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A compendium of genetic regulatory effects 
across pig tissues

The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been 
established to develop a public resource of genetic regulatory variants in 
livestock, which is essential for linking genetic polymorphisms to variation 
in phenotypes, helping fundamental biological discovery and exploitation 
in animal breeding and human biomedicine. Here we show results from 
the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 
1,602 whole-genome sequencing samples passing quality control from 
pigs. We build a pig genotype imputation panel and associate millions 
of genetic variants with five types of transcriptomic phenotypes in 34 
tissues. We evaluate tissue specificity of regulatory effects and elucidate 
molecular mechanisms of their action using multi-omics data. Leveraging 
this resource, we decipher regulatory mechanisms underlying 207 pig 
complex phenotypes and demonstrate the similarity of pigs to humans in 
gene expression and the genetic regulation behind complex phenotypes, 
supporting the importance of pigs as a human biomedical model.

Genome-wide association studies (GWAS) reveal genomic variants asso-
ciated with complex phenotypes at an unprecedented speed and scale 
in both plants1 and animals2, but particularly in humans3,4. However, 
most of the variants fall in noncoding regions, putatively contributing 
to phenotypic variation by regulating gene activity at different bio-
logical levels5,6. The systematic characterization of genetic regulatory 
effects on transcriptome (for example, expression quantitative trait loci 
(eQTLs)) across tissues, as carried out in the Genotype-Tissue Expres-
sion (GTEx) project in humans7, has proven to be a powerful strategy for 
connecting GWAS loci to gene regulatory mechanisms at large scale6,8,9.

To sustain food and agriculture production while minimizing asso-
ciated negative environmental impacts, it is crucial to identify molecu-
lar mechanisms that underpin complex traits of economic importance 
to enable biology-driven selective breeding in farm animals. How-
ever, the annotation of regulatory variants in farm animals has so far 
been limited by small sample size, few tissue/cell type assayed, and in 
restricted genetic background10–12. We thus launched the international 
Farm Animal GTEx (FarmGTEx) project to build a comprehensive atlas 
of regulatory variants in domestic animal species. This resource along 
with the functional annotation of animal genomes project will not only 
facilitate fundamental biology discovery but also enhance the genetic 
improvement of farm animals13.

Pigs are an important agricultural species by supplying meat for 
humans, and serve as an important biomedical model for studying 
human development, disease and organ xenotransplantation, due to 
their similarity to humans in multiple attributes such as anatomical 
structure, physiology and immunology14. Here we report the results of 
the pilot PigGTEx, which is underpinned by 5,457 RNA-seq data and 1,602 
whole-genome sequence (WGS) samples (Supplementary Tables 1 and 2).  
We test the association of transcriptomic phenotypes with 3,087,268 
DNA variants in 34 pig tissues and then evaluate tissue-sharing patterns 
of regulatory effects. We examine multi-omics data to identify putative 
molecular mechanisms underlying regulatory variants and then apply 
this resource to dissect GWAS associations for 268 complex traits. Finally, 
we leverage the human GTEx resource and GWAS of 136 human complex 
phenotypes to assess the similarity between pigs and humans in genetic 
regulation of gene expression and complex phenotypes. We make the 
PigGTEx resources freely accessible via http://piggtex.farmgtex.org.

Results
Data summary
After filtering out the low-quality samples from the initial set of 9,530, 
we retained 7,095 RNA-seq profiles for downstream analysis (Supple-
mentary Fig. 1 and Supplementary Note). We quantified expression 
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Tissue-specific genes showed a higher enrichment of active regula-
tory elements and a higher depletion of repressed polycomb regions 
in matching tissues than in nonmatching tissues15 (Extended Data  
Fig. 3c–e and Supplementary Fig. 7c,d). In addition, tissue-specific 
genes exhibited distinct patterns of evolutionary DNA sequence con-
straints across tissues (Supplementary Fig. 7e), in agreement with the 
hypothesis of tissue-driven evolution16. To assign function to pig genes, 
we performed a gene co-expression analysis in each of the 34 tissues 
(Supplementary Fig. 8a–c). In total, we detected 5,309 co-expression 
modules across tissues and assigned 25,023 genes to at least one mod-
ule (Supplementary Fig. 8d–f and Supplementary Table 11). Among 
them, 13,266 (42.57%) genes had no functional annotation in the Gene 
Ontology (GO) database (Extended Data Fig. 3f and Supplementary  
Fig. 8d); these are referred to as ‘unannotated genes’ hereafter. For instance,  
42 unannotated genes were co-expressed with 59 functional annotated 
genes in the pituitary, which were substantially enriched in neuron 
apoptotic processes (Extended Data Fig. 3g). Unannotated genes were 
less expressed, showed weaker DNA sequence conservation, lower pro-
portion of orthologous genes and higher tissue specificity than genes 
with functional annotations (Extended Data Fig. 3f). The proportion of 
expressed unannotated genes varied across tissues, indicating differ-
ences in functional annotation between tissues (Extended Data Fig. 3h).

MolQTL mapping
In total, 93% of tested genes had significant cis-heritability (cis-h2; 
within ±1 Mb of transcription start sites (TSS)) estimates in at least one 

levels for protein-coding genes (PCG), lncRNA, exons and enhancers, 
and alternative splicing events in these samples. Sample clustering 
based on the five transcriptomic phenotypes recapitulated tissue 
types well (Fig. 1a,b and Supplementary Fig. 2). We called a median 
number of 74,347 single-nucleotide polymorphisms (SNPs) from these 
RNA-seq samples (Extended Data Fig. 1a,b). Leveraging a multibreed 
pig genomics reference panel (PGRP) consisting of 1,602 WGS samples 
(Supplementary Fig. 3), we imputed genotypes of RNA-seq samples with 
an imputation accuracy of 0.94 (concordance rate) and 0.82 (genotype 
correlation, r2 ; Extended Data Fig. 1c–n and Supplementary Table 3).  
The population structure of the RNA-seq samples was similar to the 
PGRP (Fig. 1c). After removing duplicated RNA-seq samples, we retained 
5,457 samples representing 34 tissues, cell types or organ systems 
(all referred to as ‘tissues’ hereafter), with at least 40 samples per tis-
sue, for subsequent analysis (Fig. 1d–e, Extended Data Fig. 2a–e and  
Supplementary Table 4). We further analyzed 270 multi-omics data-
sets in pigs, including 245 whole-genome bisulfite sequencing (WGBS;  
Supplementary Figs. 4 and 5 and Supplementary Tables 5–7),  
20 single-cell RNA-seq (Supplementary Fig. 6 and Supplementary  
Table 8) and five Hi-C samples (Supplementary Tables 9 and 10).

The gene expression atlas empowers functional annotation
Gene expression was either tissue-specific or ubiquitous (Supple-
mentary Fig. 7a and Extended Data Fig. 3a). We detected between 
145 (morula) and 5,180 (frontal cortex) tissue-specific genes across 
34 tissues (Extended Data Fig. 3b and Supplementary Fig. 7b). 
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Fig. 1 | Characteristics of samples in the pilot phase of PigGTEx project. 
a, Clustering of 7,095 RNA-seq samples based on the normalized expression 
(log10-transformed TPM) of 6,500 highly variable genes, defined as the top 20% of 
genes with the largest s.d. of TPM across samples. b, The same sample clustering 
as a but based on normalized alternative splicing values (PSI) of 6,500 highly 
variable spliced introns, defined as the top 13% of spliced introns with the largest 
s.d. of PSI across samples. c, Principal component analysis of samples based 

on 12,207 LD-independent (r2 < 0.2) SNPs. The left panel is for whole-genome 
sequencing samples (n = 1,602) in the PGRP, while the right one is for RNA-seq 
samples (n = 7,008) with successful genotype imputations. d, Sample sizes of 34 
tissues, cell types and organ systems (all referred to as ‘tissues’) used for molQTLs 
mapping. e, Clustering of 34 tissues based on the median expression of all 31,871 
Ensembl annotated genes (v100) across samples within tissues, representing 
embryo, endodermal, mesodermal and ectodermal lineages.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | January 2024 | 112–123 114

Article https://doi.org/10.1038/s41588-023-01585-7

tissue while accounting for hidden factors (Extended Data Fig. 2f–h  
and Extended Data Fig. 4a,b). We mapped molecular quantitative trait 
loci (molQTLs) for five molecular phenotypes, including cis-eQTL for 
PCG expression, cis-eeQTL for exon expression, cis-lncQTL for lncRNA 
expression, cis-enQTL for enhancer expression and cis-sQTL for alter-
native splicing. In total, 86%, 67%, 46%, 27% and 64% of all tested 
PCGs (n = 17,431), lncRNAs (n = 7,374), exons (n = 82,678), enhancers 
(n = 3,353) and genes with alternative splicing events (n = 18,331) had at 
least one significant variant (eVariant) detected in at least one tissue; 
hence, they were defined as eGenes, eLncRNAs, eExons, eEnhancers 
and sGenes, respectively (Supplementary Fig. 9 and Supplementary 
Table 12). The proportion of eGenes detected was positively correlated 
with sample size across tissues, similar to the other four molecu-
lar phenotypes (Fig. 2a, Extended Data Fig. 4c and Supplementary  
Fig. 10). The top cis-e/sQTL centered around TSS of genes (Supplemen-
tary Fig. 11a–e). Tissues with a larger sample size yielded a larger pro-
portion of cis-eQTL with smaller effects (Supplementary Fig. 11f–g). 
PCG had the highest proportion of detected eGenes across tissues, 
followed by lncRNA, enhancer, splicing and finally exon (Fig. 2b).  
Notably, molecular phenotypes exhibited a high proportion (an 
average of 70%) of their own specific molQTL after taking linkage 
disequilibrium (LD) between SNPs into account (Fig. 2b), indicative 
of their distinct underlying genetic regulation. On average, 20% of 
eGenes, 13.5% of sGenes, 21.2% of eExons, 23.5% of eLncRNAs and 
21% of eEnhancers had more than one independent eVariant across 
tissues, and the proportion increased with an increasing sample size 
of tissues (Fig. 2c and Extended Data Fig. 5a). Down-sampling analysis 
in three major tissues further confirmed an impact of sample size on 
the statistical power for cis-eQTL discovery (Fig. 2d). Approximately 
half of the independent cis-eQTL were located within ±182 kb of TSS, 
and those with larger effect size were closer to TSS (Extended Data 
Fig. 5b–d). The eGenes with more independent cis-eQTL have a higher 
cis-h2, but no significant differences for the median gene expression 
level (Fig. 2e).

We applied four distinct strategies to validate the cis-eQTL. First, 
the summary statistics of cis-eQTL derived from the linear regression 
model17 had a strong correlation with those from a linear mixed model 
(Extended Data Fig. 6a–e). Second, the internal validation yielded 
a high replication rate (measured by π1) of cis-eQTL, with an aver-
age π1 value of 0.92 (range: 0.80–1.00) and an average of 0.56 (range 
0.36–0.89) for Pearson’s r between effect sizes across tissues (Fig. 2f). 
Third, 92%, 74%, 73% and 69% of cis-eQTL in blood, liver, duodenum and  
muscle, respectively, were replicated in independent datasets 
(Extended Data Fig. 6f–h). Fourth, effects derived from allele-specific 
expression (ASE) analysis were correlated with those from cis-eQTL 
mapping (Fig. 2g and Extended Data Fig. 6i–k). In addition, we con-
ducted an exploratory analysis of trans-eQTL in 12 tissues with over 
150 individuals and detected an average of 80 trans-eGenes (false 
discovery rate, FDR < 0.05) across tissues (Supplementary Fig. 12a,b). 
We took the muscle that had the largest sample size (n = 1,321) as an 
example to conduct an internal validation of trans-eQTL by randomly 
and evenly dividing samples into two groups. We observed that the 
replication rate (π1) between the two groups was 0.4 and the Pearson’s 
correlation of effect sizes of significant trans-eQTL between groups 
was 0.5 (Supplementary Fig. 12c).

To understand how cis-eQTL are shared across pig breeds, we 
considered muscle as an example. We divided muscle samples into 
eight breed groups (all referred to as ‘breeds’ hereafter) and performed 
cis-eQTL mapping separately (Extended Data Fig. 7a and Supple-
mentary Table 13). Across all eight breeds, we detected 9,548 unique 
cis-eGenes, of which 97.1% could be replicated in at least two of these 
breeds (Fig. 2h and Extended Data Fig. 7b,c). The replication rates 
were higher in breeds with more samples (Extended Data Fig. 7d). For 
instance, the Landrace × Yorkshire cross-breed had the largest sample 
size (n = 374) replicated on average 95.6% of the cis-eQTL detected in 

the other seven breeds (Extended Data Fig. 7d). The cis-eQTL effects 
were positively correlated between breeds and clearly separated 
from other tissues (Fig. 2i and Extended Data Fig. 7e). In addition, the 
effects of cis-eQTL from the multibreed meta-analysis were correlated 
with those from the combined muscle population (Extended Data 
Fig. 7f). Compared to the single-breed meta-analysis, the combined 
population detected 86.2% more cis-eQTL (Extended Data Fig. 7g). To 
explore whether breed interacts with genotype to modulate expression 
of some genes, we conducted breed-interaction cis-eQTL (bieQTL) 
mapping. In total, 589 genes had at least one significant bieQTL in 13  
tissues (Fig. 2j,k, Extended Data Fig. 7h,i and Supplementary Table 14).  
Furthermore, we conducted a cell-type deconvolution analysis in 
seven tissues, demonstrating the variation of cell-type composition 
across bulk tissue samples (Extended Data Fig. 8a). A total of 376 genes 
had at least one significant cell-type interaction cis-eQTL (cieQTL) in 
three tissues (Fig. 2l–m, Extended Data Fig. 8b,c and Supplementary  
Table 14). In addition, we validated half of bieQTL and cieQTL with the 
ASE approach18 (Fig. 2j,l and Extended Data Fig. 8d–g).

Tissue-sharing patterns of molQTL
Tissues with similar functions clustered together, and the tissue  
relationship was consistent across all ten data types, including the five 
types of molQTL and the respective molecular phenotypes (Fig. 3a,b 
and Extended Data Fig. 9a,d). The most easily accessible samples, that 
is, blood and milk cells, showed an average correlation of 0.51 cis-eQTL 
effects with other tissues. Both had the highest similarity to immune 
tissues, followed by intestinal tissues, and finally testis and embry-
onic tissues. The overall tissue-sharing of molQTL showed a U-shaped 
curve (Fig. 3c). Among them, cis-eQTL of PCG had the highest degree of 
tissue-sharing, followed by cis-lncQTL, cis-sQTL, cis-eeQTL and finally 
cis-enQTL (Fig. 3c and Extended Data Fig. 9e). An eGene tended to be 
regulated by cis-eQTL of smaller effect if it showed a higher level of 
tissue-sharing or was expressed in more tissues (Fig. 3d and Extended 
Data Fig. 9f). The higher the tissue-sharing of eGenes, the larger the 
minor allele frequency (MAF) of their cis-eQTL, and the closer the dis-
tance of their cis-eQTL to TSS (Fig. 3d). In addition, eGenes that were 
active in more tissues had a decreased PhastCons score (that is, less 
sequence constraint), while genes that were not eGenes (non-eGenes) 
in more tissues had an increased PhastCons score (Fig. 3e). The shared 
non-eGenes in the 34 tissues were substantially enriched in fundamen-
tal biological processes (Supplementary Table 15). We summarized 
four types of SNP–gene pairs and observed that 1.8% (1,166/64,250) 
of top cis-eQTL of the same eGenes had an opposite effect in at least 
one tissue pair, representing 3.1% (467/14,988) of all detected eGenes 
(Fig. 3f). Compared to other tissue pairs, blood and testis showed the 
highest proportion (25%) of eGenes with opposite cis-eQTL effects 
(Fig. 3g). For example, ODF2L, which showed the opposite direction 
of eQTL effect (rs329043485) between blood and testis (Fig. 3h and 
Extended Data Fig. 9g–h), is involved in negative regulation of cilium 
assembly and spermatogenesis19.

Functional annotation of molQTL
Compared to other molQTL, cis-sQTL had a higher enrichment for 
missense variants, variants with a high impact on protein sequence and 
variants in splice region and acceptor sites (Fig. 4a and Supplementary  
Fig. 13a). Although there was a significant enrichment of molQTL in 
exonic annotations (for example, synonymous and missense), the pro-
portion of such variants over all the molQTL was around 5.4%, that 
is, 5.4% for eQTL, 5.5% for sQTL, 5.2% for eeQTL, 5.4% for lncQTL and 
5.8% for enQTL. This finding was consistent with human GTEx7,20 and 
RatGTEx21. Looking at chromatin states, these five types of molQTL 
showed the highest enrichment in active promoters, followed by 
those proximal to TSS and ATAC islands (Fig. 4b and Supplementary  
Fig. 13b). The molQTL with higher causality scores showed a higher 
enrichment in functional features (Supplementary Fig. 13c,d). Among 
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all the five types of molQTL, cis-enQTL with high causality scores had the 
highest enrichment for enhancer-like chromatin states (Supplementary  
Fig. 13d). An average of 64% of cis-eQTL could potentially modify tran-
scription factor binding sites (Supplementary Table 16). Although they 

showed a weak enrichment for molQTL (except for cis-enQTL; Fig. 4b), 
enhancers had a higher enrichment for cis-eQTL in the matching tissue 
compared to nonmatching tissues (Fig. 4c). Notably, the top cis-eQTL 
tended to be enriched in promoters rather than enhancers, whereas 
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interacted with monocyte enrichment in blood. The two-sided P value is 
calculated by the linear regression cieQTL model. The lines are fitted using the 
same method as in k. aFC, allelic fold change.
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the reverse was observed for the second- and third-ranked cis-eQTL 
(Fig. 4d). In addition, molQTL showed tissue-specific enrichment for 
hypomethylated regions (HMRs) and allele-specific methylation loci 
(Supplementary Fig. 13e). In muscle, 2,016 cis-eQTL, 4,694 cis-eeQTL, 
524 cis-lncQTL, 5,174 cis-enQTL and 1,590 cis-sQTL were mediated 
by methylation QTL (Supplementary Fig. 13f,g and Supplementary 
Table 17). The long-distance cis-eQTL were substantially enriched in 

the same topologically associating domain (TAD) as TSS of target genes 
after accounting for the cis-eQTL-TSS distance (Fig. 4e). This suggests 
that long-range cis-eQTL may affect gene expression by mediating 3D 
genome interactions22. For instance, in muscle, the second independ-
ent cis-eQTL of BUD23 was 385 kb upstream of its TSS, and located 
within the same TAD of the TSS, as well as was surrounded by HMRs 
and enhancers (Fig. 4f).
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Fig. 5 | Interpreting GWAS loci of complex traits using molQTL. a, Enrichment 
(mean and 95% confidence interval) of GWAS variants with five types of molQTL 
in 34 tissues. b, Heritability of 16 complex traits of pig explained by independent 
molQTLs and those MAF-matched SNPs across 34 tissues. The top numerical 
labels are the nominal P values (uncorrected for multiple testing) based on 
the two-sided paired Student’s t test. c, Number of GWAS loci linked to eGenes 
through fastEnloc, SMR, S-PrediXcan and S-MultiXcan. The bottom point-line 
combinations of the upset plot represent the intersections of GWAS loci linked to 
eGenes by different methods. d, Proportion of three types of GWAS loci regarding 
the colocalization results, where 105 GWAS traits are shown in each category. No 
colocalization, GWAS loci that are not colocalized with any eGenes in 34 tissues. 
Not nearest gene, GWAS loci whose colocalized eGenes are not nearest genes 
to GWAS lead SNPs. Nearest gene, GWAS loci whose colocalized eGenes are the 
nearest ones. Each dot represents a complex trait. e, Proportion of significant 

colocalizations of GWAS loci with cis-eQTL at various significance levels of GWAS. 
f, The number of colocalized GWAS loci per eGene across 105 traits above. eGenes 
are classified into seven groups regarding the tissue-sharing pattern. Diamond 
indicates the mean value. g, The number of colocalized genes adjusted for tissue 
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abbreviations in Supplementary Table 18). Top tissues are labeled. h, The 
association of ABCD4 with the average BFT. The top Manhattan plot represents 
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(r2 = 0.71). The bottom panel is for chromatin states around ABCD4.
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Interpreting GWAS loci with molQTL
To study the regulatory mechanisms underlying complex traits in 
pigs, we examined 268 GWAS summary statistics of 207 complex 
traits (Supplementary Table 18) and found that GWAS signals were 
enriched in molQTL (Fig. 5a and Supplementary Fig. 14a–e). Among 
them, cis-eQTL/cis-sQTL showed the highest enrichment (~1.61-fold, 
s.e. = 0.014), followed by cis-eeQTL (1.57-fold, s.e. = 0.015), cis-lncQTL 
(1.55-fold, s.e. = 0.014) and cis-enQTL (1.51-fold, s.e. = 0.017; Fig. 5a and 
Supplementary Fig. 14f). Averaging across 198 traits, approximately 
half of the heritability was mediated by PCG expression and alternative 
splicing, followed by exon expression (46.4%), enhancer expression 
(29.5%) and lncRNA expression (28.5%; Supplementary Fig. 14g). The 
amounts of heritability of complex traits explained by molQTL were 
higher than those explained by MAF-matched random SNPs (Fig. 5b 
and Supplementary Fig. 14h).

Furthermore, we employed four complementary approaches 
to detect shared regulatory variants/genes associated with both 
molecular phenotypes and complex traits, including colocalization 
via fastENLOC23, Mendelian randomization via SMR24, single-tissue 
transcriptome-wide association studies (TWAS) via S-PrediXcan25 and 
multi-tissue TWAS via S-MultiXcan26. Of 1,507 significant GWAS loci that 
were tested in the cis-eQTL mapping, 983 (65%) were interpreted with 
cis-eQTL in at least one tissue (Fig. 5c and Supplementary Table 19). 
Among them, only 33% were colocalized with the nearest genes of the 
lead GWAS SNP (Fig. 5d). GWAS loci mapped with higher significance 
levels were more likely to be colocalized with cis-eQTL (Fig. 5e). The 
eGenes shared by more tissues tended to be colocalized with more 
GWAS loci (Fig. 5f). The number of colocalization events of a trait 
was determined by the statistical power of both GWAS and cis-eQTL  
mapping (Supplementary Fig. 14i–o).

To prioritize tissues relevant for complex trait variation, we defined 
a ‘tissue relevance score’ through the number of colocalization events 
adjusted by sample size and eGene discovery ratio of a tissue (Sup-
plementary Table 20). We only considered 14 tissues with over 100 
samples and found that, for instance, the ileum was the most relevant 
tissue for both average daily gain (ADG) and loin muscle area (Fig. 5g). 
For instance, ABCD4 was the top associated gene in the small intestine 
TWAS of the average backfat thickness (BFT; Fig. 5h). It also had a sig-
nificant association with BFT in the brain. The GWAS loci of BFT were 
colocalized with cis-eQTL of ABCD4 in both the brain and small intestine. 
Although these lead SNPs were different in these two tissues, they had 
a relatively high LD (r2 = 0.71), potentially tagging the same underlying 
causal variant. The fine-mapped SNP (rs1114012229) of the BFT GWAS 
was in a high LD (r2 = 0.85) with the fine-mapped SNP (rs1107405934) of 
the ABCD4 eQTL (Supplementary Fig. 15a). In addition, rs1107405934 
was specifically associated with the expression of ABCD4 in both intes-
tinal tissues and the brain (Supplementary Fig. 15b, c).

Furthermore, we employed the same GWAS integrative  
analysis for other molQTL (Supplementary Tables 21–24). Around 

80% (1,204/1,507) of significant GWAS loci could be explained by at 
least one molQTL in the 34 tissues. Of note, 8.2%, 3.8%, 3.5%, 1.9% and 
0.4% of all 1,507 GWAS loci were only explained by cis-eQTL, cis-sQTL, 
cis-eeQTL, cis-lncQTL and cis-enQTL, respectively (Extended Data  
Fig. 10a,b). For example, a GWAS signal of ADG on chromosome 13 was 
only colocalized with cis-eQTL of CFAP298-TCP10L in the colon, but not 
with its cis-sQTL or cis-eeQTL (Extended Data Fig. 10c). The GWAS signal 
for BFT on chromosome 15 was exclusively colocalized with cis-sQTL 
of MYO7B in small intestine, while the GWAS signal of litter weight was 
exclusively colocalized with cis-eeQTL of FBXL12 in uterus (Extended 
Data Fig. 10d–e). In addition, 63% of GWAS loci were colocalized with 
more than one type of molQTL (Extended Data Fig. 10a and Supple-
mentary Fig. 16). In addition, we detected 512 lncRNA-PCG-trait trios 
with significant pleiotropic associations (Supplementary Table 25 and 
Extended Data Fig. 10f).

The shared genetic regulation between humans and pigs
By examining GTEx (v8) in humans7, we found that one-to-one 
orthologous genes (n = 15,944) contributed to an average of 82% 
and 87% of overall expression across 17 common tissues in pigs 
and humans, respectively (Supplementary Fig. 17a,b). The visu-
alization of variation in gene expression among all 12,453 samples 
clearly recapitulated tissue types rather than species (Supple-
mentary Fig. 17c–h). The number of tissues in which an eGene was 
active was correlated between species (Supplementary Fig. 17i).  
The eGenes in a pig tissue generally had a higher enrichment for 
eGenes in the matching tissue in humans compared to other tis-
sues (Fig. 6a). Furthermore, we observed a significant correla-
tion (r = 0.56) of averaged eQTL effect between humans and pigs 
(Fig. 6b), which was higher than that (r = 0.24) observed between 
humans and rats previously21. In general, matching tissues had a 
higher correlation of eQTL effect compared to nonmatching tissues  
(Supplementary Fig. 18a,b and Supplementary Table 26). We 
observed a significant but weak correlation (r = 0.09) of cis-h2 
between humans and pigs (Supplementary Fig. 18c), similar to that 
between humans and rats (r = 0.10)21. In addition, tissue-specific 
expression of genes was more similar between pigs and humans 
than that between cattle and humans (Supplementary Fig. 19a–c). 
Similarly, the eQTL effects of orthologous genes in pigs were more 
correlated with those in humans than with those in cattle (Supple-
mentary Fig. 19d–f).

We divided orthologous genes into four groups (that is, ‘neither’, 
‘human-specific’, ‘pig-specific’ and ‘shared’) in each of the 17 matching 
tissues and observed a significant difference in expression levels among 
them. The shared eGenes had a lower tissue specificity in expression 
levels and regulatory effects, compared to genes in the other three 
groups (Fig. 6c and Supplementary Fig. 18d). A total of 783 eGenes 
were active in all tissues in both species, which were substantially 
enriched in metabolic processes (Supplementary Table 27). A total of 

Fig. 6 | Conservation of gene expression, cis-eQTL and complex trait  
genetics between pigs and humans. a, Enrichment (Fisher’s exact test) of pig 
eGenes with human eGenes across 17 matching tissues. Red triangles: matching 
tissues. b, Pearson’s correlation of eQTL effect size in orthologous genes 
(n = 15,944) between pigs and humans. c, Expression levels, TAU values and 
tissue-sharing levels for four groups of orthologous genes across 17 tissues in 
pigs. Neither, 3,993 non-eGenes in both species; human-specific, 8,174 eGenes; 
pig-specific, 3,882 eGenes; shared, 10,574 eGenes in both species. Two-sided 
Wilcoxon rank-sum test, ***P < 0.001. Diamond, median; error bar, upper/lower 
quartiles. d, LOEUF in the four groups of orthologous genes in ten evenly spaced 
expression level bins. One-sided Wilcoxon rank-sum test, NS P > 0.05, *P < 0.05, 
**P < 0.01 and ***P < 0.001. The diamond and error bar are the same as in c.  
e, Significance (−log10(P)) of Pearson’s r of orthologous gene effect size between 
pig (n = 268) and human (n = 136) traits derived from TWAS. Each bar represents 
a pig–human trait pair in the same tissue (n = 11) and the within-domain blocks 

of color correspond to different human traits. The number of tested genes for 
each of the pairs is shown in Supplementary Table 30. The text in the middle 
of the circle represents the significant examples of pig–human trait pairs in 
different thresholds. For each example, it includes human trait (top), pig trait 
(bottom) and TWAS tissue (left). Pcutoff 1: FDR < 10% across all tested combinations. 
Pcutoff 2: Bonferroni-corrected P < 5% within each trait–tissue pair of humans. f, 
Differences in the number of significant genes (FDR < 5%) from cross-species (pig 
and human) meta-TWAS, compared to those from human TWAS. Supplementary 
Tables 18 and 29 present a detailed description of pig traits and human traits, 
respectively. g, FDR of discovered genes in human TWAS (RawTWAS) and cross-
species meta-TWAS in the brain for BFT (pig) and weight (human). h, Pearson’s r 
between TWAS significances (color bar) of genes in pig BFT and their heritability 
enrichments (mean ± s.e.) in human weight. The orthologous genes were divided 
into ten evenly spaced bins by sorting the P values of TWAS in the brain of pig BFT. 
Shading: standard error of the fitting line.
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194 genes were not eGenes in any tissues in both species, and these were  
substantially enriched in essential biological functions (Supplemen-
tary Table 28). Expression levels of genes were negatively correlated 
with LOEUF scores, which was consistent across the four groups of 

genes (Supplementary Fig. 18e). Among them, ‘Shared’ eGenes had 
the weakest negative correlation of expression levels and LOEUF 
scores, while ‘neither’ eGenes had the strongest negative correlation  
(Supplementary Fig. 18e). Of specific note, although they had the 
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highest expression levels, ‘Shared’ eGenes showed the strongest toler-
ance to loss of function mutations among the four gene groups (Fig. 6d).  
Compared to other genes, eGenes shared in both species had the lowest 
evolutionary DNA sequence constraints, whereas shared non-eGenes 
showed the opposite trend (Supplementary Fig. 18f). The expression 
levels of most genes were weakly or even not correlated with their 
PhastCons scores, eQTL detection and cis-h2 estimates across tissues 
(Supplementary Fig. 18g–i).

To investigate whether the regulatory mechanism of complex 
phenotypes was conserved between humans and pigs, we compared 
the effect sizes of orthologous genes between 268 pig and 136 human 
complex phenotypes based on the summary statistics of TWAS (Supple-
mentary Table 29). We observed a clear deviation (Wilcoxon rank-sum 
test P = 2.16 × 10−62) of the observed P values of TWAS correlations from 
the permutation-based null distribution (Supplementary Fig. 20a), 
and a total of 89 pig–human trait pairs were significant (FDR < 0.1; 
Supplementary Table 30, Fig. 6e and Supplementary Fig. 20b–e). We 
then chose several well-recognized homologous trait pairs between 
humans and pigs to perform the meta-TWAS, with several nonho-
mologous trait pairs as negative controls. For homologous trait pairs, 
cross-species meta-TWAS improved the discovery of trait-associated 
genes in humans (Fig. 6f). For instance, cross-species meta-TWAS analy-
sis of pig average BFT and human body weight (BW) revealed eight new 
genes (FDR < 0.05) associated with BW in humans (Fig. 6g). Based on 
GWAS of 3,302 traits in humans27, phenome-wide association studies 
(PheWAS) showed that five of these eight genes were associated with 
other BW-relevant traits, such as height, birth weight and BMI (Supple-
mentary Table 31). Furthermore, gene groups with higher significance 
in the pig BFT TWAS showed a higher enrichment for heritability of 
human BW (Fig. 6h).

Discussion
The pilot PigGTEx offers a deep survey of genetic regulatory effects 
across a wide range of tissues, representing a substantial advance 
in the understanding of the gene regulation landscape in pigs. 
This multi-tissue catalog of regulatory variants further advances 
our understanding of biological mechanisms underlying complex 
traits of economic importance in pigs. On average, about 80% of 
GWAS loci tested in pigs are linked to candidate target genes by 
molQTL in the PigGTEx, comparable with 78% of GWAS loci linked 
by GTEx in humans7. The PigGTEx will eventually enhance genetic 
improvement programs through the development of advanced 
biology-driven genomic prediction models that depend on informa-
tive SNPs28. We also demonstrate the level of similarity between pigs 
and humans in gene expression, gene regulation and complex trait 
genetics. This extensive comparison of the pig and human genomes 
at multiple biological levels will be instructive for deciding which 
human diseases and complex traits make the pig the most suitable  
animal model.

Although a fraction of regulatory effects are shared across tis-
sues, we note that some tissues, like the testis and those from early 
developmental stages, are distinct from other primary tissues. Due 
to the differences in sample size and other biological factors (for 
example, breed and cell-type composition) across tissue types in 
the current phase of PigGTEx, underrepresented tissues at multiple 
development stages are still required to gain a more comprehensive 
view of tissue-specific gene regulation and to refine the tissue-trait 
map in pigs. To elucidate gene regulation at single-cell resolution, we 
conducted an exploratory analysis to discover cell-type-interaction 
regulatory effects through an in silico cell-type deconvolution18. The 
cieQTL identified for several cell types indicate that a vast majority 
of cell-type-specific cis-QTL remain to be detected29,30. Compared to 
cis-eQTL, trans-eQTL often have smaller effect sizes and thus require 
hundreds of thousands of samples to be discovered22,31. Although 
integrating multi-omics data provides insight into the molecular 

mechanisms underlying regulatory variants, experimental follow-ups 
are necessary to functionally validate and characterize these regula-
tory variants at large scale32,33.
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Methods
Ethics
It is not applicable because no biological samples were collected and 
no animal handling was performed for this study.

RNA-seq data analysis and molecular phenotype 
quantification
In total, we gathered 11,323 publicly accessible raw RNA-seq datasets, 
representing 9,530 distinct samples (downloaded from NCBI SRA by 
26 February 2021), of which 98.13% were generated using the Illumina 
platform. We removed 121 embargoed RNA-seq samples and then 
processed all the remaining RNA-seq samples using a uniform pipe-
line. Briefly, we first trimmed adaptors and discarded reads with poor 
quality using Trimmomatic (v0.39)34. We then aligned clean reads to 
the Sscrofa11.1 (v100) pig reference genome using STAR (v2.7.0)35. We 
kept 8,262 samples with more than 500K clean reads and uniquely 
mapping rates ≥ 60% for subsequent analysis (Supplementary Table 1).  
We extracted the raw read counts of 31,871 Ensembl (Sscrofa11.1 v100) 
genes by featureCounts (v1.5.2)36 and obtained their normalized expres-
sion (that is, transcripts per million (TPM)) using Stringtie (v2.1.1)37. We 
removed 544 samples in which less than 20% of all annotated genes were 
expressed (TPM ≥ 0.1), resulting in 7,597 samples. We then visualized 
the variance in gene expression among samples using t-distributed 
stochastic neighbor embedding (t-SNE)38. After filtering out outliers 
within each of the tissues, we eventually kept 7,095 samples for subse-
quent analysis (Supplementary Table 1). We employed MEGA (vX)39 to 
build a neighbor-joining tree of these samples based on TPM and then 
visualized it by iTOL (v6)40.

For PCG expression, we considered 21,280 PCGs from the Ensembl 
annotation (Sscrofa11.1 v100). For exon expression of PCGs, we 
extracted raw read counts of 290,536 exons by featureCounts (v1.5.2)36 
and normalized them as TPM. To explore enhancer expression, we 
downloaded the previously predicted enhancers (strong active enhanc-
ers, EnhA) from 14 pig tissues15. We merged these enhancer regions 
across tissues using bedtools (v2.30.0)41, resulting in 158,998 nonre-
dundant enhancer regions. To control the potential contamination of 
transcribed genes, we only focused on transcribed enhancers that were 
not overlapped with any known gene regions (including protein-coding 
gene, lncRNA, pseudogene, tRNA, miRNA and snoRNA)42–44, resulting in 
3,679 enhancers. We obtained raw read counts of these nonredundant 
enhancer regions from all 7,095 RNA-seq samples by featureCounts 
(v1.5.2)36, followed by TPM normalization. For lncRNA expression, we 
obtained 17,162 lncRNAs predicted from 33 Iso-Seq datasets, represent-
ing ten tissues from four animals by using FEELnc45. We applied the 
same approach to extract and normalize lncRNA expression as above.

For alternative splicing, we used Leafcutter (v0.2.9)46 to quantify 
excision levels of introns and then to identify splicing events within 
each tissue as described in the following: (1) converting aligned bam 
files from STAR (v2.7.0) into junction files using the script bam2junc.sh; 
(2) generating intron clusters using the script leafcutter_cluster.py, and 
then mapping them to genes by the map_clusters_to_genes.R script with 
exon coordinates extracted from the Ensembl annotation file (v100); (3) 
discarding introns without any read count in more than 50% of samples 
or with fewer than max(10, 0.1n) unique values, where n is the sample 
size; (4) filtering out introns with low complexity: ∑i(|zi| < 0.25) ≥ n-3 and 
∑i(|zi| > 6) ≤ 3, where zi is the z score of the ith cluster read fraction across 
individuals; (5) using prepare_phenotype_table.py script to normalize 
filtered counts and convert them into BED format, where start/end posi-
tions correspond to the TSS of corresponding genes. Furthermore, we 
normalized excision levels of introns as percent spliced-in (PSI) values.

MolQTL mapping
For molQTL mapping within each of the 34 tissues, we only considered 
SNPs with MAF ≥ 5% and minor allele count ≥ 6, resulting in an average 
of 2,705,637 SNPs (ranging from 1,815,729 in synovial membrane to 

3,004,852 in muscle). We computed genotype PCs based on the filtered 
SNPs within each of the tissues using SNPRelate (v1.26.0)47. We used the 
top five and ten genotype PCs to account for the population structure 
among samples in tissues with <200 and ≥200 samples, respectively 
(Extended Data Fig. 2f). To account for technical confounders among 
RNA-seq samples, we used the probabilistic estimation of expression 
residual (PEER) method, implemented in PEER (v1.0) R package48, to 
estimate a set of latent covariates within each tissue based on gene 
expression matrices. We obtained a total of 60 PEER factors in each 
tissue and assessed their relative contributions (that is, factor weight 
variance) to gene expression variation using the PEER_getAlpha func-
tion. We decided to use the top ten PEER factors for each tissue as 
covariates when conducting molQTL mapping for PGC, exon, lncRNA 
and enhancer expression (Extended Data Fig. 2g). For cis-sQTL map-
ping, we estimated and fitted ten PEER factors from the splicing quan-
tifications of genes within each tissue. To understand whether known 
covariates can be captured by PEER factors, we fitted a linear regression 
model to estimate the proportion of variance in known confounders 
that were explained by the top ten PEER factors.

For cis-eQTL mapping, we first normalized the PCGs expression 
across samples within each tissue using the trimmed mean of M-value 
(TMM) method, implemented in edgeR49, followed by inverse normal 
transformation of the TMM. We performed cis-eQTL mapping using a 
linear regression model, implemented in TensorQTL (v1.0.3)17, while 
accounting for the estimated covariates. Within each tissue, we filtered 
out genes with TPM < 0.1 and/or raw read counts < 6 in more than 80% 
of samples. We defined the cis-window of PCG as ±1 Mb of TSS and 
obtained the nominal P values of cis-eQTL with the parameter mode cis_
nominal in TensorQTL. We then employed two layers of multiple testing 
corrections based on the permutation approach50, implemented in 
the TensorQTL. In the first layer, we applied an adaptive permutation 
approach to calculate the empirical P values of variants within each 
gene and obtained the permutation P value of the lead variant for each 
gene. In the second layer, we conducted the Benjamini–Hochberg cor-
rection for the permutation P values of lead variants across all tested 
genes and considered genes with FDR < 5% as the genome-wide sig-
nificant eGenes and genes without significant cis-eQTL as non-eGenes. 
To identify significant cis-eQTL associated with eGenes, we defined 
the empirical P value of the gene that was closest to an FDR of 0.05 
as the genome-wide empirical P value threshold (pt). We obtained 
the gene-level threshold for each gene from the beta distribution by 
qbeta (pt, beta_shape1, beta_shape2) in R (v4.0.2), where beta_shape1 
and beta_shape2 were derived using TensorQTL. We considered SNPs 
with a nominal P value below the gene-level threshold as significant 
cis-eQTL for a given gene–tissue pair.

Similarly, we normalized the expression of exons, lncRNAs and 
enhancers to inverse normal transformed TMM across samples and 
excluded lowly expressed elements using the same approach as for 
PCG. We conducted cis-QTL mapping for exons (cis-eeQTL), lncRNAs 
(cis-lncQTL) and enhancers (cis-enQTL) using TensorQTL. For cis-eeQTL 
mapping, we defined the cis-window of an exon as the ±1 Mb region of 
its source gene’s TSS. For exons, lncRNA and enhancer cis-QTL map-
ping, we defined the cis-window as the ±1 Mb region of the TSS of the 
source gene, of its TSS and its TSS, respectively. We declared significant 
cis-QTL for exons, lncRNAs and enhancers using the same approach 
as done for the cis-eQTL mapping. We defined exons, lncRNAs and 
enhancers with at least one significant cis-QTL as eExon, eLncRNA and 
eEnhancer, respectively.

We performed cis-sQTL mapping for genes with splicing quan-
tifications (PSI values) and tested SNPs within ±1 Mb of TSS using 
TensorQTL (v1.0.3)17 while accounting for the estimated covariates. 
To compute the empirical P value of cis-sQTL, we grouped all intron 
clusters of a gene with the parameter: --phenotype_groups option in 
the permutation mode of TensorQTL (v1.0.3)17. We defined sGene and 
significant cis-sQTL using the same approach as used for cis-eQTL 
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mapping. We refer to the eGene, eExon, eLncRNA and eEnhancer above, 
as well as sGene collectively as eMolecule.

Conditionally independent molQTL mapping
To identify the multiple independent cis-QTL signals of a given  
eMolecular, we applied a forward-backward stepwise regression 
approach7, using TensorQTL (v1.0.3) with the parameter: --mode cis_
independent17. We set the gene-level significance threshold to be the 
maximum β-adjusted P value for eMolecules within each tissue after 
correcting for multiple testing as described above. At each iteration, we 
scanned the new cis-QTL after adjusting for all previously discovered 
cis-QTL and covariates. In addition, we further employed SuSiE-inf 
(v1.2)51 to fine-map the potential causal cis-QTL for each eMolecule.

The tissue-sharing patterns of molQTL
To understand the shared or specific genetic regulatory mechanisms 
between tissues, we performed a meta-analysis of molQTL across all  
34 tissues using MashR (v0.2–6)52 and METASOFT (v2.0.1)53 as described 
above. For MashR (v0.2-6), we only considered the z scores from Ten-
sorQTL (v1.0.3; slope/slope_se) of the top cis-molQTL. We obtained the 
estimated effect sizes (that is, posterior means) and the corresponding 
significance levels (that is, local false sign rate (LFSR)) from the mash 
function. We defined a molQTL with LFSR < 0.05 as active in a given 
tissue. To estimate the pairwise tissue similarity with regard to genetic 
regulation of gene expression, we calculated the pairwise Spearman’s 
correlation of effect size estimates of cis-molQTL between any tissue 
pairs, focusing on SNPs with LFSR < 0.05 in at least one tissue. For 
METASOFT (v2.0.1), we used summary statistics (that is, slope and 
slope_se) from TensorQTL (v1.0.3) of molQTL across all tissues. We 
estimated the meta-analytic effect size using a fixed effect model and 
calculated M values (posterior probabilities) using the MCMC method. 
We considered a molQTL with M > 0.7 active in tissue. To evaluate the 
similarity of tissue-clustering patterns across different data types (that 
is, PCG expression, splicing quantifications, exon expression, lncRNA 
expression, enhancer expression, cis-eQTL, cis-sQTL, cis-lncQTL, 
cis-eeQTL and cis-enQTL), we performed k-means clustering using 
the k-means function in the stats R package (v4.0.2), in which param-
eter k was allowed to range from 2 to 20 and the maximum number of 
iterations was 1,000,000. We calculated the pairwise Rand index to 
measure the clustering similarity using the rand.index function in the 
fossil (v0.4.0) R package (v4.0.2)54.

GWAS summary statistics
To investigate the regulatory mechanisms underpinning complex traits 
in pigs, we systematically integrated the identified molQTL with sum-
mary statistics of 268 meta-GWAS from 207 complex traits of economic 
importance, representing five trait domains (Supplementary Table 18).  
In total, we performed 2,056 separate GWAS and conducted the 
meta-GWAS analysis for the same traits across different populations 
based on GWAS summary statistics using METAL (v2011-03-25)55, result-
ing in 268 meta-GWAS results. To perform the integrative analysis of 
GWAS and molQTL, we overlapped significant GWAS loci with the 
3,087,268 SNPs tested in the molQTL mapping, resulting in 1,507 GWAS 
loci with lead SNP P < 1 × 10−5.

Enrichment of molQTL and trait-associated variants
To examine whether molQTL was enriched among the significant GWAS 
variants, we applied three distinct approaches as described in the fol-
lowing. First, we used a simple overlapping approach to examine 
whether a significant molQTL is more likely to be a significant trait-SNP 
as described in ref. 9 Briefly, for each tissue, we kept SNPs with the most 
significant nominal P value for a gene and scaled P values to a compa-
rable level (λ = 10) across 34 tissues. We selected the minimum P value 
of each SNP in the 34 tissues as the background set, from which we 
extracted P values for SNPs that overlapped with significant GWAS loci. 

Second, we applied QTLEnrich (v2)7 to quantify the enrichment degree 
between significant molQTL and GWAS loci. We only used summary 
statistics of 198 GWAS for which ≥80% of SNPs were also tested in the 
molQTL mapping. Third, we applied the mediated expression score 
regression method to estimate the heritability of complex trait that 
was mediated by the cis-genetic component of different molecular 
phenotypes (h2

med)56.

Cis-molQTL-GWAS colocalization
To identify shared genetic variants between the molecular phenotypes 
and complex traits, we performed a colocalization analysis of molQTL 
and GWAS loci using fastENLOC (v1.0)23. Briefly, we obtained the proba-
bilistic annotation of molQTL from the DAP-G (v1.0.0)57 and then used 
the summarize_dap2enloc.pl script to generate the annotation file of 
multi-tissue molQTLs. We generated approximate LD blocks across the 
entire genome based on the PGRP using PLINK (v1.90)58. We applied the 
TORUS tool to generate the posterior inclusion probability of each LD 
block based on GWAS z scores59, followed by the colocalization analysis 
with fastENLOC (v1.0). We obtained the regional colocalization prob-
ability (RCP) of each LD-independent genomic region using a natural 
Bayesian hierarchical model60 and considered a gene with RCP > 0.9 
as significant. To identify the trait-relevant tissues, we calculated a 
‘relevance score’ between a tissue and a trait by dividing the number 
of colocalized genes by the product of sample size and eGene propor-
tion in this tissue. We only considered 14 tissues with ≥100 samples.

TWAS of complex traits
To explore whether the overall cis-genetic component of a molecular 
phenotype is associated with complex traits, we conducted single- and 
multi-tissue TWAS using S-PrediXcan25 and S-MultiXcan in MetaX-
can (v0.6.11)26, respectively, based on the summary statistics of the 
meta-GWAS. Briefly, we employed the nested cross-validated elastic net 
model implemented in S-PrediXcan to predict the five types of molecu-
lar phenotypes in all 34 tissues. To train the predictive model, we used 
the confounder-corrected expression or PSI values as phenotypes and 
SNPs within the cis-windows of genes as genotypes. We kept only pre-
dictive models with cross-validated correlation ρ > 0.1 and prediction 
performance P < 0.05 for further TWAS analysis. We ran S-PrediXcan on 
all 268 GWAS to obtain gene–trait associations at a single-tissue level. 
Based on results from S-PrediXcan, we ran S-MultiXcan to integrate 
predictions from multiple tissues, yielding the multi-tissue TWAS 
results. We applied Bonferroni correction and considered a corrected 
P < 0.05 as significant.

MR analysis between molQTL and GWAS loci
We conducted MR analysis to infer the causality between molecular 
phenotypes and complex traits using the SMR (v1.03)24. We first con-
verted the summary statistics of molQTL from TensorQTL (v1.0.3) to 
BESD format using SMR with the options: --fastqtl-nominal-format 
--make-besd. We only considered eMolecules with top nominal P 
value < 1 × 10−5 for the SMR test. We defined gene–trait pairs to pass 
the SMR test if the Benjamini–Hochberg-adjusted PSMR < 0.05 and 
PGWAS < 1 × 10−5. For gene–trait pairs that passed the SMR test, we 
performed the heterogeneity in dependent instruments (HEIDI) test, 
with PHEIDI ≥ 0.05 reflecting that we could not reject a single causal vari-
ant with effects on both molecular phenotype and complex trait. As a 
cis-regulator, lncRNA can regulate the expression of neighboring PCGs 
and then can influence complex traits. To understand this etiology of 
complex traits, we performed an integrative SMR analysis that used 
three layers of summary-level information from cis-lncQTL, cis-eQTL 
and GWAS. We used the summary statistics of cis-lncQTL and cis-eQTL 
as the exposure and the outcome input for SMR (v1.03)61, respectively, 
which detected pleiotropic effects between lncRNA and PCG expres-
sion. We used Bonferroni correction within each tissue and defined a 
corrected P < 0.05 as significant.
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Comparative analysis between pigs and humans
To explore the genetic similarity of complex traits between pigs and 
humans, we performed a comparative analysis of TWAS summary 
statistics. We downloaded public human GWAS summary statistics for 
136 complex traits, representing 18 trait domains (Supplementary 
Table 29). Based on the predictive models in human GTEx v8 (ref. 62), 
we applied the S-PrediXcan to conduct TWAS for all 136 complex traits 
across 49 human tissues. We only kept TWAS results from 11 major tis-
sues in humans that had matched tissues with ≥100 samples in pigs. 
We only considered 15,944 one-to-one orthologous genes. For a trait 
pair, we calculated the Pearson’s correlation of absolute effect size 
estimated of orthologous genes between pigs and humans within the 
matching tissue. We applied Benjamini–Hochberg correction for  
P values of all tested correlations and defined an FDR < 10% as signifi-
cant. To investigate whether GTEx-like resources can facilitate 
cross-species gene mapping of complex traits through borrowing 
‘information’ at the level of orthologous genes instead of individual 
variants, we performed a cross-species meta-TWAS analysis through 
modifying a multi-ancestry meta-TWAS method in humans63. We  
calculated the z statistics of meta-TWAS as follows: zmeta =

nizTWAS,i+njzTWAS, j

√n2
i +n

2
j

, 

where zTWAS,i and zTWAS, j were the z statistics from pig TWAS and human 
TWAS results, respectively; ni and nj were the population size of pig 
TWAS and human TWAS, respectively. If the tested trait is a case–con-

trol study, we adjusted the sample size as 4/( 1
ncases

+ 1
ncontrols

). We chose 

several well-recognized homologous trait pairs between humans and 
pigs to perform the meta-TWAS, and we also selected several nonho-
mologous trait pairs as negative controls. We divided orthologous genes 
into ten bins sorted by P values of pig TWAS and estimated the heritabil-
ity enrichment of different gene bins in homologous trait of humans 
using LD score regression implemented in LDSC64. We performed the 
PheWAS based on 4,756 GWAS, including 3,302 traits in GWAS ATLAS27.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. The 
details of data exclusions for each specific analysis are available in the 
Methods section. For all the boxplots, the horizontal lines inside the 
boxes show the medians. Box bounds show the lower quartile (Q1, the 
25th percentile) and the upper quartile (Q3, the 75th percentile). Whisk-
ers are minima (Q1 − 1.5× IQR) and maxima (Q3 + 1.5× IQR), where IQR 
is the interquartile range (Q3–Q1). Outliers are shown in the boxplots 
unless otherwise stated. The experiments were not randomized, as all 
the datasets are publicly available from observational studies. The inves-
tigators were not blinded to allocation during experiments and outcome 
assessment, as the data were not from controlled randomized studies.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All raw data analyzed in this study are publicly available for download  
without restrictions from SRA (https://www.ncbi.nlm.nih.gov/sra/) and 
BIGD (https://bigd.big.ac.cn/bioproject/) databases. Details of RNA-seq, 
WGS, WGBS, single-cell RNA-seq and Hi-C datasets can be found in Supple-
mentary Tables 1, 2, 5, 8 and 9, respectively. All the WGS data newly gener-
ated in this study are available under CNCB GSA (https://ngdc.cncb.ac.cn/) 
accessions PRJCA016120, PRJCA016130, PRJCA017284, PRJCA016012 and 
PRJCA016216. All processed data and the full summary statistics of molQTL 
mapping are available at http://piggtex.farmgtex.org/.

Code availability
All the computational scripts and codes for RNA-seq, WGS, WGBS, 
single-cell RNA-seq and Hi-C dataset analyses, as well as the respective 

quality control, molecular phenotype normalization, genotype impu-
tation, molQTL mapping, functional enrichment, colocalization, SMR 
and TWAS, are available at the FarmGTEx GitHub website (https://
github.com/FarmGTEx/PigGTEx-Pipeline-v0, https://doi.org/10.6084/
m9.figshare.24247771)65.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Genotype calling and imputation and breed prediction. 
a, Pearson’s correlation (r) between number of clean reads and number of called 
SNPs across 7,095 RNA-Seq samples. The P-value is obtained by Pearson’s r test.  
b, Distribution of the number of SNPs called from 7,095 RNA-Seq samples.  
c, Number of imputed SNPs (left, gray bars) from 7,008 RNA-Seq samples across 
18 pig chromosomes after quality control (DR2 ≥ 0.85, minor allele frequency ≥ 
0.05). The red point represents the number of genes (right) in each chromosome 
in the Sscrofa11.1. assembly (Ensembl v100). d, Distribution of 42,523,218 SNPs 
from the Pig Genomics Reference Panel (PGRP) and 3,087,268 imputed SNPs  
used for molecular QTL (molQTL) mapping across eight genomic features.  
e, Minor allele frequency (MAF) of imputed SNPs in 7,008 RNA-Seq samples.  
f, Distribution of the number of imputed SNPs around 1 Mb of transcript start 
site (TSS) of 18,911 protein-coding genes. g, Concordance rate (CR) and squared 
correlation (r2) of imputed and observed genotypes in 50 evenly spaced MAF bins 

based on individuals that are not present in the PGRP. ‘ALL’ represents the entire 
variants. h, CR and r2 of imputed genotypes from RNA-Seq only and those directly 
called from whole-genome sequence (WGS) data (red), and imputed genotypes 
(blue) from SNP array, respectively, in the same individuals. Point and whisker 
are mean and standard deviation, respectively. Labels of x-axis are breeds and 
number of individuals. i, CR and r2 (median and interquartile) of imputed and 
observed genotypes in different genomic features. Point and whisker are median 
and interquartile, respectively. j, The overall pipeline utilized to predict missing 
breed labels for RNA-Seq samples. k, Estimated ancestry proportion of Duroc 
(n = 485), Landrace (n = 280), Yorkshire (n = 145), Landrace×Yorkshire (n = 165) 
and Duroc×Landrace×Yorkshire (n = 40) samples. l, Distribution of sample 
size of training and prediction sets in pure and cross breeds. m,n, Accuracy of 
breed prediction for pure breeds (m) and cross breeds (n) measured by cross-
validation. The red triangle represents the sample size of the target breed.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01585-7

Extended Data Fig. 2 | Detection of duplicated individuals and confounders 
of RNA-Seq samples. a, Distribution of identity-by-state (IBS) distances among 
7,008 RNA-Seq samples, which are calculated using 12,207 LD-independent SNPs 
(r2 < 0.2). b, Density of IBS distances that were computed using genotypes derived 
from RNA-Seq only and whole-genome sequence (WGS) or SNP array data in the 
same individuals (n = 227). c, Heatmap of IBS distance of 25 RNA-Seq samples 
from 9 individuals. The same color on the top of panel represents samples from 
the same individuals. True: true individual label; Assigned: assigned individual 
label using an IBS distance cutoff of 0.9. d, Pearson’s correlation (r) between IBS 
distance calculated from imputed genotypes and those calculated from WGS or 
SNP array data across four different populations. L×Y: Landrace and Yorkshire 

cross breed (n = 25); Duroc×DNXE: Duroc and Diannanxiaoer cross breed  
(n = 11); Duroc: Duroc pure breed (n = 37); D×L×Y: composite population with 
1/4 Duroc, 1/2 Landrace and 1/4 Yorkshire (n = 179). e, Duplicated and remaining 
individuals in each of the 34 pig tissues used for molecular QTL mapping. Sample 
pairs with IBS > 0.9 were considered as duplicated individuals. f, Proportion of 
variance explained (PVE) by genotype principal components (PC) in each of 34 
tissues (lines). g, Factor weight variance of probabilistic estimation of expression 
residual (PEER) factors in each of 34 tissues (lines). h, Proportion of variance 
(adjusted R2) of known confounders captured by the top 10 inferred PEER factors, 
calculated using the lm function in R (v4.0.2).

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01585-7

Extended Data Fig. 3 | The pig gene expression atlas. a, Tissue-specific 
expression of five transcript types reflected by the TAU score. PCG: protein-
coding genes. b, Gene numbers (left), expression pattern (middle, transcripts per 
million, TPM), and enriched Gene Ontology (GO) terms (right) of tissue-specific 
genes in 34 tissues. c, Enrichment of muscle-specific genes in 15 chromatin 
states across 14 pig tissues16. The red dots represent respective chromatin states 
in muscle. The blue line indicates enrichment fold = 1. d, Expression profiles 
of MYL2 gene across 34 tissues (left). The tissue color key is the same as in (b). 
Chromatin state distribution (right) around MYL2 in 14 pig tissues16. In brief, 
red is for promoters, yellow for enhancers, blue for open chromatin and gray 
for repressed regions. e, Enrichment of tissue-specific genes for two active 
chromatin states across 11 tissues, which have both chromatin states and gene 
expression data. The dots represent enrichments from matching tissues. TssA 
is for active TSS (promoter), and EnhA for active enhancers. f, Comparison 
of genes with and without functional annotation (referred to as ‘annotated 

genes’ and ‘unannotated genes’, respectively) in gene co-expression modules 
at different biological layers. The gene co-repression analysis was conducted 
using five complementary methods, including WGCNA, ICA, PEER, MEGENA and 
CEMiTool. ‘All’ shows the combined results from the five methods. The functional 
annotation was based on the Gene Ontology database (version 2022-01-18). The 
plots from top to bottom include gene counts, expression level, PhastCons score 
from 100 vertebrate genomes, proportion of orthologous genes in humans and 
TAU values. Significant differences between annotated and unannotated genes 
were obtained using a two-sided Student t-test. ** means P < 0.01. g, An example 
of gene co-expression module in the pituitary, which includes 59 unannotated 
and 42 annotated genes, respectively. The functional annotated genes are 
significantly (P = 8 × 10−3) enriched in neuron apoptotic processes. The gray 
edges between genes represent Pearson’s correlations of expression across all 
53 samples in the pituitary. h, The proportion of unannotated genes in each gene 
co-expression modules across 34 tissues.
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Extended Data Fig. 4 | Cis-heritability of gene expression across 34 pig 
tissues. a, Distribution of estimated cis-heritability (cis-h2) of gene expression 
across 34 tissues. The black point represents the median of cis-h2 of all tested 
genes in a tissue. b, Box plot showing the cis-h2 estimates of genes across 34 
tissues that are significant (likelihood ratio test P < 0.05) or non-significant, 

where 16,174 (93%) unique genes have significant cis-heritability in at least one 
tissue. The P value was calculated by two-sided Student t-test. c, The number 
of eGenes in each tested tissue, with 86% of the tested genes (red bar, left) are 
eGenes in at least one tissue. The blue points represent the number of tissue-
specific eGenes.
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Extended Data Fig. 5 | Conditionally independent molecular QTLs (molQTL). 
a, Distribution and average number (red dots, right y-axis) of conditionally 
independent cis-QTL per eMolecules across 34 tissues. Tissues (x-axis) are 
ordered by increasing sample size. b, Cumulative proportion of distance to 
the transcription start site (TSS) of target genes for conditionally independent 

cis-eQTL in each of 34 tissues. The meanings of the colors of curved lines are the 
same as the color key in panel (a). c,d, Comparison of distance to TSS (c) and 
effect size (|log2(aFC)|) (d) among top three independent cis-eQTL per eGene 
across 34 tissues. The aFC is for allelic fold change. The P values were obtained by 
the two-sided Wilcoxon rank-sum test.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01585-7

Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Validation of cis-eQTL. a, Pearson’s correlation of 
combined summary statistics (for example, Z-score, slope and P-value (-log10 
scale)) of cis-eQTL for all the eGenes across 34 tissues between TensorQTL  
(linear model, LM) and fastGWA (mixed linear model, MLM). b, Pearson’s 
correlation of summary statistics for each eGene in each tissue between LM 
and MLM. c, Distribution of the Pearson’s correlations of Z-score between LM 
and MLM. d, Relationship between correlations of Z-score and the number of 
significant eQTL across all the eGenes. e, Correlation of P values derived from 
MLM and nominal (left) or permutation-corrected (right) P derived from LM for 
the lead eQTL of all the eGenes. f, Replication rates (π1) of blood cis-eQTL between 
the PigGTEx discovery population (n = 386, Discovery) and the external datasets 
(n = 179). For π1 calculation, rows are discovery populations, and columns are 
replication populations. The external datasets include whole-blood-cell RNA-
Seq data and SNP Chip array (Chip) from 179 animals at two developmental 

stages (T1 and T2). The prefix ‘RNA’ and ‘Chip’ indicate imputed genotypes from 
RNA-Seq and SNP array, respectively. g, Spearman’s correlation (ρ) of effect size 
(z-scores) for blood cis-eQTL among the same populations above. h, Replication 
rates (π1) of PigGTEx cis-eQTL in external validation datasets of three tissues, 
including muscle (nPigGTEx = 1,321, nexternal = 100), liver (nPigGTEx = 501, nexternal = 100) 
and duodenum (nPigGTEx = 49, nexternal = 100). The x-axis is the nominal P-value of 
cis-eQTL detected from dataset2 and is significant in dataset1 (that is, dataset1 in 
dataset2). i,j, Spearman’s correlation (ρ) of effect sizes (allelic fold change, aFC in 
log2 scale) between cis-eQTL and matched allele-specific expression (ASE) loci in 
the liver (i) and brain (j). N indicates number of tested loci. The lines are fitted  
by a linear regression model using the geom_smooth function from ggplot2 
(v3.3.2) in R (v4.0.2). The shading represents the standard error of the fitting line.  
k, Spearman’s correlation (ρ) of effect sizes between cis-eQTL and matched ASE 
loci across 34 tissues. Red dots indicate number of tested loci (right y-axis).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Breed sharing and interaction cis-eQTL (bieQTL).  
a, Sample size of muscle RNA-Seq data across eight breed groups. b,c, Expression 
levels of NMNAT1 (b) and COMMD10 (c) at three genotypes of cis-eQTL in muscle 
across eight breed groups. d, The cis-eQTL discovered in each breed group 
(rows) that can be replicated (π1) across all other breed groups (columns). e, The 
heatmap of tissues regarding the pairwise Spearman’s correlation (ρ) of cis-eQTL 
effect sizes. Tissues are grouped by hierarchical clustering (bottom). Violin plot 
(left) represents Spearman’s correlation between the target group and the rest. 
f, Pearson’s correlation (r) of effect size between cis-eQTL from the multi-breed 

meta-analysis (y-axis) and those from the combined muscle population (x-axis). 
The P value was obtained from Pearson’s r test. g, Overlap of cis-eQTL detected 
from the combined muscle population (Combined) and those detected in single-
breed (Single) cis-eQTL mapping (shared in at least two breeds). h,i, Examples of 
bieQTL in muscle. Each dot in (h, CA14) and (i, ATE1) represents an individual and 
is colored by three genotypes. Gene expression levels and ancestry enrichment 
scores are inverse normal transformed. The two-sided P value is calculated by the 
linear regression bieQTL model. The lines are fitted by a linear regression model 
using the geom_smooth function from ggplot2 (v3.3.2) in R (v4.0.2).
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Extended Data Fig. 8 | Cell-type enrichment and interaction cis-eQTL 
(cieQTL). a, Distribution of enrichment scores (percentage) of major cell 
types in samples of seven tested tissues (brain: n = 415, frontal cortex: n = 75, 
hypothalamus: n = 73, lung: n = 149, blood: n = 386, liver: n = 501, and spleen:  
n = 91). Each point and whisker indicate the mean value and standard deviation, 
respectively. b,c, Examples of cieQTL in blood. Each dot in (b, SCRN2) and 
(c, HIBADH) represents an individual and is colored by three genotypes. 
Gene expression levels and cell-type enrichment scores are inverse normal 
transformed. The two-sided P value was calculated by the linear regression 

cieQTL model. The lines are fitted by a linear regression model using the geom_
smooth function from ggplot2 (v3.3.2) in R (v4.0.2). d–f, Pearson’s correlation (r) 
between allele-specific expression (ASE) effect sizes (allelic fold change, aFC) and 
specific cell-type enrichment scores for FGD2 with monocytes (d), SCRN2 with 
CD2− γδ T cells (e) and HIBADH with CD4+ αβ T cells in the blood (f). The lines are 
fitted by a linear regression model using the geom_smooth function from ggplot2 
(v3.3.2) in R (v4.0.2). The shading represents the standard error of the fitting line. 
g, ASE validation rate (π1) of breed/cell-type interaction QTL (bieQTL and cieQTL) 
across tissues with ≥ 5 detectable bieQTL or cieQTL.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Tissue-sharing and specificity patterns of molecular 
QTL (molQTL). a–d, The heatmap of tissues regarding the pairwise Spearman’s 
correlation (ρ) of molQTL effect sizes, that is, cis-sQTL (a), cis-eeQTL (b), cis-
lncQTL (c) and cis-enQTL (d). Tissues are grouped by the hierarchical clustering 
(bottom). Violin plot (left) represents Spearman’s correlations between the 
target tissue and the rest. e, Distribution of number of tissues having METASOFT 
activity (m-value > 0.7) for each of molQTL. MolPhe: molecular phenotype. 
f, Pearson’s correlation (r) between number of tissues an eGene expressed in 

(transcript per million, TPM > 0.1) and its cis-eQTL effect sizes (|aFC(log2)|). 
The aFC is for allelic fold change. The line and shading indicate the median and 
interquartile range, respectively. g, Expression levels (adjusted TMM) of ODF2L 
at three genotypes of top cis-eQTL (rs329043485) in blood and testis. TMM: 
trimmed mean of M-value normalized expression levels. There are 337, 47 and 2 
samples for A/A, A/C and C/C genotypes in blood, respectively, and 148, 34 and 2 
in testis, respectively. h, Expression levels (log2TMM) of ODF2L across 34 tissues. 
Tissues are ordered (from smallest to largest) by the median expression values.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Complementarity of molecular QTL (molQTL) in 
interpreting GWAS loci. a, Number of GWAS loci linked to cis-eQTL, cis-sQTL, cis-
eeQTL, cis-lncQTL and cis-enQTL in 34 tissues based on four different integrative 
methods, including colocalization (fastEnloc), Mendelian randomization (SMR), 
single-tissue transcriptome-wide association studies (TWAS, S-PrediXcan) 
and multi-tissue TWAS (S-MultiXcan). The bottom point-line combinations 
of the Upset plot represent the intersections of GWAS loci linked to eGenes by 
different types of molecular phenotypes. b, Distribution of rank correlations 
between tissue-relevance-scores derived from cis-eQTL and those from cis-sQTL, 
cis-lncQTL, cis-eeQTL and cis-enQTL across 86 GWAS traits with significant 
colocalizations for at least one molecular phenotype. c, Significant SMR signals 
(PSMR = 9.16 × 10−5, PHEIDI = 0.9) between GWAS loci of average daily gain (ADG) and 
cis-eQTL of CFAP298-TCP10L in colon, but not for its cis-sQTL or cis-eeQTL. The 
orange triangle represents the top cis-eQTL of CFAP298-TCP10L. d, Significant 

SMR signals (PSMR = 1.78 × 10−5, PHEIDI = 0.07) between GWAS loci of the average 
backfat thickness (BFT) and cis-sQTL of MYO7B in the small intestine, but  
not for its cis-eQTL or cis-eeQTL. e, Significant SMR signals (PSMR = 1.78 × 10−6, 
PHEIDI = 0.97) between GWAS loci of litter weight (LW, piglets born alive) and  
cis-eeQTL of FBXL12 in the uterus, but not for its cis-eQTL or cis-sQTL. f, 
Significant SMR signals (PSMR(lncQTL-GWAS) = 4.49 × 10−7, PSMR(eQTL-GWAS) = 5.45 × 10−5, 
PSMR(lncQTL-eQTL) = 4.62 × 10−7) among GWAS loci of loin muscle depth (LMD), 
cis-lncQTL of MSTRG.4694&ENSSSCT00000070888, and cis-eQTL of GOSR2 
in the muscle. MSTRG.4694&ENSSSCT00000070888 is a lncRNA gene located 
on the 3112 bp downstream of GOSR2, where the Pearson’s correlation of their 
normalized expression levels (trimmed mean of M-value, TMM) is 0.29 in muscle. 
The orange and green triangles in the top GWAS Manhattan plot represent the 
top molQTL of GOSR2 and MSTRG.4694&ENSSSCT00000070888, respectively.
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