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Abstract: (1) Background: Knowledge about the behavior of antibiotics in critically ill patients has
been increasing in recent years. Some studies have concluded that a high percentage may be outside
the therapeutic range. The most likely cause of this is the pharmacokinetic variability of critically ill
patients, but it is not clear which factors have the greatest impact. The aim of this systematic review
is to identify risk factors among critically ill patients that may exhibit significant pharmacokinetic
alterations, compromising treatment efficacy and safety. (2) Methods: The search included the
PubMed, Web of Science, and Embase databases. (3) Results: We identified 246 observational studies
and ten clinical trials. The most studied risk factors in the literature were renal function, weight, age,
sex, and renal replacement therapy. Risk factors with the greatest impact included renal function,
weight, renal replacement therapy, age, protein or albumin levels, and APACHE or SAPS scores.
(4) Conclusions: The review allows us to identify which critically ill patients are at a higher risk of
not reaching therapeutic targets and helps us to recognize the extensive number of risk factors that
have been studied, guiding their inclusion in future studies. It is essential to continue researching,
especially in real clinical practice and with clinical outcomes.

Keywords: pharmacokinetics; pharmacodynamics; critically ill patients; antibiotic; exposure; target
attainment; risk factors

1. Introduction

Sepsis is a life-threatening organ dysfunction, impacting millions of people around the
world each year and killing one in three to one in six of those it affects. Early administration
of appropriate antimicrobial treatment is one of the most effective interventions to reduce
mortality in patients with sepsis. Therefore, it is essential to carry out effective and safe
anti-infective treatment [1].

Knowing the optimal dosage of these drugs is very complex because, unlike other
treatments, the pharmacological effect cannot be evaluated immediately. It is known that
the behavior of drugs depends on the relationship between their pharmacokinetics and
pharmacodynamics (PK/PD). In the case of antimicrobial agents, pharmacodynamics
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refers to the minimum inhibitory concentration (MIC) of the microorganism to be treated.
This relationship has been extensively studied in recent years, especially in critically ill
patients [2–7]. This knowledge, along with the increase in resistance, has led to the discovery
that the initially assumed PK/PD targets are not sufficient to resolve the infection. Studies
conducted on the PK/PD of antibiotics in critically ill patients have made it possible to
define specific therapeutic targets for these patients [8–14].

The pharmacokinetics of the anti-infective agents are crucial for attaining their optimal
effect, and we know that they are highly variable in critically ill patients [15–21]. When
a patient is admitted to the intensive care unit (ICU), significant physiological changes
occur that are generally not considered in the design of dosing regimens. The factors
influencing changes in pharmacokinetics vary across different sources, and there is a lack
of consistent data on the true impact and magnitude of each factor. Some of these factors
include renal replacement therapy (RRT), extracorporeal membrane oxygenation (ECMO),
obesity, aging, or comorbidities, which are also increasing in these units [22–32]. In fact,
several studies have concluded that high percentages of critically ill patients on antibiotic
treatment have plasma concentrations outside the therapeutic range, including several
groups of antibiotics [33–38].

Despite this information, standard doses are still frequently used for these patients,
with little consensus on the appropriate dosing [39,40]. The only way to ensure that
patients achieve adequate antibiotic exposure and thus avoid therapeutic failures and side
effects is through the determination of plasma concentration. However, this practice is
not available for all patients in most centers due to costs and lack of evidence on clinical
outcomes [10,41–53]. Most of these studies exhibit considerable variability in terms of the
drugs studied, infections, causative microorganisms, and patient characteristics. In ICUs,
we find very heterogeneous patients, and it is likely that pharmacokinetic variability will
not be the same in all of them, nor will the impact on dosing, antibiotic exposure, and
clinical outcomes.

The aim of this systematic review is to identify risk factors in critically ill patients who
may present relevant pharmacokinetic alterations that compromise the efficacy and safety
of the treatment.

2. Results

A total of 4895 articles were identified through computer searches in the selected
databases, with 1141 duplicates removed through electronic or manual methods. A total
of 3754 studies were screened by title and abstract and 489 were assessed for eligibility
by full-text assessment. A total of 256 studies were finally included in the systematic
review (Figure 1). Detailed reporting quality and risk-of-bias assessments are presented in
Figures S1 and S2 (Supplementary Materials; File S3).

Most of the studies found were prospective, observational, and single-center studies.
Different types of studies could be distinguished based on whether the outcome was to
evaluate pharmacokinetic variability (evaluate alterations in the clearance and/or volume
of distribution), develop a population pharmacokinetic model (PKPOP) (develop phar-
macokinetic models tailored to critically ill patients using specialized software such as
Nonmem®), or assess antibiotic exposure variability (evaluate variations in antimicrobial
concentrations without assessing pharmacokinetic parameters). Only nine studies (3.50%)
also evaluated clinical outcomes. The average number of patients per study was 85.3,
ranging from three to 7220 patients. These studies were conducted practically worldwide,
although the numbers varied widely by region. They included studies on many different an-
tibiotics, with studies on beta-lactams being prominent (n = 136), followed by vancomycin
(n = 42). The remaining characteristics of the analyzed studies are presented in Table 1.

The most studied risk factors in the publications were renal function, weight, age,
sex, and renal replacement. The risk factors that were found to have the most impact
were renal function, weight, renal replacement, age, and protein or albumin levels, in that
order. Looking at the risk factors by the percentage of studies that concluded differences
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versus the studies analyzed, the risk factors with the most impact were renal function,
burns, acid–base parameters, trauma, and renal replacement. The risk factors studied in
each study, the number of articles that analyzed them, and the number of articles that
established them as determinants, classified by antibiotic group and for each outcome
type (pharmacokinetic parameters or population model and exposure), are included in
Table 2. The percentage of risk factors that had the greatest influence, represented by drug
group, and the effect of each risk factor by drug group can be observed in Figure 2. Some
studies do not conclude statistically significant differences but do determine that there is
considerable variability.
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Some of the risk factors include different characteristics. Sepsis or septic shock was
assessed based on the presence of these conditions, the use of vasopressors, or mean
arterial pressure, while acute phase reactants were evaluated using C-reactive protein,
fever, procalcitonin, or leukocyte count. Leukocyte count was the only factor among them
that was not found to be relevant in any study. From studies concluding that blood protein
levels were relevant, 86.67% included only albumin. Diabetes mellitus, congestive heart
failure, cancer, chronic obstructive pulmonary disease (COPD), and neutropenia were the
relevant associated comorbidities, all for beta-lactams except COPD, which was associated
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with vancomycin. The only two diagnoses associated with different outcomes were acute
respiratory distress syndrome in one study and neurocritical in another. Midazolam was
the determining comedication for daptomycin, and drug interactions with quinolones
were significant. Types of infections showing differences were abdominal focus sepsis
for aminoglycosides and beta-lactams, the Pitt bacteremia score for beta-lactams, and
respiratory infections for linezolid and beta-lactams (one study for each). The details of the
relevant risk factors that include more different variables can be seen in Figures 2 and 3.

Other risk factors associated with inadequate exposure (evaluated in only one study)
were lower protein binding beta-lactams, CYP1A2 polymorphism for ciprofloxacin, heart
failure, McCabe score, infusion duration, and high drainage fluid production for beta-
lactams. There were also other risk factors related to relevant pharmacokinetic changes:
serum sodium, brain glucose concentration, uric acid, cardiac index, and ICU-onset in-
fection. The review identified several other variables that, despite being analyzed, did
not significantly impact achieving adequate antimicrobial concentrations or the pharma-
cokinetic models developed. A comprehensive list of these variables is available in the
Supplementary Materials (File S4).

Table 1. Characteristics of the studies.

Number of Studies Number of Patients
Number of Centers Unicentric 222 11,342

Multicentric 34 10,157
Study Design Prospective observational 246 21,089

RCT 10 411
Outcome type Exposure 113 15,702

PKPOP 101 4628
PK 42 1170

Type of analysis Subgroup 102 4827
Subgroup and PKPOP 62 2093
Risk factor, no PKPOP 53 12,045
Risk factor and PKPOP 39 2535

Distribution of studies by area Europe 125 7036
North America 39 9303
East Asia 39 2707
Oceania 21 700
South Asia 9 335
South America 8 689
Africa 5 187
More than one area 5 493
Middle East 1 43

Publication year 1988–1996 (9 years) 5 117
1997–2005 (9 years) 16 445
2006–2014 (9 years) 43 1997
2015–2024 (9.2 years) 192 18,941

Antibiotic group evaluated More than two antibiotic groups 6 256
Aminoglycosides 20 1767
Antituberculous 1 10
Beta lactams 137 7395
Daptomycin 4 101
Linezolid 23 643
Polimyxins 7 207
Quinolones 11 258
Teicoplanin 7 416
Tigecycline 4 89
Vancomycin 42 10,602

PK: Refers to studies that have investigated how risk factors affect pharmacokinetic variables; PKPOP: Refers to
studies that have investigated the impact of risk factors as covariates in a population model.
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Table 2. Number and Percentage of Studies that Concluded a Risk Factor as a Determinant, and the number and percentage that Analyzed Each Risk factor,
Classified by Antibiotic Group and Outcome.

Antibiotic Group Total
Risk Factor/
Primary
Outcome

Amino-
Glycosides

B-
Lactams 2

B-Lactams
Vancomycin Daptomycin Linezolid 2 Polymyxins Quinolone Teicoplanin Tigecycline Vancomycin Other 1 Number

of Studies

Age 1/10 (10.0) 9/80 (11.3) 0/1 (0) 0/2 (0) 0/11 (0) 1/4 (25.0) 2/9 (22.2) 1/4 (25.0) 0/3(0) 3/16 (18.8) 0 17/139
(12.2)

Exposure 1/5 (20.0) 3/20 (15.0) 0/1 (0) 0/1 (0) 0/1 (0) 1/3 (33.3) 1/2 (50.0) 1/2(50.0) 0 1/6 (16.7) 0 8/41 (19.5)
PK/PKPOP 0/5 (0) 6/60 (10.0) 0 0/1 (0) 0/10 (0) 0/1 (0) 1/7 (14.3) 0/2 (0) 0/3(0) 2/10 (20.0) 0 9/98 (9.2)
Sex 0/8 (0) 4/68 (5.9) 0 0/2 (0) 0/8 (0) 0/3 (0) 2/6 (33.3) 0/3 (0) 0/3 (0) 0/15 (0) 0 6/115 (5.2)
Exposure 0/4 (0) 1/15 (6.7) 0 0/1 (0) 0 0/2 (0) 2/2 (100) 0/1 (0) 0 0/6 (0) 0 3/31 (9.7)
PK/PKPOP 0/4 (0) 3/53 (5.7) 0 0/1 (0) 0/8 (0) 0/1 (0) 0/4 (0) 0/2 (0) 0/3 (0) 0/9 (0) 0 3/84 (3.6)

Weight 5/7 (71.4) 30/88 (34.1) 0/1 0/2 (0) 6/12 (50.0) 2/6 (33.3) 4/8 (50.0) 1/3 (33.3) 2/3 (66.7) 8/17 (47.1) 0 57/146
(39.0)

Exposure 1/2 (50.0) 6/22 (27.3) 0/1 0/1 (0) 1/2 (50.0) 2/4 (50.0) 1/2 (50.0) 0/1 (0) 0 3/5 (60.0) 0 14/40
(35.0)

PK/PKPOP 4/5 (80.0) 24/66 (36.4) 0 0/1 (0) 5/10 (50.0) 0/2 (0) 3/6 (50.0) 1/2 (50.0) 2/3 (66.7) 5/12 (41.7) 0 43/106
(40.6)

Renal
function 8/11 (72.7) 74/98 (75.5) 2/2 (100) 1/2 (50.0) 8/13 (61.5) 3/5 (60.0) 6/8 (75.0) 3/4 (75.0) 0/2 (0) 18/24 (75.0) 2/2 (100) 125/170

(73.5)

Exposure 4/5 (80.0) 24/30 (80.0) 2/2 (100) 0/1 (0) 1/2 (50.0) 2/3 (66.7) 2/3 (66.7) 1/1 (100) 0 10/12 (83.3) 2/2 (100) 48/61
(78.7)

PK/PKPOP 4/6 (66.7) 50/68 (73.5) 0 1/1 (100) 7/11 (63.6) 1/2 (50.0) 4/5 (80.0) 2/3 (66.7) 0/2 (0) 8/12 (66.7) 0 77/109
(70.6)

Renal
replacement 3/7 (42.9) 22/50 (44.0) 2/3 (66.7) 3/3 (100) 5/14 (35.7) 2/2 (100) 0/5 (0) 3/5 (60.0) 1/3 (33.3) 13/17 (76.5) 3/3 (100) 57/110

(51.8)

Exposure 1/4 (25.0) 9/21 (42.9) 1/2 (50.0) 1/1 (100) 2/4 (50.0) 1/1 (100) 0 2/2 (100) 1/1 (100) 7/9 (77.8) 1/1 (100) 26/45
(57.8)

PK/PKPOP 2/3 (66.7) 13/29 (44.8) 1/1 (100) 2/2 (100) 3/10 (30.0) 1/1 (100) 0/5 (0) 1/3 (33.3) 0/2 (0) 6/8 (75.0) 2/2 (100) 31/65
(47.7)

Protein or
albumin 1/4 (25.0) 10/49 (20.4) 0/1 (0) 0/1 (0) 0/2 (0) 1/4 (25.0) 0/1 (0) 1/2 (50.0) 0/2 (0) 2/4 (50.0) 0 15/70 (21.4)

Exposure 0/2 (0) 1/10 (10.0) 0/1 (0) 0 0 1/2 (50.0) 0 1/1 (100) 0 1/1 (100) 0 4/17 (23.5)

PK/PKPOP 1/2 (50.0) 9/39 (23.1) 0 0/1 (0) 0/2 (0) 0/2 (0) 0/1 (0) 0/1 (0) 0/2 (0) 1/3 (33.3) 0 11/53
(20.8)



Antibiotics 2024, 13, 801 6 of 27

Table 2. Cont.

Antibiotic Group Total
Risk Factor/
Primary
Outcome

Amino-
Glycosides

B-
Lactams 2

B-Lactams
Vancomycin Daptomycin Linezolid 2 Polymyxins Quinolone Teicoplanin Tigecycline Vancomycin Other 1 Number

of Studies

APACHE or
SAPS 2/6 (33.3) 5/46 (10.9) 0/1 (0) 0/1 (0) 0/6 (0) 0/2 (0) 1/3 (33.3) 1/2 (50.0) 0/1 (0) 1/11 (9.1) 1/2 (50.0) 11/81 (13.6)

Exposure 2/4 (50.0) 3/14 (21.4) 0/1 (0) 0 0/1 (0) 0/1 (0) 0 1/1 (100) 0 1/6 (16.7) 1/2 (50.0) 8/30 (26.7)
PK/PKPOP 0/2 (0) 2/32 (6.3) 0 0/1 (0) 0/5 (0) 0/1 (0) 1/3 (33.3) 0/1 (0) 0/1 (0) 0/5 (0) 0 3/51 (5.9)
SOFA score 2/5 (40.0) 5/46 (10.9) 1/1 (100) 0 1/5 (20.0) 0/2 (0) 1/3 (33.3) 0 0/1 (0) 1/10 (10.0) 0/1 (0) 11/74 (14.9)
Exposure 2/3 (66.7) 4/13 (30.8) 1/1 (100) 0 0 0/2 (0) 1/1 (100) 0 0 0/4 (0) 0/1 (0) 8/25 (32.0)
PK/PKPOP 0/2 (0) 1/33 (3.0) 0 0 1/5 (20.0) 0 0/2 (0) 0 0/1 (0) 1/6 (16.7) 0 3/49 (6.1)
Hepatic
function 1/3 (33.3) 1/23 (4.3) 0 0/1 (0) 5/8 (62.5) 0/3 (0) 2/6 (33.3) 0 1/1 (100) 0/3 (0) 1/1 (100) 11/49 (22.4)

Exposure 1/2 (50.0) 1/3 (33.3) 0 0 0 0/2 (0) 0/2 (0) 0 0 0/1 (0) 1/1 (100) 3/11 (27.3)
PK/PKPOP 0/1 (0) 0/20 (0) 0 0/1 (0) 5/8 (62.5) 0/1 (0) 2/4 (50.0) 0 1/1 (100) 0/2 (0) 0 8/38 (21.1)
Sepsis/shock 1/6 (16.7) 7/39 (17.9) 0 0 1/2 (50.0) 0 0/3 (0) 0 0 2/11 (18.2) 1/2 (50.0) 12/63 (19.0)
Exposure 0/3 (0) 3/13 (23.1) 0 0 1/1 (100) 0 0/1 (0) 0 0 2/7 (28.6) 1/2 (50.0) 7/27 (25.9)
PK/PKPOP 1/3 (33.3) 4/26 (15.4) 0 0 0/1 (0) 0 0/2 (0) 0 0 0/4 (0) 0 5/36 (13.9)
Admission
Diagnosis 0/1 (0) 1/17 (5.9) 0/1 (0) 0/1 (0) 1/2 (50.0) 0 0 0/1 (0) 0 0/7 (0) 0 2/30 (6.7)

Exposure 0/1 (0) 1/6 (16.7) 0/1 (0) 0/1 (0) 0/1 (0) 0 0 0/1 (0) 0 0/4 (0) 0 1/15 (6.7)
PK/PKPOP 0 0/11 (0) 0 0 1/1 (100) 0 0 0 0 0/3 (0) 0 1/15 (6.7)
Trauma 1/1 (100) 3/5 (60.0) 0 0 0 0 0 0 0 1/3 (33.3) 0 5/9 (55.6)
Exposure 1/1 (100) 0/2 (0) 0 0 0 0 0 0 0 1/3 (33.3) 0 2/6 (33.3)
PK/PKPOP 0 3/3 (100) 0 0 0 0 0 0 0 0 0 3/3 (100)
Burn 2/2 (100) 6/9 (66.7) 0 0 0/1 (0) 0 0 0 0 0/1 (0) 0 8/13 (61.5)
Exposure 1/1 (100) 5/6 (83.3) 0 0 0/1 (0) 0 0 0 0 0 0 6/8 (75.0)
PK/PKPOP 1/1 (100) 1/3 (33.3) 0 0 0 0 0 0 0 0/1 (0) 0 2/5 (40.0)
ECMO 1/2 (50.0) 6/14 (42.9) 0 0/1 (0) 2/2 (100) 0 0/2 (0) 0 0/1 (0) 1/2 (50.0) 2/2 (100) 11/25 (44.0)
Exposure 0/1 (0) 1/5 (20.0) 0 0/1 (0) 2/2 (100) 0 0 0 0 1/1 (100) 2/2 (100) 5/11 (45.5)
PK/PKPOP 1/1 (100) 5/9 (55.6) 0 0 0 0 0/2 (0) 0 0/1 (0) 0/1 (0) 0 6/14 (42.9)
Mechanical
ventilation 0/4 (0) 1/14 (7.1) 0 0 0 0 1/1 (100) 0 0 1/5 (20.0) 0 3/24 (12.5)

Exposure 0/3 (0) 0/4 (0) 0 0 0 0 0 0 0 1/4 (25.0) 0 1/11 (9.1)
PK/PKPOP 0/1 (0) 1/10 (10.0) 0 0 0 0 1/1 (100) 0 0 0/1 (0) 0 2/13 (15.4)



Antibiotics 2024, 13, 801 7 of 27

Table 2. Cont.

Antibiotic Group Total
Risk Factor/
Primary
Outcome

Amino-
Glycosides

B-
Lactams 2

B-Lactams
Vancomycin Daptomycin Linezolid 2 Polymyxins Quinolone Teicoplanin Tigecycline Vancomycin Other 1 Number

of Studies

pH
parameters 0 1/3 (33.3) 0 0 1/1 (100) 0 1/1 (100) 0/1 (0) 0 0 1/1 (100) 4/7 (57.1)

Exposure 0 0 0 0 0 0 0 0/1 (0) 0 0 1/1 (100) 1/2 (50.0)
PK/PKPOP 0 1/3 (33.3) 0 0 1/1 (100) 0 1/1 (100) 0 0 0 0 3/5 (60.0)
Acute
reactants 1/3 (33.3) 3/19 (15.8) 0 0/1 (0) 0/1 (0) 0 0 0/1 (0) 0/1 (0) 0/2 (0) 0 4/28 (14.3)

Exposure 1/2 (50.0) 1/4 (25.0) 0 0 0 0 0 0/1 (0) 0 0/1 (0) 0 2/8 (25.0)
PK/PKPOP 0/1 (0) 2/15 (13.3) 0 0/1 (0) 0/1 (0) 0 0 0 0/1 (0) 0/1 (0) 0 2/20 (10.0)
Hemoglobin/hematocrit0/2 (0) 1/7 (14.3) 0 0/2 (0) 0/1 (0) 1/1 (100) 0 0 0 0/1 (0) 0 2/14 (14.3)
Exposure 0/1 (0) 0/1 (0) 0 0/1 (0) 0 0 0 0 0 0 0 0/3 (0)
PK/PKPOP 0/1 (0) 1/6 (16.7) 0 0/1 (0) 0/1 (0) 1/1 (100) 0 0 0 0/1 (0) 0 2/11 (18.2)
Fluid balance 1/4 (25.0) 2/15 (13.3) 0/1 (0) 0 0 0 0/2 (0) 0 0/2 (0) 0/2 (0) 0 3/26 (11.5)
Exposure 0/3 (0) 1/3 (33.3) 0/1 (0) 0 0 0 0/1 (0) 0 0 0/1 (0) 0 1/9 (11.1)
PK/PKPOP 1/1 (100) 1/12 (8.3) 0 0 0 0 0/1 (0) 0 0/2 (0) 0/1 (0) 0 2/17 (11.8)
Comorbidities 0/4 (0) 3/14 (21.4) 0 0/1 (0) 0/1 (0) 0/1 (0) 0/2 (0) 0 0 1/6 (16.7) 0/1 (0) 4/29 (13.8)
Exposure 0/4 (0) 1/6 (16.7) 0 0/1 (0) 0 0/1 (0) 0 0 0 1/2 (50.0) 0/1 (0) 2/15 (13.3)
PK/PKPOP 0 2/8 (25.0) 0 0 0/1 (0) 0 0/2 (0) 0 0 0/4 (0) 0 2/14 (14.3)
Comedication 0/1 (0) 0/10 (0) 0 1/1 (100) 0 0/2 (0) 1/2 (50.0) 0 0 0/3 (0) 0/1 (0) 2/20 (10.0)
Exposure 0/1 (0) 0/7 (0) 0 1/1 (100) 0 0/1 (0) 0 0 0 0/1 (0) 0/1 (0) 1/12 (8.3)
PK/PKPOP 0 0/3 (0) 0 0 0 0/1 (0) 1/2 (50.0) 0 0 0/2 (0) 0 1/8 (12.5)
Site of
infection 1/3 (33.3) 3/21 (14.3) 0 0/1 (0) 1/4 (25.0) 0/2 (0) 0/2 (0) 0/1 (0) 0 0/3 (0) 0 5/37 (13.5)

Exposure 0/1 (0) 3/9 (33.3) 0 0/1 (0) 1/2 (50.0) 0/1 (0) 0/1 (0) 0/1 (0) 0 0/1 (0) 0 4/17 (23.5)
PK/PKPOP 1/2 (50.0) 0/12 (0) 0 0 0/2 (0) 0/1 (0) 0/1 (0) 0 0 0/2 (0) 0 1/20 (5.0)

ECMO: Extracorporeal membrane oxygenation. PK: Studies that have investigated how risk factors affect pharmacokinetic variables; PKPOP: Studies that have investigated the impact
of risk factors as covariates in a population model. 1 Other includes studies with more than two groups of antibiotics and one study on antitubercular agents. 2 A study that evaluated
linezolid and beta-lactams together, this has been counted as two studies.
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Some risk factors have been studied much more extensively than others. The relation-
ship between the number of publications that analyzed a risk factor (and the number of
patients) versus the number of publications that concluded that risk factors were determi-
nants can be observed in Figure 4.



Antibiotics 2024, 13, 801 9 of 27

Antibiotics 2024, 13, x FOR PEER REVIEW 10 of 30 
 

Some of the risk factors include different characteristics. Sepsis or septic shock was 
assessed based on the presence of these conditions, the use of vasopressors, or mean arte-
rial pressure, while acute phase reactants were evaluated using C-reactive protein, fever, 
procalcitonin, or leukocyte count. Leukocyte count was the only factor among them that 
was not found to be relevant in any study. From studies concluding that blood protein 
levels were relevant, 86.67% included only albumin. Diabetes mellitus, congestive heart 
failure, cancer, chronic obstructive pulmonary disease (COPD), and neutropenia were the 
relevant associated comorbidities, all for beta-lactams except COPD, which was associated 
with vancomycin. The only two diagnoses associated with different outcomes were acute 
respiratory distress syndrome in one study and neurocritical in another. Midazolam was 
the determining comedication for daptomycin, and drug interactions with quinolones 
were significant. Types of infections showing differences were abdominal focus sepsis for 
aminoglycosides and beta-lactams, the Pitt bacteremia score for beta-lactams, and respir-
atory infections for linezolid and beta-lactams (one study for each). The details of the rel-
evant risk factors that include more different variables can be seen in Figures 2 and 3. 

 
Figure 3. Details of variables included renal function, hepatic function, weight, and renal replace-
ment therapy as risk factors. AKI: Acute kidney injury, ARC: Augmented renal clearance, BMI: body 
mass index, BSA: body surface area, CRRT: continuous renal replacement therapy, SLED: sustained 
low-efficiency dialysis. 

Other risk factors associated with inadequate exposure (evaluated in only one study) 
were lower protein binding beta-lactams, CYP1A2 polymorphism for ciprofloxacin, heart 
failure, McCabe score, infusion duration, and high drainage fluid production for beta-
lactams. There were also other risk factors related to relevant pharmacokinetic changes: 
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Figure 3. Details of variables included renal function, hepatic function, weight, and renal replacement
therapy as risk factors. AKI: Acute kidney injury, ARC: Augmented renal clearance, BMI: body
mass index, BSA: body surface area, CRRT: continuous renal replacement therapy, SLED: sustained
low-efficiency dialysis.
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3. Discussion

To the best of our knowledge, this is the first systematic review to identify risk factors
in critically ill patients that may compromise the efficacy and safety of antibiotic treatments
which included more than just population kinetics. Recently, a very comprehensive system-
atic review was published, but it included only studies developing population kinetics and
focused solely on beta-lactams [54]. Population kinetics can be very helpful in determining
the variability of exposure to a treatment, but what we are really interested in is whether
these changes will have a clinical impact. Unfortunately, we found very few studies that
directly link risk factors to antimicrobial underexposure and clinical outcomes. However,
considering the strong correlation between appropriate antibiotic exposure and clinical
outcomes [55], analyzing clinical and demographic variables that might influence antibiotic
exposure is highly relevant. Various scientific societies and international consensus groups
have emphasized the importance of PK/PD objectives in improving clinical outcomes for
critically ill patients [10]. Currently, we have information about the desired therapeutic
targets, and these have indeed been directly related to significant clinical variables [8–14].
Including other antibiotics has also helped identify risk factors that may be relevant to
therapeutic groups other than beta-lactams, such as liver function in the case of linezolid.

Numerous narrative reviews have explored optimizing antimicrobial dosing in criti-
cally ill patients, emphasizing strategies such as extended infusions and higher dosages
based on variations in drug clearance and volume of distribution [2,5]. Our review seeks
to advance this discussion by identifying less commonly considered parameters that may
also influence antimicrobial concentrations in this patient group. We analyzed all the risk
factors examined in the studies and highlighted the most significant ones. Our approach
not only considers the number of studies that reviewed each factor but also the percentage
of studies that found each factor relevant. This method helps us discern which factors have
been extensively studied and which have not, particularly when statistical significance is
challenging to achieve due to the limited number of studies or small patient populations.

While previous reviews on pharmacokinetics in critically ill patients have predom-
inantly addressed differences from a theoretical perspective—focusing on variations in
the volume of distribution, renal function, antimicrobial penetration challenges, and the
lipophilicity of these drugs [56], our review takes a more practical approach. We evaluate
multiple pharmacokinetic models specifically developed for critically ill patients, allowing
us to group and quantify the significance of several less commonly discussed variables in
antimicrobial pharmacokinetics.

We concur with the recently published population pharmacokinetics review of beta-
lactams [54] that renal function, weight, and renal replacement have the greatest impact on
antibiotic exposure, in that order. While it seems clear that these three risk factors affect
antibiotic exposure in critically ill patients, dosing regimens used in these settings for most
antibiotics are not weight-adjusted. With the increasing prevalence of obesity in both the
general population and among patients in critical care units, weight and body surface
area have become increasingly important factors in justifying antimicrobial monitoring in
critically ill patients. Critically ill obese patients may require higher-than-standard doses of
β-lactams, linezolid, and quinolones [57]. Conversely, dosing should be based on total body
weight for certain antibiotics such as amikacin, vancomycin, or daptomycin, while adjusted
body weight should be used for others. Given the limited availability of pharmacokinetic
studies in this patient population and the significant variability in pharmacokinetics among
critically ill patients, therapeutic drug monitoring of all administered antibiotics, when
possible, is highly recommended.

Regarding beta-lactam drugs, the therapeutic group most commonly used in critically
ill patients, our review identified multiple variables associated with variations in plasma
concentrations, with weight, renal function, renal replacement therapy (RRT), and age
being the most significant. The DALI study [38] revealed that with the doses typically used,
about 26% of patients did not reach the minimum target concentration of fT > 50%, and
nearly 40% of patients did not achieve fT > 100%. This study also correlated these variables
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with the clinical outcomes of the patients, highlighting the importance of considering dif-
ferent patient covariates to achieve adequate plasma concentrations. In a narrative review,
Stašek J et al. [12] explained the main factors associated with variations in beta-lactam
antibiotics in critically ill patients, focusing on renal function, inflammation, hypoalbumine-
mia, and renal replacement therapy. Our study complements the information provided by
other authors, adding data to the number of patients and published articles that consider
each variable and introducing new variables such as sex, acid–base disorders, diagnosis at
admission, and the site of infections.

The information obtained on vancomycin was the second most abundant in terms of
the number of studies, following beta-lactams. Compared to previous reviews [58], which
primarily focused on age, weight, and renal function, our study has identified additional
variables, such as severity scales, trauma diagnosis on admission, and hypoalbuminemia,
as potential factors to consider for optimizing the dose of this drug.

Although there are recommendations for different renal functions and RRT for most
antibiotics, the literature often lacks consensus on the most appropriate doses. Additionally,
crucial characteristics such as the type and dosage of RRT, which have been shown to
be relevant in several studies, are often not considered. The other risk factors described
as most relevant in the beta-lactam review and in our work are also similar. Some of
these include age, serum albumin, and disease severity, and in no case is dose adjustment
considered for these patients.

Both this work and the analyzed studies have limitations. The recommended method-
ology has been used, and the articles and the document with all the data have been reviewed
by several people, but even so, the entire process remains very manual. As a result, we
found significant heterogeneity in published population pharmacokinetic studies, which
limited the feasibility of meaningfully pooling quantitative parameters. Critically ill pa-
tients is a term that includes a clinical heterogeneity of situations across eligible studies
that enrolled different populations. We included studies that involved critically ill patients
who underwent antimicrobial drug monitoring. However, it is unclear whether all patients
had confirmed infections or were necessarily septic. The inclusion of patients who were not
septic would increase the likelihood of finding no variables associated with subtherapeutic
antibiotic concentrations. Additionally, although we have analyzed studies of all antibiotics
without exclusion, a large number of studies are on beta-lactams. Moreover, beta-lactams
are a very heterogeneous group of antibiotics, and it would be more appropriate to assess
the risk factors affecting each of them separately. The studies that examine exposure do
so at the described doses, which may differ from those used in each center. To be able to
extrapolate the results from such a large number of articles, we had to combine studies that
examine specific subgroups with studies that analyzed risk factors individually, which were
not usually the main objective. Studies that reviewed risk factors as a secondary objective
did not take this objective into account when calculating the sample size to determine
statistical significance. We found that some risk factors are very under-studied, and some
are studied in very few patients. There is a lack of studies in routine clinical practice
that consider all associated factors and have a sufficient sample size to reach valuable
conclusions. Based on the authors’ linguistic expertise, only studies published in English
and Spanish were included, which may have led to the exclusion of some studies that could
have identified additional variables influencing the pharmacokinetics of antimicrobials in
critically ill patients. However, the large number of studies incorporated ensures that the
primary variables have been thoroughly considered.

Therefore, we align with the conclusions of many of the analyzed studies: variability in
critically ill patients is very high, and the best way to ensure therapeutic target attainment
in these patients is to perform Therapeutic Drug Monitoring (TDM). ICU patients are also
highly variable among themselves, due to patient characteristics, the reason for admission,
the need for vasoactive drugs or fluid replacement, comorbidities, concomitant treatments,
lab abnormalities, or the need for extracorporeal supports, among other factors. The
effect of the analyzed risk factors can be crucial in determining which patients, among the



Antibiotics 2024, 13, 801 12 of 27

critically ill, may be at even greater risk of incorrect dosing, and this can be a criterion for
prioritizing TDM if it cannot be performed in all patients.

4. Materials and Methods

This systematic review was prospectively registered in the International Prospective
Register of Systematic Reviews (PROSPERO), identification code CRD42024570977. The
protocol adhered to the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines [59].

In order to achieve the objective of this systematic review and identify risk factors
among critically ill patients, we conducted a search aimed at finding studies evaluating the
effect of risk factors that could significantly influence antibiotic treatments in the ICU.

We searched for all published studies involving adult patients admitted to the ICU and
receiving antibiotic treatment, investigating potential risk factors that could affect antibiotic
exposure in these patients. Any variable examined in the included studies for its effect on
plasma concentrations of antimicrobials was considered as a risk factor. The details of the
search strategy can be found in the Supplementary Materials.

All studies meeting these criteria were included, regardless of whether they focused
on these factors as primary objectives or not, analyzed risk factors or directly assessed a
population subgroup (e.g., obese patients, those undergoing continuous RRT, ECMO, etc.),
studied antibiotic exposure (typically through plasma concentrations), or examined the
impact on pharmacokinetic parameters. We categorized covariates using a preplanned,
custom classification based on patterns commonly identified in a preliminary literature
review conducted by the authors. Given the nature of this review, no formal sensitivity
or subgroup analyses were prespecified to assess heterogenicity. Studies not in English
or Spanish, retrospective studies, reviews, and abstracts were excluded. Other exclusion
criteria were studies that did not assess pharmacokinetic variability or exposure, those that
exclusively focused on non-antibiotic agents such as antivirals or antifungals, and those for
which full-text access was unavailable.

The search was conducted on 21 March 2024 on the following bibliographic databases:
PubMed, Web of Science, and Embase, according to the eligibility criteria and with no
time restrictions. The data from searches in each database were exported to an Excel
document, and an initial phase for the detection of duplicates was performed. A subsequent
duplication detection phase was conducted in the resulting database using a DOI identifier
and manual assessment. The results of the refined database were screened (title/abstract)
by two independent investigators, with disagreements resolved by a third researcher. This
method was replicated for the following full-text assessment and final inclusion of articles.
Once selected, data were collected and validated by two independent investigators for
each report. Finally, all data were processed in the Excel document, including the most
important characteristics of each study.

We assessed the risk of bias in all included randomized clinical trials using Risk of
Bias 2 (RoB2). Each study report was assessed by two authors independently, with any
disagreements resolved by a third author. For clinical pharmacokinetics studies, the 24-item
ClinPK checklist from the Reporting Guidelines for Clinical Pharmacokinetic Studies [60]
was used to evaluate the quality of the manuscripts.

5. Conclusions

This review allows us to identify which critically ill patients are at a higher risk of not
reaching therapeutic targets. This review also helps us recognize the extensive number of
variables that have been studied, guiding their inclusion in future studies. It is essential to
continue researching, especially in real clinical practice and with clinical outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antibiotics13090801/s1, File S1: Search strategy; File S2: Excluded and
Included studies; File S3: Risk of bias analysis; File S4: Risk factors that were studied without finding
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any impact; File S5: Main characteristics of studies. References [28,32–34,36,49,61–309] are the studies
included in the review, that are cited in the Supplementary Materials.
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