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Abstract: Solar radiation is a first-order essential climate variable like temperature and
precipitation. Its significant spatiotemporal variability, mainly due to atmospheric con-
ditions, makes modelling particularly challenging, especially in regions with complex
atmospheric dynamics and sparse meteorological stations. This study evaluates 6 solar ra-
diation models (SARAH, PVGIS, Constant Atmospheric Conditions, Physical Solar Model,
CAMS Worldwide, and InsolMets) using monthly measurements from 141 ground-based
stations across the Iberian Peninsula from 2004–2020. Although all models consistently
captured intra-annual variability, discrepancies in absolute values arise due to factors such
as the differences in their functional designs and input parameters. InsolMets, which
integrates cloud optical thickness, cloud fractional cover, the diffuse radiation component,
and enhanced solar illumination geometry, was the most robust model, showing relevant
improvements (61.5% in January, 59.7% in November, and 52.0% in December) compared
to the worst-performing model (constant atmospheric conditions). Using as a threshold
three times the root-mean-square error (RMSE) proposed by the Global Climate Observing
System, InsolMets achieved the highest number of months (10) under this limit, also achiev-
ing the best overall result, with only 1 month showing non-significant correlations over
the same time span. Nevertheless, SARAH and PVGIS matched InsolMets’ performance
during March, November, and December. The results provide insights for selecting and
improving solar radiation estimations, highlighting the need to incorporate remote sensing
atmospheric data to minimize uncertainties. While all models that account for atmospheric
effects enhance accuracy, InsolMets stands out as the most accurate model for estimating
solar radiation across the Iberian Peninsula throughout the year, achieving the lowest
RMSE and normalized RMSE values.

Keywords: solar radiation; solar energy; spatiotemporal atmospheric data; quality filters;
model validation processes; model comparison

1. Introduction
Solar radiation is a first-order essential climate variable (ECV; [1,2]), the precise esti-

mation of which is paramount for a wide range of scientific and technological applications.
From climate modelling to the management of renewable energy resources, detailed knowl-
edge of solar radiation is crucial in understanding environmental systems. Indeed, an
organized ECV repository of Global Climate Observing System (GCOS) features (ECV and
Climate Data Records (CDR); [2]) exists <https://climatemonitoring.info/ecvinventory/>
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(accessed on 10 May 2025), which contains atmospheric data, including downward short-
wave irradiance at the earth’s surface (Surface Radiation Budget), as well as land and ocean
records. These records are primarily provided by the Committee on Earth Observation
Satellites (CEOS) and the Coordination Group for Meteorological Satellites (CGMS).

Solar radiation directly influences the earth’s energy balance, as the amount of solar ra-
diation received during the day directly impacts the warming of the earth’s surface [3,4], the
hydrological cycle, and ecosystem behavior [5,6], as well as in the generation of photovoltaic
and thermal solar energy [7–10]. Additionally, its interaction with other meteorological
factors makes it a determining element in climate forecast and decision making for the man-
agement of water and agricultural resources [11–14]. Therefore, solar radiation is a critical
variable in land-use planning, especially in regions vulnerable to climate change [3,15].

This process involves analyzing the amount of solar energy reaching the earth’s surface,
taking into account different environmental factors and their spatiotemporal variability.
It depends essentially on the solar illumination geometry relative to the terrain forms,
and, in particular, on the properties of the atmosphere, requiring the implementation of
different treatments of its influence on solar radiation components (direct and diffuse solar
radiation). The first factor is well-known and easier to integrate, as it is primarily influenced
by predictable solar vector incidence angles and geometry [16–18]. The second factor,
including cloud cover and atmospheric optical thickness, introduces greater uncertainty
and variation between models due to the high spatiotemporal variability of the atmospheric
dynamic conditions, which can change rapidly and are difficult to predict in solar radiation
assessments [19].

An accurate evaluation of solar radiation is essential for assessing its potential as an
energy source and for the effective design and implementation of solar energy systems
across diverse regions and climatic conditions, including photovoltaic panels and thermal
collectors (e.g., solar concentration systems, desalination and solar water treatments),
thereby ensuring optimal utilization of this renewable energy resource [20].

The importance of solar radiation is accentuated in territories with complex climatic,
ecological, and geographical conditions, such as the Iberian Peninsula, characterized by
the interaction of atmospheric, climatic, and topographic factors that generate the highly
variable spatiotemporal behavior of solar radiation. Indeed, the Iberian Peninsula is
under the influence of various factors that significantly condition the availability and
geographic distribution of this resource [21], highlighting the climatic variability between
regions with Atlantic influence and those with Mediterranean influence [22]. In the north
and northwest areas, the Atlantic influence generates a temperate and humid climate,
characterized by high cloud cover that reduces the incident solar radiation. In contrast,
the south and southeast areas are dominated by arid and semi-arid conditions, with
clear skies that increase the availability of solar radiation. Especially in these areas, the
duration and frequency of anticyclonic systems, nowadays exacerbated by climate change,
generate conditions of atmospheric stability, which favor high solar insolation and the
intensification of droughts by increasing temperatures and the evaporation of available
water [23]. This climatic heterogeneity, combined with topographic variability, introduces
additional complexities in the precise estimation of solar radiation. Moreover, variability in
vegetation cover, from dense vegetation areas to arid and desert regions, with differentiated
implications for water resource availability and thermal behavior, also influences the energy
dynamics of the territory and the resilience of ecosystems, according to the climate [24].

The regional context further exacerbates the relevance of this analysis due to the
spatiotemporal irregularity and scarcity of precipitation in extensive areas of the Iberian
Peninsula [25–28]. This increasing aridity, combined with a significant reduction in the
availability of water resources, rising temperatures, and the increased evaporation of avail-
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able water [23], has changed the hydrological cycle in the region and limited the potential
for hydroelectric production. As a result, solar energy has emerged as a key renewable
alternative to meet energy demand and mitigate the adverse effects of climate change,
particularly in vulnerable regions where these effects, such as rising temperatures and
altered precipitation patterns, are more evident [15]. Furthermore, the transition to clean
energy sources makes the efficient utilization of solar radiation crucial. In this context,
the implementation of solar systems becomes a priority strategy to ensure energy security
and reduce dependence on non-renewable sources [3], supporting other energy systems
and helping to mitigate climate change. Indeed, the disruption of the hydrological cycle,
particularly the availability and distribution of water, further complicates water manage-
ment and ecosystem resilience, as both the carbon cycle and evapotranspiration are closely
linked to forest growth and are significantly impacted by global warming [6,24,29–31].

Following [31], the increase in temperatures, as a result of global warming, intensifies
the demand for water due to potential evapotranspiration (PET), which directly affects
the water resources. This hydrological demand can exacerbate soil aridity, especially in
regions where temperature and evapotranspiration are high, highlighting the crucial role of
evapotranspiration in the variability of droughts; the higher hydrological demand reduces
the soil moisture levels and impacts forest growth and the water resources available for veg-
etation. As temperatures rise, driven by increased solar radiation, evapotranspiration also
increases, leading to greater hydrological losses, affecting the growth of forest ecosystems
and their resilience to droughts. Solar radiation, a key factor in temperature rise, reaches
the earth’s surface, which in turn accelerates evapotranspiration. Moreover, atmospheric
conditions and climatic variability due to climate change further influence the efficiency of
this cycle.

Solar radiation provides essential information for assessing the impact of radiation on
vegetation activity during the growing season [32,33]. It aids in calculating the fraction of
photosynthetically active radiation absorbed by vegetation (fPAR) in combination with the
remote sensing index NDVI (Normalized Difference Vegetation Index), and in establishing
energy absorption patterns across different land covers [13,34–37].

Optimizing the use of solar radiation and understanding the climate-related impacts
on ecosystems is essential; it is crucial to have robust and accurate solar radiation estimation
models and methods for these purposes, especially in the context of global change, carried
out using a range of approaches and methodologies [38–46]. The main objective of this
study is to conduct a comprehensive comparison of six solar radiation estimation models,
each based on different methodologies, to assess their performance under the climatic and
geographical conditions specific to the Iberian Peninsula: satellite remote sensing models
(SARAH); semi-empirical models (PVGIS and Constant Atmospheric Conditions); physical
radiative transfer models (Physical Solar Model); and hybrid physical-empirical models
(CAMS Worldwide and InsolMets). The selection of the Iberian Peninsula as the study area
is justified by its relevance as a regional case study situated within a geographically and
climatically complex environment of significant scientific interest, as previously explained.
Additionally, the unique characteristics of this region present a challenging scenario for the
models. Despite its regional nature, it serves as a broad and comprehensive test bed.

A comparison of these models is essential for identifying the most suitable approach
for solar radiation estimation [47–51], considering its key role in the earth’s energy balance
and influence on projected global warming [3,4]. Solar radiation is a first-order ECV [1,2],
whose accurate estimation is fundamental for a wide range of scientific and technological
applications. From climate modelling to the management of renewable energy resources,
detailed knowledge of solar radiation is crucial for understanding environmental systems
and anticipating their evolution. In this context, access to validated and up-to-date data
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from reliable solar radiation models is essential. The quality and robustness of these models
not only enhance analytical capacity but also support informed decision making in key
sectors, such as the design of sustainable and adaptive energy systems [20], particularly in
the face of increasing drought and water-scarcity scenarios [23,31]. Moreover, advances in
the estimation of solar radiation are crucial for practical applications [7,8] such as planning
and monitoring systems for energy efficiency and their integration into energy supply
networks [3,10,15]. Therefore, the development and scientific validation of solar radiation
models, supported by recent and robust references, not only ensures methodological rigor
but also strengthens our ability to respond to current and future environmental, climatic,
and energy-related challenges.

2. Methods
In this study, a comparison of the different models within the 2004–2020 period

was conducted. These years were selected for their particular climatic conditions and to
provide a broad and representative representation of the different atmospheric and climatic
conditions in the Iberian Peninsula.

On the one hand, the years 2005, 2008, 2012, and 2017 were identified as representative
periods of the most severe droughts recorded in the Iberian region. These intense drought
episodes were characterized by especially low cloud cover, attributed to a combination of
reduced surface humidity and the prevalence of anticyclonic patterns, which significantly
limited cloud formation and precipitations, being indicative of different solar radiation
situations [23,52–54].

On the other hand, the years 2010, 2013, 2018, and 2020 were considered as representa-
tive of the wettest years in the study area. These years were characterized by an increase in
cloud cover, associated with meteorological conditions that favored cloud formation and
the occurrence of more precipitation [52].

Additionally, the years 2007, 2016, and 2019 were classified as more climatically stable
periods, as they did not present extreme events in the context of the regional climate [52].

The year 2006 was also included in the analysis due to its particular climatic char-
acteristics. Although this year was exceptionally warm, it experienced relatively normal
precipitation levels, making it a singular case deserving attention [52,55].

Finally, the year 2009 was considered as an atypical period within the time span. This
year recorded the highest number of sunshine hours across the entire time series (2004–2020)
and coincided with very warm temperatures [52]. However, despite these conditions, the
precipitation remained at normal or even abundant levels in certain regions.

The remaining years of the time series (2004, 2011, 2014, and 2015) analyzed in this
work follow similar trend patterns to the aforementioned blocks, according to the annual
AEMET reports. The year 2011 stands out as a year of severe drought in the Iberian
Peninsula, with significant impacts on water supply, affecting water storage in reservoirs
and hydroelectric production [56]. Similarly, in 2015, water resource management measures
were implemented as reservoirs failed to reach optimal levels for water supply, dropping
to critical levels in several regions [57]. In summary, the considered time span, 2004–2020,
provides a broad and representative view of the different atmospheric conditions in the
Iberian Peninsula. A more detailed analysis of the selected years, including additional data
and insights, is available in Appendix A for further reference and assessment.

To ensure an accurate assessment of each model’s performance, a monthly validation
was conducted using in situ data from 141 ground-based meteorological stations between
2004–2020 from AEMET (Agencia Estatal de Meteorología, Spain) and SNIRH (Sistema
Nacional de Informação de Recursos Hídricos, Portugal), as presented and analyzed by [58].
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The AEMET station network adheres to the specifications set by the World Meteo-
rological Organization (WMO), forming a National Radiometric Network (NRN). This 
network includes the main stations of the National Radiometric Centres (NRC) as well as 
radiation measuring instruments from other entities, as detailed by [59]. The units used, 
10 kJ·m−2·day−1 (energy per unit area and per day), are consistent with those of the World 
Radiometric Reference (WRR), based on the scale established in 1980 [16]. For details of the 
filtering processes of the AEMET network, please refer to [58].

The measuring instrument used by SNIRH in its station network is a silicon photo-
voltaic cell (Si-01TCext) (e-mail communication, 12 October 2023), installed at 2 m above 
any surface (ground or roof). This instrument measures solar energy in the form of light 
and heat, recording values between 0 and 2000 W·m−2 with an accuracy of ±5 W·m−2 

(power per unit area). In the work of [58], units were converted to 10 kJ·m−2·day−1 to 
ensure comparability. Its operating temperature range is between −20 ◦C and +70 ◦C. Data 
are captured in 15-minute intervals and transmitted in real time via the Global System 
for Mobile Communications (GSM). For details of the filtering processes of the SNIRH 
network, please refer to [58].

Since the AEMET series and most models provide data in units of energy per unit area, 
all values have been converted to kWh·m−2 (energy per unit area), corresponding either to 
a representative day or to the monthly average of daily values. This approach also accounts 
for the fact that most models express solar radiation in watts (W-power-) or watt-hours 
(Wh-energy-). The SNIRH series and each of the considered models were converted in 
the appropriate direction, where required (Table A2 shows how the computation was 
performed in each situation).

The set of estimators calculated in this study to compare solar radiation models 
includes: the mean bias error (MBE); root-mean-square error (RMSE); the normalized form 
of RMSE (NRMSE, deseasonalized); and the Pearson correlation coefficient (r).

Regarding the normalization of the RMSE (NRMSE), it is important to avoid monthly 
bias in comparisons of results. This bias is due to the intra-annual seasonal variability of the 
incident solar radiation. Deseasonalizing a dataset helps to remove regular and predictable 
fluctuations that repeat at specific time intervals, such as months or seasons, considering 
the total range of observed values used in the validation and avoiding the influence of high 
absolute values (the monthly NRMSE is calculated by dividing the RMSE by the average of 
the observed data in the same month). When a variable exhibits strong seasonal behavior, 
such as solar radiation, direct data comparison becomes challenging. This is because solar 
radiation naturally varies with factors such as the time of year (longer daylight hours 
and higher solar altitude in summer increase radiation), geographical location (regions 
closer to the equator receive more radiation than those near the poles), and atmospheric 
conditions (cloud cover, humidity, and pollution). These natural variations not only affect 
the values themselves but also influence the evaluation of model performance, particularly 
error metrics like RMSE, which tend to increase with the magnitude of the observed values.

To guarantee that the observed data in the validation results meet optimal temporal 
data completeness (TDC), different quality filter processes have been carried out on the 
AEMET–SNIRH time series. TDC is an important indicator of data quality as expressed 
by [58,60–63]. On the one hand, stations with less than 45% of the data for the observed 
month have been removed. On the other hand, another quality filter process based on 
the estimated errors at the meteorological stations has been implemented, removing the 
stations where the error exceeded two standard deviations from the RMSE.

Finally, as it seemed interesting to know the improvement of the best-performing 
model with regard to the worst-performing model for each month, the difference in their 
RMSE was calculated and expressed with respect to the worst-performing model.
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To calculate the set of estimators, the CombiCap application within the free Mira-
Mon (MM) GIS software, v. 10 [64,65] was used, which allows for a combination of the
meteorological stations layer with the estimated solar radiation layers using a nearest-
neighbour or a bilinear interpolation method. To simplify the paper, only the results based
on bilinear interpolation are shown, as no relevant differences were observed between the
two methods.

These procedures evaluate each model’s capacity to reproduce the spatiotemporal
variations of solar radiation in the Iberian Peninsula. The monthly comparison allows for
the detection of seasonal patterns, assessing each model’s response under changing climatic
conditions and determining their suitability for energy planning and natural resource
management in the region.

2.1. Solar Radiation Models

The main objective of this study was to conduct a comprehensive comparison of
six solar radiation estimation models, each based on different methodologies, to assess
their performance under the climatic and geographical conditions specific to the Iberian
Peninsula. The computational methods used to calculate the models are explained below;
the different models to be evaluated are detailed in the following subsections. Table A2
presents additional aspects concerning both the datasets used to validate and compare
solar radiation in the Iberian Peninsula and the models under comparison.

Satellite remote sensing models: SARAH [66]. These models use satellite data to
estimate solar radiation on the surface. These models may combine radiative, transfer-
based approaches (e.g., SARAH, CLARA [67], NASA POWER [68]) with parameterizations
and empirical adjustments, or use primarily empirical methods derived from satellite
observations (e.g., HelioClim [69]). These models are characterized by providing extensive
and continuous spatiotemporal coverage, which is particularly useful in regions with a
low density of meteorological stations. However, their accuracy may be affected under
conditions of persistent cloud cover or high aerosol concentration, factors that complicate
the precise estimation of incident solar radiation. To improve the accuracy of these estimates,
it is common to combine them with physical radiative transfer models.

Semi-empirical models: PVGIS [70–72] and Constant Atmospheric Conditions [16,17].
These models combine empirical formulations with physical aspects in the estimation of
solar radiation. This approach helps to improve accuracy in environments with significant
topographic and atmospheric variability by considering additional factors such as the solar
incidence angle, cast-shadows, cloudiness, and the presence of aerosols. Another example
of these models is the one developed by [73].

Physical radiative transfer models: Physical Solar Model [74,75]. These models pro-
vide detailed descriptions of solar radiation behavior through the atmosphere. They are
highly accurate, as they consider the physical interactions between solar radiation and
atmospheric components such as water vapor, dust particles, and atmospheric gases [76,77].
However, their implementation is computationally demanding and requires high data-
processing capacity. Although these models inherently include atmospheric correction in
their computing, they can benefit from additional adjustments to optimize their accuracy
under specific atmospheric conditions [78].

Hybrid physical-empirical models: CAMS Worldwide [79–81] and InsolMets [64,82].
These models combine physical and empirical components to optimize solar radiation
estimation. This combination allows for the use of physical model accuracy and different
parameterizations in simulating solar radiation behavior in the atmosphere, while also
benefiting from the computational simplicity of empirical models [83–85]. As a result, these
hybrid models achieve a balance between accuracy and computational efficiency. Their
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versatility makes them a robust alternative for estimating solar radiation in regions with
high climatic and topographic diversity.

There are also solar radiation models based on purely empirical techniques. These
models were not analyzed, as the methods previously mentioned employ more specific
and detailed techniques. Empirical methods rely on mathematical relationships derived
from observations [86]. Their implementation is simple and requires fewer data, making
them particularly useful in areas with sparse measurements. However, their accuracy can
be compromised in regions with high atmospheric variability or unpredictable climatic
patterns. The Ångström–Prescott method is one example of the solar radiation models
based on empirical techniques [87]. This method uses the observational data of incident
solar radiation, the theoretical exoatmospheric irradiance depending on the sun’s position,
the real duration of sunlight, the observed hours of sunshine, the maximum theoretical day
duration depending on latitude and date, and specific empirical coefficients based on the
calibration of local measurements. In this context, ref. [88] concluded that specific local
factors (topography and climate) can significantly influence the accuracy of solar radiation.
Promising results have recently been shown by using the Ångström–Prescott equation to
estimate the atmospheric transmittances both under clear and cloudy sky conditions over
time, contributing to a better understanding of the interactions between solar radiation and
the atmosphere [89].

2.2. SARAH Model

The satellite-based solar radiation model SARAH v. 3.0 (Surface Solar Radiation Data
Set–Heliosat) <https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_
V003> (accessed on 10 May 2025), distributed by EUMETSAT (European Organisation for
the Exploitation of Meteorological Satellites), is based on data collected by the SEVIRI sensor
used with the Meteosat satellites. Its series provides instantaneous data every 30-min, as
well as daily averages and monthly averages since 1983, with a spatial resolution of 0.05◦

(~5 km) in units of W·m−2 (power per unit area). For this work, the per-year monthly
average series of the surface incoming shortwave radiation (SIS) model has been used.

The primary algorithm used is based on the Heliosat method [90–94] to estimate the
effective albedo of clouds from satellite reflectance observations, which allows for the calcu-
lation of solar irradiance attenuated by cloud presence. This albedo is combined with clear
sky radiative transfer models to calculate the solar radiation at the surface. Additionally,
an autocorrection technique is implemented to address the radiometric calibration of the
satellite sensors, ensuring the homogeneity of the dataset over time [66].

2.3. PVGIS Model

The semi-empirical solar radiation model PVGIS v. 5.3 (Photovoltaic Geographical
Information System) <https://re.jrc.ec.europa.eu/pvg_tools/es/> (accessed on 10 May
2025), provided by the European Commission (EC), uses satellite data from the SARAH
model to calculate solar radiation in regions between ±65◦ longitude and ±65◦ latitude.
For areas not covered by SARAH, solar radiation is calculated from ERA5 re-analysis data.
Its series provides hourly, daily, and monthly accumulated radiation since 2005, with a
spatial resolution of 0.05◦ (~5 km) for areas covered by SARAH, and 0.25◦ (~30 km) for
areas covered by ERA5, in units of kWh·m−2 (energy per unit area). For this work, the
daily average of each per-year month has been computed by dividing the accumulated
monthly data of the series by the number of days in each month.

The importance of this model is that it integrates satellite images as databases within
an online tool that allows users to estimate photovoltaic system performance at specific
locations across the covered regions—Europe and Africa [72]. It offers data on diffuse solar

https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V003
https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V003
https://re.jrc.ec.europa.eu/pvg_tools/es/
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radiation (DIF), global tilted irradiation (GTI) on tilted surfaces, and other data related
to the optimization and technology of solar systems. To do this, it uses photovoltaic
performance models and tilted plane irradiance models [95–98]. The core of the model is
the Heliosat method, which converts satellite reflectance observations into estimates of
incident solar radiation, considering the cloud cover influence and refining the estimate
with atmospheric models. To improve accuracy, the results are adjusted with radiative
transfer models incorporating atmospheric variables such as aerosol concentration, water
vapor content, and clear sky conditions.

2.4. Constant Atmospheric Conditions Model

The semi-empirical solar radiation model constant atmospheric conditions (CAC)
is calculated using the InsolDia application of MM [64,82], considering the parameters
established in previous works [16,17]. It uses a digital elevation model (DEM) with a spatial
resolution of 100 m, a constant cloud optical thickness (COT-τ0-) throughout the day and
year, set to τ0 = 0.288 for clear days, and a DIF component contribution set at 20% of the
direct solar radiation (DIR). Although the DIF component may vary depending on the
atmospheric conditions of the date and location [99–101], this study has chosen to use the
value established in the original reference of the model (20% [16]). This dependence is also
present in different works [102–107].

Moreover, the solar vector incidence angles have been determined using a simplified
approach, setting up a single central point within the whole study area and moving the
sun in 30-minute intervals from sunrise to sunset.

This model provides the results in 10 kJ·m−2·day−1 (energy per unit area and per day)
for each central day of the month in every year of interest, as the central day of the month
is representative of the monthly daily average [18]. CAC data for the Iberian Peninsula
computed for this study are freely available at <https://www.infoambiental.grumets.cat/
RadSolarPI/CAC/RadSolar_CAC_ENG.htm> (accessed on 10 May 2025).

2.5. Physical Solar Model

The physical radiative transfer solar radiation model Physical Solar Model v. 3.1 (PSM)
<https://nsrdb.nrel.gov> (accessed on 10 May 2025), is a model of the National Solar
Radiation Database (NSRDB) in collaboration with the National Renewable Energy Labo-
ratory (NREL), the University of Wisconsin, and the National Oceanic and Atmospheric
Administration (NOAA) [108]. The series it provides are instantaneous (15–30–60-min
intervals) since 2005, with a spatial resolution of 4 km, in units of W·m−2 (power per unit
area). For this work, the average of each per-year month has been computed from daily
data calculated using the hourly instantaneous data.

This model was developed from the retrieval of cloud physical properties to construct
a cloud mask, using satellite remote sensing images, along with meteorological models
and solar physical properties [109,110]. It also considers the integration of aerosols, water
vapor, and reflected radiation from the surfaces [74,75].

2.6. CAMS Worldwide Model

The hybrid physical–empirical solar radiation model CAMS Worldwide v. 4.6
<https://www.soda-is.com/pub/files/cams/CAMS-MSG-HIMAWARI-v4.6rev2/> (ac-
cessed on 10 May 2025) models solar radiation data (SoDa). Since 2005, it has provided
instantaneous series (15 min intervals) with a spatial resolution of 0.2◦ (~20 km), in units
of Wh·m−2 (energy per unit area). For this work, the average of each per-year month has
been computed from daily data calculated using the instantaneous data.

To estimate solar radiation reaching the earth’s surface, this model combines advanced
atmospheric models with observational data obtained from satellite images [79,80]. The

https://www.infoambiental.grumets.cat/RadSolarPI/CAC/RadSolar_CAC_ENG.htm
https://www.infoambiental.grumets.cat/RadSolarPI/CAC/RadSolar_CAC_ENG.htm
https://nsrdb.nrel.gov
https://www.soda-is.com/pub/files/cams/CAMS-MSG-HIMAWARI-v4.6rev2/


Atmosphere 2025, 16, 590 9 of 31

calculations are based on algorithms derived from the Heliosat and McClear methods,
which allow for the modelling of solar irradiance under different atmospheric conditions.
In this context, the Heliosat method is used to estimate the solar radiation considering
the cloud cover influence, integrating satellite reflectance and cloud observations, along
with additional atmospheric parameters (aerosols, water vapor, and ozone) to refine the
estimates in variable conditions. On the other hand, the McClear method [84,111,112], based
on radiative transfer models, is used to calculate solar radiation under clear sky conditions.

2.7. InsolMets Model

The hybrid physical–empirical solar radiation model InsolMets is a model devel-
oped by the GRUMETS research group. It does not currently provide computed data to
download; however, the software used to obtain the desired data is available (InsolDia-
MM [64,82]). It is also described in [82], and reproducible in other regions of the world due
to the availability of extensive satellite data time series and detailed DEM, along with its
implementation through free software, enabling the production of solar radiation maps
based on geoinformation. The series can be computed on an instantaneous, hourly, daily,
and monthly basis and with averages for the desired period, as well as for any selected
daily time interval, with a spatial resolution that depends on the resolution of the data
provided (100 m in this study). Results are provided in units of 10 kJ·m−2·day−1 (energy
per unit area and per day) for each central day of the month in every year of interest.
InsolMets data for the Iberian Peninsula computed for this study are freely available
at <https://www.infoambiental.grumets.cat/RadSolarPI/InsolMets/RadSolar_InsolMets_
ENG.htm> (accessed on 10 May 2025).

In this study, calculations were conducted on a horizontal surface considering global
horizontal irradiation (GHI [58]), as most of the other models to be compared provide this
variable or allow for the computation of this common variable; however, InsolMets also
allows for the calculation of GTI and global relief irradiation (GRI). These variables offer
different approaches to solar radiation geospatial mapping for various applications. GTI
is especially useful in engineering due to its integration with renewable energies (energy
planning and photovoltaic system design). GRI focuses on ecological studies and precision
agriculture due to the incorporation of the terrain structure, the solar vector incidence
angles (slopes, aspects, and cast-shadows) and solar radiation exposure (biodiversity,
ecosystem growth, and crop management).

The InsolMets model provides greater accuracy in calculating the solar illumination
geometry by using a tessellated DEM approach at 100 m spatial resolution (DEM-based [18]).
The solar incidence angles have been set up at the center of each tile, moving the sun in
30-minute intervals from sunrise to sunset, ensuring that relative differences in solar
radiation calculation accuracy between the central point of each tile and any other point
remain ≤1.00%. Thus, the model incorporates the solar vector incidence angles at all times
throughout the months and years, areas with topographic concealment, and variations
in the solar exoatmospheric irradiance due to changes in the earth–sun distance (in this
case the ISO 21348:2007 [113] solar constant of 1366 W·m−2 has been used). This makes
it possible to calculate the DIR and DIF components as incident global solar radiation;
however, it does not account for the reflected radiation from surrounding surfaces as
its contribution is usually low [105]. It is essential to consider both cast-shadows and
solar incidence angles when modelling DIR. Otherwise, the model may incorrectly assign
DIR values where it should not, resulting in systematic overestimation, particularly in
geometrically unfavorable or concealed locations where only DIF should be present. If the
DIF component is not included in these cases, the resulting solar radiation will be zero. An
exception applies when estimating DIR that would cross the atmosphere under clear sky

https://www.infoambiental.grumets.cat/RadSolarPI/InsolMets/RadSolar_InsolMets_ENG.htm
https://www.infoambiental.grumets.cat/RadSolarPI/InsolMets/RadSolar_InsolMets_ENG.htm
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conditions, before it reaches the surface, in which case the relief and shadows do not need
to be considered, as this estimate is used to compute the DIF component. However, even in
this case, the solar incidence angles must still be taken into account.

Following [82], a COT of τ0 = 0.223 in clear sky regions for the months of November–
April, and a τ0 = 0.288 for the months of May–October, is considered in the InsolMets
calculation. In this context, InsolMets integrates the atmospheric situation through COT
and cloud fractional cover (CFC) from satellite remote sensing data (SEVIRI CLAAS 2.1
and 3.0: COT and CFC products used are available at the EUMETSAT website <https:
//navigator.eumetsat.int/product/EO:EUM:DAT:0279> and <https://navigator.eumetsat.
int/product/EO:EUM:DAT:0820> (accessed on 10 May 2025)), calculating DIR under both
cloudy and clear sky conditions, and applying a differentiated COT treatment in both
scenarios. Furthermore, it considers the estimation of the DIF component contribution as the
ratio of the DIR component crossing the atmosphere under clear sky conditions (τ0 = 0.288),
using observed data at different meteorological stations for interpolation and validation
results. This relationship is influenced by Rayleigh scattering, which attenuates the DIR
component and contributes to the generation of the DIF component [99], since completely
transparent atmospheric conditions are not physically possible [114]. These characteristics
make InsolMets an especially valuable tool, as it allows for the accurate assessment of
solar radiation in complex terrains with changing spatiotemporal atmospheric and climatic
conditions, adjusting to the specific features of each terrain.

3. Results and Discussion
The comparative analysis of different solar radiation models reveals important dif-

ferences in the estimation of irradiance in the Iberian Peninsula. This analysis will be
twofold. First, the complete set of meteorological stations is used. Second, the quality filters
described in Section 2 are applied.

When analyzing the complete set of meteorological stations, the results show that,
although the methodologies used demonstrate general consistency in the intra-annual
variability of solar radiation, there are discrepancies in the recorded absolute values. These
differences are influenced by factors such as the different functional design of the models
(radiative transfer models, etc.) and the input parameters (cloud cover, aerosol concen-
tration, spatial resolution, etc.). In particular, it is observed that certain models tend to
overestimate or underestimate the solar radiation in comparison with the reference data
(Figure 1). As could be expected, the model showing the worst validation results is the
one calculated with a sun position based on a central point for the entire study area, under
constant atmospheric conditions for clear days (CAC).

In this context, ref. [115] further emphasize that, while models and databases can pro-
vide reasonably accurate estimates of global solar radiation, there are significant limitations
regarding the accuracy of the direct and diffuse components, particularly under cloudy
sky conditions. They underscore the need to improve the representation of atmospheric
conditions within models. Such precision is essential not only for the design and perfor-
mance of photovoltaic and thermal systems, but also for the ecological studies in which
solar radiation serves as a key environmental driver. These limitations may be further
exacerbated in regions characterized by high topographic and climatic heterogeneity, where
ecological gradients, such as water availability, primary productivity, or vegetation cover,
respond sensitively to local variations in incident solar radiation [6,30,33,116].

https://navigator.eumetsat.int/product/EO:EUM:DAT:0279
https://navigator.eumetsat.int/product/EO:EUM:DAT:0279
https://navigator.eumetsat.int/product/EO:EUM:DAT:0820
https://navigator.eumetsat.int/product/EO:EUM:DAT:0820
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Figure 1. Comparison of the validation results of different solar radiation models (SRM) based on
the AEMET–SNIRH network. Validation results units: kWh·m−2. MBE is computed as predicted-
observed. The best monthly results are highlighted in green, while the worst are highlighted in grey
(without considering the CAC model as these are always the worst). For each quality indicator value
of the models, the best overall results are highlighted in yellow, while the worst are highlighted
in purple. The different scenarios with RMSE > 0.36 kWh·m−2 are highlighted in bold. Special
CAC validation results (right panel): blue highlights the similar results with other models and pink
highlights non-significant (p-value ≥ 0.05) correlations. Statistics computed: median (MED); average
(AVG); minimum (MIN); and maximum (MAX). The number of monthly scenarios resulting in a
non-significant correlation over the time span is also shown (lower panel; nS.r), along with the
best-performing model in these cases.
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The MBE scatter plot for the CAC model (Figure 1) reveals significant anomalies, with
a tendency to overestimate solar radiation when validated against the AEMET–SNIRH in
situ dataset. This bias occurs from February to October because the CAC model is based
on constant atmospheric conditions for clear sky days using fixed parameters (τ0 = 0.288
and DIF = 20%), as defined by [16,17]. Indeed, the observed average conditions across
the Iberian Peninsula require greater atmospheric cover and thickness due to the pres-
ence of clouds, which must be accounted for to accurately model solar radiation. The
overestimation is especially important in April to July due to the fact that days are longer;
the excessively low τ0 cumulates more DIR and the excessively high DIF value, which is
computed with reference to the DIR [99,102–107], cumulates more DIF. Moreover, accord-
ing to [117], April and May exhibit more cloud cover than June and July, thereby making
the erroneous estimation still greater. When considering NRMSE, CAC model errors are
more pronounced during the winter months (Figure 1), as deseasonalization removes the
influence of day length. In this context, the increased cloud cover in winter leads to greater
discrepancies between this clear sky model and the in situ data. In contrast, during the
summer months, the NRMSE mitigates the impact of high absolute values resulting from
the longer daylight hours and higher solar altitude, especially during the clear sky periods
associated with high-pressure systems when the atmosphere is usually more stable, which
is particularly relevant for strongly seasonal variables. This stability reduces the influence
of unpredictable factors such as scattered clouds or abrupt changes in radiation. The
comparison with other models underscores the importance of integrating spatiotemporal
satellite-based remote sensing data related to atmospheric conditions and the contribution
of the DIF component.

In monthly terms, the estimate offering the best validation results has been InsolMets
(Figure 1); however, there is a clear tendency to underestimate the solar radiation except in
the months of July and August, where InsolMets shows the optimal MBE ~0 kWh·m−2. In
these months, the other models generally show the worst results. The validation analyses
also revealed that InsolMets and SARAH provided the best results in March (tie), while
InsolMets and PVGIS performed equally well in November and December (also a tie).

Moreover, the RMSE value considering the threshold proposed by the Global Climate
Observing System (GCOS) for required measurement uncertainties of downward shortwave
irradiance at the earth’s surface is 10 W·m−2 (2-sigma [118]). If we take this threshold in
kWh·m−2·day−1 for in situ measurements (0.12, 1-sigma), and use three times this value
(0.36) as a reference for modelling results, InsolMets is the model with the highest number
of months showing an RMSE below this value, presenting 4 months over this figure (May,
June, July, and August; Figure 1). The RMSE values > 0.36 are highlighted in all models
except for the CAC model, where all values exceed 0.36. Furthermore, for each RMSE value
of the models, the best overall result was 0.35 kWh·m−2 (InsolMets), while the other models
showed results ranging from 0.39 to 0.45 kWh·m−2 (SARAH, PVGIS, CAMS, PSM), and
0.51 kWh·m−2 (CAC). In this context, the InsolMets model deviates less than three times
from the uncertainty measurement of the maximum threshold established by GCOS for a
properly calibrated instrument, according to the specifications of the [118]. Furthermore,
the 141 meteorological stations used in the validation process are representative of most
points in the Iberian Peninsula, according to [58]. It is important to note that any of the
models use sensor data for model construction. Therefore, the RMSE of InsolMets, in
addition to being smaller than the RMSE of other models (Figure 1), remains under the
established reference value.

Considering the MBE in general terms, PSM is the model that provides the best
validation results (Figure 1). However, InsolMets was shown to provide the most robust
estimation when considering the entire set of estimators (RMSE, NRMSE, and Pearson
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correlation coefficient (r)) across all months: Additionally, InsolMets ranked second when
considering the MBE values.

The number of monthly scenarios with non-significant correlation coefficients
(p-value ≥ 0.05), considering the annual series, amounts to 64 (Figure 1). In these cases,
InsolMets stands out as the best-performing model for surface solar radiation estimation,
as it only presents 1 month with non-significant correlations throughout the 2004–2020
period (year by year). The second best-performing model in this context is SARAH, which
records 3 months with non-significant correlations. Furthermore, in the 63 scenarios where
correlations from the other models were found to be non-significant, InsolMets offered
the best validation results for 28 months, followed by SARAH, which showed optimal
performance for 16 months for 61 scenarios.

These results show the variability in the performance of the different models, providing
key insights for the comparative assessment of solar radiation estimation methodologies.
For instance, the CAMS model consistently underestimates values throughout the year,
possibly due to its coarser spatial resolution (0.2◦ or ~20 km), which also likely contributes
to its poorer monthly RMSE results. As could be expected due to their common basis,
SARAH and PVGIS show similar results; however, RMSE values are slightly lower in
SARAH, while PVGIS exhibits less bias. This lower bias could be related to the use of
radiative transfer models, a characteristic shared with PSM, the best model in terms of bias.

As can be seen in Figure 1, the RMSE tends to be higher in summer, while NRMSE
really reflects the deseasonalized errors. Looking at the NRMSE panel, the different models
perform more accurately in summer since the effects of seasonal variability, which have
a greater impact on RMSE, have been avoided. Indeed, the atmosphere is usually more
stable during summer, especially during the clear sky days associated with high-pressure
systems. This stability reduces the presence of unpredictable factors, such as scattered
clouds or abrupt changes in radiation, which theoretically should make prediction easier.
Nonetheless, despite this atmospheric stability, the RMSE can increase because it is sensitive
to higher absolute values, even when the model is performing reasonably well. For this
reason, RMSE tends to be higher under these conditions, while NRMSE, by considering
the total range of observed values used in the validation, removes the influence of high
absolute values, making NRMSE smaller compared to RMSE (Figure 1). This suggests that
the model might be working proportionally more accurately in summer since it eliminates
the seasonal variability effects that more significantly affect RMSE.

Regarding the quality filters described in Section 2, we have selected meteorological
stations with a minimum TDC of 45% for the observed month (Table 1). This threshold
was preferred over 50% as a clear percentage of stations (7.9%) falls within the 5% margin
between 45% and 50%.

Data completeness is one of the most relevant indicators in the quality control of mete-
orological and environmental datasets, particularly in the context of validating numerical
models and building reliable time series [61]. This indicator refers to the percentage of
available data relative to the total expected over a given period. Its proper monitoring
allows for the detection of operational deficiencies, instrumental failures, or interruptions in
data acquisition [58]. Low data completeness can compromise both the statistical represen-
tativeness and the validity of subsequent analyses, affecting the ability of models to capture
temporal patterns. In solar radiation studies, where intra- and inter-daily variability is
significant, maintaining continuous and complete time series is essential to avoid biases in
the estimation of key parameters such as average irradiance, energy yield, or comparisons
across different time periods [60,63]. Ref. [63] compiled daily records of global solar radia-
tion from 70 meteorological stations operated by AEMET, ultimately selecting 13 stations
that provided at least 20 years of continuous data spanning from the late 1970s to 2010.
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Data gaps in the selected series were filled using estimates based on the reference series
showing the highest correlation with the available data. Quality-control procedures were
applied to correct evident errors such as spurious missing values and outliers affecting less
than 0.01% of the dataset.

Table 1. Filtered according to TDC [1] and +2 RMSE STDV [2] for improving validation results.
Validation results units: kWh·m−2. Filter of the best-performing models presented in Figure 1.
n.days.P: number of potential days based on the monthly time span. How % TDC & + 2 RMSE STDV
n.stations are computed: TDC ≤ 45% [1] = n.stations where the TDC is equal or less than 45% of the
data, considering the ratio of observations to n.days.P; +2 RMSE STDV [2] = n.stations where the
error is greater than two standard deviations from the RMSE; % [1]+[2] = the percentage of removed
stations after filtering processes with respect to AEMET–SNIRH n.stations. The best monthly results
are highlighted in green. The different scenarios with RMSE > 0.36 kWh·m−2 are highlighted in bold.

NON-FILTERED % TDC & +2 RMSE STDV
The Best-Performing

Model RMSE
AEMET-SNIRH

n.Stations n.Days.P TDC ≤ 45 % [1]

n.Stations
+2 RMSE STDV [2]

n.Stations % [1] + [2]
FILTERED

RMSE

Jan InsolMets 0.22 140 527 24 1 17.9 0.18
Feb InsolMets 0.29 140 481 23 2 17.9 0.26
Mar SARAH & InsolMets 0.36 140 527 25 25 2 3 19.3 20.0 0.34 0.32
Apr InsolMets 0.36 140 510 28 4 22.9 0.33
May InsolMets 0.47 141 527 25 3 19.9 0.39
Jun InsolMets 0.43 141 510 27 4 22.0 0.36
Jul InsolMets 0.45 141 527 27 3 21.3 0.42

Aug InsolMets 0.39 141 527 35 3 27.0 0.36
Sep InsolMets 0.35 140 510 28 5 23.6 0.32
Oct InsolMets 0.34 140 527 33 2 25.0 0.28
Nov PVGIS & InsolMets 0.27 140 510 41 37 3 2 31.4 27.9 0.25 0.20
Dec PVGIS & InsolMets 0.24 139 527 37 32 3 0 28.8 23.0 0.22 0.20

58 = total stations removed; 48 = stations coincident with the total ones removed

Moreover, data completeness is a fundamental criterion for selecting reliable stations
in cross-validation or model calibration studies. Many international protocols, such as those
of the Baseline Surface Radiation Network (BSRN) and databases like CAMS, establish
minimum completeness thresholds for accepting a dataset as valid [62]. The authors
evaluated various solar radiation models in Petrolina station (Brazil) and emphasize the
importance of applying quality-control data filters, noting that the calculation of hourly
averages requires at least 20% of valid minutely global or direct solar radiation data per
hour; monthly averages require a minimum of 60% of valid days.

Consistent with previously cited studies, our findings further underscore the im-
portance of filtering data with low completeness. Indeed, systematic monitoring and
documentation of this indicator not only enhance the transparency and traceability of the
analysis process but also strengthen confidence in the scientific results derived from the
use of such data.

An additional filtering process was also applied, based on the error distribution at
the meteorological stations (Figure 2). This figure also shows the robustness of the best-
performing models (notably InsolMets and PVGIS), because of their relative low error
dispersion. In this case, the criterion has been to remove those stations where the error
exceeded two standard deviations from the RMSE (Table 1).
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Figure 2. Solar radiation error distribution. Solar radiation error distribution of the best-performing
solar radiation model (SRM) according to the RMSE results presented in Figure 1.

As shown in Table 1, once the filtering processes were applied, the RMSE improved in
all cases, with InsolMets standing out as the model with the best results. Regarding the
previous comparative analysis (Figure 1), the validation results showed that InsolMets and
SARAH provided the best results in March (tie), while InsolMets and PVGIS performed
equally well in November and December (also a tie). The quality filtering also determined
that InsolMets is the best-performing model in these months. With these treatments, the
coherence and reliability of the data used in the validations are ensured, minimizing errors
from incomplete data or from outliers. Additionally, mapping of the validation errors of
InsolMets at the meteorological stations from AEMET–SNIRH network is presented in
Figure A2, providing a spatiotemporal view of its distribution.

Finally, Table 2 presents the comparison of the RMSE obtained for the InsolMets solar
radiation estimation with those from the model calculated under constant atmospheric
conditions for clear days (CAC). Monthly differences between the two models are presented,
along with the improvement regarding the worst-performing model (CAC). The results
highlight relevant improvements of the best-performing model (InsolMets), reaching 61.5%
in January, 59.7% in November, and 52.0% in December. In July (29.1%), August (29.1%),
and September (27.4%), the improvements are lower. Table 2 also shows the months with an
RMSE reference value > 0.36 kWh·m−2 (May and July) after applying the filtering processes.
Finally, InsolMets model achieved an overall result of 0.32 kWh·m−2.

Regarding the limitations of this study, it is important to note that models with spatial
resolutions of 20 km, 4–5 km, and 100 m were compared. While models with coarser
resolutions yielded fewer high-accuracy results, they offer notable advantages in terms
of broader applicability and spatial coverage at global or regional scales. Similarly, dif-
ferences between models based on a standard atmosphere and those incorporating more
advanced atmospheric treatments must also be considered. These distinctions are partic-
ularly relevant, as the results underscore the critical influence of both spatial resolution
and atmospheric representation on model accuracy, especially in terms of their consistency
with observations from meteorological stations, which serve as essential reference points
for validation [60,115]. The findings also highlight the importance of developing high-
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resolution, physically based solar radiation models that integrate atmospheric variables
to reflect the specific conditions of each region. Moreover, the ongoing discussion around
incorporating new variables into modelling frameworks remains open and continues to
evolve alongside advances in remote sensing technologies and the increasing availability
of observational data.

Table 2. Comparison of InsolMets and CAC validation results: improvement in the best-performing
model compared the worst-performing model. Validation results units: kWh·m−2. The different
scenarios with RMSE > 0.36 kWh·m−2 are highlighted in bold. In addition, once the filtering
processes are applied, the MBE, the NRMSE, and the Pearson correlation coefficient (r) of InsolMets
are provided.

RMSE AEMET-SNIRH InsolMets
InsolMets CAC DIFF Improv kWh·m−2 MBE NRMSE r

Jan 0.18 0.47 0.29 61.5 2.05 −0.11 0.09 0.93
Feb 0.26 0.48 0.22 45.7 2.96 −0.14 0.09 0.83
Mar 0.32 0.55 0.23 42.1 4.24 −0.31 0.07 0.81
Apr 0.33 0.62 0.29 46.3 5.29 −0.16 0.06 0.85
May 0.39 0.66 0.27 40.5 6.45 −0.62 0.06 0.81
Jun 0.36 0.67 0.30 45.3 7.13 −0.51 0.05 0.86
Jul 0.42 0.59 0.17 29.1 7.16 −0.01 0.06 0.76

Aug 0.36 0.51 0.15 29.1 6.34 −0.01 0.06 0.75
Sep 0.32 0.44 0.12 27.4 5.02 −0.36 0.06 0.67
Oct 0.28 0.51 0.23 45.4 3.38 −0.37 0.08 0.82
Nov 0.20 0.50 0.30 59.7 2.28 −0.16 0.09 0.92
Dec 0.20 0.41 0.22 52.0 1.89 −0.15 0.10 0.89

DIFF (kWh·m−2) = difference between RMSE CAC (worst-performing model) and RMSE InsolMets
(best-performing model). Improv (%) = improvement considering the RMSE DIFF to RMSE CAC

Building on this context, ref. [62] revealed substantial differences in the accuracy
of solar radiation modelling by evaluating different datasets, comprising satellite-based
models and atmospheric re-analyses. Among the models assessed, CAMS demonstrated
the highest monthly accuracy at Petrolina station (Brazil) with an RMSE of 0.11 and
an MBE of 0.02 (kWh·m−2·day−1), while MERRA2 showed the least reliable perfor-
mance (RMSE = 0.83, MBE = 0.76). In comparison, the present study reports a lower
NRMSE of 0.09 for the CAMS model (Figure 1), along with a deseasonalized MBE of
−0.08 (kWh·m−2·day−1), based on data from 141 meteorological stations. By contrast, the
corresponding RMSE and MBE values are 0.42 and −0.40, respectively. These findings
indicate that model reliability can vary significantly depending on the geographical context
and its features, reinforcing the importance of conducting regional validation and inter-
comparison studies. Such efforts are essential for reducing uncertainties in solar resource
assessments, selecting the most appropriate models for specific applications, and enhanc-
ing the design and operational efficiency of solar energy systems. Ref. [62] also reinforces
the critical role of high-quality, ground-based observations in not only validating model
outputs but also improving their adaptability across diverse climatic zones, particularly in
tropical and semi-arid regions, where atmospheric conditions may differ markedly from
the generalized assumptions used in global models.

Similarly, ref. [119] identified significant differences in the accuracy of various satellite-
derived solar radiation products. While some datasets exhibited a strong correlation
with in situ measurements, others showed notable deviations. For instance, the SARAH
model achieved a Pearson correlation coefficient (r) of 0.88, whereas ERA5 yielded a
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markedly lower value of 0.37, based on data from 10 meteorological stations. In compari-
son, the present study reports a Pearson correlation coefficient of 0.73 for the SARAH model
(Figure 1), highlighting that model validation was performed using data from 141 mete-
orological stations. Ref. [119] emphasized that the accuracy of satellite estimates varied
with the temporal scale considered, being generally higher for annual averages and de-
creasing at shorter time frames. Their study further underscored the substantial influence
of local atmospheric conditions on solar radiation estimates and the need for improved
representation of these conditions in the modelling frameworks. As with previous studies,
they reinforced the importance of validating solar radiation models using high-quality,
ground-based data, particularly in regions with complex atmospheric dynamics such as
central Africa.

Although the Iberian Peninsula spans a considerable area and presents complex
features representative of diverse climates and geographical conditions, the findings of
this study cannot be directly extrapolated to other regions. In particular, factors, such as
evaporation rates and cloud patterns, may differ significantly throughout the year in other
parts of the world, underscoring the necessity of validating models and assumptions with
locally observed data. Recent work by [19], based on 6 years of data from satellite sensors
and re-analysis products, shows the global distribution of clouds and their uneven detection
across different latitudes, highlighting the strong geographical variability of cloud cover.
Tropical regions exhibit a high frequency of cloudiness, whereas mid- and high-latitude
regions tend to experience more stable cloud conditions. Moreover, cloud detection is
influenced by the technical specifications of each sensor and the optical complexity of the
underlying surface. These factors contribute to a heterogeneous representation of cloud
cover at both global and regional scales.

In light of these findings, the Iberian Peninsula, characterized by its topo–climatic
heterogeneity, ranging from arid to temperate zones, and its high sensitivity to global
atmospheric changes, serves as a valuable reference system for investigating complex
environmental interactions [24]. As outlined in the Introduction and Methods sections,
the six models evaluated in the present study provide a diverse and representative set
of approaches for computing solar radiation. Their performance was assessed under
locally heterogeneous spatiotemporal conditions, contributing to a better understanding
of solar radiation, an important variable in regions with complex climatic, ecological,
and geographical features. This is particularly relevant in the Iberian Peninsula, where
atmospheric, climatic, and topographic factors are strongly interrelated.

4. Conclusions
The comparative analysis of six solar radiation models has revealed relevant differ-

ences within the context of the Iberian Peninsula. By deseasonalizing the RMSE (NRMSE),
the models have been compared on equal terms, removing the natural seasonal fluctuations
that could make the interpretation of the results more difficult. To reduce this effect, the use
of additional variables during the modelling process is recommended (e.g., the atmospheric
conditions, the contribution of DIR and DIF components, the solar vector incidence angles,
etc.), along with normalization techniques in the validation step.

Compared to previous works, it is important to highlight the substantially higher
spatial density of the meteorological stations used for model validation in this study
(141 stations). In earlier studies [62,63,119], the spatial density employed reached, at most,
only 9.2% of that used in this comparative analysis of solar radiation models over the
Iberian Peninsula, thereby providing greater robustness to the validation results presented
here. Moreover, the construction process of the AEMET–SNIRH solar radiation network
dataset is described in detail in the study by [58].
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Although the methods compared show consistency in terms of intra-annual variability,
discrepancies in the absolute values occur due to their different functional designs (radiative
transfer models, etc.) and input parameters (cloud cover, aerosol concentration, spatial
resolution, etc.). The results have also been improved thanks to the application of quality
filters (a minimum threshold of 45% data, and two standard deviations from the RMSE to
look for outliers). Additionally, the poor performance of the solar radiation model under
constant atmospheric conditions for clear days (CAC) highlights the need for the integration
of spatiotemporal satellite remote sensing data related to atmospheric conditions and the
DIF component contribution.

The InsolMets model, by integrating the atmospheric conditions through COT and
CFC, the consideration of the contribution of the DIF component, and an accurate rep-
resentation of solar illumination geometry using a tessellated DEM approach over the
Iberian Peninsula [18], has proven to be the most robust among the evaluated models. The
validation results presented by SARAH and PVGIS were as good as those of InsolMets in
March, November, and December. However, with the quality filters applied, InsolMets
was notably the best-performing model, showing important monthly improvements with
regard to the worst-performing model (CAC) (61.5% in January, 59.7% in November, and
52.0% in December).

Moreover, InsolMets stands out as the model with the fewest number (only 1 month)
of non-significant monthly correlations throughout the 2004–2020 period; it excelled in
offering the best validation results over 28 months, during which the other models showed
non-significant correlations.

The results also revealed that InsolMets had the highest number of months showing
an RMSE reference value ≤ 0.36 kWh·m−2 (10 months, with only 2 months exceeding this
figure in May and July). Indeed, the RMSE of InsolMets, in addition to being smaller than
the RMSE of the other models, remained below that value (0.32 kWh·m−2), which is less
than three times the uncertainty measure of the threshold (10 W·m−2, corresponding to
2-sigma; [118] [the same as 0.12 kWh·m−2·day−1, corresponding to 1-sigma]) established by
GCOS for in-situ measurements of downward shortwave irradiance at the earth’s surface.
In conclusion, the best overall recommended model is InsolMets.

Our analysis of solar radiation modelling in the Iberian Peninsula reveals the impor-
tance of considering its significant spatiotemporal variability through approaches such
as remote sensing data integration. However, the specific design of each model yields
different results, underscoring the value of these comparisons, even at regional scales, in
climatically complex areas.
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Appendix A. Variability of Solar Radiation and Atmospheric Conditions
over the Analyzed Years

As explained in Section 2, the years 2005, 2008, 2012, and 2017 were identified as
representative of the most severe droughts in the Iberian Peninsula, characterized by
reduced cloud cover. The year 2008, despite recording slightly higher temperatures than
the average of the reference period 1971–2000 (15.3 ◦C; [120]), was relatively cold compared
to previous years. During this year, drought episodes were observed in certain regions
of the Iberian Peninsula, associated with an especially dry winter and summer [52,121].
However, the data collected (Table A1) reveal that throughout the year, there was a cloud
cover (CFC) of 54% and an atmospheric optical thickness, due to the clouds, of 9.4 (COT).
These values are related to the wet conditions observed in spring, early summer, and
autumn in certain areas, although these precipitations did not fully compensate for the
predominantly dry episode of that year. Nevertheless, these precipitations helped to slightly
improve the hydrological situation in 2009 [52].

The years 2010, 2013, 2018, and 2020 were identified as representative of the wettest
periods for the Iberian Peninsula. These years recorded precipitations above the average of
the reference periods 1971–2000 and 1981–2010 (601 mm and 578 mm, respectively; [120]),
associated with increased cloud cover [52]. The atmospheric situation during these years is
detailed in Table A1. In 2010 and 2013, the CFC was 57% and 53%, respectively, with a COT
of 9.6 and 9.2. In contrast, the years 2018 and 2020 presented a notably lower CFC (43% and
42%), accompanied by higher COT values (12.6 and 10.5). It is noteworthy that the year
2010 was characterized as exceptionally wet, due to atmospheric conditions dominated
by low-pressure systems that caused intense and persistent rains across large areas of the
Iberian Peninsula [122].

The years 2007, 2016, and 2019 were identified as representative of a more stable
climatic situation in the Iberian Peninsula, characterized by the absence of extreme drought
or intense precipitation episodes in the regional climate [52]. Although the temperatures
during these years were higher than the average of the reference periods 1971–2000 and
1981–2010 (15.3 ◦C and 15.7 ◦C, respectively; [120]), the precipitations remained close
to the average, with slight spatiotemporal variations (601 mm and 578 mm; [120]). The
atmospheric situation in 2007 and 2016 followed a similar trend to previous years, with

https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V003
https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V003
https://re.jrc.ec.europa.eu/pvg_tools/es/
https://www.infoambiental.grumets.cat/RadSolarPI/CAC/RadSolar_CAC_ENG.htm
https://www.infoambiental.grumets.cat/RadSolarPI/CAC/RadSolar_CAC_ENG.htm
https://nsrdb.nrel.gov
https://nsrdb.nrel.gov
https://www.soda-is.com/pub/files/cams/CAMS-MSG-HIMAWARI-v4.6rev2/
https://www.soda-is.com/pub/files/cams/CAMS-MSG-HIMAWARI-v4.6rev2/
https://www.infoambiental.grumets.cat/RadSolarPI/InsolMets/RadSolar_InsolMets_ENG.htm
https://www.infoambiental.grumets.cat/RadSolarPI/InsolMets/RadSolar_InsolMets_ENG.htm
https://navigator.eumetsat.int/product/EO:EUM:DAT:0279
https://navigator.eumetsat.int/product/EO:EUM:DAT:0820


Atmosphere 2025, 16, 590 20 of 31

CFCs close to 50% and COTs of 9.1 and 8.6, respectively (Table A1). Meanwhile, the year
2019 maintained a comparable trend to that of 2018 and 2020, standing out for registering
the lowest CFC in the 2004–2020 period (38%), accompanied by a COT of 10.5.

The analysis also includes the year 2006, which, despite being an extremely warm
year —with an average temperature higher than the maximum of the reference period
1971–2000 (20.2 ◦C; [120])—, was distinguished by registering relatively normal precipita-
tions [52]. This apparent contradiction could be explained by atmospheric variations that
favored the presence of humid air flows and cloud formation without significant precipita-
tions [55]. This uniqueness makes the year 2006 an atypical case that highlights climatic
diversity even in notably dry periods. The year 2009 was also considered as representative
of unusual climatic behavior. This year recorded the highest number of sunshine hours of
the 2004–2020 series compared to the average of the reference period 1971–2000 (~2507 sun-
shine hours; [52,120]). Despite the high temperatures, the precipitations remained within
normal and even relatively abundant levels. In terms of atmospheric conditions, both years
(2006 and 2009) presented a CFC higher than 50%, with a COT of 9.4 in 2006 and 8.8 in 2009.
It is worth noting that the GHI data from AEMET meteorological stations during 2009 were
the highest of the analyzed period (2004–2020; Table A1 and Figure A1).

AEMET indicates that the years 2010 [wet], 2016 [stable], 2018 [wet], and 2020 [wet]
recorded a number of sunshine hours consistent with the average of the reference periods
1971–2000 and 1981–2010 (~2507 and ~2526 sunshine hours, respectively; [120]). In contrast,
the remaining analyzed years recorded a higher percentage of sunshine hours, with 2009
[atypical] standing out for reaching the highest GHI of the 2004–2020 period (Table A1
and Figure A1). This behavior could be related to solar cycles of solar activity, as these
cycles repeat approximately every 22 years [29], peaking around 11 years after the start
of the cycle. The current solar cycle (Solar Cycle 25) began in 2019 [stable] [123,124],
suggesting that the previous solar maximum coincided with 2009. This would also explain
the progressive decrease in GHI in subsequent years, followed by a new increase observed
in 2017 [drought], 2019 [stable], and 2020 [wet]. However, from 2009 onward, the GHI
has remained slightly higher than the values recorded in previous years (Table A1 and
Figure A1).

Furthermore, the relationship between the increase in GHI and the decrease in CFC
from 2017 [drought] due to the persistence of anticyclonic patterns is shown, although
with an important increase in COT in the years 2018 [wet], 2019 [stable], and 2020 [wet]
(Table A1). This seems to be related to more abundant precipitations, highlighting the
increased influence of COT on GHI starting in 2016 [stable] (Figure A1). In this context,
as a result of the decrease in CFC and the effects of atmospheric conditions, many studies
have shown that these factors influence the solar radiation reaching the surface, with
implications for long-term temperatures such as the relationship between increased solar
radiation and higher temperatures [3,4,48,53,125].

Considering the median of the time series, the CFC explains 75% of the GHI variance
(15% mean absolute deviation around the median (Dmed)); the COT explains 68% of the
GHI variance (16% = Dmed). These results are based on annual R2 in the 2004–2020 period
between the SEVIRI values and the AEMET measurements (p-value < 0.05; Table A1). The
variations in COT from SEVIRI are specific to cloudy areas (CFC) and used as a proxy
of the atmospheric attenuation of solar radiation (τ0) [82]. Indeed, the CFC explains 80%
of the COT variance (Pearson r = 0.90; Table A1). The influence of the CFC on GHI is
more relevant, as CFC determines both the fraction of cloudy and clear skies; it has a
differentiated influence on solar radiation.

Generally, it is expected that a higher COT would be linked to a higher CFC. However,
it is important to note that a smaller CFC may be associated with a higher COT in certain
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scenarios (years 2018, 2019, and 2020; Table A1 and Figure A1). For example, this can arise
due to the presence of more compact clouds or vertically developing clouds associated
with specific meteorological phenomena such as convective storms or isolated cloud sys-
tems. The results indicate that precipitations are related to both variables, as the presence,
extent, and physical and optical properties of clouds directly influence their formation.
Nevertheless, a higher COT is linked to wetter climatic episodes (Table A1). On the other
hand, the GHI, despite variations, and considering 2009 as an inflection year, remained
approximately stable throughout the 2004–2020 series (Figure A1). An example of this
can be seen during the years 2008, 2010, 2018, 2019, and 2020. In 2008 and 2010, similar
levels of CFC and COT were recorded (54% and 57%, 9.4 and 9.6, respectively; Table A1).
However, 2008 was classified as representative of a severe drought due to the decrease in
precipitations during the recorded dry periods [52,121], while 2010 was characterized by
an exceptionally wet episode with intense and persistent rainfall across much of the Iberian
Peninsula [122]. On the other hand, during 2019 [stable], precipitation levels were within
normal values of the reference period 1981–2010 (578 mm; [52,120]), with low cloudiness
(38%) and high atmospheric density (10.5) (Table A1). In contrast, the years 2018 and 2020
[wet] presented similar CFC and COT values to those of 2019 (43% and 42%, 12.6 and 10.5,
respectively; Table A1), although with more abundant precipitations [52].

It is noteworthy that, despite the differences in the characterization of climatic episodes,
the average temperature of the years in the series has been higher than that of the reference
periods 1971–2000 and 1981–2010 [52], reflecting a clear trend toward rising temperatures.
Additionally, the average temperature of the reference periods has also increased (15.3 ◦C
and 15.7 ◦C, respectively; [120]), which is closely linked to the effects of global climate
change, including both atmospheric warming and alterations in regional climatic patterns.
On the other hand, the average precipitation of the reference periods has decreased (601 mm
and 578 mm [120]), a trend that, along with the increase in temperatures, is associated
with the intensification of extreme climatic events; these phenomena are becoming more
frequent in the context of climate change. This pattern is accompanied by a reduction in
CFC, which does not necessarily imply a lower COT (Figure A1). At the same time, an
increase in the average number of sunshine hours is observed (~2507 and ~2526 sunshine
hours; [120]), contributing to an increase in surface solar radiation. This effect is indicative
of a clearer atmosphere [126,127], resulting from the presence of fewer clouds, which inten-
sifies temperature rise and global warming, thus reinforcing the feedback cycle associated
with climate change.

The results highlight a paradigm shift in recent atmospheric patterns, characterized
by a decrease in the cloud cover fraction (CFC) and an increase in atmospheric optical
thickness due to clouds (COT) (Table A1 and Figure A1). There is a direct relationship
with the increase in incident solar radiation, a phenomenon that, in turn, contributes to
the sustained rise in observed temperatures in recent years. The combination of these
factors not only intensifies global warming but also influences precipitation dynamics. In
particular, there is an increasing trend toward intense rainfall episodes, characterized by a
more irregular spatiotemporal distribution. This behavior, far from following traditional
climatic patterns, suggests a relevant alteration in atmospheric dynamics, consistent with
scientific projections that anticipate an increase in the frequency and intensity of extreme
climatic events. This scenario shows a more unstable meteorological context, in which
solar radiation is a key factor in atmospheric dynamics and climatic phenomena [59,63,128],
making it essential to conduct studies on solar radiation to understand how this variable is
influenced by these factors and to more accurately assess climatic variability.



Atmosphere 2025, 16, 590 22 of 31

Table A1. Atmospheric conditions (COT and CFC) and GHI based on the AEMET stations. COT
units: dimensionless; CFC units: %; GHI units: 10 kJ·m−2·day−1 (energy per unit area and per day).
Statistics computed for each year: median (MED); and mean absolute deviation around the median
(Dmed). The total results are highlighted in bold.

Year COT
SEVIRI

CFC
SEVIRI

GHI
AEMET

COTvsCFC GHIvsCOT GHIvsCFC
r R2 r R2 r R2

2004 9.6 54 1548 0.90 0.81 −0.71 0.50 −0.66 0.43
2005 8.5 50 1557 0.92 0.85 −0.59 0.35 −0.62 0.38
2006 9.4 55 1564 0.87 0.75 −0.58 0.33 −0.69 0.48
2007 9.1 51 1592 0.90 0.80 −0.83 0.68 −0.87 0.75
2008 9.4 54 1569 0.91 0.83 −0.92 0.85 −0.96 0.92 Climatic conditions AEMET *
2009 8.8 52 1864 0.90 0.80 −0.79 0.63 −0.83 0.68 stable years
2010 9.6 57 1648 0.87 0.76 −0.72 0.52 −0.83 0.70 drought years
2011 8.7 50 1611 0.90 0.81 −0.82 0.68 −0.84 0.71 atypical years
2012 7.9 50 1612 0.88 0.77 −0.62 0.39 −0.64 0.41 humid years
2013 9.2 53 1600 0.89 0.79 −0.93 0.86 −0.95 0.91
2014 8.3 56 1609 0.87 0.76 −0.91 0.82 −0.93 0.86 * Climatic conditions according to
2015 8.3 52 1616 0.93 0.86 −0.93 0.87 −0.95 0.91 Resúmenes climatológicos, España
2016 8.6 53 1592 0.86 0.74 −0.92 0.85 −0.90 0.81 (AEMET, 2004–2020)
2017 7.9 47 1656 0.91 0.82 −0.88 0.77 −0.87 0.76
2018 12.6 43 1561 0.88 0.77 −0.90 0.82 −0.90 0.81
2019 10.5 38 1678 0.92 0.85 −0.89 0.79 −0.90 0.80
2020 10.5 42 1673 0.85 0.73 −0.72 0.52 −0.70 0.49
MED 9.1 52 1609 0.90 0.80 −0.83 0.68 −0.87 0.75
Dmed 0.82 3.71 45.65 0.02 0.03 0.10 0.16 0.09 0.15
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Figure A1. Atmospheric conditions (COT and CFC) and GHI based on the AEMET stations. Figure
based on data from Table A1. COT is represented as a percentage to CFC because the COT from
SEVIRI is specific to cloudy areas (CFC from SEVIRI): COT/CFC represents the mean cloud optical
thickness per unit of sky cover, providing a more accurate measure of how strongly the clouds present
affect solar radiation as it passes through the atmosphere. Being COT a dimensionless variable, the
percentage allows an easier comparison of the relationships with CFC data. R2 is also represented as
a percentage.
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Appendix B. Additional Figures

Table A2. Additional aspects from datasets used for validating and comparing the solar radiation, as well as from the models being compared.

10 kJ·m−2·day−1 kJ·m−2·day−1·10/3600 == kWh·m−2·day−1

GHI, DNI, DIF (to perform validations, the same periods of the models detailed below are computed)AEMET-Spain
Observed GHI and DIF data measured with pyranometers, and DNI data measured with pyrheliometers

W·m−2 ∑* ==> W·m−2·h−1·0.001 == kWh·m−2·day−1

it is multiplied by 0.001 because the data is hourly
SNIRH-Portugal

GHI (to perform validations, the same periods of the models detailed below are computed)

OBSERVED
SOLAR RADIATION

DATA
-

METEOROLOGICAL
STATIONS

Observed GHI data measured with silicon photovoltaic cell

W·m−2 W·m−2·day−1·0.001 == kWh·m−2·day−1

it is multiplied by 0.024 because the data is the AVG every 30-min considering 24 h
GHI, DNI, DHI, GHI.CS, DNI.CS, DHI.CS (AVG GHI of each per-year month is used: SEVIRI provides the AVG from the instantaneous data
every 30-min)

SARAH-SEVIRI (v. 3.0)

Satellite remote sensing approach at 0.05◦ (~5 km)
kWh·m−2·day−1

GHI, DNI, DIF, GHI.CS, GTI optimal angle and given angles (AVG GHI of each per-year month is computed: PVGIS provides the
accumulated monthly data)

PVGIS-EC (v. 5.3)

Semi-empirical approach using remote sensing data SARAH at 0.05◦ (~5 km) and reanalysis data ERA5 to 0.25◦ (~30 km)
10 kJ·m−2·day−1 kJ·m−2·day−1·10/3600 == kWh·m−2·day−1

GHI, GRI (GRI for each central day of each per-year month is computed)CAC-Grumets
Semi-empirical approach using InsolDia-MiraMon application, considering constant atmospheric conditions at 100 m

W·m−2 ∑* ==> W·m−2·h−1·0.001 == kWh·m−2·day−1

it is multiplied by 0.001 because the data is hourly
GHI, DNI, DIF, GHI.CS, DNI.CS, DIF.CS (AVG GHI of each per-year month is computed: NSRDB provides the instantaneous data every
60-min)

PSM-NSRDB (v. 3.1)

Physical radiative transfer approach using remote sensing data at 4 km
Wh·m−2 ∑* ==> Wh·m−2·0.001 == kWh·m−2·day−1

GHI, DNI, DHI, DIF, GHI.CS, DNI.CS, DHI.CS, DIF.CS (AVG GHI of each per-year month is computed: SoDa provides the instantaneous
data every 15-min)

CAMS-SoDa (v. 4.6)

Hybrid physical-empirical approach using remote sensing data at 0.2◦ (~20 km)
10 kJ·m−2·day−1 kJ·m−2·day−1·10/3600 == kWh·m−2·day−1

GHI, GRI, GTI, DHI, DRI, DIF (also for the cloudy and clear sky fractions) (GRI for each central day of each per-year month is computed)

SOLAR RADIATION
-

MODELS

InsolMets-Grumets
Hybrid physical-empirical approach using InsolDia-MiraMon application, considering variable atmospheric conditions and a DEM-based at
100 m

* First, it is necessary to sum the hourly data to make the daily series. The average solar radiation of each per-year monthly series is either used or computed (AVG).
GHI: Global Horizontal Irradiation. GHI.CS: GHI under clear sky. GRI: Global Relief Irradiation. GTI: Global Tilted Irradiation. DNI: Direct Normal Irradiation. DNI.CS: DNI under clear sky.

DHI: Direct Horizontal Irradiation. DHI.CS: DHI under clear sky. DRI: Direct Relief Irradiation. DIF: Diffuse Solar Irradiation. DIF.CS: DIF under clear sky.
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