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Abstract: Obesity is a risk factor for highly prevalent age-related neurodegenerative diseases, the
pathogenesis of whichinvolves mitochondrial dysfunction and protein oxidative damage. Lipoxida-
tion, driven by high levels of peroxidizable unsaturated fatty acids and low antioxidant protection
of the brain, stands out as a significant risk factor. To gain information on the relationship between
obesity and brain molecular damage, in a porcine model of obesity we evaluated (1) the level of
mitochondrial respiratory chain complexes, as the main source of free radical generation, by Western
blot; (2) the fatty acid profile by gas chromatography; and (3) the oxidative modification of proteins by
mass spectrometry. The results demonstrate a selectively higher amount of the lipoxidation-derived
biomarker malondialdehyde-lysine (MDAL) (34% increase) in the frontal cortex, and positive correla-
tions between MDAL and LDL levels and body weight. No changes were observed in brain fatty acid
profile by the high-fat diet, and the increased lipid peroxidative modification was associated with
increased levels of mitochondrial complex I (NDUFS3 and NDUFA9 subunits) and complex II (flavo-
protein). Interestingly, introducing n3 fatty acids and a probiotic in the high-fat diet prevented the
observed changes, suggesting that dietary components can modulate protein oxidative modification
at the cerebral level and opening new possibilities in neurodegenerative diseases’ prevention.

Keywords: obesity; lipoxidation; mitochondrial complexes; n3 PUFA; probiotics; age-related
neurodegenerative diseases

1. Introduction

Obesity is a risk factor for age-related diseases. For instance, obesity has been pre-
viously associated with age-related neurodegenerative processes, such as mild cognitive
impairment and Alzheimer’s disease (AD) [1–4]. Insulin receptors are present in several
neural cell types, including glia and neurons [5], suggesting that AD might be related to
insulin resistance [6,7]. Obesity-induced insulin resistance could fuel some of the culprits of
age-related neurodegeneration, such as mitochondrial dysfunction, amyloid-beta deposit,
protein aggregation, and neuroinflammation, to name a few. Furthermore, since brain
vasculature is essential for neural tissue homeostasis, the obesity–neurodegeneration link
has also been attributed to changes in vessel function [8]. Finally, this link might also
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comprise the influence of adipose tissue-derived products (i.e., inflammatory mediators)
and free fatty acids (FFA), and oxidative stress status.

Circulating FFAs are generated due to alterations in expanding adipose tissue and
have a lipotoxic role in both peripheral and nervous tissue. FFAs can target the central
nervous system (CNS), which, together with the chronic low-grade inflammatory state,
would result in cognitive impairment, other CNS diseases, and peripheral neuropathies [9].
To model this increased risk of neurological complications, the available experimental
models of obesity have some intrinsic limitations. Increased obesity is observed in rodents
when placed on a higher-fat diet. However, due to physiological differences, specific
cardiometabolic markers (such as low HDL cholesterol, increased LDL cholesterol, and
coronary calcification) translate better in pigs and primates than in rodent models [10,11].
In fact, lipoprotein metabolism in primates and swine is very similar to that of humans.
Therefore, unhealthy diets in these species can induce changes in lipid profiles associated
with cardiometabolic risk, reproducing many changes in humans. Pigs are particularly
suited for evaluating lipid metabolism based on the knowledge of the genetic traits con-
trolling it and the possibility of monitoring the buildup of atherosclerosis by using clinical
imaging systems such as computed tomography. However, a detailed analysis of the
potential effects of obesity on the brain is not available.

Oxidative stress comprises the pathophysiological mechanisms behind age-related
neuronal impairment [12–14]. Typically, protein oxidative damage in brain age-related
diseases has been evaluated by measuring protein carbonyls derived from the direct
interaction of reactive oxygen species with susceptible amino acid residues. However,
third-party molecules are also involved in the chemical pathways connecting enhanced free
radical efflux and protein structural alteration, which could increase protein damage [15,16].
Cellular processes such as glycolysis and triose phosphate metabolism [16] could contribute
to the production of these intermediate compounds that interact with lysine, arginine,
and cysteine residues in proteins, leading to the formation of stable advanced glycation
end-products (AGEs). Polyunsaturated fatty acids (PUFA) are another group of third-
party compounds highly vulnerable to oxidation that produce a wide variety of reactive
aldehydes [17,18]. These, in turn, are capable of non-enzymatically reacting with proteins,
leading to the formation of advanced lipoxidation end-products (ALEs). The enriched
PUFA content of the brain and its high oxygen consumption provide evidence for the
potential importance of lipid peroxidation-derived mechanisms in the etiology of brain
aging and AD [19]. Reinforcing this idea, immunohistochemistry reveals non-enzymatic
protein damage in AD lesions [20–22], which contrasts with the lack of studies evaluating
the effect of diet-induced obesity on brain protein damage.

In the present work, we have used a porcine model to evaluate the effects of high-fat
diet-induced obesity on the content of oxidative modification markers in brain cortex
proteins. Since these are related to free radical production and lipid composition, we have
also measured those parameters by evaluating the content of mitochondrial respiratory
complexes and the fatty acid (FA) profile in brain tissue. The results reveal a specific
profile of molecular modification in high-fat diets in female piglets, with a dominance of
lipid peroxidative damage (34% increase in malondialdehyde-lysine (MDAL)), without
changes in the FA profiles, and with specific changes in respiratory mitochondrial complex
I (subunits NDUFS3 and NDUFA9) and complex II (flavoprotein, FP). To gain information
on the dynamic behavior of the system, we compared these effects with those of a high-fat
diet enriched with a probiotic and the same probiotic with n3 PUFA, with properties against
high-fat metabolic disorders [23–25]. The results demonstrate that the degree of protein
lipoxidation depends not only on calories but also on the dietary components, demonstrat-
ing the protecting role of n3 PUFA. These findings pave the way for exploring the potential
involvement of n3 PUFA and probiotics in preventing neurodegenerative pathologies.
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2. Materials and Methods
2.1. Design and Ethics

The ARRIVE guidelines in the Essential 10 set have been followed (https://arriveguidelines.
org/arrive-guidelines, accessed on 26 January 2024). All the experimental procedures, includ-
ing management, trait recording, and monitoring, were approved by the Ethical Committee
of the Institut de Recerca i Tecnologia Agroalimentàries (IRTA, Girona, Spain) (DAAM
7306/2013) and were performed according to the Spanish Policy for Animal Protection
RD1201/05, which meets European Union Directive 86/609 about the protection of animals
used in experimentation.

A total of 43 female piglets from a Duroc pig line (Sus scrofa domesticus) were
used in the present study. Animals were born in 11 different litters (i.e., 11 groups of
3–4 littermates). Same-sex littermates, from the same father and mother, were randomly
distributed into 4 experimental groups using a matched-pairs experimental design. After
weaning, piglets were transferred to the IRTA pig experimental station and subjected to
the same management procedures as described [23,26]. Briefly, at 9 weeks of age, animals
were located in environmentally monitored facilities, randomly distributed into 4 pens
(10–11 animals per pen from different litters), and fed ad libitum for 10 weeks with
4 different dietary treatments, giving rise to four different experimental groups (see below).
Each pen had a partly slatted floor (60% solid concrete and 40% slatted), with some sawdust
provided on the concrete floor on a regular basis and a natural light cycle with a minimum
of intensity of 40 lx (EU legislation on pig welfare) and 8 h light. The room temperature
was maintained at 22 ± 5 ◦C.

At nine weeks of age, animals were divided into four food regimens (ten to eleven
animals per treatment) ad libitum for ten weeks: a standard (and balanced) growth diet
under the NRC’s (Nutrition Resource Centre) suggestions (T1); a Western-style diet with a
high fat content and protein from animal sources (caseinate (T2)); the same Western-style
diet with a 50% replacement of protein by protein from vegetable sources (rice hydrolysate),
containing 5050 cfu/day of the patented strain of Bifidobacterium breve (CECT8242) (T3);
and T3 with n3 PUFA added to the diet (1 g of stearidonic acid and 2 g of docosahexaenoic
acid per 100 g of fat) (T4). Feeds were prepared at the Mas de Bover IRTA center (Tarrag-
ona, Spain). Detailed information about their components and nutritional composition is
provided elsewhere [26].

All pigs were individually weighed at the experiment’s start, every two weeks through-
out, and the day before slaughter. Electronic feeders (IVO-station feeders; INSENTEC®,
Marknesse, The Netherlands) placed in each pen allowed for recording the individual feed
intake. All pigs were scanned using computed tomography (CT) at around 18 weeks to pro-
duce one axial image at the level of the second lumbar vertebrae to evaluate adipose tissue
distribution. Pigs were CT-scanned using General Electric HiSpeed ZX/I (General Electric,
Fairfield, CN, USA) equipment while under anesthesia and after a 16 h fast. VisualPork
was used for the image analyses [26] to convert the areas of interest into volumes (mm3)
of various fat depots, resulting in estimations of the relative fat volume and the relative
amount of subcutaneous, intermuscular, and flare fat.

Animals were killed at the IRTA experimental slaughterhouse when they reached
the age of 19 weeks under completely controlled circumstances and per all welfare laws.
Animals were fasted 8 h before being transported from the experimental farm to the
experimental slaughterhouse (1.2 km of distance). After the unloading, pigs were located
in the lairage pens for an hour. Animals were stunned in groups of two by exposure to 90%
CO2 in atmospheric air for 3 min and exsanguinated afterwards. The brain was removed
from the skull immediately after slaughter. Meningeal tissues and vessels were eliminated,
and prefrontal cortex (PFC) samples were obtained as indicated [24] and frozen at −80 ◦C.
Serum biochemical analyses were obtained as detailed previously [26].

https://arriveguidelines.org/arrive-guidelines
https://arriveguidelines.org/arrive-guidelines
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2.2. Protein Non-Enzymatic Modification Markers

Markers of protein oxidation (the protein carbonyl glutamic semialdehyde [GSA]),
glycoxidation (Nε-(carboxyethyl)-lysine [CEL], Nε-(carboxymethyl)-lysine [CML], and
carboxymethyl-cysteine [CMC]), and lipoxidation (MDAL) were determined as triflu-
oroacetic acid methyl esters (TFAME) derivatives in acid-hydrolyzed delipidated and
reduced proteins from PFC samples by gas chromatography/mass spectrometry (GC/MS)
as detailed in [19,27]. Briefly, cortical brain tissue samples were homogenized at a ratio of
1:20 (w/v) in a buffer containing 180 mM KCl, 5 mM MOPS, 2 mM EDTA, 1 mM diethylen-
etriaminepentaacetic acid, and 1µM butylated hydroxytoluene to avoid the artifactual
formation of protein carbonyl [19], along with 10 µg/mL aprotinin and 1 mM phenyl-
methylsulfonyl fluoride, maintaining a pH of 7.4 using a Potter-Elvehjem device at 4 ◦C.
Following centrifugation (500× g for 5 min) to pellet unbroken tissue, supernatants contain-
ing 0.75–1 mg of protein were subjected to delipidation through chloroform/methanol (2:1,
v/v). The lipids were reserved for FA analysis, and the proteins were precipitated using 10%
trichloroacetic acid and subsequent centrifugation steps. Subsequently, proteins underwent
an overnight reduction in a 0.5 M NaBH4 solution (final concentration) in a pH 9.2 borate
buffer supplemented with one drop of hexanol as an anti-foam agent. The proteins were
re-precipitated using 10% trichloroacetic acid and centrifuged. For relative quantification,
known quantities of [2H8]lysine (d8-Lys); C, [2H2]CML (d2-CML), [2H4]CEL (d4-CEL),
[2H8]MDAL (d8-MDAL), [2H5]5-HAVA (stable derivatives of GSA), and [13C3-15N] CMC
were included as internal standards. Protein hydrolysis was achieved through incubation at
155 ◦C for 30 min in 1 mL of 6 N HCl. Following drying, derivatization involved dissolving
hydrolysates in 1.5 mL of freshly prepared 1N methanolic HCl, heated at 65 ◦C for 30 min.
After solvent evaporation, 1.5 mL of trifluoroacetic anhydride was added, leading to a mix-
ture incubating at room temperature for 1 h. The resulting N, O-trifluoroacetyl methyl ester
derivatives were subjected to analysis using an Agilent model 6890 gas chromatograph
equipped with a 30 m HP-5MS capillary column (30 m × 0.25 mm × 0.25 µm) coupled with
an Agilent model 5973A mass selective detector. Analyses were carried out by selected ion-
monitoring GC/MS (SIM-GC/MS). The ions used were: lysine and [2H8]lysine, m/z 180
and 187, respectively; 5-hydroxy-2-aminovaleric acid (HAVA, stable derivatives of GSA),
m/z 294 and 298, respectively; CML and [2H2]CML, m/z 392 and 394, respectively; CEL
and [2H4]CEL, m/z 379 and 383, CMC and [13C3-15N]CMC, m/z 273 and 275, respectively;
and MDAL and [2H8]MDAL, m/z 474 and 482, respectively. The amounts of product were
expressed as µmoles of GSA, CML, CEL, CMC, or MDAL per mol of lysine.

2.3. Mitochondrial Electron Transport Chain Complexes

The content of the different mitochondrial respiratory chain complexes in pig brain cor-
tex was analyzed through Western blot analyses of specific peptides, following established
protocols [28,29]. In brief, homogenates (20 micrograms of protein) of the PFC (prepared as
previously outlined) were redissolved in a buffer containing 62.5 mM Tris-HCl at pH 6.8, 2%
SDS, 10% glycerol, 20% β-mercaptoethanol, and 0.02% bromophenol blue, and subjected to
a 3 min heating at 95 ◦C. Subsequently, the protein samples underwent one-dimensional
electrophoresis utilizing SDS and were transferred onto PVDF membranes. These mem-
branes were immersed in a blocking solution comprising 2 M Tris, 2.5 M NaCl, 5% BSA, and
0.01% Tween at room temperature for 1 h. Immunoassays were conducted using antibodies
targeting specific proteins, namely NDUFV2, NDUFS3, NDUFS4, NDUFS5, NDUFA9, FP
(also called succinate dehydrogenase complex FP subunit A (SDHA)), CORE2 (UQCRC2),
COX1, and VDAC-1/Porin. The secondary antibodies employed included anti-mouse and
anti-rabbit antibodies. The resultant protein bands were visualized using an enhanced
chemiluminescence HRP substrate (Millipore, MA, USA). Signal quantification and capture
were accomplished using ChemiDoc equipment (Bio-Rad Laboratories, Inc., Barcelona,
Spain). Protein content was derived by computing the ratio of densitometry values related
to their respective Coomassie staining. The absence of protein staining was confirmed
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when primary antibodies were excluded, verifying antibody specificity. Images of raw
Western blots are shown in Supplementary Figure S1.

2.4. FA Profile of the PFC Lipidome

FA profiling of the lipidome from brain cortex samples was performed following
established procedures [19,30]. Briefly, after lipid extraction, the organic (chloroform)
fraction was subjected to transesterification using 5% methanolic HCl in a 2 mL solution
and heated at 75 ◦C for 90 min. The resulting FA methyl esters were extracted using
2 mL of n-pentane and 1 mL of saturated NaCl solution, evaporated using N2 gas, and
eventually dissolved in 80 µL of carbon disulfide. The subsequent analysis involved gas
chromatography, as described in previous literature [31], identifying FA methyl esters
achieved by comparison with authenticated standards. FA amounts were quantified as
a percentage relative to the complete chromatogram, and FA indices, and the calculated
activity of elongases and desaturases were determined using the previously described
methods [30].

2.5. Statistics

Prism 10 for Windows 64b (v 10.1.2 (324 (GraphPad, Boston, MA, USA)) and the SPSS
Statistics 25.0 (IBM, NYC, NY) packages were used for data analysis and graph produc-
tion. Weight gain and biochemical and protein oxidative modifications were analyzed by
Brown–Forsythe and Welch one-way ANOVA tests—assuming that variances differed be-
tween groups—employing Dunnett T3 correction for multiple comparison using statistical
hypothesis testing for post hoc analyses, except for fatty acid derived indexes, where we
employed the two-stage linear step-up procedure of Benjamini, Krieger, and Yekutieli for
controlling false-discovery rate. The Spearman’s correlation coefficient rho was used to
analyze the correlation between variables. Samples that did not meet adequate quality
standards, either due to insufficient material or necropsy failures, were excluded from our
analyses. All remaining samples were analyzed individually, except in the case of Western
blot analyses, where we pooled all samples with a minimum amount and quality belonging
to the same experimental group (10 samples for T1, 8 samples for T2, 7 samples for T3,
and 12 samples for T4) and performed two to three technical replicates. Investigators were
blinded to the treatments. Significance was considered when the p value < 0.05.

3. Results
3.1. Biochemical and Phenotipic Differences between Pigs Fed Different Diets

Body weight and serum lipid variables of the different experimental groups are shown
in Table 1. Consistent with previous findings [26], animals fed a T2 diet exhibited increased
body weight, elevated circulating triacylglyceride levels, and elevated LDL and HDL-
cholesterol concentrations. Regimens T3 and T4 abrogated the weight gain induced by T2,
but not all serum lipid measurements were normalized.

Table 1. Final body weight and serum lipid measurements.

Variable Standard (T1)
(n = 10)

Western-Type (T2)
(n = 8)

Western-Type + Rice
Hydrosilate +

Bifidobacterium (T3)
(n = 7)

Western-Type + Rice
Hydrosilate +

Bifidobacterium + n3
Fatty Acids (T4)

(n = 12)

Body weight (Kg) 53.3 ± 6.4 61.8 ± 7.7 T1 51.36 ± 7.1 T2 50.2 ± 6.8 T2

Triaclyglyceridemia (mM) 0.227 ± 0.056 0.338 ± 0.062 T1 0.377 ± 0.065 T1 0.284 ± 0.082 T3

Total cholesterol (mM) 3.334 ± 0.61 4.219 ± 0.625 4.323 ± 0.823 T1 3.729 ± 0.939

LDL-cholesterol
(mM) 1.227 ± 0.232 1.524 ± 0.204 T1 1.322 ± 0.245 1.172 ± 0.197 T2
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Table 1. Cont.

Variable Standard (T1)
(n = 10)

Western-Type (T2)
(n = 8)

Western-Type + Rice
Hydrosilate +

Bifidobacterium (T3)
(n = 7)

Western-Type + Rice
Hydrosilate +

Bifidobacterium + n3
Fatty Acids (T4)

(n = 12)

HDL-cholesterol
(mM) 1.169 ± 0.266 1.634 ± 0.391 T1 1.782 ± 0.226 T1 1.528 ± 0.308

LDL/HDL ratio 1.088 ± 0.32 0.948 ± 0.25 0.752 ± 0.16 T1 0.786 ± 0.16 T1

Values are the mean ± SD from a minimum of 8 pigs per group; superindexes indicate a significant difference
from the indicated group (p < 0.05 of GLM multiple comparisons, post hoc Bonferroni).

3.2. A Western-Type Diet Increases Protein Lipoxidative Modifications on the Brain Cortex

The effects of a Western-type diet (T2) on protein oxidative damage markers in the pig
brain were assessed (Figure 1). The results demonstrated that after 10 weeks of high-fat diet
consumption, only lipoxidation increased in PFC (MDAL, p = 0.0156) (Figure 1C). Protein
carbonyl (GSA) and non-enzymatic protein modifications derived from glycoxidation reac-
tions (CML, CEL, and CMC) were not influenced by the T2 diet (Figure 1A,B), suggesting a
selective impact on lipid oxidation. As reported for the human brain [19], the steady-state
levels of protein carbonylation (GSA) were the highest, making protein carbonylation the
most common protein modification in the brain (Figure 1A).
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Figure 1. A Western-type diet (T2, n = 8) increases lipoxidative damage levels (malondialdehyde-
lysine-(MDAL)) in pigs PFC compared with a conventional diet (T1, n = 10). These changes can be
reverted by supplementing the T2 diet with vegetal protein and Bifidobacterium breve CECT8242 alone
(T3, n = 7) or in combination with n3 fatty acids (T4, n = 12). Gas chromatography–mass spectrometry
was used to measure protein damage markers of (A) direct oxidation: glutamic semialdehyde (GSA);
(B) glycoxidation: carboxymethyl-lysine (CML), carboxymethyl-cysteine (CMC), and carboxyethyl-
lysine (CEL); and (C) lipoxidation: malondialdehyde-lysine (MDAL). Global ANOVA p-values are
highlighted in black boxes.
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3.3. The Brain Cortex Protein Lipoxidative Modifications Induced by the Western Diet Are Not
Due to Changes in FA Composition

The FA composition of the brain’s lipidome was determined (Table 2). The results
indicate that a high-fat regimen (T2) does not modify the brain PFA FA profile.

Table 2. Fatty acid composition (mol%, mean ± SEM) and derived indexes and estimated enzyme
activities from pigs PFC fed a standard diet (T1, n = 10), Western-type diet (T2, n = 7), and Western-
type diet supplemented with vegetal protein and Bifidobacterium breve CECT8242 alone (T3, n = 12) or
in combination with n3 fatty acids (T4). Gas chromatography was used to measure the content of 21
different FA.

Variable Standard (T1)
n = 10

Western-Type (T2)
n = 8

Western-Type + Rice
Hydrosilate +

Bifidobacterium (T3)
n = 7

Western-Type + Rice
Hydrosilate +

Bifidobacterium + n3
Fatty Acids (T4) n = 12

Fatty acid
C14:0 0.765 ± 0.1 0.831 ± 0.1 0.863 ± 0.1 0.798 ± 0.1

C16:0 24.048 ± 0.3 24.087 ± 0.2 23.453 ± 0.4 23.409 ± 0.3

C16:1 n7 0.784 ± 0.1 0.804 ± 0.1 0.781 ± 0.1 0.803 ± 0.1

C18:0 23.136 ± 0.2 23.268 ± 0.3 23.365 ± 0.2 23.057 ± 0.2

C18:1 n9 18.566 ± 0.5 18.599 ± 0.3 18.871 ± 0.3 18.624 ± 0.4

C18:1 n7 5.629 ± 0.1 5.559 ± 0.1 5.606 ± 0.1 5.314 ± 0.1

C18:2 n6 0.660 ± 0.1 0.723 ± 0.1 0.776 ± 0.1 0.807 ± 0.1

C18:3 n3 0.029 ± 0.01 0.025 ± 0.01 0.026 ± 0.01 0.048 ± 0.01

C18:4 n3 0.122 ± 0.01 0.138 ± 0.01 0.127 ± 0.01 0.119 ± 0.01

C20:0 0.251 ± 0.1 0.250 ± 0.1 0.273 ± 0.1 0.249 ± 0.1

C20:1 n9 0.602 ± 0.1 0.572 ± 0.1 0.594 ± 0.1 0.568 ± 0.1

C20:2 n6 0.032 ± 0.01 0.033 ± 0.01 0.032 ± 0.01 0.029 ± 0.01

C20:3 n6 0.480 ± 0.1 0.518 ± 0.1 0.520 ± 0.1 0.791 ± 0.1

C20:4 n6 9.808 ± 0.2 9.892 ± 0.2 9.431 ± 0.2 9.334 ± 0.1

C20:5 n3 0.012 ± 0.01 0.013 ± 0.01 0.012 ± 0.01 0.022 ± 0.01

C22:0 0.349 ± 0.1 0.352 ± 0.1 0.379 ± 0.1 0.343 ± 0.1

C22:1 n9 0.672 ± 0.1 0.701 ± 0.1 0.705 ± 0.1 0.652 ± 0.1

C22:4 n6 0.099 ± 0.01 0.102 ± 0.01 0.108 ± 0.01 0.088 ± 0.0

C22:5 n6 4.420 ± 0.1 4.442 ± 0.1 4.335 ± 0.1 3.752 ± 0.1

C22:5 n3 0.059 ± 0.01 0.059 ± 0.01 0.061 ± 0.01 0.048 ± 0.011

C22:6 n3 8.969 ± 0.3 9.032 ± 0.3 8.345 ± 0.3 10.838 ± 0.2
Fatty acid derived index

ACL 18.136 ± 0.149 18.282 ± 0.013 17.663 ± 0.429 18.265 ± 0.07

SFA 48.525 ± 0.391 48.789 ± 0.268 48.206 ± 0.531 47.856 ± 0.417

UFA 50.736 ± 0.822 51.211 ± 0.268 48.536 ± 1.902 51.78 ± 0.315

MUFA 26.339 ± 0.649 26.234 ± 0.29 24.767 ± 1.563 25.907 ± 0.424

PUFA 24.397 ± 0.601 24.977 ± 0.375 23.768 ± 0.521 25.873 ± 0.305

PUFAn6 15.383 ± 0.338 15.711 ± 0.213 15.2 ± 0.3 14.799 ± 0.131

PUFAn3 9.014 ± 0.354 9.266 ± 0.269 8.568 ± 0.343 11.074 ± 0.243

DBI 144.168 ± 3.093 T2 146.665 ± 1.835 138.782 ± 3.888 T2 152.387 ± 1.472 T2
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Table 2. Cont.

Fatty acid derived index
PI 139.403 ± 3.898 T2 142.365 ± 2.606 134.382 ± 3.46 T2 150.951 ± 2.26 T2

AI 95.876 ± 3.164 96.797 ± 2.876 94.029 ± 3.261 T2 124.898 ± 2.549 T2

Estimated elongases and desaturases activity
C20:4/C20:3

(∆5 (n6)) 20.603 ± 0.771 19.222 ± 0.6 18.309 ± 0.652 11.932 ± 0.405 T2

C18:4/C18:3
(∆6 (n3)) 4.739 ± 0.47 5.736 ± 0.447 5.027 ± 0.263 2.617 ± 0.266 T2

C20:3/C20:2
(∆8 (n6)) 15.069 ± 0.358 15.935 ± 0.881 16.466 ± 1.26 27.278 ± 1.01 T2

C16:1/C16:0
(∆9 (n7)) 0.033 ± 0.001 0.033 ± 0.001 0.034 ± 0.002 0.034 ± 0.001

C18:1/C18:0
(∆9 (n9)) 1.047 ± 0.026 1.039 ± 0.015 0.979 ± 0.067 1.04 ± 0.023

C20:1/C18:1
(Elovl 3 (n9)) 0.025 ± 0.001 0.024 ± 0.001 0.024 ± 0.001 0.024 ± 0.001

C20:2/C18:2
(Elovl 5 (n6)) 0.049 ± 0.002 0.047 ± 0.003 0.044 ± 0.003 0.036 ± 0.002

C18:0/C16:0
(Elovl 6 (n9)) 0.963 ± 0.014 0.967 ± 0.016 0.998 ± 0.015 0.986 ± 0.009

C20:0/C18:0
(Elovl 1-3-7a (n9)) 0.011 ± 0.001 0.011 ± 0.1 0.012 ± 0.001 0.011 ± 0.001

C22:0/C20:0
(Elovl 1-3-7b (n9)) 1.381 ± 0.033 1.408 ± 0.024 1.383 ± 0.034 1.37 ± 0.022

C22:4/C20:4
(Elovl 2-5 (n6)) 0.01 ± 0.001 0.01 ± 0.001 0.012 ± 0.001 0.009 ± 0.001

C22:5/C20:5
(Elovl 2-5 (n3)) 6.253 ± 0.978 5.251 ± 0.519 5.325 ± 0.504 2.22 ± 0.127 T2

Values are mean ± SEM; ACL: average chain length; AI: Antioxidant index; SFA: saturated fatty acids; UFA:
unsaturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; PUFAn6: PUFA
n6 series; PUFAn3: PUFA n3 series; DBI: double-bond index; PI: peroxidizability index. T2 Indicate significant
differences with T2 group after ANOVA and two-stage linear step-up procedure of Benjamini, Krieger and
Yekutieli for controlling false-discovery rate.

3.4. Western-Type Diet Is Associated with Changes in the Content of Mitochondrial
Respiratory Complexes

The content of the mitochondrial respiratory chain in the brain was evaluated
(Figure 2). To estimate whether dietary regimes caused any change in mitochondrial
mass, porin levels were quantified. Therefore, all measured mitochondrial respiratory com-
plex peptides were adjusted to porin levels. The high fat intake (T2) infringed a significant
increase in NDUFS3 and NDUFA9 complex I subunits (p < 0.01 and 0.049, Figure 2A) and
the FP of complex II (p = 0.026, Figure 2B). Reinforcing the specificity of this phenomenon,
the subunits of complexes III and IV studied were not affected by the T2 diet (Figure 2C,D).
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Figure 2. Complex I and II subunits are increased in pigs PFC after feeding a Western-type diet (T2,
n = 3) compared to a standard one (T1, n = 3). These complex I dietary-driven effects are reverted
after nutritional supplementation with vegetal protein and Bifidobacterium breve CECT8242 alone (T3,
n = 3) or in combination with n3 fatty acids (T4, n = 3). Immunoblots against: (A) complex I subunits:
NDUFV2, NDUFS3, NDUFS5, and NDUFA9; (B) complex II: flavoprotein (FP); (C): complex III:
CORE2; and (D) complex IV: COXI. Porin and Coomassie for each immunoblot is included. Values
are expressed as the mean ± SEM and normalized for porin protein levels as a mitochondrial marker.
The Western-type diet (T2) increases lipoxidative damage levels (malondialdehyde-lysine-(MDAL))
in pigs PFC compared with a conventional diet (T1). These changes can be reverted by supplementing
the T2 diet with vegetal protein and Bifidobacterium breve CECT8242 alone (T3) or in combination with
n3 fatty acids (T4). Gas chromatography–mass spectrometry was used to measure protein damage
markers of (A) direct oxidation: glutamic semialdehyde (GSA); (B) glycoxidation: carboxymethyl-
lysine (CML), carboxymethyl-cysteine (CMC), and carboxyethyl-lysine (CEL); and (C) lipoxidation:
malondialdehyde-lysine (MDAL). Global ANOVA p-values are highlighted in black boxes.

3.5. Dietary Supplementation with Vegetal Protein with Bifidobacterium Breve CECT8242 Alone
or in Combination with n3 Fatty Acids Can Partially Revert the Effects of a Western-Type Diet in
the Brain Cortex Protein Lipoxidative Damage

To evaluate dietary modifiers of high-fat consequences, we measured the above-
mentioned parameters in animals under a T2 diet containing vegetal protein supplemented
with Bifidobacterium breve CECT8242 alone (T3) or in combination with n3 PUFA (T4). The
biochemical and morphological traits demonstrated that the T4 diet reduces the levels of
HDL-cholesterol and triglycerides when compared with T3, suggesting that n3 supplemen-
tation is responsible for the effects observed in these parameters (Table 1).

Oxidative damage derived from the Western diet (T2) in the brain was reversed after
following a T4 diet. In fact, the results showed that n3 supplementation (T4) restored lipox-
idation levels to those of a conventional diet (MDAL, p = 0.0191) (Figure 1C). Additionally,
T3 reduced protein carbonylation (GSA, p = 0.014) (Figure 1A).

Furthermore, supporting the role of mitochondrial changes after MDAL accumulation,
the increased content of complex I subunits NDUFS3 and NDUFA9 after high fat intake
(T2) was reversed by the T3 and T4 diets (Figure 2A), an effect that seems to be caused
by the probiotic administration and potentiated by n3 supplementation. In addition, n3
dietary supplementation reduced NDUFS4 complex I subunits (Figure 2A).
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Finally, the effect of the T3 and T4 diets on the brain FA profile was determined
(Table 2). The results revealed that dietary n3 supplementation (T4) modifies FA lipid
composition. Specifically, T4 lowered C18:1n9, C22:5n6, and C22:5n3 levels and increased
C18:3n3, C20:3n6, C20:5n3, and C22:6n3 levels. Globally, all of these changes resulted in
increased PUFA levels in PFC after n3 supplementation (T4), as well as a higher double
bound, peroxidability, and anti-inflammatory indexes.

3.6. Lipoxidation-Derived Protein Damage in the Brain Cortex Correlates with Peripheral Lipids

Finally, we performed correlation analyses between protein oxidative modification
and peripheral traits of lipid metabolism. We found positive correlations between the blood
LDL levels and the weight of the animals with the brain lipoxidative damage biomarker
MDAL (Figure 3).
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4. Discussion

Our results demonstrate that a Western-type diet applied to female pigs increases
brain lipoxidative damage, an effect that can be reversed by applying a probiotic n3-
supplemented diet. Numerous studies have indicated a correlation between obesity and
the risk of developing AD [1,4,32,33]. This risk represents a modifiable factor in neurode-
generative processes [1,4], suggesting that dietary components could serve as preventive
measures. Several explanations for the link existing between obesity and AD have been
proposed [34,35]. One possibility is that obesity enhances inflammation in the brain, which
can damage neurons and promote the development of AD [36]. Another is that obesity is
linked to cerebrovascular demise and the accumulation of beta-amyloid, probably through
phenomena leading to the loss of grey matter [8].

Several types of oxidative modifications have been found in the brain proteins that diet
can influence, including carbonylation, [19] nitration [37], and other oxidative modifications
such as direct oxidation, glycoxidation, lipid peroxidation, and DNA damage [38]. Protein
carbonylation can lead to changes in protein structure and function and an increased
susceptibility to degradation. In line with this, it has been previously described that high-
fat diet-induced obesity is associated with increased brain protein carbonylation [39,40].
Protein nitration has been linked to several neurodegenerative diseases. Interestingly, a
previous study [41] found that high-fat diet feeding was associated with increased protein
nitration in the mouse hypothalamus, accompanied by a lower food intake and higher
body weight, suggesting a role in developing metabolic disorders. All of these oxidative
modifications can also be influenced by diet and may contribute to the development of
neurological and metabolic disorders.

Mitochondrial respiratory chain complexes, particularly complex I, are the primary
sources of free radicals [42,43]. Dysregulation of mitochondrial respiratory complexes can
lead to decreased ATP production and increased oxidative stress, which can contribute
to the development of metabolic and neurological disorders, paving the way for future
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dementia. In the present study, we demonstrated that a Western-type diet can increase PFC
mitochondrial respiratory complexes I (subunits NDUFS3 and NDUFA9) and II levels (FP)
in a porcine model of obesity. Interestingly, these effects are reversible by administering
a probiotic n3-supplemented diet. In line with this, a previous study investigating the
effects of a high-fat diet on mitochondrial respiratory complexes demonstrated that this
diet was associated with the altered protein expression of several mitochondrial respiratory
complexes in the hypothalamus, including complexes I, III, and V [44]. These results
suggest that obesity influences the content and activity of specific mitochondrial respiratory
complexes in the brain, which may contribute to the development of metabolic and neuro-
logical disorders. Despite the limitations of evaluating mitochondrial mass derived from a
single marker (porin), after its quantitation in mitochondrial extracts from PFC samples,
no significant differences appeared to be induced by dietary treatments. This would agree
with a lack of general effect on mitochondrial biogenesis or in the turnover generated by
dietary fat or probiotics. Of note, as VDAC1/porin levels are inversely proportional to
lifespan when comparing related species [29], its abundance might be expected to increase
under pro-aging conditions such as the high-fat diet to facilitate the transport of hydrogen
peroxide from the mitochondrial intermembrane space to the cytoplasm Thus, changes
present in specific respiratory complex peptides would suggest functional adaptations to,
e.g., supercomplex formation or efficiency [45]. Further research is needed to understand
the mechanisms underlying these effects and develop effective strategies for preventing or
treating mitochondrial dysfunction in the brain.

Lipid composition, especially peroxidizability, is a significant factor in explaining
increased lipoxidative modifications [46]. The results of the present work indicated that the
FA profile of the PFC was not affected by the Western-type diet (T2) (Table 1), suggesting
that the increased lipoxidative damage observed can be a consequence of structural changes
at the mitochondrial level (and, specifically, in the structure of the electron transport chain)
rather than the result of changes in membrane FA composition. Indeed, our results indicated
that the bioavailability of 22:6n3 in the brain tissue is higher than 18:4n3 because the latter
levels do not change with n3 supplementation. The increased levels of C22:6 seem to induce
an adaptive response in the n3 biosynthesis pathway, which implies a decreased activity
of the elongases Elovl2 and Elovl5 that led to an increase in the C20:5n3 and C18:3n3 PFC
levels. Specifically, the changes observed in the n9 and n6 biosynthesis pathways in the
present work could be attributed to compensatory mechanisms.

The results presented here also indicate that dietary regimens can alleviate oxidative
damage burdens in brain regions. MDAL formation depends on the degree of unsaturation
of biological membranes and the intracellular oxidative condition, and its concentration
is attenuated by anti-aging nutritional interventions [47]. The fact that the intake of neu-
roprotective, albeit easily peroxidizable, n3 PUFA (such as that present in the T4 group)
was able to prevent or diminish the buildup of MDAL accumulation agrees with a highly
dynamic system governing the levels of MDAL in proteins. Previously, n3 PUFA, particu-
larly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), had been shown to
benefit mitochondrial function and protein oxidative damage in the brain. Importantly,
it has previously been described that dietary PUFA is able to alter brain gene expression,
including important genes related to synaptic plasticity and learning in rats [48]. Fur-
thermore, a previous study [49] demonstrated that DHA supplementation was associated
with a preventive effect over inflammatory gene expression in the hippocampus in rats
without changes in weight gain. Regarding mitochondrial structure and function, DHA is
associated with enhanced complex II and complex III enzyme activities in astrocytes [50].
Additionally, n3 PUFA supplementation was associated with changes in mitochondria ADP
metabolism ex vivo in human tissues, without major changes in mitochondrial complexes
and pointing to relevant roles of membrane phospholipids [51]. In our study, the combi-
nation of probiotics with n3 PUFA was able to reverse the effect of a high-fat diet on PFC
respiratory complexes. Complementary studies are needed to better understand these diets’
role in the modulation of mitochondrial function.
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Emerging theories link mitochondrial dysfunction to neurological and neurodevel-
opmental disorders, suggesting a causative role beyond correlation [52]. The significance
of mitochondria in the gut–brain axis emerges as gut microbiota metabolites impact brain
mitochondrial function. The gut microbiome’s potential to impact mitochondrial function
through molecules like FA, bile acids, and neurotransmitters is evident. Commensal mi-
croorganism metabolites affect brain mitochondria via the blood–brain barrier or vagus
nerve, influencing quality, survival, or damage. In this sense, disrupted microbiota–gut–
brain communication could disrupt neuronal development. The gut microbiome, influ-
enced by probiotics, involves mitochondria [53–55]. Probiotics enhance mitochondrial
function dynamics, modulate the microbiota–gut–brain axis and counteract neurodegen-
eration [52]. In this sense, our results suggest that supplementing a Western diet with
probiotics and n3 PUFA may benefit mitochondrial function and protein oxidative damage
in the brain and other tissues in an animal model of obesity. Further research is needed to
understand the mechanisms underlying these effects and develop effective strategies for
preventing or treating mitochondrial dysfunction and oxidative damage in the brain.

Finally, the tendency to increase HDL concentrations, especially in the case of all
investigative diets, can be explained by changes in lipid metabolism, previously reported in
this model [25], and it could be of interest to interpret the role of lipoproteins as modulating
agents in neural homeostasis. In line with this, recent data show that small HDLs are
associated with cognitive function in humans, suggesting their protective role [56] and
reinforcing the relevant role of neural lipid metabolism in brain homeostasis, recently
exemplified by lipidomic studies [57].

The present study has some limitations: (i) the study only includes female pigs, so the
effect of these interventions on males has been ignored. This fact could limit the application
of these results to humans; (ii) the study is performed on young pigs. This implies, among
other things, that it cannot be considered a model of age-related neurodegeneration but
rather a model of obesity linked to brain lipoxidative damage. More studies, including
those using older pigs, should be performed to evaluate how these interventions modify
brain lipoxidative damage in adulthood; (iii) further studies analyzing the specific diet-
associated changes in the microbiome are needed to further elucidate the effect of probiotic
n3 supplementation on the gut–brain axis; (iv) we have not evaluated actual respiratory
complex activities, which would strengthen our conclusions on whether mitochondrial
dysfunction could potentially contribute to increased peroxidative damage. Future studies
evaluating the effects of a high-fat diet on mitochondrial function in the brain would benefit
from the measurement of respiratory complex activity assays; and (v) the lack of perfusion
might have some impact on measured markers. However, both the fatty acid composition
of blood, which is strikingly different from that of neural tissue, and the low amount
of mitochondrial complexes in whole blood in comparison to the tissue suggest that the
potential blood contamination would have a low impact.

5. Conclusions

Globally, the present study demonstrated that the effects of a Western-type diet on the
brain’s lipoxidative status could be partially reverted by a probiotic n3-supplemented diet.
These results open new possibilities to fight against the noxious effects of obesity.
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