂N consists of a
23 uniform porous structure with hollow sites surrounded by six pyridine nitrogen atoms (N₆
24 cavities) that provide a large number of effective sites for the coordination of a high density of
25 single metal atoms.²⁵⁻²⁷ Within this framework, the diffusion barrier of metal atoms is too high
26 to form aggregates. These properties make C₂N an excellent support for the rational design and
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 engineering of single-atomic mediators with asymmetrical electron distribution to improve the
4
5 electrochemical performance of LSBs.
6
7
8

9 In this work, we detail the synthesis of dispersed Co single atoms supported on C₂N (Co-
10
11 SAs/C₂N) with a Co-N₂ coordination structure through a pyrolysis-free wet-chemistry strategy.
12
13 The unsaturated Co-N₂ sites can not only provide strong LiPS adsorption capacity to suppress
14
15 the shuttle effect but also promote interfacial charge transfer to accelerate the redox kinetics of
16
17 the LiPS. Benefiting from the simultaneous optimization of the carbon support and the SACs
18
19 coordination environment, Co-SAs/C₂N exhibits excellent electrocatalytic activity that enables
20
21 bidirectional sulfur redox chemistry, accelerating the precipitation/decomposition of Li₂S and
22
23 lowering the related energy barriers. The performance of S@Co-SAs/C₂N cathodes is
24
25 thoroughly tested to demonstrate their superior cycling stability and rate capability. The
26
27 outstanding obtained results are rationalized with the help of density functional theory (DFT)
28
29 calculations.
30
31
32
33
34
35
36
37
38
39

40 RESULTS AND DISCUSSION

41
42
43

44 A scalable wet-chemistry strategy was designed for the synthesis of C₂N-supported Co-based
45 SACs, as displayed in Figure 1a. Briefly, Co²⁺ was coordinated with nitrogen atoms from
46 hexaaminobenzene (HAB) to form the Co-HAB complex. Subsequently, Co-HAB was
47 polymerized and reduced in the presence of chloranilic acid to form Co-SAs/C₂N. The targeted
48 material should have a periodic conjugated ring structure with Co ions confined in the C₂N
49 pores.
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4 Scanning electron microscopy (SEM) analysis showed Co-SAs/C₂N to display a stacked-
5 layered structure (Figure S1a). According to energy-dispersive X-ray spectroscopy (EDX)
6 results, the N/Co atomic ratio of Co-SAs/C₂N is *ca.* 2, which corresponds to an average of one
7 Co²⁺ ion every two N sites in C₂N (Figure S1b). Inductively coupled plasma optical emission
8 spectroscopy (ICP-OES) determined the Co loading in the Co-SAs/C₂N to be 12.8%. This high
9 metal loading, above that generally reported SACs (Table S1), is enabled by the high density
10 of anchoring sites and pores in C₂N.
11
12

13 Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy
14 (AC HAADF-STEM) analysis showed no cobalt nanoparticles/clusters anywhere around the
15 Co-SAs/C₂N sample (Figure 1b). In contrast, as highlighted with red circles in Figure 1c,d, a
16 large number of highly dispersed bright spots, identified as Co atoms, were observed within the
17 C₂N skeleton. EDX elemental mapping demonstrated C, N, and Co to be homogenously
18 distributed within Co-SAs/C₂N (Figure 1e). X-ray diffraction (XRD) patterns of the as-
19 synthesized Co-SAs/C₂N show a main broad diffraction peak at about 26.5°, corresponding to
20 the (002) plane of C₂N (Figure S2). In addition, no diffraction peaks related to Co-based
21 compounds were detected, indicating that Co atoms are most likely uniformly and atomically
22 dispersed within the C₂N matrix, which is consistent with the AC HAADF-STEM analysis.
23
24

25 The same synthesis strategy can be used to produce Ni-SAs/C₂N and Fe-SAs/C₂N, using
26 NiCl₂ • 6H₂O (4.5 mmol) and FeCl₃ • 6H₂O (4.5 mmol) as metal precursors, respectively.
27 Figure S3 displays the XRD pattern of the materials, showing no peak related to Ni- or Fe-
28 based phases while EDX analysis detects relatively high amounts of highly distributed metal in
29 both materials.
30
31

To reveal the elemental composition and chemical bonding states of Co-SAs/C₂N, X-ray photoelectron spectroscopy (XPS) spectra were measured. As shown in the survey XPS spectrum displayed in Figure S4a, Co, C, N, and O elements were identified. The high-resolution C 1s spectrum was fitted using three bands (Figure S4b), with the main one, at 284.6 eV, being associated with C-C/C=C bonds.^{12,28} The high-resolution N 1s XPS spectrum was fitted with four bands at 398.9 eV, 401.2 eV, 402.3 eV, and 399.8 eV, corresponding to pyridinic-N, pyrrolic-N, graphitic-N, and Co-N bonds,^{29,30} respectively (Figure S4c). In the Co 2p XPS spectrum (Figure S4d), besides the satellite peaks, a single doublet at 781.3 eV and 797.5 eV pointed at the existence of Co within a Co²⁺ chemical environment.^{9,31}

X-ray absorption near-edge structure (XANES) measurements of the Co K-edge were used to further reveal the chemical structure of Co-SAs/C₂N and particularly the valence state of Co, using a cobalt phthalocyanine (CoPc) and Co foil as references (Figure 2a, Table S2). The Co K-edge XANES profile indicates that the Co atoms in Co-SAs/C₂N are at a higher oxidation state than those of CoPc and Co foil, which is compatible with a Co-N₂ coordination.^{32,33} The absorption edge further indicated that the Co coordination environment is compatible with Co-N₂ bonds within the C₂N structure.

Figure 2b shows the Fourier-transformed extended X-ray absorption fine structure (FT-EXAFS) spectrum of Co-SAs/C₂N, which displayed a peak at ~1.62 Å that could be identified as Co-N scattering paths. This result is again compatible with Co atoms being coordinated with N within the C₂N support. Notice also that the Co-Co peak at ~2.25 Å observed in the Co foil was not observed in the Co-SAs/C₂N spectrum, again suggesting that isolated Co atoms were anchored on the C₂N matrix by Co-N coordination.^{34,35}

1
2
3
4 From the fitting of the EXAFS spectra at the Co K-edge (Figure 2c), the average coordination
5 number of Co atoms within Co-SAs/C₂N was ~2.2 (Table S2). Thus, on average, each Co atom
6 is coordinated with two N atoms to form Co-N₂ sites. The atomic structure model of Co-
7 SAs/C₂N is displayed as an inset in Figure 2c. The oscillation curve of Co-SAs/C₂N was clearly
8 distinct from that of CoPc and Co foil, again suggesting the coordination of Co to N atoms
9 (Figure 2d).
10
11

12 The wavelet transform (WT) of the Co K-edge spectrum was employed to further demonstrate
13 the bonding environment of Co species (Figure 2e-g). Compared with CoPc and Co foil, one
14 prominent intensity maximum can be found at around 4.68 Å⁻¹, which belongs to the Co-N
15 scattering path in the Co-SAs/C₂N WT contour plot without observable Co-Co contribution.³⁶
16
17 This result further confirms the particular Co-N coordination environment at Co sites as well
18 as the single-atom configurations in Co-SAs/C₂N. The atomic structure model of the Co-
19 SAs/C₂N is displayed in Figure 2h.
20
21

22 The solid-state ¹³C magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) spectrum
23 of Co-SAs/C₂N is shown in Figure 2i. The resonance signal of Co-SAs/C₂N is centered at
24 around 150 ppm with a very broad distribution, indicating the carbon atoms of the phenyl edges
25 connected to C=C units and the carbon atoms of triphenylene cores on vertices with intensive
26 rigidity.¹² Besides, the continuous wave electron paramagnetic resonance (CW-EPR) signal at
27 a g-value of 2.004 confirmed the presence of abundant defects with unpaired electrons in Co-
28 SAs/C₂N (Figure 2j).
29
30

31 For a deeper exploration of the electronic structure of Co-SAs/C₂N, DFT calculations were
32 performed. As shown in Figure S5, the electronic band structure of Co-SAs/C₂N obtained from
33
34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
the DFT calculations within the HSE06 functional showed several bands crossing the Fermi level, demonstrating that the cobalt atoms doping could improve the intrinsic conductivity of the C_2N matrix.^{12,37} To experimentally determine this electrical conductivity, we performed 4-point measurements of the material based on the four-point probe method. As displayed in Figure S6, experimentally, Co-SAs/ C_2N showed a significantly higher electrical conductivity of 196.7 S cm^{-1} , nearly sixfold above that of C_2N of 32.6 S cm^{-1} . This improved electrical conductivity should promote the electrochemical properties of the material.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
To analyze the electrochemical performance of Co-SAs/ C_2N as a sulfur host in LSBs, sulfur was introduced within the Co-SAs/ C_2N by a melt-diffusion process. SEM-EDX characterization of the obtained S@Co-SAs/ C_2N composites confirmed the presence of S homogeneously distributed within the host material (Figure S7a). XRD patterns further showed the presence of crystalline sulfur (JCPDS No. 08-0247) within S@Co-SAs/ C_2N (Figure S7b).³⁸ The sulfur content was quantified at about 70.2 wt% by thermogravimetric analysis (TGA) (Figures S8 and S9). Besides, with the introduction of sulfur, the Brunauer–Emmett–Teller (BET) specific surface area of the material sharply decreased from $189.6 \text{ m}^2 \text{ g}^{-1}$ (Co-SAs/ C_2N) to $11.5 \text{ m}^2 \text{ g}^{-1}$ (S@Co-SAs/ C_2N), as shown in Figure S10. Moreover, four-point probe measurements showed the electrical conductivities of S@Co-SAs/ C_2N (20.5 S cm^{-1}) to be nearly fivefold larger than that of S@ C_2N (3.8 S cm^{-1}). These results overall confirm that sulfur was incorporated into the Co-SAs/ C_2N catalytic host.

53
54
55
56
57
58
59
60
To evaluate the LiPS adsorption ability of the host material, a certain amount of Co-SAs/ C_2N and C_2N were immersed in separate vials containing the same $1 \times 10^{-2} \text{ M}$ Li_2S_4 solution. After overnight adsorption, clear differences in the color of the solution containing the different

1
2
3
4 materials were observed. The color of the Li_2S_4 solution containing Co-SAs/ C_2N was much
5
6 lighter than that of the solution containing C_2N (light yellow), indicating the former has a much
7
8 higher LiPS adsorption ability. This result was further confirmed using UV-vis spectroscopy
9 (Figure 3a),^{18,39} showing the UV-vis absorption associated with the presence of the polysulfide,
10
11 at 300-500 nm, to be much more strongly reduced in the presence of Co-SAs/ C_2N than with
12
13 C_2N .
14
15
16

17 Figure 3b shows the N 1s XPS spectra of Co-SAs/ C_2N before and after Li_2S_4 adsorption. The
18 N 1s spectrum of the sample Li_2S_4 adsorption is shifted towards lower binding energy (BE),
19 which is related to a higher electronic density associated with the binding of the N atoms in
20 C_2N , having a Lewis base character, with Li atoms in Li_2S_4 , having a Lewis acid character.^{40,41}
21
22 The formation of Li-N bonds was also confirmed by analyzing the Li 1s spectrum, which
23 besides the Li-S peak related to Li_2S_4 , also displays a Li-N contribution at 56.4 eV (Figure
24
25 S11a).⁴²
26
27

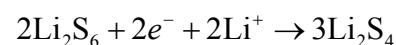
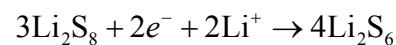
28 Figure 3c exhibits the high-resolution Co 3d XPS spectrum of Co-SAs/ C_2N and Co-SAs/ C_2N -
29 Li_2S_4 . Compared with the original Co 3d spectrum, after Li_2S_4 adsorption, the Co 3d spectrum
30 shifted to higher binding energies, which is likely due to the chemical interaction between Co
31 and sulfur, forming Co-S bonds.^{27,43} In addition, the S 2p XPS spectrum of Co-SAs/ C_2N - Li_2S_4
32 is depicted in Figure S11b. As described in the literature, the S 2p XPS spectrum of Li_2S_4
33 displays two doublets, the main one located at a binding energy of 163.2 eV (S 2p_{3/2}) and
34 attributed to the central bridging sulfur atom (S_B^0), and a minor one at 161.6 eV (S 2p_{1/2})
35 corresponds to the terminal sulfur (S_T^-).¹¹ In contrast to the spectrum of pure Li_2S_4 , Co-
36 SAs/ C_2N - Li_2S_4 exhibited two higher binding energy contributions at 163.6 and 162.9 eV,
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

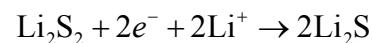
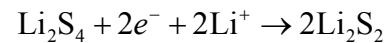
1
2
3
4 representing +0.4 and +0.3 eV shifts for S_B and S_T , respectively. The shifts arise from the
5 polarization of electrons away from the sulfur atoms to the electropositive Co atom at the
6 interface, confirming the formation of a Co-S bond.^{23,40}
7
8

9 To further study the interactions between Co-SAs/C₂N and polysulfides, the ⁷Li NMR spectrum
10 of Li₂S₄ before and after interacting with Co-SAs/C₂N were collected and displayed in Figure
11 3d.e. Because the chemical shift is quite sensitive to the surrounding environment, the changed
12 chemical shift thus concurrently corresponds to the strong binding between Li₂S₄ and Co-
13 SAs/C₂N. The pure Li₂S₄ shows a single peak at 0 ppm with a sharp signal, which becomes
14 broader when attached to Co-SAs/C₂N. An additional broad signal appears at around -5 ppm,
15 which is possibly due to the strong shielding effect caused by the Co-SAs/C₂N rings. According
16 to the above analysis and ⁷Li NMR experiments on Co-SAs/C₂N-Li₂S₄ model system, a series
17 of insights can be subtracted: 1) Co-SAs/C₂N has strong binding to Li₂S₄ as suggested by the
18 high binding energy; 2) a dipole-dipole interaction, namely Li bond, forms between Li₂S₄ and
19 Co-SAs/C₂N to afford the strong binding; 3) the formation of Li-N bond alters the local
20 environment surrounding Li, resulting in a shift in the NMR spectrum.
21
22

23 The interactions between Li₂S₄ and Co-SAs/C₂N were further confirmed by CW-EPR
24 characterizations. As shown in Figure 3f, a decrease in EPR signal intensity was obtained with
25 the Li₂S₄ adsorption, i.e. when comparing the EPR spectrum of Co-SAs/C₂N and Co-SAs/C₂N-
26 Li₂S₄. This lower EPR signal denotes a decrease in the density of unpaired electrons, which
27 implies that the sites with unpaired electrons, e.g. carbon vacancies, serve as active sites for the
28 adsorption of LiPS.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

DFT calculations were performed to further evaluate the interaction between LiPS and Co-SAs/C₂N. Figures S12 and S13 exhibit the optimized adsorption configuration of LiPS species on C₂N and Co-SAs/C₂N at six different lithiation stages (Li₂S, Li₂S₂, Li₂S₄, Li₂S₆, Li₂S₈ and S₈). The Li and S atoms of Li₂S_x species can form chemical bonds with N and Co atoms in C₂N and Co-SAs/C₂N, respectively, attributed to the coupling between Lewis acids (Li and Co atoms with unoccupied orbitals) and Lewis bases (N and S atoms with lone electron pairs).^{12,44} As shown in Figure 3g, the calculated BE (E_b) of Li₂S₄ on C₂N and Co-SAs/C₂N surfaces were -2.49 eV and -6.61 eV, respectively, which endows Co-N₂ sites with enhanced adsorption ability for Li₂S₄. Actually, all the LiPS species showed higher affinity for the Co-SAs/C₂N surface rather than for the C₂N one (Figure 3h). These results suggest robust chemisorption of LiPS on Co-SAs/C₂N, which should block the LiPS shuttle effect.



To reveal the electrocatalytic activity of Co-SAs/C₂N for polysulfide conversion, CV measurements were initially performed on symmetric cells containing a Li₂S₆ electrolyte within a voltage window of -0.8 to 0.8 V (Figure 4a). The Co-SAs/C₂N-based cell displayed two symmetric cathodic/anodic peaks, which were associated with the electrochemical oxidation/reduction of Li₂S₆.^{38,45}



The cell containing Co-SAs/C₂N electrodes provided higher currents compared with the C₂N-based cell, indicating the superior catalytic activity of Co-SAs/C₂N toward the liquid-solid redox reaction (Li₂S \leftrightarrow S₆²⁻ \leftrightarrow S₈). Besides, Co-SAs/C₂N electrodes displayed quasi-rectangular CV curves, pointing toward a pure capacitive behavior (Figure S14a).^{43,46} The CV

1
2
3
4 curves retained their shape after undergoing 20 cycles, pointing to an excellent stability of the
5
6 Co-SAs/C₂N electrodes (Figure S14b).
7
8

9 The CV curves of Li-S coin cells based on S@Co-SAs/C₂N and S@C₂N cathodes are
10
11 shown in Figure 4b. The cathodic peak voltage (peak I) is associated with the reactions:^{12,47}
12
13

20 The cathodic peak (peak II) corresponded to the reactions:
21
22

27 The anodic peak (peak III) accounts for the reverse multistep oxidation process of short-chain
28 sulfides to LiPS and eventually to sulfur.^{18,48} S@Co-SAs/C₂N electrodes exhibited much higher
29 peak currents and the cathodic/anodic peaks located at more positive/negative potentials than
30 S@C₂N, demonstrating that Co-SAs/C₂N was the most effective catalyst in promoting the
31 polysulfides redox reaction kinetics (Figure 4 b,c). The catalytic activity of Co-SAs/C₂N
32 electrodes was quantified through the onset potential at a current density of 10 μ A cm⁻² beyond
33 the baseline current (Figure S15, 4c).^{38,49} The cells based on S@Co-SAs/C₂N electrodes were
34 characterized by higher/lower onset potentials for cathodic/anodic peaks, demonstrating faster
35 redox kinetics for the LiPS conversion reaction.
36
37

38 The electrocatalytic activity of Co-SAs/C₂N-based electrodes was further analyzed by
39 measuring CV at various scan rates, from 0.1 to 0.4 mV s⁻¹ (Figure 4d). With the increase in
40 the scan rate, S@Co-SAs/C₂N-based cells displayed higher redox peak currents and lower
41
42

1
2
3 polarization potentials compared with S@C₂N-based cells (Figure S16). Notably, the CV
4 curves measured from S@Co-SAs/C₂N cathodes almost overlapped during the first three cycles,
5
6 indicating good reversibility of the sulfur redox reactions (Figure S17).

7
8
9
10
11 The cathodic/anodic peak currents showed a linear relationship with the square root of the
12 scanning rates, pointing at a diffusion-limited reaction. Therefore, the Randles-Sevcik equation
13
14 was used to calculate the diffusion constant of lithium ions (D_{Li^+}) in the process:^{50,51}

15
16
17
18 $I_p = (2.69 * 10^5) n^{1.5} A D_{Li^+}^{0.5} C_{Li^+} v^{0.5}$

19
20
21
22 Where I_p is the peak current, n represents the number of charge transfer, A is the geometric
23 electrode area, C_{Li^+} is the concentration of Li⁺, and v is the scan rate. A , n , and C_{Li^+} are constant
24 in this equation, thus the sharper $I_p/v^{0.5}$ slopes, the faster Li⁺ diffusion. As plotted in Figure S18,
25 compared with S@C₂N, S@Co-SAs/C₂N electrodes exhibited the sharpest slopes among the
26
27 three peaks, thus the highest Li⁺ diffusivity during the redox reactions. In peak I, II, and III,
28 S@Co-SAs/C₂N electrodes were characterized by D_{Li^+} of 3.67×10^{-7} , 5.94×10^{-7} , and $7.53 \times$
29
30 10^{-7} cm² s⁻¹, respectively, significantly higher than those of S@C₂N (Figure 4e), consistent
31 with the higher reaction kinetics measured. DFT calculations revealed this higher Li⁺
32
33 diffusivity to be related to the decrease of the lithium-ion diffusion barrier on the C₂N surface
34
35 by the introduction of cobalt atoms (Figure S19).

36
37
38 The galvanostatic charge/discharge profiles for S@Co-SAs/C₂N and S@C₂N electrodes at a
39 current rate of 0.1 C are displayed in Figure 4f. All electrodes show one charge plateau and two
40
41 discharge plateaus, consistently with the measured CV results associated with the multistep
42
43 sulfur reaction mechanism. The voltage gap ΔE between the oxidation and the second reduction
44
45 plateaus is taken as the polarization potential.^{46,52} S@Co-SAs/C₂N electrodes were

characterized by significantly lower polarization potentials ($\Delta E = 126$ mV) than S@C₂N electrodes ($\Delta E = 168$ mV) (Figure 4g), confirming the superior catalytic activity of Co-SAs/C₂N toward LiPS conversion.

The catalytic activity of the host materials toward the LiPS conversion reaction was also quantified by the ratio Q₂/Q₁, where Q₁ is the capacity of the first discharge plateaus corresponding to the reduction of sulfur to soluble LiPS (S₈ + 4Li⁺ + 4e⁻ → 2Li₂S₄) and Q₂ is the capacity of the second discharge plateaus corresponding to the subsequent reduction to insoluble sulfide (2Li₂S₄ + 12Li⁺ + 12e⁻ → 8Li₂S).^{43,53} The higher the Q₂/Q₁ value, the superior the catalytic ability. S@Co-SAs/C₂N electrodes exhibited the highest Q₂/Q₁ ratio at 2.62, close to the theoretical value (Q₂/Q₁ = 3) and well above that of S@C₂N (1.99), which further evidences the superior catalytic properties of Co-SAs/C₂N with unsaturated Co-N₂ active sites towards LiPS redox reaction.

Electrochemical kinetics were further assessed in the phase conversion between the soluble LiPS and insoluble Li₂S₂/Li₂S during the charge/discharge processes. There existed a voltage jump at the initial discharging period associated with the Li₂S activation overpotentials.^[34] As shown in Figure 4h, S@Co-SAs/C₂N electrodes exhibit a significantly lower overpotential than S@C₂N electrodes. In addition, the galvanostatic charge curves displayed a voltage dip at the beginning of the initial charging period, corresponding to the overpotential of the Li₂S oxidation process (Figure S20).⁴⁶ Compared with S@C₂N electrodes, S@Co-SAs/C₂N electrodes displayed a lower Li₂S oxidation overpotential, demonstrating a promoted Li₂S dissolution. To further assess the catalytic activity of the electrode materials on the reversible reaction between polysulfide molecules and solid Li₂S₂/Li₂S, potentiostatic nucleation experiments were

1
2
3
4 performed. Based on Faraday's law and the potentiostatic discharge profiles in Figure 4i,
5
6 S@Co-SAs/C₂N electrodes showed faster responsivity toward Li₂S nucleation and higher
7 capacity of Li₂S precipitation (283.6 mAh g⁻¹) than S@C₂N electrodes (192.1 mA h g⁻¹). This
8 result further proved that Co-SAs/C₂N with unsaturated Co-N₂ active sites significantly reduces
9 the energy barrier of the Li₂S nucleation, enhancing the Li₂S precipitation kinetics.^{16,54}

10
11 DFT calculations were further used to evaluate the reaction kinetics of the charging process on
12 the surfaces of C₂N and Co-SAs/C₂N. The initial, transition, and final states of Li₂S
13 decomposition on C₂N and Co-SAs/C₂N are displayed in Figures S21 and S22. As shown in
14 Figure 4j, the energy barrier of Li₂S decomposition on Co-SAs/C₂N is only 0.88 eV, much
15 lower than on C₂N (1.25 eV). This result points to Li₂S being much more easily oxidized into
16 LiPS on the Co-SAs/C₂N surface than on C₂N during charging, leading to improved redox
17 reversibility between Li₂S and LiPS and enhanced S utilization.^{10,55}

18
19 The Gibbs free energies of the main reduction products (S₈, Li₂S₈, Li₂S₆, Li₂S₄, Li₂S₂, and Li₂S)
20 with optimized structures on C₂N and Co-SAs/C₂N are displayed in Figure 4k. Generally, the
21 highest increase of Gibbs free energy (ΔE) is obtained for the reduction of Li₂S₂ to Li₂S, which
22 is considered the rate-limiting step in LSBs.^{34,56} As shown in Figure 4k, Co-SAs/C₂N provided
23 a much lower ΔE (0.56 eV) than C₂N (0.79 eV), further confirming that the reduction of S is
24 more thermodynamically favorable on the former.

25
26 The galvanostatic charge/discharge profiles of S@Co-SAs/C₂N at different current rates are
27 exhibited in Figure 5a. All discharge curves displayed two well-defined discharge plateaus,
28 even at the highest current density of 10 C. In contrast, S@C₂N electrodes showed a high
29 polarization potential and low capacity response (Figure S23). Figure 5b shows the rate
30

1 performances of the cells based on the two electrodes tested, at current rates from 0.2 to 10 C.
2
3 S@Co-SAs/C₂N electrodes were characterized by an ultrahigh initial discharge capacity of
4 1415 mA h g⁻¹ at 0.2 C, pointing toward an optimized sulfur activity and utilization. Even at
5 the highest current rate of 10 C, an average capacity of 556 mAh g⁻¹ was stabilized, well
6 above the capacity obtained for S@C₂N electrodes. It is worth mentioning that when switched
7 back the current rate to 0.5 C, the average capacity of the cells with S@Co-SAs/C₂N
8 electrodes returned to \approx 1066 mAh g⁻¹, suggesting remarkable reversibility and stability.
9
10 The LSBs energy conversion efficiency during the charge/discharge process was calculated by
11 the ratio of energy output/input:^{27,57}

12

$$E = \int UIdt$$

13 As exhibited in Figure 5c, S@Co-SAs/C₂N electrodes displayed energy efficiencies around
14 92.1% at 0.2 C, well above that of S@C₂N electrodes. When the current rate increased to 10 C,
15 S@Co-SAs/C₂N electrodes were characterized by a higher energy efficiency of 80.3% at 10 C
16 than S@C₂N electrodes (63.6%). We associate this higher energy efficiency with the lower
17 polarization potential, which was related to the excellent catalytic effect of Co-SAs/C₂N with
18 unsaturated Co-N₂ active sites.
19

20 Figure 5d displays the cycling tests of different cells based on S@Co-SAs/C₂N and S@C₂N
21 cathodes at 0.5 C. S@Co-SAs/C₂N electrodes delivered an initial discharge capacity of 1118.6
22 mAh g⁻¹ and still maintained a stable capacity of 1066.2 mAh g⁻¹ after 100 cycles. For
23 comparison, the discharge capacity of the S@C₂N electrodes decayed to 676.5 mAh g⁻¹ after
24 100 cycles with a capacity loss of 7.5%.

1
2
3
4 Electrochemical impedance spectroscopy (EIS) was used to further understand the parameters
5 behind the enhanced redox kinetics of S@Co-SAs/C₂N electrodes. Figures 5e and S24 show
6 the Nyquist plot of the EIS spectra obtained from S@Co-SAs/C₂N and S@C₂N coin cells before
7 and after cycling at 0.5 C. The fresh electrodes display a semicircle at the high-frequency range
8 related to the charge transfer resistance (R_{ct}), and a sloping straight line at lower frequencies
9 related to the lithium ions diffusion.⁴³ After cycling, a new additional semicircle in the high-
10 frequency region was ascribed to the precipitation of the insulating discharge products of Li₂S
11 on the electrode surface (R_p),⁴⁶ and the second semicircle in the middle-frequency region
12 corresponded to the R_{ct} . The S@Co-SAs/C₂N electrodes were characterized by a considerably
13 lower R_p and R_{ct} compared with S@C₂N electrodes after cycling (Table S3). The small R_p value
14 obtained for Co-SAs/C₂N hosts was associated with a reduction of the deposition of insulting
15 Li₂S/Li₂S₂ on the surface, indicating improved electrode kinetics.

16
17 Additional cycling was carried out on the S@Co-SAs/C₂N electrodes at a current rate of 1 C
18 (Figure 5f). After 1000 cycles, S@Co-SAs/C₂N electrodes still delivered a discharge capacity
19 of 945.5 mAh g⁻¹, showing an average 0.010% decay per cycle and a stable and high Coulombic
20 efficiency above 99.5%. Besides, an ultra-long cycling test was performed for the S@Co-
21 SAs/C₂N-based cathode at a higher current density of 3 C to evaluate the cycling stability of
22 the host materials (Figure 5g). The S@Co-SAs/C₂N electrode provided an initial discharge
23 capacity at 3 C of 826 mAh g⁻¹ and it retained 80.9% of its capacity after 2500 cycles, indicating
24 a low capacity decay rate of just 0.008% per cycle. This decay rate was well below that of the
25 S@C₂N electrodes, which retained 59.8% of its initial capacity after 1000 cycles at 3 C (Figure
26 S25).
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

To achieve high energy density LSBs that satisfy practical applications, increasing the areal sulfur loading and decreasing the amount of electrolyte are fundamental.⁵⁸ Figure 5h shows the high-loading performance of the S@Co-SAs/C₂N electrodes at a sulfur loading of 3.0, 5.2, and 8.1 mg cm⁻² at 0.2 C, and an electrolyte-to-sulfur (E/S) ratio of 8.9, 6.1, and 4.7 μ L mg⁻¹, respectively. High areal capacities of 3.69, 4.64, and 6.32 mAh cm⁻² after 100 cycles can be obtained under the sulfur loading of 3.0, 5.2, and 8.1 mg cm⁻², respectively. Figure S26 shows a series of electrochemical tests of S@Co-SAs/C₂N electrodes with different sulfur loadings. Galvanostatic charge/discharge curves of S@Co-SAs/C₂N electrodes showed clear charge/discharge plateaus at the various current rates tested. S@Co-SAs/C₂N electrodes displayed stable charge/discharge curves and delivered a high areal capacity of 7.18 mAh cm⁻² under raised sulfur loading of 8.1 mg cm⁻², which is almost a twofold of that of commercial Li-ion batteries (4 mAh cm⁻²). This excellent performance at a high sulfur loading confirmed the good reaction kinetics that is attributed to the superior catalytic activity of the unsaturated Co-N₂ sites of Co-SAs/C₂N.

Figure S27 shows SEM images of the S@Co-SAs/C₂N cathodes with a high S loading after cycling, showing no cracks being developed. The excellent mechanical stability of the material is related to the high porosity of the host material Co-SAs/C₂N that can accommodate the volume changes during cycling. The experimental density of the films was determined from their thickness and weight at 1.27 g/cm³. Taking into account the 70% sulfur loading measured by TGA, the relative density of the film was estimated at 60%. Taking into account the 80% volume change in the conversion of S into Li₂S, an increase of relative density from 60% to

1
2
3
4 92% is to be expected during the discharging process. Thus the porosity is high enough for the
5
6 volume expansion to fill the voids without representing a major volume change of the film.
7
8

9 To further demonstrate the important role played by Co in the superior material performance,
10
11 additional samples with a lower Co amount were produced and tested. Figure S28 shows the
12
13 cycling performance at 1 C over 500 cycles of a S@Co-SAs/C₂N electrode based on a Co-
14
15 SAs/C₂N SAC containing just a 3.2 wt% of Co. As expected, the performance of this sample
16
17 was sensibly lower than that of the sample containing a higher Co amount but improved with
18
19 respect to the sample containing no Co.
20
21

22
23
24 The electrochemical results of S@Co-SAs/C₂N cathodes for LSBs are compared to other state-
25
26 of-the-art single atoms-based materials in Table S4 (Supporting Information). Overall, S@Co-
27
28 SAs/C₂N electrodes were characterized by an excellent electrochemical performance related to
29
30 the following properties: 1) The abundance of different types of nitrogen and pores in the C₂N
31
32 structure, which capture LiPS and suppress the shuttle effect; 2) The high electrical conductivity
33
34 of Co-SAs/C₂N that maximizes the sulfur utilization; 3) The presence of the unsaturated Co-N₂
35
36 sites, which work as efficient catalytically active sites to simultaneously immobilize LiPS and
37
38 accelerate their redox conversion; and 4) The high catalyst content offering a large density of
39
40 adsorption/reaction sites enabled by the high nitrogen and pore density of C₂N. All these results
41
42 indicate that S@Co-SAs/C₂N electrodes can definitively help LSBs to reach practical
43
44 applications.
45
46
47
48
49
50
51

52
53
54
55
56 **CONCLUSIONS**
57
58
59
60

In summary, the synthesis of Co-SAs/C₂N with a precise Co-N₂ coordination structure and its use to explore the adsorption and catalytic properties of Co-N₂ sites in the conversion process of LiPS have been described. Co-SAs/C₂N exhibits lithiophilic/sulfophilic binding with polysulfides to prevent the dissolution of LiPS into the electrolyte. Besides, within this structure, the unsaturated Co-N₂ center can act as a multifunctional site for accelerating the redox conversion of LiPS and reducing the reaction energy barrier of Li₂S deposition and decomposition during discharge/charge processes, as determined by X-ray absorption fine spectroscopy, experiments and DFT calculations. As a result, S@Co-SAs/C₂N cathodes delivered a more exciting rate performance up to 10 C and an impressive ultra-long-term cycling stability with a negligible capacity decay of 0.008% per cycle over 2500 cycles. More significantly, even at high sulfur loadings and lean electrolyte conditions, S@Co-SAs/C₂N cathodes displayed a remarkable areal capacity meeting the demands of commercial LIBs (4 mAh cm⁻²). This work sheds light on the dual adsorption-catalysis effect of Co-SAs/C₂N with unsaturated coordination structure (Co-N₂ sites) for the redox conversion of LiPS, providing new insights for designing SACs-based hosts with maximized activity in improving the performance of LSBs.

Supporting Information

The supporting information is available free of charge via the Internet at <http://pubs.acs.org>.

The supporting information includes Figure S1-S28 and Table S1-S4 as described in the text, specifically, additional HAADF-STEM, XANES, XRD, XPS, TGA, CV, electrochemical performance, DFT simulation results, and crystal structure.

1
2
3
4 **Corresponding Author**
5
67 Email: mingxu@mail.buct.edu.cn
8
910 Email: david.mitlin2@utexas.edu
11
1213 Email: guangminzhou@sz.tsinghua.edu.cn
14
1516 Email: acabot@irec.cat
17
1819 **ACKNOWLEDGMENTS**
20
2122 This work was supported by MCIN/ AEI/10.13039/501100011033/ and by “ERDF A way of
23 making Europe”, by the “European Union” through the projects ENE2016- 77798-C4-3-R, and
24 PID2020-116093RB-C43. D. Yang thanks the China Scholarship Council for the scholarship
25 support and the funding from the National Natural Science Foundation of China (NSFC)
26 (Grants No. 22305064). M. Tang and M. Xu thank the financial support by the National Natural
27 Science Foundation of China (Grants 21974007, U1930401, and 22102007). ICN2
28 acknowledges the support from the Severo Ochoa Programme from Spanish MCIN/AEI (Grant
29 No.: CEX2021-001214-S). ICN2 acknowledges funding from Generalitat de Catalunya
30 2021SGR00457. This study is part of the Advanced Materials programme and was supported
31 by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by
32
33 Generalitat de Catalunya. IREC and ICN2 are both funded by the CERCA
34 Programme/Generalitat de Catalunya. This work was supported by Fundamental Research
35 Funds for the Central Universities (buctrc202112). J. Llorca is a Serra Húnter Fellow and is
36 grateful to projects PID2021-124572OB-C31 and GC2021 SGR 01061 and to ICREA
37 Academia program. This project has received funding from the European Union’s Horizon 2020
38 research and innovation programme under grant agreement No 823717-ESTEEM3. Part of the
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4 present work has been performed in the framework of Universitat Autònoma de Barcelona
5
6 Materials Science PhD program. The authors are thankful for the support of the BSRF (Beijing
7
8 Synchrotron Radiation Facility) during the XAFS measurements at the beamline 1W1B, 4B7A,
9
10 4B7B, 4B9B, and Shanghai Synchrotron Radiation Facility (SSRF).
11
12
13
14
15
16
17

18 REFERENCES

19

20 (1) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li₂O₂ and Li₂S
21 Batteries with High Energy Storage. *Nat. Mater.* **2012**, *11* (1), 19–29.
22
23 (2) Zhou, G.; Wang, D. W.; Li, F.; Hou, P. X.; Yin, L.; Liu, C.; Lu, G. Q.; Gentle, I. R.;
24 Cheng, H. M. A Flexible Nanostructured Sulphur-Carbon Nanotube Cathode with High
25 Rate Performance for Li-S Batteries. *Energy Environ. Sci.* **2012**, *5* (10), 8901–8906.
26
27 (3) Li, Z.; Guan, B. Y.; Zhang, J.; Lou, X. W. (David). A Compact Nanoconfined Sulfur
28 Cathode for High-Performance Lithium-Sulfur Batteries. *Joule* **2017**, *1* (3), 576–587.
29
30 (4) Xiao, Z.; Yang, Z.; Wang, L.; Nie, H.; Zhong, M.; Lai, Q.; Xu, X.; Zhang, L.; Huang, S.
31 A Lightweight TiO₂/Graphene Interlayer, Applied as a Highly Effective Polysulfide
32 Absorbent for Fast, Long-Life Lithium-Sulfur Batteries. *Adv. Mater.* **2015**, *27* (18),
33 2891–2898.
34
35 (5) Chen, X.; Peng, H. J.; Zhang, R.; Hou, T. Z.; Huang, J. Q.; Li, B.; Zhang, Q. An
36 Analogous Periodic Law for Strong Anchoring of Polysulfides on Polar Hosts in Lithium
37 Sulfur Batteries: S- or Li-Binding on First-Row Transition-Metal Sulfides? *ACS Energy*
38 *Lett.* **2017**, *2* (4), 795–801.
39
40 (6) Yang, Y.; Zheng, G.; Cui, Y. Nanostructured Sulfur Cathodes. *Chem. Soc. Rev.* **2013**, *42*
41 (7), 3018–3032.
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 (7) He, J.; Luo, L.; Chen, Y.; Manthiram, A. Yolk–Shelled C@Fe₃O₄ Nanoboxes as Efficient
4 Sulfur Hosts for High-Performance Lithium–Sulfur Batteries. *Adv. Mater.* **2017**, *29* (34),
5 1702707.
6
7 (8) Sun, Z.; Zhang, J.; Yin, L.; Hu, G.; Fang, R.; Cheng, H. M.; Li, F. Conductive Porous
8 Vanadium Nitride/Graphene Composite as Chemical Anchor of Polysulfides for
9 Lithium-Sulfur Batteries. *Nat. Commun.* **2017**, *8*, 14627.
10
11 (9) Li, G.; Lei, W.; Luo, D.; Deng, Y.; Deng, Z.; Wang, D.; Yu, A.; Chen, Z. Stringed “Tube
12 on Cube” Nanohybrids as Compact Cathode Matrix for High-Loading and Lean-
13 Electrolyte Lithium-Sulfur Batteries. *Energy Environ. Sci.* **2018**, *11* (9), 2372–2381.
14
15 (10) Zhang, L.; Liu, D.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y.; Song, L.; Niu, Z.; Chen,
16 J. Single Nickel Atoms on Nitrogen-Doped Graphene Enabling Enhanced Kinetics of
17 Lithium–Sulfur Batteries. *Adv. Mater.* **2019**, *31* (40), 1903955.
18
19 (11) Liu, J.; Yuan, L.; Yuan, K.; Li, Z.; Hao, Z.; Yang, J.; Huang, Y. SnO₂ as a high-
20 efficiency polysulfide trap in lithium-sulfur batteries. *Nanoscale* **2016**, *8* (8), 13638.
21
22 (12) Yang, D.; Liang, Z.; Zhang, C.; Biendicho, J. J.; Botifoll, M.; Spadaro, M. C.; Chen, Q.;
23 Li, M.; Ramon, A.; Moghaddam, A. O.; Llorca, J.; Wang, J.; Morante, J. R.; Arbiol, J.;
24 Chou, S. L.; Cabot, A. NbSe₂ Meets C₂N: A 2D-2D Heterostructure Catalysts as
25 Multifunctional Polysulfide Mediator in Ultra-Long-Life Lithium–Sulfur Batteries. *Adv.*
26 *Energy Mater.* **2021**, *11* (36), 2101250.
27
28 (13) Zhou, T.; Lv, W.; Li, J.; Zhou, G.; Zhao, Y.; Fan, S.; Liu, B.; Li, B.; Kang, F.; Yang, Q.
29 H. Twinborn TiO₂-TiN Heterostructures Enabling Smooth Trapping-Diffusion-
30 Conversion of Polysulfides towards Ultralong Life Lithium-Sulfur Batteries. *Energy*
31 *Environ. Sci.* **2017**, *10* (7), 1694–1703.
32
33 (14) Liu, K.; Fu, J.; Lin, Y.; Luo, T.; Ni, G.; Li, H.; Lin, Z.; Liu, M. Insights into the Activity
34 of Single-Atom Fe-N-C Catalysts for Oxygen Reduction Reaction. *Nat. Commun.* **2022**,
35 *13* (1), 1–8.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(15) Zhang, Y.; Liu, J.; Wang, J.; Zhao, Y.; Luo, D.; Yu, A.; Wang, X.; Chen, Z. Engineering Oversaturated Fe-N₅ Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries. *Angew. Chem., Int. Ed.* **2021**, *133* (51), 26826–26833.

(16) Zhang, X.; Yang, T.; Zhang, Y.; Wang, X.; Wang, J.; Li, Y.; Yu, A.; Wang, X.; Chen, Z. Single Zinc Atom Aggregates: Synergetic Interaction to Boost Fast Polysulfide Conversion in Lithium-Sulfur Batteries. *Adv. Mater.* **2023**, *35* (6), 2208470.

(17) Wang, J.; Qiu, W.; Li, G.; Liu, J.; Luo, D.; Zhang, Y.; Zhao, Y.; Zhou, G.; Shui, L.; Wang, X.; Chen, Z. Coordinatively Deficient Single-Atom Fe-N-C Electrocatalyst with Optimized Electronic Structure for High-Performance Lithium-Sulfur Batteries. *Energy Storage Mater.* **2022**, *46*, 269–277.

(18) Han, Z.; Zhao, S.; Xiao, J.; Zhong, X.; Sheng, J.; Lv, W.; Zhang, Q.; Zhou, G.; Cheng, H. M. Engineering D-p Orbital Hybridization in Single-Atom Metal-Embedded Three-Dimensional Electrodes for Li–S Batteries. *Adv. Mater.* **2021**, *33* (44), 2105947.

(19) Qiu, Y.; Fan, L.; Wang, M.; Yin, X.; Wu, X.; Sun, X.; Tian, D.; Guan, B.; Tang, D.; Zhang, N. Precise Synthesis of Fe-N₂ sites with High Activity and Stability for Long-Life Lithium-Sulfur Batteries. *ACS Nano* **2020**, *14* (11), 16105–16113.

(20) Voloskiy, B.; Li, M.; Zhao, Z.; Wang, Y.; Sun, H.; An, P.; Chen, W.; Guo, Z.; Lee, C.; Chen, D.; Shakir, I.; Liu, M.; Hu, T.; Li, Y.; Kirkland, A. I.; Duan, X.; Huang, Y. General Synthesis and Definitive Structural Identification of MN₄C₄ Single-Atom Catalysts with Tunable Electrocatalytic Activities. *Nat. Catal.* **2018**, *1* (1), 63–72.

(21) Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. *Joule* **2018**, *2* (7), 1242–1264.

(22) Chen, K.; Liu, K.; An, P.; Li, H.; Lin, Y.; Hu, J.; Jia, C.; Fu, J.; Li, H.; Liu, H.; Lin, Z.; Li, W.; Li, J.; Lu, Y. R.; Chan, T. S.; Zhang, N.; Liu, M. Iron Phthalocyanine with Coordination Induced Electronic Localization to Boost Oxygen Reduction Reaction. *Nat. Commun.* **2020**, *11* (1), 1–8.

(23) Ding, Y.; Cheng, Q.; Wu, J.; Yan, T.; Shi, Z.; Wang, M.; Yang, D.; Wang, P.; Zhang, L.; Sun, J. Enhanced Dual-Directional Sulfur Redox via a Biotemplated Single-Atomic Fe–N₂ Mediator Promises Durable Li–S Batteries. *Adv. Mater.* **2022**, *34* (28), 2202256.

(24) Zhong, W.; Qiu, Y.; Shen, H.; Wang, X.; Yuan, J.; Jia, C.; Bi, S.; Jiang, J. Electronic Spin Moment As a Catalytic Descriptor for Fe Single-Atom Catalysts Supported on C₂N. *J. Am. Chem. Soc.* **2021**, *143* (11), 4405–4413.

(25) Lin, C.; Zhang, H.; Song, X.; Kim, D. H.; Li, X.; Jiang, Z.; Lee, J. H. 2D-Organic Framework Confined Metal Single Atoms with the Loading Reaching the Theoretical Limit. *Mater. Horizons* **2020**, *7* (10), 2726–2733.

(26) Xu, J.; Mahmood, J.; Dou, Y.; Dou, S.; Li, F.; Dai, L.; Baek, J. B. 2D Frameworks of C₂N and C₃N as New Anode Materials for Lithium-Ion Batteries. *Adv. Mater.* **2017**, *29* (34), 1702007.

(27) Liang, Z.; Yang, D.; Tang, P.; Zhang, C.; Jacas Biendicho, J.; Zhang, Y.; Llorca, J.; Wang, X.; Li, J.; Heggen, M.; David, J.; Dunin-Borkowski, R. E.; Zhou, Y.; Morante, J. R.; Cabot, A.; Arbiol, J. Atomically Dispersed Fe in a C₂N Based Catalyst as a Sulfur Host for Efficient Lithium–Sulfur Batteries. *Adv. Energy Mater.* **2021**, *11* (5), 2003507.

(28) Chu, C.; Zhu, Q.; Pan, Z.; Gupta, S.; Huang, D.; Du, Y.; Weon, S.; Wu, Y.; Muhich, C.; Stavitski, E.; Domen, K.; Kim, J. H. Spatially Separating Redox Centers on 2D Carbon Nitride with Cobalt Single Atom for Photocatalytic H₂O₂ Production. *Proc. Natl. Acad. Sci. USA* **2020**, *117* (12), 6376–6382.

(29) Shen, T.; Huang, X.; Xi, S.; Li, W.; Sun, S.; Hou, Y. The ORR Electron Transfer Kinetics Control via Co-N_x and Graphitic N Sites in Cobalt Single Atom Catalysts in Alkaline and Acidic Media. *J. Energy Chem.* **2022**, *68*, 184–194.

(30) Lu, Q.; Wu, H.; Zheng, X.; Chen, Y.; Rogach, A. L.; Han, X.; Deng, Y.; Hu, W. Encapsulating Cobalt Nanoparticles in Interconnected N-Doped Hollow Carbon Nanofibers with Enriched Co-N-C Moiety for Enhanced Oxygen Electrocatalysis in Zn-Air Batteries. *Adv. Sci.* **2021**, *8* (20), 2101438.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(31) Pei, Z.; Lu, X. F.; Zhang, H.; Li, Y.; Luan, D.; Lou, X. W. (David). Highly Efficient Electrocatalytic Oxygen Evolution Over Atomically Dispersed Synergistic Ni/Co Dual Sites. *Angew. Chem., Int. Ed.* **2022**, *134* (40), e202207537.

(32) Yao, Y.; Huang, Z.; Xie, P.; Wu, L.; Ma, L.; Li, T.; Pang, Z.; Jiao, M.; Liang, Z.; Gao, J.; He, Y.; Kline, D. J.; Zachariah, M. R.; Wang, C.; Lu, J.; Wu, T.; Li, T.; Wang, C.; Shahbazian-Yassar, R.; Hu, L. High temperature shockwave stabilized single atoms. *Nat. Nanotechnol.* **2019**, *14*, 851 – 857.

(33) Ding, K.; Hu, J.; Luo, J.; Zhao, L.; Jin, W.; Liu, Y.; Wu, Z.; Zou, G.; Hou, H.; Ji, X. Robust Electronic Correlation of Co-CoN₄ Hybrid Active Sites for Durable Rechargeable Zn-Air Batteries. *Adv. Funct. Mater.* **2022**, *32* (52), 2207331.

(34) Du, Z.; Chen, X.; Hu, W.; Chuang, C.; Xie, S.; Hu, A.; Yan, W.; Kong, X.; Wu, X.; Ji, H.; Wan, L. J. Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries. *J. Am. Chem. Soc.* **2019**, *141* (9), 3977–3985.

(35) Shi, W.; Li, Z.; Gao, Z.; Liang, Z.; Liu, H.; Han, Y. C.; Niu, H.; Song, B.; Chi, X.; Zhou, J.; Wang, H.; Xia, B.; Yao, Y.; Tian, Z.-Q. Transient and general synthesis of high-density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock. *Nat. Commun.* **2023**, *14*, 2294.

(36) Wang, Z.; Jin, X.; Zhu, C.; Liu, Y.; Tan, H.; Ku, R.; Zhang, Y.; Zhou, L.; Liu, Z.; Hwang, S. J.; Fan, H. J. Atomically Dispersed Co₂–N₆ and Fe–N₄ Costructures Boost Oxygen Reduction Reaction in Both Alkaline and Acidic Media. *Adv. Mater.* **2021**, *33* (49), 2104718.

(37) Wang, L.; Ni, Y.; Hou, X.; Chen, L.; Li, F.; Chen, J. A Two-Dimensional Metal–Organic Polymer Enabled by Robust Nickel–Nitrogen and Hydrogen Bonds for Exceptional Sodium-Ion Storage. *Angew. Chem., Int. Ed.* **2020**, *59* (49), 22126–22131.

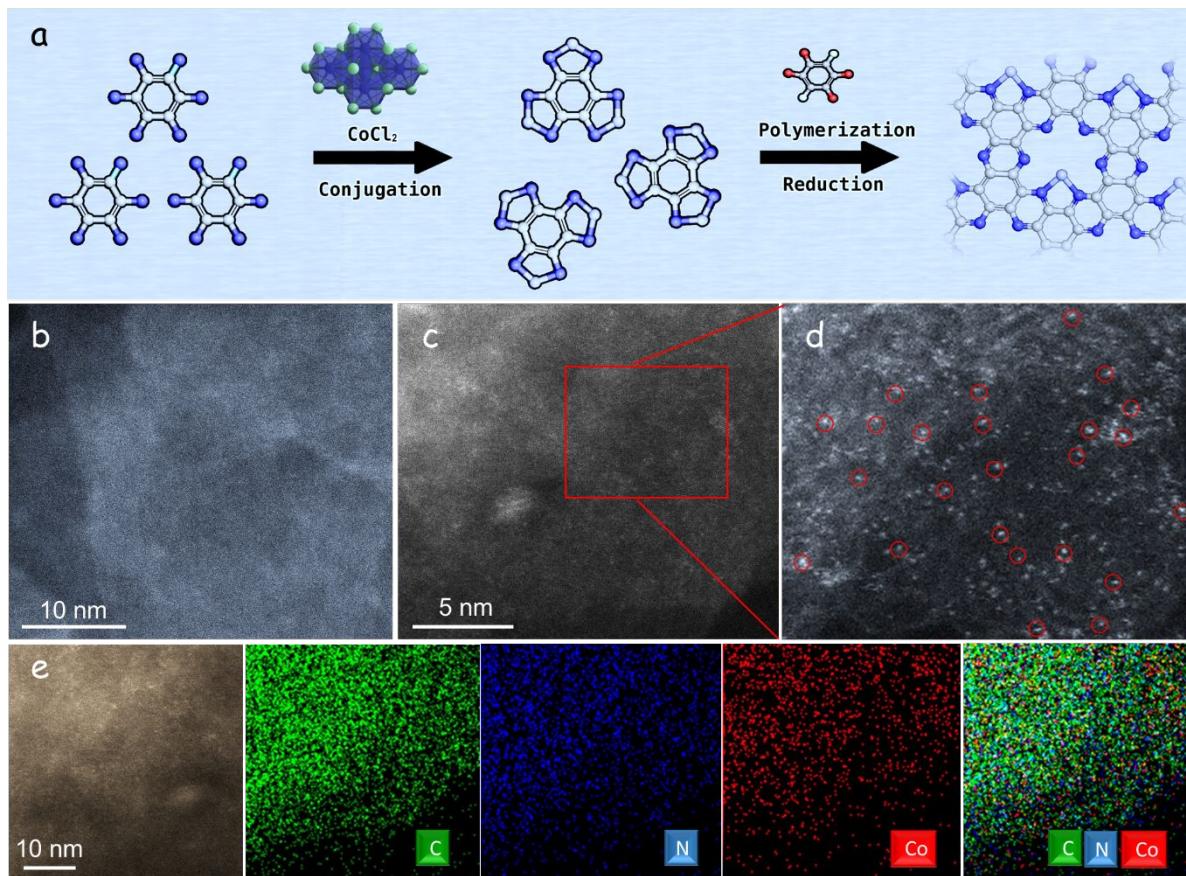
(38) Yang, D.; Zhang, C.; Biendicho, J. J.; Han, X.; Liang, Z.; Du, R.; Li, M.; Li, J.; Arbiol, J.; Llorca, J.; Zhou, Y.; Morante, J. R.; Cabot, A. ZnSe/N-Doped Carbon Nanoreactor

1
2
3 with Ultiple Adsorption Sites for Stable Lithium–Sulfur Batteries. *ACS Nano* **2020**, *14*
4 (11), 15492–15504.
5
6 (39) Song, J.; Yu, Z.; Gordin, M. L.; Wang, D. Advanced Sulfur Cathode Enabled by Highly
7 Crumpled Nitrogen Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur
8 Batteries. *Nano Lett.* **2016**, *16*, 864–870.
9
10 (40) Song, Y.; Zou, L.; Wei, C.; Zhou, Y.; Hu, Y. Single-Atom Electrocatalysts for Lithium–
11 Sulfur Chemistry: Design Principle, Mechanism, and Outlook. *Carbon Energy* **2022**, *5*,
12 e286.
13
14 (41) Liang, Z.; Shen, J.; Xu, X.; Li, F.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Advances in the
15 Development of Single-Atom Catalysts for High-Energy-Density Lithium–Sulfur
16 Batteries. *Adv. Mater.* **2022**, *34* (30), 2200102.
17
18 (42) Pang, Q.; Tang, J.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A Nitrogen
19 and Sulfur Dual-Doped Carbon Derived from Polyrhodanine@Cellulose for Advanced
20 Lithium-Sulfur Batteries. *Adv. Mater.* **2015**, *27* (39), 6021–6028.
21
22 (43) Zhang, C.; Du, R.; Biendicho, J. J.; Yi, M.; Xiao, K.; Yang, D.; Zhang, T.; Wang, X.;
23 Arbiol, J.; Llorca, J.; Zhou, Y.; Morante, J. R.; Cabot, A. Tubular CoFeP@CN as a Mott-
24 Schottky Catalyst with Multiple Adsorption Sites for Robust Lithium-Sulfur Batteries.
25 *Adv. Energy Mater.* **2021**, *11*, 2100432.
26
27 (44) Zheng, J.; Tian, J.; Wu, D.; Gu, M.; Xu, W.; Wang, C.; Gao, F.; Engelhard, M. H.;
28 Jiguang, Z.; Liu, J.; Xiao, J. Lewis Acid-Base Interactions between Polysulfides and
29 Metal Organic Framework in Lithium Sulfur Batteries. *Nano Lett.* **2014**, *14*, 2345–2352.
30
31 (45) Zhou, G.; Zhou, G.; Yang, A.; Gao, G.; Yu, X.; Xu, J.; Liu, C.; Ye, Y.; Pei, A.; Wu, Y.;
32 Peng, Y.; Li, Y.; Liang, Z.; Liu, K.; Wang, L. W.; Cui, Y.; Cui, Y. Supercooled Liquid
33 Sulfur Maintained in Three-Dimensional Current Collector for High-Performance Li-S
34 Batteries. *Sci. Adv.* **2020**, *6* (21), eaay5098.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

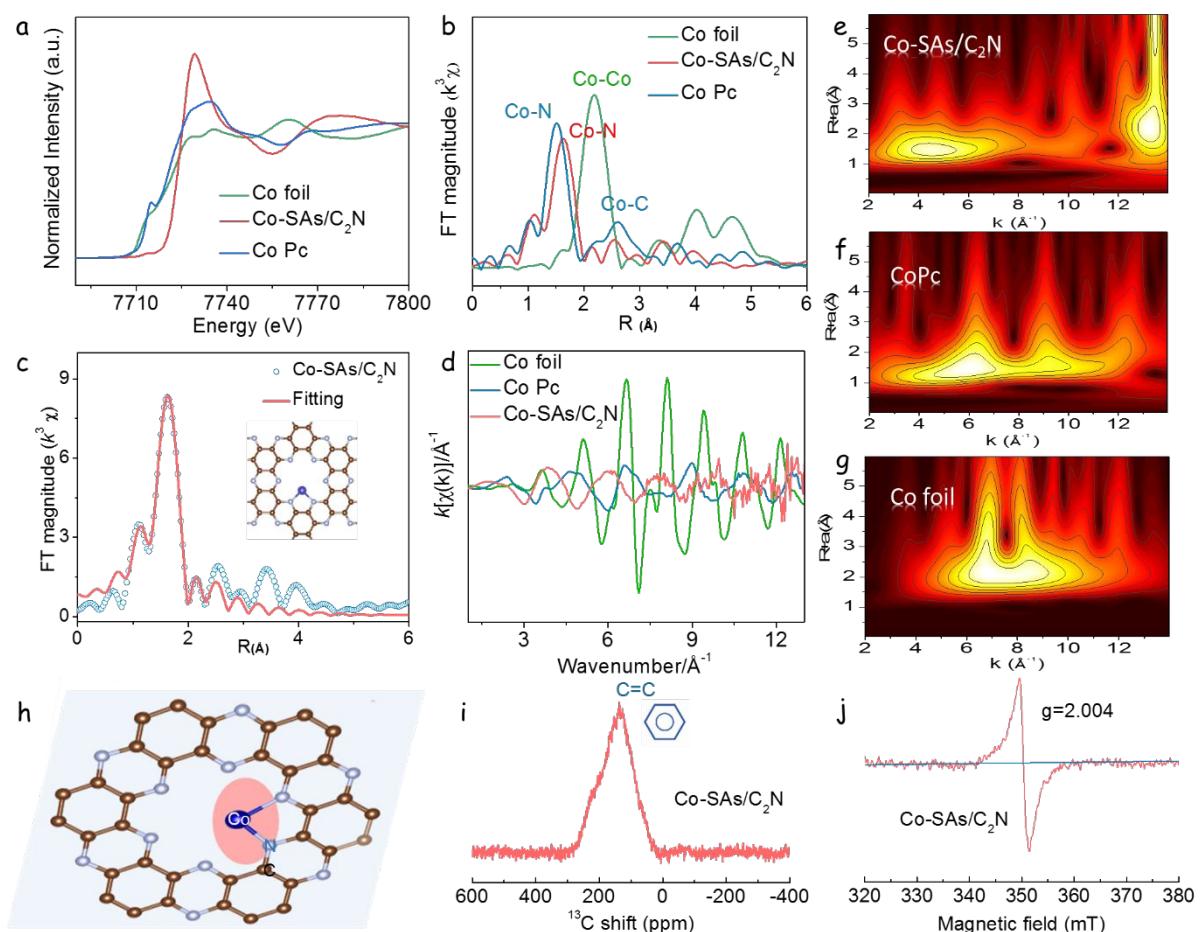
(46) Li, C.; Qi, S.; Zhu, L.; Zhao, Y.; Huang, R.; He, Y.; Ge, W.; Liu, X.; Zhao, M.; Xu, L.; Qian, Y. Regulating Polysulfide Intermediates by Ultrathin Co-Bi Nanosheet Electrocatalyst in Lithium-Sulfur Batteries. *Nano Today* **2021**, *40*, 101246.

(47) Lin, H.; Yang, L.; Jiang, X.; Li, G.; Zhang, T.; Yao, Q.; Zheng, G. W.; Lee, J. Y. Electrocatalysis of Polysulfide Conversion by Sulfur-Deficient MoS₂ Nanoflakes for Lithium-Sulfur Batteries. *Energy Environ. Sci.* **2017**, *10* (6), 1476–1486.

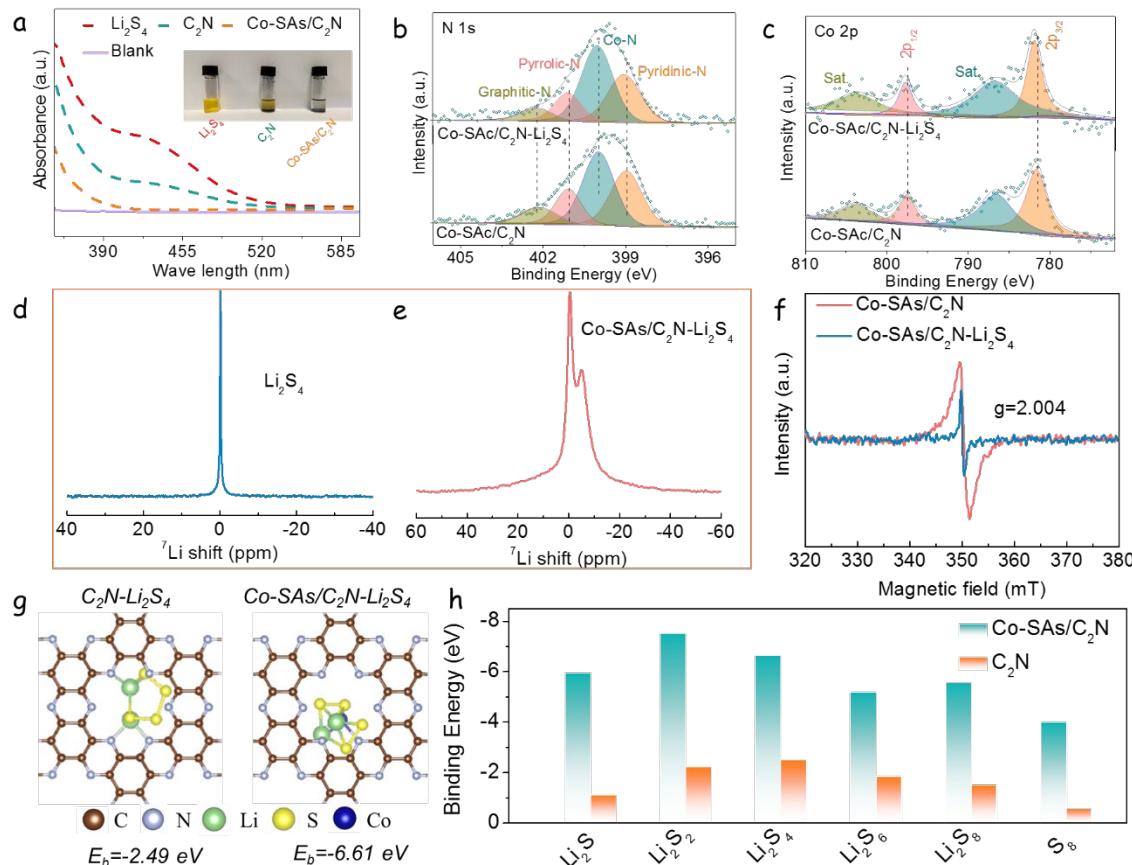
(48) Yang, D.; Liang, Z.; Tang, P.; Zhang, C.; Tang, M.; Li, Q.; Biendicho, J. J.; Li, J.; Heggen, M.; Dunin-Borkowski, R. E.; Xu, M.; Llorca, J.; Arbiol, J.; Morante, J. R.; Chou, S. L.; Cabot, A. A High Conductivity 1D π -d Conjugated Metal–Organic Framework with Efficient Polysulfide Trapping-Diffusion-Catalysis in Lithium–Sulfur Batteries. *Adv. Mater.* **2022**, *34* (10), 2108835.

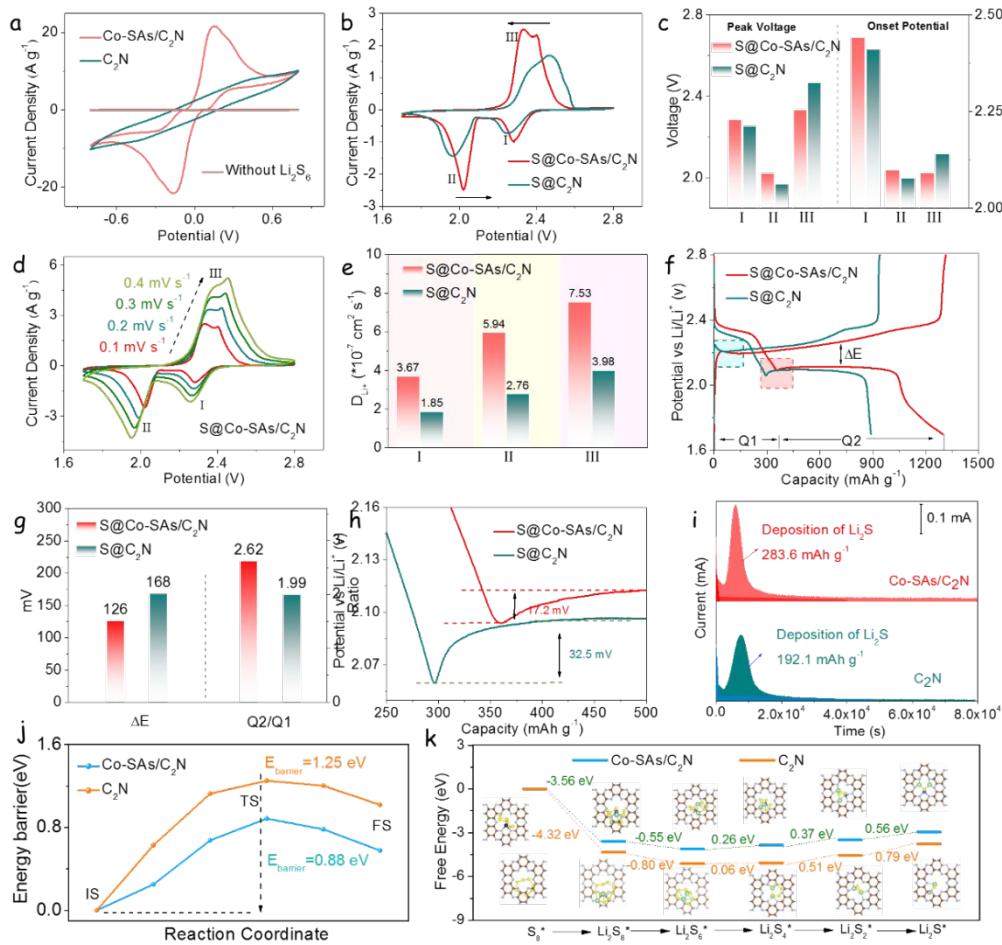

(49) Moy, D.; Manivannan, A.; Narayanan, S. R. Direct Measurement of Polysulfide Shuttle Current: A Window into Understanding the Performance of Lithium-Sulfur Cells. *J. Electrochem. Soc.* **2015**, *162* (1), A1–A7.

(50) Chen, Y.; Zhang, W.; Zhou, D.; Tian, H.; Su, D.; Wang, C.; Stockdale, D.; Kang, F.; Li, B.; Wang, G. Co-Fe Mixed Metal Phosphide Nanocubes with Highly Interconnected-Pore Architecture as an Efficient Polysulfide Mediator for Lithium-Sulfur Batteries. *ASC nano* **2019**, *13*, 4731–4741.


(51) Yuan, Z.; Peng, H.; Hou, T.; Huang, J.; Chen, C.; Wang, D.; Cheng, X.; Wei, F.; Zhang, Q. Powering Lithium–Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfophilic Hosts. *Nano Lett.* **2016**, *16*, 519–527.

(52) Zhou, G.; Tian, H.; Jin, Y.; Tao, X.; Liu, B.; Zhang, R.; Seh, Z.; Zhou, D.; Liu, Y.; Sun, J.; Zhao, J.; Zu, C.; Wu, D. S.; Zhang, Q.; Cui, Y. Catalytic Oxidation of Li₂S on the Surface of Metal Sulfides for Li–S Batteries. *Proc. Natl. Acad. Sci. USA* **2016**, *114* (5), 840–845.


1
2
3 (53) Zhu, X.; Zhao, W.; Song, Y.; Li, Q.; Ding, F.; Sun, J.; Zhang, L.; Liu, Z. In Situ
4 Assembly of 2D Conductive Vanadium Disulfide with Graphene as a High-Sulfur-
5 Loading Host for Lithium–Sulfur Batteries. *Adv. Energy Mater.* **2018**, *8* (20), 1800201.
6
7
8 (54) Li, M.; Yang, D.; Biendicho, J. J.; Han, X.; Zhang, C.; Liu, K.; Diao, J.; Li, J.; Wang, J.;
9 Heggen, M.; Dunin-Borkowski, R. E.; Wang, J.; Henkelman, G.; Morante, J. R.; Arbiol,
10 J.; Chou, S. L.; Cabot, A. Enhanced Polysulfide Conversion with Highly Conductive and
11 Electrocatalytic Iodine-Doped Bismuth Selenide Nanosheets in Lithium–Sulfur
12 Batteries. *Adv. Funct. Mater.* **2022**, *32* (26), 2200529.
13
14 (55) Du, M.; Geng, P.; Pei, C.; Jiang, X.; Shan, Y.; Hu, W.; Ni, L.; Pang, H. High-Entropy
15 Prussian Blue Analogues and Their Oxide Family as Sulfur Hosts for Lithium-Sulfur
16 Batteries. *Angew. Chem., Int. Ed.* **2022**, *134* (41), e202209350.
17
18 (56) Xiao, R.; Yu, T.; Yang, S.; Chen, K.; Li, Z.; Liu, Z.; Hu, T.; Hu, G.; Li, J.; Cheng, H.
19 M.; Sun, Z.; Li, F. Electronic Structure Adjustment of Lithium Sulfide by a Single-Atom
20 Copper Catalyst toward High-Rate Lithium-Sulfur Batteries. *Energy Storage Mater.*
21 **2022**, *51*, 890–899.
22
23 (57) Eftekhari, A. Energy Efficiency: A Critically Important but Neglected Factor in Battery
24 Research. *Sustain. Energy Fuels* **2017**, *1* (10), 2053–2060.
25
26 (58) Tian, Y.; Li, G.; Zhang, Y.; Luo, D.; Wang, X.; Zhao, Y.; Liu, H.; Ji, P.; Du, X.; Li, J.;
27 Chen, Z. Low-Bandgap Se-Deficient Antimony Selenide as a Multifunctional
28 Polysulfide Barrier toward High-Performance Lithium–Sulfur Batteries. *Adv. Mater.*
29 **2020**, *32* (4), 1904876.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


Figure 1. (a) Schematic illustration of the synthesis of Co single atoms supported by C_2N (Co-SAs/ C_2N). (dark blue = nitrogen, light gray = carbon, red = oxygen, light green = chlorine, and light blue = cobalt). (b-d) HAADF-STEM images at different magnifications of Co-SAs/ C_2N . Red circles display single Co atoms shown as bright contrast spots. (e) HAADF-STEM image and corresponding EDX mapping showing the elemental distribution of Co-SAs/ C_2N .

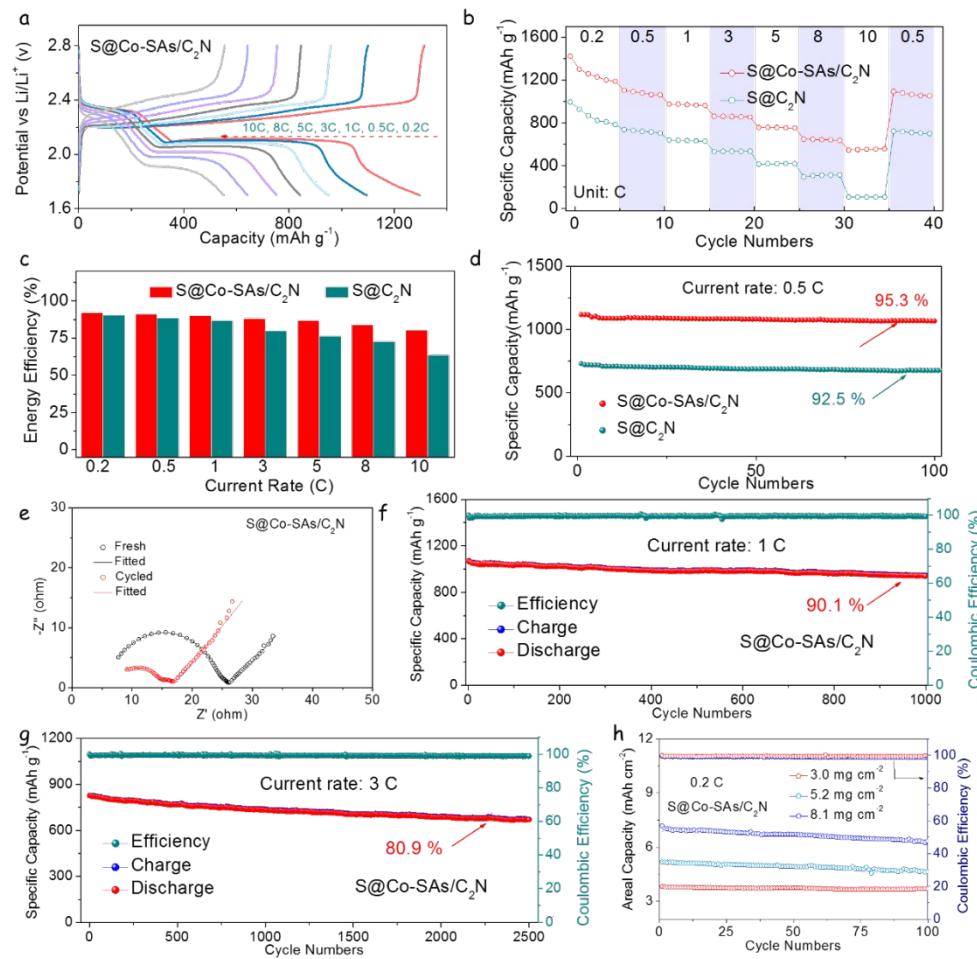

Figure 2. (a) XANES spectra of Co-SAs/C₂N, CoPc, and Co foil. (b) Co K-edge FT-EXAFS spectra in R space of Co-SAs/C₂N, CoPc, and Co foil. (c) EXAFS fitting curves in R space for the Co-SAs/C₂N sample (inset is the top view of the optimized stable Co-N₂ coordinated structure). (d) EXAFS oscillations of Co-SAs/C₂N with respect to the reference samples. (e-g) Wavelet transformed contour plots at Co K-edge of Co-SAs/C₂N, CoPc, and Co foil. (h) The atomic structure model of the Co-SAs/C₂N. (i) Solid state ¹³C MAS-NMR spectrum for Co-SAs/C₂N. (j) CW-EPR spectrum of Co-SAs/C₂N, with a g-factor of 2.004.

Figure 3. (a) UV-Vis spectra and optical photograph of the flasks containing a Li_2S_4 solution and the different materials after overnight adsorption. (b) High-resolution N 1s XPS spectra and (c) high-resolution Co 2p XPS spectra of $\text{Co-SAs/C}_2\text{N}$ before and after Li_2S_4 adsorption. Solid-state ^7Li NMR spectrum of (d) Li_2S_4 and (e) $\text{Co-SAs/C}_2\text{N}-\text{Li}_2\text{S}_4$. (f) CW-EPR spectrum for $\text{Co-SAs/C}_2\text{N}$ and $\text{Co-SAs/C}_2\text{N}-\text{Li}_2\text{S}_4$. (g) Relaxed Li_2S_4 -adsorbed structure on the surface of C_2N and $\text{Co-SAs/C}_2\text{N}$ calculated with DFT. (h) Binding energies between LiPS species (Li_2S , Li_2S_2 , Li_2S_4 , Li_2S_6 , Li_2S_8 and S_8) and C_2N or $\text{Co-SAs/C}_2\text{N}$ as calculated by DFT.

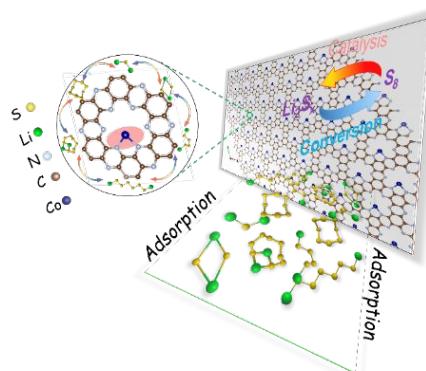


Figure 4. (a) CV profiles of symmetric cells with Co-SAs/C₂N and C₂N host materials in an electrolyte containing 0.5 mol L⁻¹ Li₂S₆ and 1 mol L⁻¹ LiTFSI dissolved in DOL/DME (v/v = 1/1). (b) CV profiles of Li-S coin cells at a scan rate of 0.1 mV s⁻¹. (c) Peak voltages and onset potentials of Li-S cells based on the CV curves. (d) CV profile of the S@Co-SAs/C₂N electrode with scan rates ranging from 0.1-0.5 mV s⁻¹. (e) Li⁺ diffusion coefficient of S@Co-SAs/C₂N and S@C₂N electrodes calculated from I, II, and III. (f) Galvanostatic charge/discharge profiles of various electrodes with a 0.1 C current rate. (g) Values of ΔE and Q2/Q1 obtained from charge/discharge profiles. (h) Discharge curves of S@Co-SAs/C₂N and S@C₂N electrodes exhibiting the overpotentials for the transformation from soluble LiPS to insoluble Li₂S₂/Li₂S. (i) Potentiostatic discharge profile at 2.05 V on S@Co-SAs/C₂N and S@C₂N electrodes with Li₂S₈ catholyte to evaluate the nucleation kinetics of Li₂S. (j) Decomposition energy barriers of Li₂S on C₂N and Co-SAs/C₂N for different adsorbate configurations. (k) Gibbs free energy profiles and adsorption conformation of LiPS species on the surface of C₂N and Co-SAs/C₂N.

Figure 5. Electrochemical performance of Li-S coin cells. (a) Galvanostatic charge/discharge profile of S@Co-SAs/C₂N electrodes at various rates from 0.2 C to 10 C. (b) Rate capabilities of the S@Co-SAs/C₂N and S@C₂N electrodes at different current rates. (c) Energy efficiency of two different electrodes at various current rates. (d) Capacity retention of S@Co-SAs/C₂N and S@C₂N electrodes at 0.5 C over 100 cycles. (e) Nyquist plot of EIS data from S@Co-SAs/C₂N electrodes before and after cycling at 0.5 C. (f) Cycling stability of S@Co-SAs/C₂N electrodes at 1 C over 1000 cycles. (g) Ultra-long cycling test of the S@Co-SAs/C₂N electrode at 3 C over 2500 cycles. (h) High-loading cycling performances with sulfur loadings of 3.0, 5.2, and 8.1 mg cm^{-2} at 0.2 C of S@Co-SAs/C₂N electrodes.

Abstract Graphics

