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a Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, 
230009 Hefei, China 
b Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria 
c Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain 
d School of Materials Science and Engineering, Beihang University, Beijing 100191, China 
e Centre for Future Materials and School of Engineering, University of Southern Queensland, Springfield Central, Queensland 4300, Australia 
f ICREA, Pg. Lluís Companys 23, Barcelona, Catalonia, 08010, Spain   

A R T I C L E  I N F O   

Keywords: 
Tin selenide 
Nanocomposites 
Solution processing 
Thermoelectricity 
Thermal conductivity 

A B S T R A C T   

There is a growing interest in cost-effective polycrystalline SnSe-based thermoelectric (TE) materials, which are 
able to replace the high performance but mechanically fragile and costly single-crystalline SnSe. In this study, we 
present a low-temperature solution-based approach to produce SnSe-PbSe nanocomposites with outstanding TE 
performance. Our method involves combining surfactant-free SnSe particles with oleate-capped PbSe nano
crystals in specific ratios, followed by thermal annealing and consolidation using spark plasma sintering. These 
nanocomposites are characterized by distinct compositional and structural properties that significantly impact 
their transport properties. In particular, the addition of oleate-capped PbSe nanocrystals results in: i) a reduction 
in the electrostatically adsorbed Na at the surface of the SnSe particles; ii) a reduction of Sn vacancies due to 
alloying with Pb; iii) an increase in grain boundary density; and iv) the formation of PbSnSe secondary phases. 
Notably, the SnSe-2.5 %PbSe nanocomposites demonstrate a 30 % decrease in thermal conductivity compared to 
that of the SnSe matrix. This reduction contributes to a maximum figure of merit (zT) of 1.75 at 788 K with a high 
average zT value of ca. 1.2 in the medium temperature range of 573–773 K. These values represent one of the 
highest reported in polycrystalline SnSe materials, showcasing the potential of our fabricated SnSe-PbSe nano
composites for cost-effective TE applications.   

1. Introduction 

Thermoelectric (TE) devices enable direct and reversible conversion 
between thermal and electrical energy. Their energy conversion effi
ciency depends on a material’s dimensionless parameter known as the 
TE figure of merit, zT = σS2T /κ, where S is the Seebeck coefficient, σ 
denotes electrical conductivity, κ represents thermal conductivity, and T 
is the absolute temperature [1–4]. To produce high performance de
vices, the TE material must have high σ, large S, and low κ. However, the 
interdependence among these parameters makes it challenging to opti
mize them to yield a high zT [1,3]. 

Medium-temperature TE devices, which are proposed for recovering 

heat from a variety of sources such as combustion engine exhausts [5], 
high-temperature catalytic crackers [6], and furnaces [7], to cite just a 
few, highlight the potential of these technologies in efficiently utilizing 
waste heat. Over the last decade, SnX-based (X = S, Se, Te) binary 
chalcogenides have garnered significant interest for medium- 
temperature TE applications [8], specially SnSe [9,10]. Ultra-high zT 
values for both p- [11] and n-type [12] single-crystals have been re
ported along a particular crystallographic direction. Proof-of-concept 
devices based on these materials have since been fabricated, hinting at 
their viable real-world applications [13,14]. However, the challenges 
associated with the processing and mechanical stability of single-crystal 
SnSe, impede their use for large-scale practical applications [15,16]. 
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Hence, producing polycrystalline SnSe with similar performance is 
imperative. 

To date, polycrystalline SnSe has shown moderate TE performance, 
primarily due to two reasons: 1) its carrier mobility (μ) is substantially 
lower, resulting in a significantly reduced average zT (zTavg) values in 
the low-to-mid temperature range [16]; and 2) the formation of an 
oxidized SnOx layer at the surfaces resulting in high κ [9,17–19]. Thus, 
despite the advantage of phonon scattering as a result of the high grain 
boundary density in polycrystalline SnSe, these materials tend to show 
larger thermal conductivities than the single crystal counterpart. 

To address the above challenges and promote the TE performance of 
polycrystalline SnSe, novel strategies have been developed, including 
stoichiometry control [20–22], doping [23–36], alloying [37–39], 
removing surface oxides [17,18], and tuning nanostructuration 
[40–44]. These methods have facilitated significant improvements in 
the zT values of polycrystalline SnSe synthesized by both solid-state and 
solution-processing techniques. In comparison with the solid-phase 
approach, solution-processing methods have been successfully applied 
in numerous systems, yielding superior zT values 
[20–23,27,28,30,31,39,42,44,45]. The excellent performance obtained 
using facile, scalable, potentially low-cost, high-yield, and versatile 
nanoparticle-based bottom-up processing approaches is attributed to the 
nanometer scale control over crystallite size, facets, orientation, and 
phase distribution, improving the carrier scattering mechanism at the 
grain boundaries and optimizing the electrical transport while main
taining low κ [46,47]. 

In this study, we present a simple and versatile method to fabricate 
SnSe nanocomposites (NCPs) with tailored compositions and enhanced 
TE performance. Specifically, we combine oleate-capped PbSe nano
crystals (NCs) with SnSe powders synthesized through an aqueous 
method, resulting in SnSe-PbSe NCPs. The integration of PbSe NCs into 
the SnSe powder allows for composition and microstructure control 
during the consolidation process, resulting in nanocomposites with 
significantly reduced κ compared to the pristine SnSe matrix across the 
entire temperature range. This approach yields highly stable poly
crystalline SnSe materials with consistently high zTavg values in the mid- 
temperature range. This study underscores the efficacy of producing 
nanocomposites for efficient utilization in TE applications through cost- 
effective and versatile methods. 

2. Results and discussion 

Surfactant-free SnSe particles are synthesized by a cost-effective and 
simple method at ambient pressure, using deionized water as solvent, 
and inexpensive SnCl2⋅H2O and Se powder as precursors [48]. The as- 
synthetized SnSe particles are washed through several leaching cycles 
with deionized water and ethanol by precipitation/redispersion, fol
lowed by vacuum drying overnight at room temperature [49]. After
wards, the dried SnSe powder is annealed in forming gas (95 % N2 + 5 % 
H2) to remove oxide species on the particle surface [17,19]. For the 
evaluation of TE properties, the annealed powders are consolidated into 
cylindrical pellets with a diameter of Ø = 9 mm and a thickness of h =
12 mm under vacuum, using spark plasma sintering (SPS). Additional 
details of the entire process can be found in the supporting information 
(SI). 

Morphological analysis of the SnSe particles is performed using 
scanning electron microscopy (SEM) and transmission electron micro
scopy (TEM), which show rectangular particles with an average size of 
150 ± 50 nm (Fig. S1), consistent with the previous report [49]. To 
produce SnSe-x%PbSe (x mol%, x = 0, 1.5, 2.0, 2.5) NCPs, 4.0 g of SnSe 
particles are mixed with different amounts of PbSe NCs in anhydrous 
hexane. Oleate-capped PbSe NCs are prepared following a previously 
reported procedure [50], which yield uniform quasi-spherical particles 
with a narrow size distribution centered at 5.5 nm (Fig. S2). The mix
tures are vigorously stirred at room temperature in an N2-filled vial for 
ca. 2 h. After 2 h under magnetic stirring, the colloidal stability of the 

PbSe dispersion is wrecked, resulting in the formation of SnSe-PbSe 
precipitates (Fig. S3). The SnSe-x%PbSe particle blend is removed 
from the solution by discarding the supernatant. The remaining powder 
is then washed with fresh ethanol, and dried under vacuum, to yield fine 
powders with a homogeneous distribution of PbSe NCs in between the 
SnSe particles (Fig. S4). The complete process used to produce the NCPs 
is schematically shown in Fig. 1. 

Previously, we demonstrated that particles produced in polar sol
vents have electrostatically charged Na ions adsorbed on the surface to 
achieve charge neutrality [49]. We also demonstrated that if Na was 
present as a surface adsorbate it would end up within the crystal lattice 
as a dopant. Since its concentration surpasses the solubility limit in the 
final bulk SnSe, Na segregates in dislocations, precipitates, and the 
formation of grain boundary complexions [49]. Herein, we show that 
mixing SnSe powders with oleate-capped PbSe NCs reduces the total 
amount of Na in the final material. This reduction occurs through the 
formation of Na oleate, which is then leached out during the ethanol 
washing steps (Fig. 2a–b) [51], influencing the transport properties in 
SnSe-PbSe NCPs, as discussed below. The removal of Na is evidenced by 
1H NMR analysis of the two supernatants collected after washing the 
SnSe-PbSe particles, which indicates the presence of oleate in both 
washes (Fig. 2c). Moreover, Na is detected in the supernatant through 
energy dispersive X-ray spectroscopy (EDX) as show in Fig. S5. 

Following the same steps as for the SnSe pellet, the SnSe-x%PbSe 
powders are first annealed in a reducing atmosphere and then consoli
dated into SnSe-PbSe cylindrical pellets. The overall composition of the 
consolidated SnSe-x%PbSe (x mol%, x = 0, 1.5, 2.0, 2.5) pellets matches 
the nominal SnSe-x%PbSe particle mixtures used as indicated by EDX 
data (Fig. S6). Independent of the initial presence of PbSe, all pellets 
have similar relative densities, ca. 93–95 % of their theoretical value 
(Table S1). 

All X-ray diffraction (XRD) patterns of SnSe-x%PbSe (x = 0, 1.5, 2.0 
and 2.5) pellets match the SnSe structure with Pnma space group in both 
parallel (Fig. S7b) and normal (Fig. 3a) to the press direction. No sec
ondary phases are observed within the detection limits of XRD. Lattice 
parameters expand with an increasing PbSe content, indicating the 
diffusion of Pb atoms into the SnSe matrix to form a solid solution of 
PbSe with the SnSe matrix. The expansion follows Vegard’s law for solid 
solutions (Fig. 3b–c), and is consistent with the relatively larger size of 
the Pb2+ (1.19 Å) ion compared to Sn2+ (1.12 Å) ion. The expansion 
trend stabilizes at 2.5 mol% PbSe, indicating an overcoming of the 
solubility limit of Pb within SnSe. Additionally, the analysis of the 
relative intensities between the (400) and (111) peaks (I(4 0 0)/I(1 1 1)) in 
Fig. 3a, reveals a slight increase in the in-plane I(4 0 0)/I(1 1 1) ratio with 
the PbSe content from 0 to 2.5 %, indicating slightly larger anisotropy in 
the SnSe-PbSe samples. We hypothesize that this could be attributed to 
the effects of alloying and the formation of nanometric secondary phases 
during the sintering process. During the sintering process, the material 
undergoes a densification and grain growth process. The presence of 
pinning centers (i.e. nanometric secondary phases) for grain boundary 
movement could promote the grains to preferentially orient in specific 
directions to increase the material density. 

Upon annealing and consolidation, cross-section SEM micrographs 
show bare SnSe particles coalesce and grow into larger grains with sizes 
on the order of several microns (average grain size ca. 3.2 ± 1 μm) as 
shown in Fig. 3d–e, which is consistent with our previous reports 
[44,49]. When the powder contains PbSe NCs, the sintered pellets 
display much smaller grains than the bare SnSe, with smaller grains for 
those composites produced with larger quantities of PbSe, e.g. SnSe-2.5 
%PbSe NCPs have an average grain size of 0.75 ± 0.2 μm. Significant 
differences in grain coarsening and growth are already noticeable after 
the annealing step, as can be seen in Fig. S8. 

To further evaluate the microstructure of the NCPs, bare SnSe and 
SnSe-2.5 %PbSe pellets were thinned to electron transparency to pro
duce a self-suspended lamella. Low magnification scanning transmission 
electron microscopy (STEM) images reveal significantly different 
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microstructures (Fig. S9). SnSe-2.5 %PbSe NCPs exhibits a larger density 
of grain boundaries, as well as different types of defects (Fig. 4, S9, and 
S10). In Fig. 4a, a high-resolution TEM (HRTEM) image showing the 
boundary area between three different grains is reported. Fig. 4b shows 
the corresponding frequency filtered map evidencing each of the three 
grains with a different color, in particular all the grains observed have 
been indexed as containing the SnSe crystal phase with orthorhombic 
Pnma space group oriented along different directions: [011] zone axis 
for the grain in blue, [112] zone axis for the grain in red and [125] zone 
axis for the grain in green as reported in Fig. 4c. The insets shown in 
Fig. 4a correspond to magnified details of each grain atomic structure, 
together with the corresponding superposed HRTEM simulated images, 
evidencing the perfect match between experimental and simulated 
crystal phases. 

Upon closer examination of each grain structure, it becomes evident 

that there are discernible precipitates present, as reported in Fig. 4d and 
g. In both cases, we could isolate the nanoprecipitates in the frequency 
filtered maps reported in Fig. 4e and h, respectively. Here the pre
cipitates are in green while the main grain structure is in red. Analyzing 
the corresponding power spectra, Fig. 4f and i, we identify their atomic 
arrangement, finding in both cases the PbSnSe orthorhombic Pnma 
crystalline structure along [101] and [123] zone axes, respectively. The 
fitting of the powder spectra with different structures, including PbSe 
cubic, PbSe Pnma and PbSnSe Fm-3 m, revealed that PbSnSe Pnma shows 
the best fit across all precipitates analyzed [52], as it gave us the smallest 
deviation error when comparing the experimental plane distances and 
relative angles with the simulated ones. 

Based on the data obtained through HRTEM, we conclude that the 
SnSe-PbSe NCPs have PbSnSe nanoprecipitates, instead of the expected 
PbSe, produced during the thermal treatments. We hypothesize that the 

Fig. 1. Scheme of the fabrication process of bulk SnSe-PbSe NCPs. (1–2) blending the oleate-capped PbSe NCs with SnSe particles in hexane by stirring for ca. 2 h at 
room temperature; (3) purification and drying of the SnSe-PbSe particle blend; (4) annealing; (5) spark plasma sintering (SPS) for producing cylinders (Ø = 9 mm ×
h = 12 mm); and (6) slicing for the transport properties measurements of the bulk SnSe-PbSe NCPs. 

Fig. 2. (a) The reaction mechanism by the mixing SnSe powders with oleate-capped PbSe NCs, (b) illustration of the washing steps conducted, where sodium oleate is 
present in the supernatant and the SnSe-PbSe particles are isolated. c) 1H NMR of the two supernatants collected after washing the SnSe-PbSe particles. 
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presence of such secondary phase nanoparticles in the polycrystalline 
material is the reason for grain growth inhibition in the SnSe-PbSe 
system, similar to what has been previously reported in SnSe-CdSe 
[44] and SnTe-Bi2S3 [53] systems, despite the differences in sample 
processing. The presence of a secondary phase at the grain boundary 
significantly diminishes the driving force for grain boundary migration, 
restricting grain growth. Such a phenomenon is known as the Zener 
pinning [54,55]. The amount of the secondary phase is directly related 
to the nominal content of added PbSe, considering a partial diffusion of 
Pb into the SnSe matrix to form an alloy [56]. This is evidenced by the 
fact that the sample with PbSe around 1.5 % does not show a significant 
reduction in grain size, as such content of PbSe is within the solubility 
limit of PbSe into SnSe. As we move beyond this solubility limit, and add 
more PbSe, more PbSnSe particles form as the second phase enhancing 
the pinning of the grain boundary movement. 

3. Transport properties 

The transport properties are measured along two directions: parallel 
and perpendicular to the pressure axis, as depicted in the schematic 
diagram in Fig. 1. The zT values along the parallel direction are larger 
than that along the normal direction [44,49]. Consequently, in the main 
text, we only display the transport properties in the parallel direction 
(Fig. 5 and S11). The measurements in the perpendicular direction, are 
shown in Fig. S12. 

Bare SnSe and SnSe-x%PbSe (x = 1.5, 2.0, 2.5) pellets exhibit a 

positive S, which indicates a p-type transport (Fig. 5a), and the tem
perature dependence of S follows the expected trend for polycrystalline 
SnSe indicating no changes in the electronic structure [24,38,39,44,49]. 
ab initio density functional theory (DFT) calculations for the SnSe and 
Sn0.98Pb0.02Se low temperature phase (Pnma) corroborate that Pb 
alloying does not perturb their electronic structure (Fig. S13). Hence, the 
difference in transport properties is mainly associated with the doping 
level and the scattering differences between the two materials. 

The σ of both bare SnSe and SnSe-PbSe NCPs exhibits a thermally 
activated behavior, a common feature of polycrystalline SnSe (Fig. 5b) 
[10,15,16]. We attribute the high σ of bare SnSe to the content of Na 
acting as a dopant, resulting in high hole carrier concentration (pH >

1019 cm− 3) [44,49]. In comparison to the bare SnSe, σ values of the 
SnSe-x%PbSe NCPs are lower. This decline in σ is attributed to a 
simultaneous decrease in pH and hall mobility (µH), as indicated by the 
Hall measurements (Fig. 5c, Table S2). The diminished carrier concen
tration can be ascribed to two phenomena: i) the decrease in the overall 
Na content in the composite compared to bare SnSe, and ii) the 
compensatory effect of Pb alloying, mitigating Sn vacancies [38]. 

The decrease in carrier mobility can be linked to the increase in grain 
boundary density. Samples containing PbSe have smaller grains and the 
presence of PbSnSe nanoprecipitates which introduce further electron 
scattering. Among these SnSe-x%PbSe (x = 1.5, 2.0, 2.5) samples, those 
with higher initial PbSe content exhibited slightly higher σ across the 
whole temperature range, which is mainly attributed to the smaller 
electronegativity difference between Pb and Se compared to Sn and Se, 

Fig. 3. (a) XRD patterns of the pellets obtained from SnSe-x%PbSe (x = 0, 1.5, 2.0, and 2.5) NCPs in the normal to the press direction, including SnSe reference 
pattern (PDF 00–048–1224). (b) Magnification of the (400) XRD peak at ca. 2θ = 31◦. (c) Experimental lattice parameter “a” calculated from XRD patterns. (d) Cross- 
section SEM images of the pellets from SnSe-x%PbSe (x = 0, 1.5, 2.0, and 2.5) NCPs, and (e) the corresponding grain size distribution histograms and average size. 
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ensuring higher carrier concentration [42]. 
To understand the temperature dependent mobility data, we calcu

lated the weighted mobility (μW) based on the measured σ and S [57], 
shown in Fig. S15. In the low-temperature range, the increase of µW with 
temperature indicates the presence of energy barriers (Eb) at the grain 
boundaries [58,59]. The energy barrier height (Eb; σ ∝ T− 1/2 exp(− Eb/ 
kBT)) for the bare SnSe sample is determined to be ~141 meV, lower 
than ~189–217 meV for the SnSe-PbSe NCPs (Fig. S14). As the tem
perature increases, the effect of the potential barriers diminishes due to 
thermal carrier excitations at high temperature. Thus, the NCPs have 

similar σ to bare SnSe. 
In all SnSe-x%PbSe (x = 0, 1.5, 2.0, 2.5) NCPs, temperature- 

dependent S peaks at ca. 650 K, indicating the onset for bipolar con
duction. As the material gradually transitions from orthorhombic 
(Pnma) phase to the Cubic (Cmcm) phase, there is a change in the 
electronic structure, which is directly evidenced by the reduction of the 
energy band gap from 0.86 to 0.39 eV [32]. Once complete trans
formation to the Cmcm phase at temperatures above 800 K, the S and σ 
remain constant within the temperature range measured (Fig. S15). Our 
previous work demonstrated that the S of the solution-processed SnSe 

Fig. 4. (a-c) HRTEM micrographs of grain boundaries of SnSe matrix, and its respective power spectrum fitting with the orthorhombic phase. The inset in (a) shows 
the HRTEM images simulation of the SnSe domains. (d-f) PbSnSe NC crystallized in orthorhombic Pnma space group with the corresponding indexed power spectrum 
from the region marked in white and the phase images highlighting the PbSnSe NC (green) and the SnSe matrix (red). (g-i) A smaller PbSnSe NC crystallized in 
orthorhombic Pnma space group with the corresponding indexed power spectrum from the region marked in green, the inset in Fig. 4h shows the highlighting of 
another PbSnSe NC (green) and the SnSe matrix (red). 
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matrix was higher than those reported for polycrystalline Na-doped 
counterparts synthesized by solid-state melting approach with similar 
carrier densities due to energy filtering effects [49]. The phenomenon 
resulting in such a larger S, is also effective in the SnSe-PbSe NCPs, as 
can be seen in the Pisarenko plot at 300 K, where all the S values lie 
above the line generated using a multiband model (Fig. 5d) [60]. In the 
Pisarenko plot, we juxtapose our results with previously reported 
experimental data [11,17,20,21,23–25,28,30,43,44,61–63]. The devia
tion from the Pisarenko line is ascribed to an augmented energy filtering 
effect, arising from the introduction of additional energy barriers by the 
presence of PbSnSe secondary phases. In essence, an effective potential 
barrier is established between the SnSe matrix and nanoprecipitates. 
Consequently, the low-energy charge carriers are filtered out, while the 
high-energy charge carriers can cross the potential barrier. The effect of 
the energy barriers decreases as the temperature increase, as can be 
observed in the temperature-dependent S values, where the difference in 

S values decreases between the bare SnSe and the SnSe-PbSe NCPs as the 
temperature increases. 

All κ of the samples exhibit a consistent trend across the whole 
temperature range (Fig. 5e). The values of κ decrease with increasing 
temperature and then start to rise at high temperatures due to SnSe 
phase transition to the higher symmetry Cmcm phase. This behavior is 
consistent with temperature-dependent XRD measurements (Fig. S16). 
Notably, the κ values of SnSe-PbSe NCPs are lower than those of the SnSe 
matrix over the entire temperature range. These values are among the 
lowest values studied for conventional bulk polycrystalline SnSe-based 
materials at high temperatures (>700 K) [20,25,28,30,33,39,40,44,64]. 

The lattice thermal conductivity (κL) values are estimated according 
to κL = κ − κe (Fig. 5f) with κe = LoσT, the Wiedemann–Franz law [65]. 
The specific heat (Cp), thermal diffusivity (λ), Lorentz number (Lo), and 
electronic thermal conductivity (κe) for all samples can be found in 
Fig. S17. At room temperature, κL decreases from ca.1.0 W m− 1K− 1 for 

Fig. 5. Thermoelectric properties of SnSe-x%PbSe (x = 0, 1.5, 2.0, and 2.5). (a-c) Temperature dependence of (a) Seebeck coefficient (S), (b) electric conductivity (σ) 
and (c) ambient temperature Hall charge carrier concentration (pH) and carrier mobility (μH). (d) Pisarenko plot at 300 K. Green dots are references from solution- 
processed materials [20,21,23,28,30,44,61], and black dots from solid-state synthetic methods [11,17,24,25,43,62,63]. The dashed line was calculated using a 
multiple band model (MVB) [60]. (e-g) Temperature dependence of (e) thermal conductivity (κ), (f) lattice thermal conductivity (κL), the inset shows the plot of 
1000/T-dependent κL and (g) figure of merit (zT) values. (h) Comparison of zTavg values of SnSe-2.5 %PbSe sample with reported state-of-the-art p-type poly
crystalline SnSe: produced by solid-state technology [17,18,25,32,34,35,37,43], and solution-processed technology [20,21,23,28,30,31,33,36,39,40,42,44] in the 
mid-temperature range of 573 K to 773 K (300–500 ◦C). 
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bare SnSe to 0.64 W m− 1K− 1 for SnSe-2.5 %PbSe NCPs This decreasing 
trend continues as the temperature increases, eventually reaching an 
ultra-low κL ~0.18 W m− 1K− 1, which is similar to the lowest reported 
value for polycrystalline SnSe [17,22,28,39,44]. The inset of Fig. 5f 
shows the curves of κL versus 1000/T for SnSe-x%PbSe NCPs, from 
which all κL values show a roughly linear relationship, indicating that 
Umklapp phonon scattering plays the most significant role in SnSe [30, 
66,67]. Additionally, based on the above SEM and HRTEM character
ization results, the extremely low κ in SnSe-PbSe NCPs is due to: i) high 
grain boundary density (smaller grain size), ii) the formation of atomic 
defects by Pb alloying, and iii) the presence of PbSnSe nanoprecipitates. 
These factors collectively contribute to the formation of defects span
ning from atomic to nanometer to micrometer scales, which together 
build the all-scale hierarchical phonon scattering centers to efficiently 
scatter phonons with various mean free paths [68]. 

Overall, the significant reduced thermal conductivity contributed to 
a maximum zT (zTmax) value of 1.75 at 788 K for SnSe-2.5 %PbSe NCPs 
(Fig. 5g). Such a high TE performance positions our SnSe-2.5 %PbSe 
among the best-performing polycrystalline SnSe-based materials 
(Fig. S18). More importantly, it yields a high zTavg value of ca. 1.2 in 
polycrystalline SnSe within the mid-temperature range from 573 to 773 
K, as shown in Fig. 5h, according to following formula (1): 

zTavg =
1

Th − Tc

∫ Th

Tc

zTdT (1)  

where Th and Tc are the temperatures of the hot side and cold side, 
respectively. Given that polycrystalline SnSe is recognized as a mid- 
temperature TE material, it is suited for applications within this speci
fied temperature range. The TE power generation efficiency (η) of actual 
devices depends on zTavg based on the following relationship shown 
below (2) [69], and the η was estimated to be 5.6 % at a temperature 
difference of 200 K and cold-side temperature of 573 K for the SnSe-2.5 
%PbSe sample. 

η =
Th − Tc

Th

⎡

⎢
⎢
⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + zTavg

√
− 1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + zTavg

√
+ Tc

Th

⎤

⎥
⎥
⎦ (2) 

Importantly, the results obtained from SnSe-PbSe NCPs exhibit 
remarkable stability, maintaining consistent performance during cycling 
tests and operation at high temperatures (Fig. S19, S20). Furthermore, 
the reproducibility of these results has been confirmed across multiple 
samples (Fig. S21). 

4. Conclusions 

In summary, we present a systematic bottom-up approach for the 
fabrication of compositionally controllable SnSe-PbSe NCPs through 
precisely mixing surfactant-free SnSe particles with oleate-capped PbSe 
NCs. The introduction of PbSe NCs during the annealing and consoli
dation steps modifies the electrical and thermal transport properties of 
the Na-doped SnSe matrix by partially removing Na from the SnSe 
particle surface, alloying with Pb to decrease Sn vacancies, increasing 
grain boundary density, and forming nanoprecipitates of the secondary 
phase PbSnSe. Such compositional and structural properties lead to 
significantly enhanced zTs, with peak values increasing from 1.32 at 
773 K for the pure SnSe matrix to 1.75 at 788 K for SnSe-PbSe containing 
2.5 mol% PbSe. More importantly, this work reports a cost-effective and 
stable material with one of the highest zTavg of ca. 1.2 to date in the mid- 
temperature range in polycrystalline SnSe, contributing to the screening 
of promising p-type polycrystalline SnSe-based materials for future TE 
applications. 
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