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The backreaction of quantum degrees of freedom on classical backgrounds is a poorly understood topic
in theoretical physics. Most often it is treated within the semiclassical approximation with the help of
various ad hoc prescriptions accounting for the effect of quantum excitations on the dynamics of the
background. We focus on two popular ones: (i) the mean-field approximation whereby quantum degrees of
freedom couple to the classical background via their quantum expectation values; (ii) the (stochastic)
truncated Wigner method whereby the fully coupled system is evolved using classical equations of motion
for various randomly sampled initial conditions of the quantum degree of freedom, and a statistical average
is performed a posteriori. We evaluate the performance of each method in a simple toy model against a
fully quantum mechanical treatment, and identify its regime of validity. We interpret the results in terms of
quantum entanglement and loss of classicality of the background.
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I. INTRODUCTION

Since the dawn of quantum mechanics, understanding
the dynamics of quantum variables evolving in classical
background fields has played a central role in the develop-
ment of fundamental physics. In fact some of the founda-
tional experiments of quantum mechanics, such as the
Stern–Gerlach experiment [1] for instance, rely on the
existence of a classical external electromagnetic field which
interacts with the quantum system. This semiclassical point
of view, where part of the system is treated classically while
another part is treated quantum mechanically, is well suited
for situations where either (i) the external field is actively
maintained by an operator, or (ii) the field is so strong (in a
sense that can be made precise) that any fluctuations due to
its interactions with the quantum degrees of freedom are
negligible. In both of these cases, the dynamics of the
background is unaffected by the presence of the quantum
degrees of freedom, and the external field obeys classical
equations of motion.

This approach has been tremendously successful in
explaining the splitting of atomic energy levels in the
presence of external electromagnetic fields [2,3] (Zeeman
and Stark effects), and is routinely used in quantum optics
[4,5], where it allows for the accurate description of laser-
matter interaction, and of many features of the photoelectric
effect.1 Within the framework of quantum field theory, it
also predicts the creation of electron positron pairs in a
strong enough electric field, phenomenon known as
Schwinger pair production [6].
The exact same paradigm applies to situations where the

external field is no longer electromagnetic in nature. This
is for instance the case in condensed matter when studying
quantum fluctuations on top of Bose–Einstein condensates
[7], and more generally in field theory where the quantum
stability of long-lived nonperturbative classical solutions
such as solitons and topological defects [8], oscillons, and
q-balls [9] has been studied [10–14]. But the external field
can also be gravitational in nature. This is covered in detail
within the framework of quantum field theory in curved
spacetime [15] and leads to important phenomena such as
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1Historically, the photoelectric effect was understood as a
smoking gun for the quantization of the electromagnetic field and
the existence of the photon, however it turns out that its most
salient features can be understood as arising from the interaction
of quantum matter with a classical electromagnetic field (see,
e.g., Chapter 9 of Ref. [4] or Chapter 2 E of Ref. [5]).

PHYSICAL REVIEW D 111, 065008 (2025)

2470-0010=2025=111(6)=065008(20) 065008-1 Published by the American Physical Society

https://orcid.org/0000-0003-2347-8931
https://ror.org/01sdrjx85
https://orcid.org/0000-0003-3480-128X
https://ror.org/03bqmcz70
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.111.065008&domain=pdf&date_stamp=2025-03-04
https://doi.org/10.1103/PhysRevD.111.065008
https://doi.org/10.1103/PhysRevD.111.065008
https://doi.org/10.1103/PhysRevD.111.065008
https://doi.org/10.1103/PhysRevD.111.065008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


cosmological particle production [16,17] or Hawking
radiation [18,19].
The latter example is particularly important, since it

suggests that black holes radiate thermally and thus, by
energy conservation, lose mass and evaporate. Such a
situation lies precisely outside the regime of validity of
the semiclassical regime of quantum mechanics described
above since the classical background (the metric around a
Schwarzschild black hole for instance) must be sensitive to
the production of Hawking quanta. This backreaction of
quantum radiation on the classical background that has
generated it lacks a satisfying description since a full theory
of quantum gravity is unavailable for the time being. One
possible way of taking quantum backreaction into account
is to replace the energy-momentum tensor on the right-hand
side of the Einstein equations with its quantum expectation
value taken in a properly chosen quantum state. This of
course comes with its own difficulties because surely such a
mean-field approximation would only be valid as long as
the quantum state stays sufficiently regular and does not
develop a spatially multimodal character (the analog of a
double-humped spatial probability density in quantum
mechanics).2

While the mean-field approximation can be applied in
any context (and not just to semiclassical gravity) by
replacing any occurrences of the quantum degrees of
freedom in the classical equation of motion for the back-
ground with their quantum expectation values, it is just one
of the possibilities. Another is to treat the fully coupled
system classically but to sample the initial conditions for
the quantum degree of freedom from a properly chosen
probability distribution (usually specified by the relevant
quantum state). Of course the initial condition for the
background would be uniquely defined since it is supposed
to be classical. Each initial condition will yield a particular
realization of the dynamics and one could expect that
averaging over a large number of realizations would
produce the quantum backreacted dynamics of the classical
background. This stochastic method has been used in the
context of early universe cosmology and (p)reheating in
particular [20,21].
Of course there are various other ways of taking back-

reaction into account, with the help of Langevin or Fokker–
Planck equations [22–24], by integrating out quantum
fluctuations and using an effective action to determine
the background dynamics [25,26], or by using open
quantum field theory methods akin to the so-called in-in
or Schwinger–Kheldysh formalism [23,27,28]. However all
of these methods are quite unwieldy and often times lead to
computations that, although in principle are doable to
arbitrary precision (see for instance Ref. [29] where the

reflection coefficient on a so-called reflectionless kink is
computed in a fully quantum field theoretic manner and
backreaction is included), are difficult to perform in
practice. Moreover, to our knowledge none of the above
semiclassical backreaction methods has been checked
against a fully quantummechanical treatment of the coupled
system (either because of the intrinsic complexity of the task
or because such a treatment is unavailable as in the case of
gravity).
In this work we will be focusing on the above mean-field

and stochastic methods only. The goal is to gauge their
performance in a physically motivated toy model where a
fully quantum mechanical numerical treatment is within
reach. In Sec. II we will give some background and
motivate our approach in the context of previous work
on the so-called quantum break time of a system [30–35].
In Sec. III we will introduce the cosmologically inspired
toy model that we will be considering (two simple
harmonic oscillators coupled via a biquadratic interaction)
and set up the two semiclassical backreaction methods
whose performance will be assessed. In Sec. IV we will
showcase our results, outlining the regions of parameter
space where they should be trusted and for how long.
Finally, we will end in Sec. V with a broad discussion of the
role that classical instabilities of the background and
quantum entanglement play in the breakdown of the
semiclassical approximations used widely in the literature.

II. MOTIVATION

The standard way of performing computations in quan-
tum field theories is to look for an extremum of the classical
action, the classical background, and expand the path
integral around it, using perturbation theory in the coupling
parameter (or equivalently in ℏ). If the background is static,
this procedure is well defined to any order and is particu-
larly well suited for analyzing scattering problems.
However, if it has some nontrivial time dependence, there
is only an adiabatic notion of vacuum for the quantum
fluctuations living on top of it. This means that the time-
varying background will generically create particles “out of
nothing.” Since energy conservation holds, it is expected
that the creation of these particles will affect the classical
background, entangling it with the first-order perturbations
appearing in the saddle point approximation. There is at
this point no clear consensus in the literature on how to deal
with the question of backreaction in such situations and the
present work aims to shed some light on the issue.
To highlight some of the important ideas we will take the

following Lagrangian describing the dynamics of two real
scalar fields, ϕ and χ, in flat 4 dimensional spacetime, and
interacting via a so-called portal interaction, as a starting
point,32Not to mention the many subtleties relating to the renorm-

alization of the usual quantum field theoretic divergences
accompanying correlation functions in the coincident limit [15]. 3We use the mostly minus signature for the Minkowski metric.
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L¼ 1

2
∂μϕ∂

μϕþ 1

2
∂μχ∂

μχ −
1

2
ω2ϕ2 −

1

2
ν2χ2 −

λ

2
ϕ2χ2; ð1Þ

where we work in units where c ¼ 1 (but keep explicit
factors of ℏ for the time being), ω, ν are two angular
frequencies (corresponding to the mass parameters or
inverse Compton wavelengths of the two fields), and λ
is the coupling constant.
This type of Lagrangian is of particular interest in early

universe cosmology as it represents a popular toy model to
study (p)reheating after inflation, although here we will
neglect the effects of expansion and work in Minkowski
spacetime. To study this model, standard lore tells us to start
from an extremum of the classical action. In the context of
reheating, one often considers one of the fields (by con-
vention ϕ) to play the role of the inflaton, while the other
field (χ) is simply a spectator. In particular, a natural
solution for the physics at the end of inflation is given by

ϕðt; x⃗Þ ¼ ϕðtÞ ¼ ϕ0 cosðωtÞ and χðt; x⃗Þ ¼ 0: ð2Þ

Equation (2) represents an analytic solution of the classical
equations of motion, valid for all times. As mentioned
above, this is only true in the classical limit of ℏ → 0, and
the quantum mechanical fluctuations of the fields will alter
these dynamics. To understand how, and to make the
connection between classical and quantum physics, we
then ask the question of whether there exists a quantum
mechanical state (in the Heisenberg picture) for which the
1-point functions hϕ̂ðt; x⃗Þi and hχ̂ðt; x⃗Þi obey Eq. (2), and
which is, at least approximately, Gaussian and “well
localized” in field phase space. In other words we require
(i) that the higher-order correlation functions can be related
to the 2-point ones via Wick’s formula, and (ii) that these
2-point functions approximately factorize up to vacuum
contributions [36], e.g., hϕ̂ðxÞϕ̂ðx0Þi ≈ hϕ̂ðxÞihϕ̂ðx0Þi þ
h0jϕ̂ðxÞϕ̂ðx0Þj0i. In other words, are there states in quan-
tum mechanics that can (almost) be described by classical
physics?
Of course, such states exist and are the well-known

coherent states of quantum mechanics [37]. Formally, a
coherent state for the mode k⃗ is an eigenstate of the
corresponding annihilation operator âk⃗. It is a state jN k⃗i,
populated by an on average constant number of particles
hN̂k⃗i ¼ hN k⃗jâ†k⃗âk⃗jN k⃗i ¼ N k⃗. (In particular, the state with

no particles in the mode k⃗, j0k⃗i is a coherent state.) A field
coherent state is obtained by taking the tensor product of
mode coherent states. The coherent state corresponding to
Eq. (2) is obtained by populating the homogeneous mode of

the ϕ field with N ¼ ϕ2
0

2ω2ℏ particles per (Compton) volume
ω−3 while keeping all other modes (including those of the
field χ) empty. Although we can formally construct this state
in the Heisenberg picture, there is no guarantee that the
desirable properties mentioned above survive during time

evolution. In fact, for λ ≠ 0, the particles in the coherent
state will scatter, get entangled4 with each other, and lose
their original coherence. After some time the 1-point
function will no longer correspond to the solution of the
classical equations of motion. At that time a full quantum
treatment is required to compute observables, as higher
order correlation functions cease to be computable from
the classically obtained solutions. This time has been
referred to as the quantum break time in the literature
[30]. Interestingly, the classical limit of ℏ → 0 is equivalent
to the double scaling of the dimensionless coupling
α ¼ ℏλ → 0 and the average occupancy of the coherent
state N → ∞, with the so-called collective coupling αN
kept finite (which is possible since it just contains classical
variables). It is therefore good to keep in mind that many
coherent particles correspond to weak coupling, which in
turn corresponds to the classical limit.
For any finite value of ℏ we expect a finite value of

the quantum break time, which was argued to scale as
tq ∼ 1=ðωα2N Þ in [30]. Since a full quantum treatment is
usually difficult,5 simply because of the dimensionality of
the problem, various semiclassical approximations have
been proposed to study quantum corrections in the limit of
large occupation number N and be able to evolve the
problem beyond the quantum break time. Generically, all
of these methods assume ϕ to be classical and χ to be
quantum, and prescribe the way in which these two
fundamentally different degrees of freedom interact with
one another. However, since in most cases we do not have
an exact quantum field theoretic computation to compare
to, the validity of these approximations is untested.
As mentioned in the Introduction, we are interested in
comparing two such popular methods to a full quan-
tum mechanical calculation. We are thus forced to limit
ourselves to a toy model of two coupled quantum
harmonic oscillators. This can be thought of as the field
theory model of Eq. (1) restricted to the homogeneous
mode of the field ϕ and just one of the real modes of the
field χ. We are thus interested in computing the effect that
the production of quanta in a χ field mode has on the
dynamics of the homogeneous mode of the classical field
ϕ. In other words we are interested in the semiclassical
backreaction of χ on ϕ in a minisuperspace approxima-
tion. In the next section, we introduce the toy model that
we will consider as well as the two semiclassical approxi-
mation schemes. From now on we will focus exclusively
on this simplified system but we will also be touching
upon concepts that are important to the more general case
outlined here in this section.

4By this we simply mean that the quantum state of the coupled
system will no longer be separable, i.e., factorizable as a tensor
product of individual mode states.

5Although some attempts have been made to study this problem
by explicitly constructing high-occupancy coherent states in an
interacting quantum field theoretic setting [35,38–41].
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III. MODEL

In what follows we will be working with a quantum
mechanical system consisting of two simple harmonic
oscillators coupled via a biquadratic interaction term.
The dynamics of the model will thus be described by
the Hamiltonian

H¼−
ℏ2

2m
∂
2
x −

ℏ2

2M
∂
2
yþ

1

2
mω2x2þ 1

2
MΩ2y2þ λ

2
x2y2; ð3Þ

where m, M, ω, Ω are the masses and angular frequencies
of the oscillators, and λ is the coupling strength.
In analogy with the model of Sec. II, the (Heisenberg

picture) state of the system, defined at the initial time
t ¼ 0 and denoted by jx0; 0i, should be prepared in such a
way that the x variable is in a coherent state with a large
occupation number (or in other words hx0; 0jx̂ðt ¼ 0Þ
jx0; 0i ¼ x0 ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mω

p
), thus playing the role of the

classical homogeneous background ϕ, while y is in its
ground state, thus playing the role of one of the χk⃗. This
can be achieved in the following way: (i) we start with the
free Hamiltonian and both x and y in their respective
ground states; (ii) we then adiabatically displace the
potential for x to a position x0, which has the effect of
changing the ground state for x into a coherent state;
(iii) we adiabatically turn on the interaction term which
mildly entangles the two degrees of freedom with one
another. At this point the system is in the interacting
vacuum of the potential 1

2
mω2ðx − x0Þ2 þ 1

2
MΩ2y2 þ

λ
2
x2y2 and thus has no dynamics. The sudden recentering

1
2
mω2ðx − x0Þ2 → 1

2
mω2x2 at t ¼ 0 starts the evolution of

the system with dynamics given by (3).
We will be concerned with various ways of numerically

finding the dynamics of hx̂ðtÞi ¼ hx0; 0jx̂ðtÞjx0; 0i in this
setup. On the one hand, because our toy model is simple
enough, it is feasible to solve the full Schrödinger equation
numerically, thus obtaining a reliable benchmark that we
can compare other methods to. On the other hand, we can
treat hx̂ðtÞi as a classical variable whose classical dynamics
incorporate the semiclassical backreaction of the quantum
variable y. As mentioned before, this can be achieved in
various ways but we will focus on two specific ones. As we
will show, the quantum coupling will in some cases cause
large entanglement of the variables, making any attempt
at understanding the dynamics of hx̂ðtÞi semiclassically
fruitless.
Let us pause for a moment to define what we mean by

entanglement here and more generally throughout this
paper. Generally, an entangled quantum state is defined
in opposition to a product (or separable) state. Thus, in the
case of our toy model, an entangled state will be a state jψi
that cannot be written as a tensor product jρix ⊗ jσiy of an
x state and a y state. There are many measures of
entanglement including purity, entanglement entropy, and

more generally Renyi entropies [42], but here we will
mostly adopt a less sophisticated approach. We will call a
state that is separable up to terms of order λ a weakly
entangled state, and conversely, a state that does not satisfy
this property will be called strongly entangled. At the end
of Sec. IV we will check that this naive approach agrees
with more quantitative measures of quantum entanglement.
Before going any further it is useful to rescale the

variables and parameters so that we are strictly working
with dimensionless quantities. This will also help in
making the connection with the general quantum field
theoretic case. We start by defining x̃ ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mω=ℏ

p
and

ỹ ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MΩ=ℏ

p
. The Hamiltonian of Eq. (3) can then be

recast as

H̃ ¼ −
1

2
∂
2
x̃ þ

1

2
x̃2 þ Ω

ω

�
−
1

2
∂
2
ỹ þ

1

2
ð1þ λ̃x̃2Þỹ2

�
; ð4Þ

where we have introduced the dimensionless Hamiltonian
H̃ ¼ H=ℏω and dimensionless coupling λ̃ ¼ ℏλ

mωMΩ2. Since
the average occupation number in the x degree of freedom

for the state jx0; 0i is given by N ¼ mωx2
0

2ℏ ¼ x̃2
0

2
, we can

estimate the relative importance of the different terms in the
above expression. The term outside the parentheses is of
order N (in the limit of large occupation number that we are
interested in), while the other term is of order Ωω ð1þ λ̃NÞ1=2.
From this observation, it becomes clear that the limit

Nω=Ω → ∞ with Nλ̃ ¼ λx2
0

2MΩ2 kept fixed corresponds to a
classical decoupling limit where the x variable’s dynamics
are those of a pure coherent state and are not influenced by
the presence of y. In a semiclassical treatment, where the
full quantum dynamics of x are reduced to those of its
average expectation value, this will correspond to the
vanishing quantum backreaction limit. Notice that for a
given ratio ω=Ω, this can be thought of as the limit N → ∞,
λ̃ → 0, keeping the collective coupling λ̃N fixed, which is
manifestly the direct analog of the double scaling we
already encountered in Sec. II. This double scaling behavior
is automatically satisfied in the limit ℏ → 0.
For numerical convenience, we rescale y one last

time by defining ˜̃y ¼ ỹ
ffiffiffiffiffiffiffiffiffiffi
ω=Ω

p ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mω=ℏ

p
, and ˜̃λ ¼

λ̃ðΩ=ωÞ2 ¼ ℏλ
mMω3, and, getting rid of the tildes and double

tildes, we obtain the form of the Hamiltonian we will be
working with in the rest of the paper,

H ¼ −
1

2
∂
2
x þ

1

2
x2 −

1

2
∂
2
y þ

1

2
½ðΩ=ωÞ2 þ λx2�y2: ð5Þ

We now turn to the numerical study of the dynamics given
by this quantum Hamiltonian.
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A. Numerical methods

In what follows we will compare the fully quantum
mechanical evolution of hx̂ðtÞi obtained from a numerical
solution of the Schrödinger equation with Hamiltonian (5)
to the one predicted by two semiclassical approximation
schemes for including the effects of the quantum back-
reaction of y on the (classical) dynamics of hx̂ðtÞi. We will
refer to these two methods as the mean-field (MF) and
truncated Wigner (TW) methods.6

1. Quantum mechanics

As discussed at the beginning of the section, the
Schrödinger picture state at t ¼ 0 is prepared in such
a way that its wavefunction can be written (to first-order
in λ) as

ψ0ðx; yÞ ¼ N 0e−ðx−x0Þ
2=2e−ððΩ=ωÞ

2þλx2
0
Þ1=2y2=2; ð6Þ

whereN 0 is a normalization factor. This corresponds to the
tensor product of a coherent state with a large occupation
number, N ¼ x20=2, for the x degree of freedom, with the
zeroth order adiabatic vacuum of the y degree of freedom
(whose width is corrected by the interaction term). We stress
that this is an approximate expression valid up to order λ in
perturbation theory. In particular higher order corrections
may reveal non-Gaussianity and entanglement.
Starting from these initial conditions we will solve the

Schrödinger equation numerically using a second-order
symplectic integrator (see Appendix C). At any point in
time we can then output hx̂ðtÞi and use this to assess the
performance of the semiclassical approximation schemes.
We outline these schemes next.

2. Semiclassical approximations

The starting point of any semiclassical method is
the classical equations of motion stemming from
Hamiltonian (5),

ẍþ ð1þ λy2Þx ¼ 0; ð7Þ

ÿþ ½ðΩ=ωÞ2 þ λx2�y ¼ 0: ð8Þ

As mentioned in Sec. II and at the beginning of Sec. III, we
have prepared our quantum system in such a way that its
dynamics yield hx̂ðtÞi ¼ x0 cos t and hŷðtÞi ¼ 0, i.e., such
that the 1-point functions obey the above classical equa-
tions of motion with initial conditions xð0Þ ¼ x0 and
yð0Þ ¼ ẋð0Þ ¼ ẏð0Þ ¼ 0. Of course this is only strictly

true in the limit λ → 0, x0 → ∞ (with λx20 constant), or
ℏ → 0 in standard units. In fact for large but finite x0 (or
small but finite λ) the full quantum dynamics of the
expectation values is expected to agree with the corre-
sponding classical dynamics only until the quantum break
time of the system.
The aim of any semiclassical approximation is to

continue treating the x degree of freedom classically while
relaxing the assumption of classicality for the y degree of
freedom. To do this one would need to consistently
incorporate the effect of the quantum fluctuations of y
on the classical dynamics of x, i.e., the quantum back-
reaction of y on x. Without much computational cost, one
should thus be able to extend the validity of the resulting,
semiclassical dynamics for x beyond the quantum break
time. We will be focusing on two methods implementing
this strategy.

(1) Mean-field approximation
While keeping x classical we promote y to a

quantum operator ŷ. Working in the Heisenberg
picture we can expand it as ŷðtÞ ¼ zðtÞâ† þ
z�ðtÞâ, where the creation and annihilation operators
are defined with respect to the initial adiabatic
ground state such that âj0i ¼ 0 (see Refs. [43,44]
for details). The dynamics of the complex function
zðtÞ results from the Heisenberg equations of motion
and follows a complexified version of Eq. (8),

̈zþ ½ðΩ=ωÞ2 þ λxðtÞ2�z ¼ 0: ð9Þ

At this point xðtÞ can be chosen to be x0 cos t but in
fact it can be any arbitrary background function of
time such that xð0Þ ¼ x0. The appropriate initial
conditions for zðtÞ, corresponding to the choice
of the adiabatic ground state for y, are zð0Þ¼
−iððΩ=ωÞ2þλx20Þ−1=4 and żð0Þ ¼ ððΩ=ωÞ2 þ
λx20Þ1=4. As long as the function xðtÞ is fixed, the
solution zðtÞ of Eq. (9) is enough to specify the
exact quantum dynamics of y, i.e., to exactly
compute all of its correlation functions. For instance
hŷðtÞ2i ¼ jzðtÞj2. However, in this case we are
precisely interested in how the background x is
corrected, or backreacted upon, by the quantum
excitations of y. Within the mean-field (MF)
approximation, we include this correction in the
classical equation of motion for x, Eq. (7), by
replacing y2 with hŷ2i ¼ jzj2. The solution, xðtÞ,
of the resulting coupled system of equations will
thus deviate from the purely classical harmonic and
will also appear in Eq. (9). In summary, the set of
equations to be solved for in the MF approximation
will be

ẍþ ð1þ λjzj2Þx ¼ 0; ð10Þ

6Note that what we call the MF method is known in the
literature by many names: Hartree, Hartree-Fock, or simply
semiclassical approximation (especially in a semiclassical gravity
context). Likewise the TW method is sometimes known as the
stochastic or statistical method.
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̈zþ ½ðΩ=ωÞ2 þ λx2�z ¼ 0; ð11Þ

with the adiabatic initial conditions for z
and the classical initial conditions for xð0Þ ¼ x0,
ẋð0Þ ¼ 0. For some practical applications of

this technique, including in field theory, see
Refs. [43–46].

(2) Truncated Wigner method
The Wigner function of our initial state (6) is

given by

W0ðx; y; px; pyÞ ¼
1

π

Z
dx0dy0ψ�

0ðxþ x0; yþ y0Þψ0ðx − x0; y − y0Þe2iðpxx0þpyy0Þ

¼ N 2
0e

−ðx−x0Þ2e−p2
xe−ððΩ=ωÞ2þλx2

0
Þ1=2y2e−ððΩ=ωÞ2þλx2

0
Þ−1=2p2

y ; ð12Þ
and can be interpreted as a joint probability distribution for the initial phase space variables of our system of interest. The
idea of the truncated Wigner (TW) method is to approximate the time-evolved Wigner function by a truncated sum of δ
functions,

Wtðx; y; px; pyÞ ≈
1

Ns

XNs

i¼1

δðx − xiðtÞÞδðpx − px;iðtÞÞδðy − yiðtÞÞδðpy − py;iðtÞÞ; ð13Þ

where Ns ≫ 1 and different xiðtÞ, px;iðtÞ ¼ ẋiðtÞ, yiðtÞ,
py;iðtÞ ¼ ẏiðtÞ are solutions to the classical equations of
motion (7) and (8), with initial conditions xið0Þ, px;ið0Þ,
yið0Þ, py;ið0Þ sampled randomly from the joint proba-
bility distribution7 of Eq. (12) [47]. A nice review of the
method is given in [48]. In the following we shall use a
variant of this method where all xiðtÞ, px;iðtÞ have
definite initial conditions xið0Þ ¼ x0, px;ið0Þ ¼ 0. This
corresponds to the assumption of classicality for the x
degree of freedom. Likewise the randomness in the
initial conditions of the y degree of freedom is supposed
to mimic its quantum nature.

The expectation value of any (Weyl ordered) Heisen-
berg picture observable Ôðx̂; p̂x; ŷ; p̂yÞ can then be
estimated via

hÔðtÞi ≈ 1

Ns

XNs

i¼1

OðxiðtÞ; px;iðtÞ; yiðtÞ; py;iðtÞÞ; ð14Þ

or in other words by averaging over the different
classical paths. We will be interested in the case Ô ¼ x̂
for which we obtain the backreacted dynamics of the
classical background

xðtÞ ¼ hx̂ðtÞi ¼ 1

Ns

XNs

i¼1

xiðtÞ: ð15Þ

In summary, this method is implemented by drawing
a large number Ns of random initial conditions for y and
py from the Wigner function (12) while constraining the

initial conditions for x and px to be x0 and 0 respectively.
Each initial condition is then evolved classically using
Eqs. (7) and (8), yielding a particular classical realiza-
tion of the coupled dynamics. Finally, an average over
allNs realizations xiðtÞ is performed to obtain a uniquely
defined xðtÞ [see Eq. (15)].

Notice that this method is more computationally
intensive than the mean-field approximation, since Ns
usually has to be a large number in order to bring the
statistical variance to negligible levels. In this work we
typically take Ns ∼ 104.

Wewill need to compare the results of these two methods
to the full quantum mechanical evolution of hx̂ðtÞi. Indeed,
while we expect the above semiclassical solutions to agree
with the exact one for a time longer than the quantum break
time, they will eventually deviate from it. We will thus need
a measure of “correctness” allowing us to decide until what
time a given semiclassical method is to be trusted.

3. Measure of correctness and semiclassical break time

Each of the two semiclassical methods described above
gives a value for xðtÞ. We would like to know at what point
in time this value deviates significantly from the true value,
hx̂ðtÞi, obtained by evolving the wave function with the
Schrödinger equation. For this purpose, we first need to
introduce an appropriate error function δðtÞ. A straightfor-
ward way to do this is to use the so-called L1 norm to
compute the (relative) integrated difference between semi-
classical and full quantum solutions. We thus define

δðtÞ ¼
R
t
0 jxðt0Þ − hx̂ðt0Þijdt0R

t
0ðjxðt0Þj þ jhx̂ðt0ÞijÞdt0 ; ð16Þ

where xðtÞ is computed semiclassically either in the MF or
TW approximations. The denominator in this definition is
simply a normalization factor and is required if we want to

7Although the Wigner function does not generically satisfy all
the properties required of a bonna fide probability distribution, in
particular positivity, it does satisfy them in the Gaussian case
considered here.
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use this error function to compare the accuracy of different
semiclassical methods across a large region of param-
eter space.
We can then define the semiclassical break time of a

specific method to be the time t for which the monotonous
function δðtÞ rises above a certain threshold. For most of
our results, we shall choose a threshold of 0.05, but any
qualitative conclusions are quite insensitive to this value. In
the next section we will estimate the semiclassical break
times of the MF and TW methods, referred to as tMF and
tTW , and compare them to the quantum break time tq
obtained by replacing xðtÞ in Eq. (16) with the classical
solution xclðtÞ ¼ x0 cos t. We now move on to discussing
our results.

IV. RESULTS

There are three different dimensionless parameters that
we can vary in this problem: the coupling λ, the ratio of
frequencies Ω=ω (or equivalently the ratio of energies in
each mode), and finally x0, which is proportional to the
square root of the average occupation number N in the
coherent state. As we will see, each of these parameters
has a profound effect on the different break times, and on
the validity of the semiclassical approximation in general.
To understand this point better, it is useful to linearize the
classical equations of motion (7) and (8) around the
solution xclðtÞ ¼ x0 cos t and yclðtÞ ¼ 0. We obtain only
one nontrivial equation

δ̈yþ ½ðΩ=ωÞ2 þ λx20cos
2t�δy ¼ 0; ð17Þ

which will seem familiar to many readers. It is the famous
Mathieu equation, which finds many applications in various
areas of physics. The solutions of Eq. (17) can be written as
δyðtÞ ∝ pðtÞeμt, where pðtÞ is a periodic function and μ can
in principle be complex (see, e.g., [49]). Clearly, if μ has a
positive real part, δywill grow exponentially, signifying that
the classical trajectory ðxclðtÞ; yclðtÞÞ is unstable against
classical fluctuations and the system becomes parametri-
cally resonant. Whether μ indeed has a real part is entirely
dependent on the three parameters of the problem, λ, Ω=ω
and x0. In fact, the three dimensional parameter space
ðλ;Ω=ω; x0Þ of the Mathieu equation (17) is characterized
by the presence of instability bands, centered around the
surfaces of equation

λx20 ¼ 2ðn2 − ðΩ=ωÞ2Þ; ð18Þ

where n is a positive integer. When the parameters lie
sufficiently close to these surfaces, the system is classically
unstable. At the quantum level, it has already been con-
jectured in the literature that the entanglement of the x and y
degrees of freedom will grow quickly in the presence of
parametric resonance at the classical level [50–52]. We may
therefore reasonably expect that this will also lead to

qualitatively different behaviors between semiclassical
and full quantum dynamics (in other words to shorter
semiclassical break times) as our semiclassical approxima-
tions struggle to capture purely quantum features such as
entanglement. We will show that indeed the instability
bands of the Mathieu equation, defined by Eq. (18), will
have a profound effect on the semiclassical break times of
the two approximation schemes under consideration.
To visualize the break times for the various methods

under consideration, we performed a large number of
numerical simulations for different combinations of param-
eters within the two semiclassical approximation schemes
as well as within a full quantum treatment. We obtained
independent predictions for the dynamics of the classical x
degree of freedom: xMFðtÞ for the MF method, xTWðtÞ for
the TW method, and hx̂ðtÞi for the exact quantum bench-
mark. For completeness we also included the classical
solution xclðtÞ ¼ x0 cos t.
In Fig. 1 we show some typical results obtained from our

simulations for a range of parameters. Already at the
qualitative level, the influence of the instability bands is
apparent. Parameters have been chosen such that the left
panel plots correspond to a stable system while those on the
right panel correspond to an unstable, parametrically
resonant one, at the classical level. Focusing on the time
evolution of hx̂ðtÞi, we first notice that its frequency of
oscillation gets a small additive correction equal to λω=4Ω
(see Appendix A for details). This has the net effect of
slightly shifting the instability bands upwards, their new
position still given by Eq. (18) but with the substitution
n2 → n2ð1þ λω=4ΩÞ2. From now on we will only be
referring to these shifted, instability bands. Notice that, the
shift being small, this change in definition has no impact on
the classical stability properties of the solutions represented
in Fig. 1.
Besides this correction to the oscillation frequency, we

also observe a qualitative difference between the stable and
unstable cases: while in the stable case the amplitude of
oscillation remains more or less constant, the unstable case
features a dissipativelike dampening. This can be under-
stood heuristically, in a field theoretic language, as follows.
In a classically unstable region of parameter space, the
particles making up the xmode coherent state rapidly scatter
and get entangled with the particles produced in the ymode.
The state then “decoheres”8 quickly and ceases to mimic a
classically oscillating system, thus leading to significant
deviations from classical motion. In particular this triggers a
dissipative behavior whereby higher and higher moments of
the joint probability distribution of x and y are excited and
Gaussianity is completely lost [53–58]. By contrast, in a
stable region of parameter space entanglement still occurs

8Here we simply mean that the state is becoming less like a
coherent state. This has nothing to do with the decoherence
phenomenon used to explain the classical to quantum transition.
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but in a more controlled manner, only leading to the above
mentioned multiplicative correction to the oscillation fre-
quency of the x mode coherent state while preserving its
Gaussianity. Note that in the stable case where entanglement

is expected to be small and controlled, the full quantum
dynamics seems to be better described by the MF method.
The opposite seems to be true in the unstable situation
where entanglement grows and only the TW method is able

FIG. 1. Some typical evolutions of hx̂ðtÞi (black dotted line), xMFðtÞ (blue line), xTWðtÞ (red line), and xclðtÞ (green line). We illustrate
the importance of classical instability by choosing parameters in such a way that we are either in a completely stable regime (left panels,
λ ¼ 0.01, x0 ¼ 5) or in a regime where the dynamics (at least intermittently) move through an instability band (right panels, λ ¼ 0.1,
x0 ¼ 10). The qualitative difference is visible. In the stable region, we mostly see a small change in the frequency of oscillation (the
disagreement between the plots is only visible after some time), whereas in the unstable situation, we see a rapid decay of the amplitude
on top of the frequency shift. The different rows correspond to the different choices of Ω=ω: 0.4 (upper row), 0.8 (middle row), and 1.2
(lower row).
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to capture dissipativelike effects, although both semiclass-
ical methods fare quite poorly in this case. We will come
back to this interesting fact later.
The importance of the instability bands is qualitatively

clear at the level of the individual simulations, but how
does it influence the break times of the various methods for
a broad range of parameters? In Figs. 2–4 we show the
results of a parameter scan of the break times tMF, tTW , and
tq. Recall that these are defined as the times when δðtÞ,
given by Eq. (16) with xðtÞ replaced by xMFðtÞ, xTWðtÞ, and
xclðtÞ respectively, crosses a predefined threshold value in
the simulation. Here we chose 0.05 as this critical

threshold. Inspecting Figs. 2–4, we see the effect of the
classical instability band structure of the Mathieu equation.
Around the bands, indicated by the shaded regions, the
quantum and semiclassical break times decrease consid-
erably. This supports the understanding that entanglement
is at the root of the breakdown of (semi)classicality. The
MF and TW methods prolong the agreement between the
full quantum dynamics and a semiclassical description of
the quantum backreacted dynamics of the x degree of
freedom, in certain regions of parameter space consider-
ably. Indeed, generically tMF; tTW > tq with a larger time
gain far from the classical instability bands. However, both

FIG. 2. Quantum and semiclassical break times for the MF and TWmethods [as defined via Eq. (16) and a threshold value of 0.05] for
a region of the ðλ; x0;Ω=ω ¼ 0.4Þ parameter plane. Redder (bluer) regions correspond to larger (shorter) break times and thus a more
(less) accurate approximation of hx̂i. The shaded regions represent the instability bands of the Mathieu equation [see Eq. (18)]. Their
influence is clear: when the parameters of the system lie in their vicinity, there is a considerable enhancement of quantum entanglement
between x and y, leading to a breakdown of classicality for x.

FIG. 3. Same plot as Fig. 2 with Ω=ω ¼ 0.8.
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methods perform poorly within the instability bands, even
though TW performs marginally better there. Notice also
that because the amplitude of xðtÞ decreases in the para-
metrically unstable case, the system dynamically moves
out of the instability band in the direction of decreasing x0,
which presumably brings the resonant phase to its natural
conclusion. Finally, it is noteworthy that break times
generally decrease substantially when moving upwards
and to the right in parameter space, even outside any
instability band, which is correlated with an increase in the
collective coupling λx20=2 ¼ λN. In Appendix A we show
perturbatively that this can be understood as an increase in
quantum entanglement between x and y.
It is natural to ask which of the two highlighted

semiclassical methods, MF or TW, does a better job at
extending the validity of a classical treatment for the
background degree of freedom x in the presence of
interactions with the quantum degree of freedom y. As
seen in Figs. 2–4, the answer depends on the parameters of
the problem. In Fig. 5 we give a representation of the
performance of the MF method relative to the TW method,

identifying the regions in parameter space where tMF >
tTW and vice versa. Figure 5 suggests that the MF method
generally performs better whenever parameters are such
that the system is far from any instability band. This
highlights the importance of entanglement between the
x and y degrees of freedom in evaluating which method to
apply: it seems that whenever we are in a situation where
entanglement remains under control, the MF method is
more adequate in describing the exact quantum dynamics
of hx̂ðtÞi. However, in situations where x and y become
highly entangled, the TW method seems to perform better
(although only marginally as seen in Figs. 1–4). In Fig. 6
we give a sense of the absolute difference in the break
times of the two methods by plotting the difference tTW −
tMF as a function of λ and x0 (for different values of the
ratio Ω=ω).
To summarize our results and to make the connection

with quantum entanglement a bit more precise, in Table I
we give the break times as well as the entanglement entropy
(at some fiducial time) for a few prototypical values of the
parameters. The entanglement entropy of the system is

FIG. 4. Same plot as Fig. 2 with Ω=ω ¼ 1.2.

FIG. 5. Plot showing the regions in the ðλ; x0Þ parameter plane where tMF > tTW (blue dots) and tMF < tTW (red dots) for different
values of the ratio Ω=ω: 0.4 (left), 0.8 center, and 1.2 (right). the shaded regions represent the instability bands. A heuristic picture
emerges: far away from the instability bands, the MF method outperforms the TW method.
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computed as the Von Neumann entropy of the reduced
density matrix, ρ̂x,

ρ̂x ¼
X
m

hmjρ̂jmi; ð19Þ

where jmi are the eigenstates of the y quantum harmonic
oscillator and ρ̂ is the full density matrix of the coupled
system. As the Hilbert space has infinite dimension we
limit the computation to a maximum quantum number
mmax ¼ 28, making sure that the state is contained up to a
few parts in 102 in this reduced space. Then the entangle-
ment entropy is given by

Se ¼ −
X
i

λi logðλiÞ; ð20Þ

where λi are the eigenvalues of ρ̂x. Heuristically, Se
measures the uncertainty in the “classical” x degree of
freedom due to the interaction with the “quantum” y
degree of freedom. Its maximum value is related to the
dimensionality of the Hilbert space: in our case Se;max ¼
lnðmmaxÞ ¼ 3.33. If and only if there is no entanglement
(so that the state is separable) is it exactly 0. Note that this

way of estimating quantum entanglement is just one of
many possibilities [42].
The results in Table I contain the most salient features of

our results. Namely, unstable modes result in larger
entanglement, which in turn reduces the break times of
the various methods. As suggested earlier, when entangle-
ment is small, one typically has tMF > tTW . The quantum
break time tq is always smaller than both tMF and tTW ,
showing that the methods give at least some improvement
with respect to a purely classical treatment. Note in
particular that for the stable cases of Ω=ω ¼ 1.2, quantum
entanglement is extremely small and tMF is orders of
magnitude larger than both tq and tTW .
Interestingly, and on a slightly different note, we can also

use the data from the previous plots to investigate the
classical limit. As alluded to in Sec. II, this corresponds to
the limit ℏ → 0, for which λ → 0 and N ∼ x20 → ∞ (while
the collective coupling λN ¼ λx20=2 is kept constant). For
fixed λx20, we therefore intuitively expect that the different
break times should increase as x0 increases (and conse-
quently λ decreases). In fact, Ref. [30] uses heuristic
arguments to predict break times that scale like N. In
Fig. 7 we plot tq, tMF, and tTW as a function of x0 for various
values of the collective coupling λN. We observe that
although the heuristic linear scaling is sometimes correct,
the influence of classical instabilities can be considerable,
spoiling this prediction. In particular, as has been noted
before, classically unstable systems have break times that
scale with logN instead [34,50]. For certain values of the
collective coupling, one can have a situation where the
system exits an instability band during the double scaling
limit. There, we observe a transition between the two types
of dependence (∝ N and ∝ logN), e.g., the rightmost plot
of Fig. 7.

V. SUMMARY AND DISCUSSION

In this work we tried to broach the topic of the regimes of
validity of different semiclassical approximations. Indeed
when classical degrees of freedom are coupled to quantum

FIG. 6. The three dimensional version of Fig. 5. We plot the difference in break times tTW − tMF as a function of λ and x0 for different
values of the ratio Ω=ω: 0.4 (left), 0.8 (center), and 1.2 (right). Again, the influence of the instability bands is clear.

TABLE I. A summary of some prototypical results from our
numerical computations. The influence of stability on entangle-
ment, and in turn the influence of entanglement on the break
times, is evident.

λ x0 Ω=ω Stability tq tMF tTW Se at t ¼ 25

0.1 5 0.4 Unstable 6 9 17 1.86
0.05 8 0.4 Unstable 9 12 22 1.64
0.03 5 0.4 Stable 14 83 73 0.31
0.1 5 0.8 Unstable 10 16 25 1.21
0.04 6 0.8 Unstable 13 20 32 1.47
0.05 8 0.8 Stable 20 127 105 0.70
0.03 5 1.2 Stable 40 3304 164 0.026
0.04 6 1.2 Stable 31 1385 140 0.068
0.08 10 1.2 Unstable 14 22 34 0.13
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ones, there is no entirely consistent theory that one can use
to make predictions. We therefore only have two options:
either (i) find a way of describing the classical degrees of
freedom by an appropriate set of quantum degrees of
freedom and thus reduce the initial classical-quantum
system to a purely quantum one; or (ii) come up with
approximate methods to evolve the initial system semi-
classically, i.e., by prescribing how the quantum degrees of
freedom should backreact on the dynamics of the classical
ones. Since option (i) generically comes with its own set of
daunting problems (ambiguities in the quantum description
of classical systems, computational complexity, inappli-
cability to gravitational systems...), progress has mostly
relied on the use of various semiclassical approximations.
Unfortunately the limitations of such methods have rarely
been studied, an important blind spot that we have tried to
partially cover. By focusing on a simple toy model involving
two quantum, biquadratically coupled, harmonic oscillators,
whose full quantum dynamics we were able to numerically
compute, and taking an appropriate semiclassical limit
whereby one (and only one) of the two oscillators becomes
effectively classical, we were able to assess the accuracy of
two popular semiclassical approximation methods: the
mean-field and truncated Wigner methods.
We found that the two methods are not nearly equivalent

and that their regime of applicability depends on the
parameters of the problem. By computing the duration
for which a particular semiclassical evolution stays true to
the exact quantum evolution (i.e., the semiclassical break
time) we noticed that the parametric stability or instability
of the associated classical system plays an important role.
Both semiclassical methods improve upon the purely

classical description of the coupled system for all values of
the parameters. This is to be expected since they do capture
at least some of the quantum backreaction effects that the
classical description cannot possibly describe. More inter-
estingly though, for parameters such that the system is not
classically parametrically unstable, the MF method outper-
forms the TWmethod. This gain in performance seems to be

larger for weak collective coupling (product between the
coupling and the average occupation number of the coherent
state describing the “classical” oscillator). On the contrary,
for parameters such that the system exhibits classical para-
metric resonance, the TW method fares better than the MF
method. Although the break times are much lower than in
the stable case, the TW method is able to capture the
dissipative behavior of the system and to track the decay in
the amplitude of the classical oscillator. We hypothesize that
this behavior is a consequence of the rapid growth of the
quantum entanglement between the two oscillators that was
pointed out in particular in Ref. [52]. There the entanglement
entropy was conjectured to grow linearly in time with a
coefficient proportional to the sum of the positive Lyapunov
exponents of the system.
Based on these observations we can venture a heuristic

interpretation of our results. The fact that both methods fare
worse in regions of classical instability and large collective
coupling highlights the importance of entanglement
between the two degrees of freedom. (In Appendix A we
point out that entanglement is indeed controlled by the
magnitude of the collective coupling in the perturbative
regime, when the system is classically stable.) It is not
entirely surprising then that the TW method is able to track
the system better in unstable regions, since the method
evolves many more degrees of freedom over its different
initializations, and is thus better able to capture the higher-
order moments of the wave function for y that are excited as
quantum entanglement grows. Although this improves the
ability of the method to capture the effects entanglement,
the slow diffusion of the classical paths through phase
space always leads to a finite break time. The MF method
does not suffer from this problem and can track the
evolution of the quantum state for all times, as long as
the collective coupling is small and the system is classically
stable. Based on these considerations we can write down a
heuristic formula for the break times of the two methods:

tMF ∝ ðα · EntanglementÞ−1; ð21Þ

FIG. 7. The break times tq (green), tMF (blue), and tTW (red) plotted against N ¼ x20=2 (a proxy for ℏ−1) for different values of the
collective coupling λN and for Ω=ω ¼ 0.8. The leftmost plot corresponds to λN ¼ 0.15, and to systems that remain stable all the way
through the quantum to classical transition. The middle plot corresponds to λN ¼ 0.6, and to systems that are unstable. The rightmost
plot corresponds to λN ¼ 1.5, a situation where the system transitions from unstable to stable during the double scaling λ → 0 and
N → ∞. The approximate point of transition is represented by a vertical line on the plot. The expected N and logN scalings are evident
in the stable and unstable situations respectively.
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tTW ∝ ðβ · Entanglementþ DiffusionÞ−1: ð22Þ

Note that this should only be taken as a schematic equation,
summarizing our results. The break time of the MF method
is generally a function of the amount of entanglement
between the two systems. While this is also true for TW, its
break time also depends on a general diffusive drift
between the various classical paths, due to the random
nature of the initial conditions. The dependence on entan-
glement is stronger for MF however and we generally
expect α > β. Thus in unstable regions where entanglement
is high, tTW > tMF although both are relatively short,
whereas in stable regions, entanglement is suppressed
and the presence of the diffusion term forces tTW < tMF.
The previous observations have important consequences

for some of the major domains of application of these two
semiclassical methods. Taking the example of (p)reheating
with which we started our discussion in Sec. II, we are now
able to reinterpret the standard methodology in terms of
our analysis. In fact, what is typically done in the literature
of preheating is to compute particle production from
parametric resonance of classical fluctuations (typically
obtained through cosmological lattice simulations), aver-
aged over a variety of initializations [21]. In essence this is
an application of the truncated Wigner method to cosmo-
logical quantum fluctuations. We now understand why this
is the correct choice as parametric resonance and classical
instability are central to preheating, and one can expect a
fair amount of entanglement between the inflaton and the
resonant vacuum modes. The stable analogue of preheat-
ing is reheating [59]. Our expectation is that a mean-field
approach should be appropriate in this scenario. Note that
the period of reheating has traditionally been studied by
assuming cubic couplings ∝ ϕχ2, instead of the quartic
coupling under consideration here. It is an interesting
question to understand how reheating calculations would
be altered by using the MF approach. We leave this
interesting question for future work.
Other scenarios that have been treated using either of the

approaches in this paper include the quantum decay of
breather states (MF method) [46], kink-antikink scatterings
in a quantum vacuum (MF method) [45], and false vacuum
decay (TW method) [20]. It would be interesting to revisit
some of these cases and assess their validity given the
results in this work.9 It is also important to mention that the
quantum stability of soliton, oscillon, and breather back-
grounds has been thoroughly investigated in the literature
using perturbative methods as for instance in Ref. [61], and

more recently in Refs. [62,63] where it was argued that
semiclassical methods may obscure important details about
the quantum state of the background. For instance it was
found that the quantum breather decay discussed using
semiclassical MF methods in Ref. [46] resulted from an
implicitly noncoherent choice of state for the background,
rather than from an intrinsic quantum instability of the
breather.
One of the main limitations of this work is its reliance on

the assumption that hx̂ðtÞi computed in a full quantum
treatment should always be a good benchmark against
which to compare the performance of different semi-
classical approximation methods. This is in fact only true
as long as the wave function ψðx; yÞ for the coupled system
is well localized and more or less monomodal in the x
direction. When this ceases to be true, it is clear that the
average expectation value cannot possibly represent the
dynamics of a classical variable. This introduces a more
fundamental upper limit for the duration of validity of any
semiclassical approximation, irrespectively of the associ-
ated value of δðtÞ [see Eq. (16)]. While we have checked
that the wave function remains approximately Gaussian in
the x direction for the duration of our simulation for some
parameter choices, we leave a more exhaustive and
rigorous study of this issue for future work. Another
important limitation is the fact that it is unclear how to
extend our results to the many-mode case and eventually to
field theory. Appendix B gives some partial answers in the
case where the “classical” mode is coupled to not one but
two “quantum” modes. Again the presence of unstable
modes seems to shorten the validity of the semiclassical
methods under consideration but more work is needed in
order to really understand the net effect of stable and
unstable modes on the background in a many mode
scenario. We also plan to tackle this problem in the near
future. The results of Appendix B do provide some
indication that classical instability and entanglement con-
tinue to play an important role in field theory, as it does in
the quantum mechanical system under consideration here.
The investigations presented in this article do not claim

to be the definitive answer to the question: “Given a
specific classical system interacting with a quantum one,
which semiclassical method is the most accurate?” They
do however point out some of the subtleties that are often
overlooked in the literature and that could in principle have
important consequences. In particular the relation between
classical parametric resonance and the rapid breakdown of
semiclassical treatments may be relevant for early universe
cosmology predictions. In future work, we aim to extend
the above analysis to systems with different couplings,
exhibiting different forms of instabilities (not just para-
metric resonance) that may be good toy models for
gravitational collapse scenarios for instance. This is central
to understanding which semiclassical method (if any) is
most suitable for the study of black hole evaporation. In

9Many breather states under consideration in the literature have
nonperturbative collective couplings where λN ¼ Oð1Þ. It has
been suggested that the threshold λN ¼ Oð1Þ characterizes a
class of macroscopic objects that saturate the entropy bound
coming from 2 → N scattering amplitudes of the theory under
consideration [60].
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particular it might well be that all semiclassical methods
break down before a meaningful fraction of the black
hole mass has evaporated, thus rendering black hole
abundance estimates moot [64]. We also plan on assessing
the performance of other semiclassical methods, and
extending the MF method via the so-called quasiclassical
formalism [53–58]. Lastly, an amusing side project would
be to turn the logic of this paper on its head and explore the
possibility of devising an interaction that classicalizes a
quantum state, taking for instance a highly excited harmonic
oscillator state jni and naturally evolving it into a coherent
state jαi with average occupation number jαj2 ¼ n.
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APPENDIX A: ANALYTICAL RESULTS
FOR SMALL COLLECTIVE COUPLING

It is instructive to understand how our toy model behaves
when the coupling between the two degrees of freedom is
weak. When this is the case, it can generally be expected
that the “classical” x variable is weakly entangled with the
“quantum” y variable. The first part of this appendix aims
to show this explicitly. Then we will show that the MF
method can exactly reproduce the average expectation
value hx̂ðtÞi for this weakly entangled state, while the
truncated Wigner method will never be able to achieve this,
supporting our observations in Sec. IV.

1. Quantum mechanics

In this derivation, we closely follow Ref. [66]. We start
by writing the quantum state of the coupled system as

jψi ¼
X∞
n;m¼0

cn;mðtÞfnðtÞjnixjmiy; ðA1Þ

where jnix and jmiy are eigenstates of the free Hamiltonians
for x and y in Eq. (5) respectively. The functions fnðtÞ are
introduced for future convenience and correspond to the
expansion coefficients of the initial coherent state for x,

fnðtÞ ¼ e−it=2e−jz0j2
zn0e

−intffiffiffiffiffi
n!

p ; ðA2Þ

where z0 is related to the initial displacement x0 through
z0 ¼ x0=

ffiffiffi
2

p
, since we assume 0 initial momentum. All the

nontrivial time dependence is thus included in the unde-
termined cn;mðtÞ terms. It is useful to express the position
and momentum operators in terms of creation and annihi-
lation operators via

x ¼ 1ffiffiffi
2

p ðaþ a†Þ; px ¼
iffiffiffi
2

p ða† − aÞ; ðA3Þ

y ¼
ffiffiffiffiffiffi
ω

2Ω

r
ðbþ b†Þ; py ¼ i

ffiffiffiffiffiffi
Ω
2ω

r
ðb† − bÞ: ðA4Þ

Then the Hamiltonian (5) reads

H ¼
�
a†aþ 1

2

�
þΩ

ω

�
b†bþ 1

2

�

þ λω

2Ω
ðaþ a†Þ2

2

ðbþ b†Þ2
2

: ðA5Þ

Note that the effective coupling now appears to be λω=Ω,
however in what follows we will assume Ω=ω ∼Oð1Þ.
Plugging the ansatz (A1) into the Schrödinger equation with
Hamiltonian (A5), we obtain a coupled set of equations for
the different cn;mðtÞ. Until now, the steps are completely
general and the set of equations we obtain in this way have
no closed form. As shown in [66], one can make progress by
using the perturbative expansion

cn;mðtÞ ¼ δm0e−i
Ω
2ωt þOðλÞ: ðA6Þ

This expansion implicitly assumes weak collective coupling
λz20 ¼ λN ≪ 1 in order to match with the setup of our
problem on the one hand, and to be consistent perturbatively
on the other. Without showing all the details of the
computation (we refer the reader to [66] for the complete
version) it turns out that only the m ¼ 0 and m ¼ 2 terms
get nontrivial corrections at leading order in λ, and the result
can be elegantly written, in a form valid for all times, as

cn;0ðtÞ ¼ e−i
Ω
2ωt

�
e−i

λω
8Ωð2nþ1Þt

− i
λω

8Ω

�
z20e

−it þ nðn − 1Þ
z20

eit
�
sin t

�
; ðA7Þ
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cn;2ðtÞ ¼ −i
λω

4
ffiffiffi
2

p
Ω
e−i

3Ω
2ωt

�
e−itz20

sinððΩ=ω − 1ÞtÞ
Ω=ω − 1

þ ð2nþ 1Þ sinððΩ=ωÞtÞ
Ω=ω

þ eit
nðn − 1Þ

z20

sinððΩ=ωþ 1ÞtÞ
Ω=ωþ 1

�
: ðA8Þ

The requirement of small collective coupling now becomes
evident since terms of order λz20 make their appearance.
Also note that the terms inversely proportional to z0 become
unimportant as N → ∞ but we will keep the discussion
general. Of course, in this work we are not interested in the
quantum mechanical state itself, but instead on observables
such as hx̂ðtÞi. Using (A3) we find

hx̂ðtÞi ¼ z0ffiffiffi
2

p
X∞
n;m¼0

ðe−itcnþ1;mc�n;m þ eitc�nþ1;mcn;mÞjfnj2;

ðA9Þ

and plugging in the solutions from Eqs. (A7) and (A8) we
obtain to lowest order in the coupling10

hx̂ðtÞi ≈ x0 cos

�
t

�
1þ λ

ω

4Ω

��
: ðA10Þ

The behavior of higher moments is also important in order
to ascertain how classical the state looks. For instance we
find

hx̂2ðtÞi ¼
X∞
n;m¼0

�
1

2
z20e

−2itcnþ2;mc�n;m þ 1

2
z20e

2itc�nþ2;mcn;m

þ
�
nþ 1

2

�
jcn;mj2

�
jfnj2; ðA11Þ

and plugging in the solutions (A7) and (A8) we obtain

hx̂2ðtÞi ≈ x20
2

�
1þ cos

�
2t

�
1þ λ

ω

4Ω

���
þ 1

2

¼ hx̂ðtÞi2 þ 1

2
: ðA12Þ

This result suggests that, to leading order in λz20, time
evolution preserves the approximately classical nature of the
state (see Sec. II and Ref. [36]). In other words, all the
information about the state of the x variable is encoded in
hx̂ðtÞi suggesting that the state remains coherent. It simply

transitions to a coherent state with a different frequency. In
the next subsection we show that this type of behavior is
mimicked perfectly by the MF method in the weak
collective coupling limit.
Finally, we make a brief comment regarding entangle-

ment. In the main part of the text, we suggest that
entanglement is intimately tied to the breakdown of
semiclassicality and also plays a vital role in determining
which method performs better between MF and TW. Using
(A7) it is easy to see that the state jψi is a product state at
leading order in λ,

jψi ¼
X∞
n;m¼0

δm0e−i
Ω
2ωte−i

λω
8Ωð2nþ1ÞtfnðtÞjnixjmiy þOðλÞ;

ðA13Þ

and that quantum entanglement only arises at higher order
in the collective coupling. In this low entanglement limit
quantum effects seem to mainly manifest as a correction to
the oscillation frequency of the classical solution. In what
follows we will show that this is well captured by the MF
method.

2. Mean field

The MF equations of motion are Eqs. (10) and (11) and
we wish to find a perturbative solution with the appropriate
initial conditions. Previously, we saw that in the limit of
small couplings, the main correction to the classical
solution xðtÞ ¼ x0 cos t was a change in the frequency,
proportional to λ. With this in mind, we perform a two-
timing analysis in which we introduce an extra timescale
τ ¼ λω

Ω t. Then the perturbative solution can be obtained via
the replacement

∂
2
t → ∂

2
t þ 2

λω

Ω
∂t∂τ þOðλ2Þ ðA14Þ

as well as a standard expansion of the solutions,

x ¼ xð0Þ þ λxð1Þ þOðλ2Þ; ðA15Þ

z ¼ zð0Þ þ λzð1Þ þOðλ2Þ: ðA16Þ

Plugging this into Eqs. (10) and (11) it is straightforward
to find the general solutions for xð0Þ and zð0Þ. They are
given by

xð0Þ ¼ x0 cosðtþ δxðτÞÞ; ðA17Þ

zð0Þ ¼ −i
ffiffiffiffiffiffi
ω

2Ω

r
eiððΩ=ωÞtþδzðτÞÞ; ðA18Þ

where we allow for a dependence on τ of the phases.
Without loss of generality we may set δxðτÞ and δzðτÞ to 0

10Note that in [66] the perturbative expansion was organized in
such a way that corrections to the frequency and amplitude of the
oscillations could be treated separately. In this way the perturba-
tive expansion is under control for all times. The result given here
is zeroth order in the amplitude and first order in the frequency.
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at t ¼ τ ¼ 0. We can then use the first-order equations of
motion to find the form of these phase corrections. Since
we are mainly interested in the behavior of x we only write
down the zeroth-order equation for xð1Þ and we again
assume small collective coupling λx20 ≪ 1. We find

ẍð1Þ þ xð1Þ ¼ −
2ω

Ω
∂t∂τxð0Þ − jzð0Þj2xð0Þ: ðA19Þ

After plugging in the zeroth-order solutions we obtain

ẍð1Þ þ xð1Þ ¼
�
2ω

Ω
∂τδxðτÞ−

ω

2Ω

�
x0 cosðtþ δxðτÞÞ: ðA20Þ

If the right-hand side of this equation is not 0, the solution
for xð1Þ would resonate, resulting in an immediate break-
down of perturbation theory. This yields the condition

δxðτÞ ¼
1

4
τ ¼ λω

4Ω
t: ðA21Þ

In principle, we can continue this procedure to higher
orders, but at this point we have perfect agreement between
the MF solution,

xðtÞ ≈ xð0ÞðtÞ ¼ x0 cos

��
1þ λ

ω

4Ω

�
t

�
; ðA22Þ

and the quantum mechanical result (A10). It is remarkable
that in the weak collective coupling regime the MF method
can reproduce quantum mechanical results for very long
times. What is more, since the average expectation value
completely determines the quantum mechanical state in this
regime [see (A12)], the MF method manages to reproduce
the results of a full quantum mechanical simulation at just a
fraction of the computational cost. We will now end by
arguing that this desirable property is not shared by the TW
method.

3. Trunctated Wigner

It is significantly more difficult to derive an analytic
estimate for the results of the TW method. However, here
we will argue that after some time it will necessarily deviate
from the weak collective coupling behavior of quantum
mechanics. The best way to see this is to inspect one of the
many classical realizations obtained in the TW framework.
Applying the two-timing perturbative expansion of the
previous section to the classical equations of motion (7)
and (8), it is straightforward to show that the solution for the
“classical” x variable approximately reads

xðtÞ ≈ x0 cos

��
1þ λ

ω

4Ω
ððΩ=ωÞy20 þ ðω=ΩÞp2

y;0Þ
�
t

�

ðA23Þ

for a particular, randomly sampled, initial condition for
the “quantum” y variable, ðy0; py;0Þ. Looking at this expre-
ssion we see that the phases of the various classical
realizations become completely uncorrelated within a time
of order λ−1ðhy20iþðω=ΩÞ2hp2

y;0iÞ−1∼λ−1ð2ω=ΩÞ−1 [where
the brackets denote a statistical average weighted by the
distribution (12)]. After this time it should be approximately
equivalent to write each solution as

xðtÞ ≈ x0 cos ðtþ ϕÞ; ðA24Þ

where ϕ is some random phase. At large times, the TW
method thus seems to predict that the x variable slowly
dissipates, as averaging over an ensemble of solutions such
as the ones in (A24) will inevitably lead to amplitude decay.
This behavior is not the one predicted by quantum mechan-
ics in a classically stable region of parameter space, where
the system settles to a new equilibrium solution and there is
no dissipation. These results explain why the MF method
performs better than TW in regions where the collective
coupling is small. The fact that the TW method seems to
explore the full phase space of the theory, which helps the
method in regions of classical instability, hurts it when
quantum entanglement does not grow uncontrollably.

APPENDIX B: SYSTEMS WITH MORE
DEGREES OF FREEDOM

This appendix constitutes a preliminary investigation of
how our results extend to systems with more degrees of
freedom. In field theory, there are many modes, of which
some can be stable, while others can be unstable. To
understand how our results extend to quantum field theory
it is thus important to introduce more degrees of freedom in
our analysis.
As a first step, we analyze a three-mode system defined

through the dimensionless Hamiltonian

H ¼ −
1

2
∂
2
x þ

1

2
x2 −

1

2
∂
2
y þ

1

2
½ðΩ1=ωÞ2 þ λx2�y2

−
1

2
∂
2
z þ

1

2
½ðΩ2=ωÞ2 þ λx2�z2: ðB1Þ

Here both the y and z degrees of freedom should be
interpreted as quantum modes, while x still corresponds
to the classical background. We perform the computations
in the same way as for the two-mode system, focusing on
the break times of the different methods as well as on the
entanglement entropy of x (this time the density matrix is
partially traced over both the y and z degrees of freedom
whose Hilbert space has been restricted to a finite dimen-
sional subspace). We are particularly interested in cases
where: (i) both modes are classically stable, (ii) both modes
are classically unstable, and (iii) one mode is unstable while
the other is stable. Results are shown in Table II.
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Our conclusions about the influence of classical insta-
bility and entanglement on the break times seem to extend
to the three-mode system. Comparing the above results to
the analogue ones for the two-mode case (see Table I), we
see that the “most entangling” mode ultimately determines
the entanglement entropy and break times of the three-
mode system. However the amount of unstable modes also
seems to play a role. It is in particular unclear to what extent
the presence of more stable modes can wash out the effect
of the instability and extend the validity of semiclassical
methods. Unfortunately incorporating more modes quickly
becomes computationally expensive, and is thus beyond the
scope of this work.

APPENDIX C: NUMERICS
AND PERFORMANCE TESTS

In this appendix, we expand on the numerical integration
schemes that we employed in this work. We had to solve
three different sets of equations corresponding to the various
methods under investigation. To be precise, the mean-field
equations (11) and (10), the truncated Wigner equations
[which are just the classical equations of motion (7) and (8),
evolved for a large number of different initial conditions],
and the full Schrödinger equation of quantum mechanics.
Since the Schrödinger equation is a wave equation requiring
lattice discretization to solve, we will mostly focus on the
latter. As for the MF and TWmethods, we will just mention
that we used a VV8 integration scheme for most of the
results shown in this paper [67]. For certain prototypical
points in parameter space (in particular in the corners of
Figs. 2–4) we explicitly checked that our results were stable
against decreasing the time increment Δt. It is also good to
mention that numerical results in the TW method were
obtained by averaging over Ns ¼ 8192 different realiza-
tions. Again, we checked for some prototypical parameter
values that a higher number of samples did not change the
results.
Now we turn our attention to the integration scheme used

for the Schrödinger equation

i
∂ψ

∂t
¼ Hψ ; ðC1Þ

where the Hamiltonian is written in position space as in
Eq. (5). The initial conditions given in Eq. (6) completely
determine the time evolution of the system. Formally this is
given by

ψðt; x; yÞ ¼ e−i
R

t

0
Hdtψ0ðx; yÞ: ðC2Þ

To find a numerical approximation of this solution we need
to discretize space on a grid, writing xj ¼ jΔx and
yi ¼ iΔx, and solve the equation in a finite domain defined
to be a square box of size L (centered around the origin).
The number N2 of grid points we include determines the
spatial resolution Δx ¼ L=N. Finally, we also discretize
time, by defining tj ¼ jΔt, and evolve the wave function by
rewriting (C2) as

ψðtf;xj;yjÞ¼Πf
s¼0e

−iΔt
2
Hke−iΔtHpe−i

Δt
2
Hkψ0ðt0;xj;yjÞ; ðC3Þ

where Hk denotes the kinetic part of the Hamiltonian (the
spatial derivatives) and Hp, the potential part. In practice,
we employ a pseudospectral method where we evolve with
Hk in Fourier space by rotating the discrete Fourier trans-
form (DFT) of ψðxi; yi; tiÞ twice at each time step. Notice
that this is simply a VV2 integration scheme applied to the
discretized Schrödinger equation [68]. It is a symplectic
integrator, conserving the total probability and average
energy to high precision. Our method implicitly assumes
periodic boundary conditions due to the way the DFT is
performed. We checked that the boundary has little effect on
our numerical solution, as long as the initial coherent state is
well separated from it. This is because we are always
working with a confining potential. To check that our results
are not too sensitive to the spatial and temporal resolutions
(Δx and Δt) and to the finite size of the box (L) we have
performed convergence tests of the code, and investigated
the influence of each source of truncation error individually.
We did this by defining benchmark simulation parameters,
N ¼ 256, L ¼ 40, Δx ¼ L=N ≈ 0.15, and Δt ¼ 0.03, and
comparing the resulting numerical solution to the one
obtained by changing either Δt, Δx, or L, keeping every-
thing else constant. Note that the benchmark parameters are
precisely the ones we used for most of the results that we
present in the main body of the text.
For example, we can compare how the average value of

some operator Ô, hÔðtÞi changes when varying one of the
benchmark parameters, by plotting the quantity11

TABLE II. Some prototypical results for the three-mode
system. Three situations can be distinguished: UU, when both
modes are unstable; US, when the first mode is unstable while the
second one is stable; and SS, when both modes are stable. We can
readily compare these results to those of Table I, for the two-
mode system. Again the influence of the existence of unstable
modes on the break times is evident.

λ x0 Ω1=ω Ω2=ω Stability tq tMF tTW Se at t ¼ 25

0.1 5 0.4 0.8 UU 4 9 17 2.93
0.05 8 0.4 0.8 US 7 12 25 2.37
0.04 6 0.8 1.2 US 11 19 31 1.62
0.03 5 0.4 1.2 SS 11 83 70 0.34

11Note that the quantity δ introduced here has nothing to do
with the one in Eq. (16).
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δðtÞ ¼ jhÔðtÞi − hÔðtÞibj
hÔðt ¼ 0Þi ; ðC4Þ

where the subscript b refers to the benchmark simula-
tion and the normalization factor in the denominator is
exactly computable in terms of the initial conditions. In
Fig. 8, we show the result of this test for operators x̂ and
x̂2 for three representative points in physical param-
eter space.
We observe that the errors remain small for all times. In

fact, the maximum error is obtained when varying Δt. For
Ω=ω ¼ 0.8, λ ¼ 0.1, and x0 ¼ 15 it becomes of order 10−2.
These errors do not influence the conclusions of this work
as they are too small to change the results in any mean-
ingful way. Of course, we could have reduced the error of
our numerics by increasing the resolution of our grid, but
opted not to in order to keep the computational time within
reasonable limits. We believe that the results of Fig. 8
warrant this decision.
As a final test of our numerics, we also explicitly show

that the average energy is conserved [by plotting ΔHðtÞ ¼
j1 − hHðtÞi=hHðt ¼ 0Þi|] for our benchmark simulation
parameters. This is shown in Fig. 9. As expected we see
that our code conserves energy up to one part in 104.

FIG. 9. The degree of conservation of the expectation value of
H for the benchmark simulations of the previous three choices of
physical parameters. In all cases energy is conserved up to one
part in 104.

FIG. 8. Plot of the convergence parameter as defined in Eq. (C4) as a function of time, for the operators x̂ (left) and x̂2 (right). The
results are shown for three representative points in our physical parameter space, namely Ω=ω ¼ 0.8; λ ¼ 0.1; x0 ¼ 15 (blue), Ω=ω ¼
0.4; λ ¼ 0.1; x0 ¼ 4 (green), and Ω=ω ¼ 1.2; λ ¼ 0.04; x0 ¼ 10 (red). We vary the benchmark simulation parameters in three different
ways: reducingΔt by a factor of two (dashed line), reducingΔx by a factor of two (dotted line), and increasing the box size L by a factor
of two (continuous line). In some cases the differences were smaller than machine precision, which is why they were not plotted here.
The influence of Δt is the most important although it is limited. Note that in the case where the error becomes Oð10−2Þ (dashed blue
line), the associated break times are much shorter (see Fig. 3) than the 100 time units that are shown here and therefore our results can
still be trusted.
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