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Abstract. Planar quadratic differential systems occur in many areas of applied mathematics.
Although more than one thousand papers have been written on these systems, a complete
understanding of this class is still missing. Classical problems, and in particular, Hilbert’s 16th
problem [28, 29], are still open for this class. Among many interesting families of quadratic
systems, the ones which may have limit cycles are of specially interest. In [42], these systems
where classified in three different normal forms (I, II and III) with increasing number of
parameters. The simplest family is I and even several subfamilies of it have been studied, and
some global attempts have been done, up to this paper, the full study was still undone.

In this article we make an interdisciplinary global study of the class I. Since the family has
4 parameters, we have studied it using the same technique that has already been used in several
papers with similar systems which is based in the algebraic invariants of the Sibirskii’s school.

The bifurcation diagram for this class, done in the adequate parameter space which is the
3–dimensional real projective space, is quite rich in its complexity and yields 261 subsets with
49 different phase portraits for Class I (two of them corresponding to linear systems), seven of
which have limit cycles. The phase portraits are always represented in the Poincaré disc. The
bifurcation set is formed by an algebraic set of bifurcations of singularities, finite or infinite and
by an analytic set of curves corresponding to phase portraits which have separatrix connections.

Algebraic invariants were needed to construct the algebraic part of the bifurcation set, sym-
bolic computations to deal with some quite complex invariants and numerical calculations to
determine the position of the analytic bifurcation set of connections.

1. Introduction, brief review of the literature and statement of results

It is easy to find that there are many papers and monographs about many special classes
quadratic vector fields, such as [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 20, 22, 24, 25,
31, 33, 36, 37, 38, 39, 43, 44, 45] and the references therein, in which limit cycles and global phase
portraits in the Poincaré disc of many families of quadratic vector fields have been studied. One
main reason is that many mathematicians have been highly interested in Hilbert’s 16th problem
since 1900. However, the problem is still intractable, see [30, 34], even for general quadratic
vector fields. Fortunately, we have found that many classes quadratic vector fields were studied.
For example, Artés et al. in [2] studied the structurally stable global phase portraits in the
Poincaré disc of general quadratic vector fields, Artés et al. in [4] studied the structurally
unstable global phase portraits in the Poincaré disc of general quadratic vector fields, Artés et
al. in [6] studied the family of quadratic systems with a weak focus of second order, Reyn in [36]
gave all global phase portraits in the Poincaré disc of quadratic systems without finite equilibria
and in [37] studied quadratic systems with three finite singularites collided at infinity.

By [42], when a quadratic system exhibits a closed orbit, a necessary condition is that the
quadratic system can be changed into one of the following three classes1:

Class I :

{
ẋ = y,
ẏ = −x+ fy + `x2 + 2mxy + ny2,

(1)
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where (f, `,m, n) ∈ R4;

Class II :

{
ẋ = y(1 + 2hx),
ẏ = −x+ fy + `x2 + 2mxy + ny2,

(2)

where (f, `,m, n) ∈ R4 and h 6= 0;

Class III :

{
ẋ = y(1 + 2hx+ ky),
ẏ = −x+ fy + `x2 + 2mxy + ny2,

(3)

where (f, h, `,m, n) ∈ R5 and k 6= 0. When ` = n = 0 and m 6= 0, all global phase portraits
in the Poincaré disc of system (1) were given in [32]. When n = 0 and `m 6= 0, system (1)
is a Bogdanov-Takens system. The uniqueness of limit cycles of the Bogdanov-Takens system
was proven by Coppel in [21], and the bifurcation diagram and all global phase portraits in
the Poincaré disc of the Bogdanov-Takens system were obtained by Perko in [35], where the
number of topologically different global phase portraits in the Poincaré disc is 8. Gasull et al
in [26] proved the Perko’s conjectures in [35] about some analytic properties of the homoclinic
bifurcation curve. Recently, Jia et al. in [31] completely gave the bifurcation diagram and all
global phase portraits in the Poincaré disc of system (1) when m = 0 and n 6= 0, where the
number of global phase portraits in the Poincaré disc is 19. Notice that the dynamics of system
(1) is very simple since the divergence of system (1) is f for m = n = 0. This explains why the
authors required n 6= 0 when m = 0 in [31]. It is predictable that the bifurcation diagram and
all global phase portraits in the Poincaré disc of system (1) for `mn 6= 0 are more complex than
the previous two cases. Rychkov in [40] proved that system (1) exhibits at most one limit cycle,
also refer to [42, 44]. Moreover, when f = 0 and m = 1, seven global phase portraits in the
Poincaré disc are given in [42, pp. 269-270]. And Coll in his Ph. D. thesis [19] tried a global
attempt on the whole family but some portraits were missing as we will show here. However,
there are only some partial results for systems (2) and (3), such as [42, 43]. In other words, the
maximum number of limit cycles of systems (2) and (3), i.e., quadratic vector fields in Classes
II and III, are still unsolved.

Gouveia et al. in [27] classified the global phase portraits in the Poincaré disc of the quadratic
polynomial Liénard systems

{
ẋ = y,
ẏ = (ax+ b)y + cx2 + dx+ e,

(4)

where a, b, c, d, e are real parameters. When ac 6= 0, it is to note that system (4) is also a
Bogdanov-Takens system. It is clear that most results of this manuscript are not included in
[27], such as the bifurcation diagram and some phase portraits in the Poincaré disc.

In this paper we will completely classify all phase portraits of Class I and our main result is:

Theorem 1. There exist 49 topologically distinct phase portraits for the quadratic vector fields of
Class I. All these phase portraits are shown in Figure 1 (except the linear center that we take it
apart from the classification). The 4-dimensional parameter space is divided in 261 regions, 52 of
them are 3-dimensional, 111 are 2-dimensional, 78 are 1-dimensional and 20 are 0-dimensional.
Moreover the following facts hold.

• There are 7 phase portraits with one limit cycle. Concretely they are V5, V6, V13, V31,
1S5, 5S5 and 9S3.
• There are 12 phase portraits with exactly one graphic. Concretely they are 7S1, 7S2,

7S4, 7S5, 1.7L1, 3.8L1, 3.8L2, 3.8L3, 4.7L1, 5.7L1, P9 and P13.
• There are 6 phase portraits with exactly one set of an infinite number of graphics. Con-

cretely they are 9S1, 9S3, 9S4, 9S6, 1.9L1 and 4.9L1.
• There are 2 phase portraits with exactly one set of an infinite number of graphics plus

an isolated graphic. Concretely they are 7.9L1 and P11.
• There is one phase portrait with one limit cycle and one set of an infinite number of

graphics. This is 9S3.
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Figure 1. Phase portraits of the quadratic vector fields of Class I.
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Figure 2. Continuation of Figure 1.
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• There are 11 phase portraits topologically equivalent to those shown in [31] and 9 from
[35].
• The phase portraits 4.5L1 and 4.7L1 do not appear in the Ph. D. thesis of B. Coll [19].

Remark 1. It is worth to observe that even the family is 4-dimensional, all the topologically
distinct phase portraits not contained in [35] and [31] (i.e. those with mn 6= 0 for which this
paper is focused) may be found in a single 2-dimensional variety inside the parameter space. In
fact any of the slices that we will present later produces all the new phase portraits. However it
is not possible to prove this fact until the complete study is done, and some phase portraits with
some geometrical features as invariant straight lines may be found only in some slices and not
in others. This property somehow explains why Coll, in his Ph. D. thesis was so close to the
complete classification even he only considered some parts of the bifurcation diagram.

In Figure 1 we draw all the phase portraits in the Poincaré disc with separatrices in black
wide colour. In some portraits we also add one or more orbits in black thin to better describe
the behavior of the flow as for example in 5S1 to describe the flat hyperbolic sector at infinity,
or 7S1 to describe the flow inside the graphic. We denote with a black dot all the singularities
except the finite saddles which are already quite clear enough. We have drawn the graphics in
blue color and the limit cycles in red color.

An outline of this paper is as follows. In Section 2, we prepare the parameter space so to
reduce it in order to be easier to work with. In Section 3, we locate all the algebraic bifurcation
surfaces using the invariants given by the Sibirskii School [14], divide the parameter space in two-
dimensional slices and detect the most critical ones. In Section 4 we start by studying completely
one main slice and there detect the existence of other non-algebraic bifurcation surfaces. After,
we complete the other slices by checking the changes produced from neighbor ones. In Section 5
we complete the proof of Theorem 1 by extracting from all ‘phase portraits found, those which
are topologically different and indicating the groups of equivalent ones.

2. Preparing the parameter space

Systems (1) depend on the parameter λ = (f, `,m, n) ∈ R4. We will consider all systems
(1) except the linear center, i.e. λ = (f, `,m, n) 6= (0, 0, 0, 0). In this case a system (1) can
be rescaled. We split the work in the cases n 6= 0 and n = 0. In the first case, the change
(x, y, t)→ (x/n, y/n, t) transforms system (1) into

ẋ = y,
ẏ = −x+ fy + `/nx2 + 2m/nxy + y2,

that is, with a renaming of variables (`/n,m/n)→ (`,m), we may assume n = 1. Moreover the
change (x, y, t)→ (x,−y,−t) produces system

ẋ = y,
ẏ = −x− fy + `x2 − 2mxy + y2.

So, we may consider only the semi-space m ≥ 0. Finally we will divide the 3-dimensional space
(f, `,m) into slices so to study the whole space. The case n = 0 may be divided also in two cases
m 6= 0 and m = 0. In a similar way, in the case m 6= 0 we will be able to assume m = 1 and we
will have a two-dimensional space to study. And following the pattern, if n = m = 0 we may
split it in ` 6= 0 and ` = 0. In the first case, we can also assume ` = 1. In resume, we split a
4-dimensional space (minus one point) in the union of a set of 4 spaces of dimensions 3, 2, 1 and
0. In some other studies of the same kind (as for example [6]), where the parameters affected
only the quadratic part of the equations, the authors were able to identify the 4-dimensional
parameter space (minus one point) with the 3 dimensional projective space, which can be also
seen as the ball S3 with identification of opposite points. In this ball, the case n = 0 (the surface
of the ball) would correspond to the infinite “cover” of the affine 3-dimensional space, and the
set m = n = 0 would correspond to the equator of the ball.
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In our case, the presence of a parameter in the linear part of the equation does not allow the
identification of our parameter space with the projective space since we will not have the equiv-
alence between opposite points of the equator, but apart from that detail, the same technique
used in [6] may be used here.

3. Study of the bifurcation diagram

At this point, classical works start by locating the singularities, finite and infinite of the
normal form under study, their Jabobian matrices, determinants, traces and discriminants, and
in case the singularities are not elementary, start applying the corresponding theorems which
classify them, or start doing blow-ups. And if the singularities are linear centers, start computing
Lyapunov constants in order to determine if they are centers surrounded by periodic orbits or
weak foci of a certain order.

But the introduction of the algebraic invariants applied to polynomial differential systems (and
more specifically quadratic systems) has meant a revolution in the study of Qualitative Theory.
In previous years, it was needed that normal forms were simple enough so that singularities could
be computed with no more than square roots, otherwise, all upcoming computations became
too hard to follow. The algebraic invariants (used first in [6] and completed with the book [14])
allow to easily detect all the varieties which imply some bifurcation of the differential equation
related with singularities. For every geometric feature that a singularity may have, there is one
(or several) invariants which rule it. And these invariants can be computed for any normal form
without need to compute the singularities. Also invariants to detect the existence of invariant
straight lines have been found. Only non algebraic (or even non-analytic) features as some
separatrix connections or double limit cycles cannot be detected by these algebraic invariants,
but their presence is easily determined by means of coherence and continuity arguments, once
the algebraic bifurcation diagram is completed.

3.1. Algebraic surfaces.

Bifurcation surface where a finite singularity coalesces with a singularity at in-
finity.

(S1) For family (1) we already have that two finite singularities have coalesced with infinite
singularities and this fact is recorded by the invariants µ0 = µ1 = 0. We also have always one
singularity at the origin. So, the only possible bifurcation due to this phenomena is that a third
finite singularity escapes to infinity, and this is captured by invariant µ2 which for family (1) is
simply the comitant

µ2 = `(`x2 + 2mxy + ny2)

when this comitant is zero for a non zero measure space in variables (x, y). In order to happen
this, either ` = m = n = 0 or simply ` = 0. So, we will define surface

S1 : ` = 0

and we will draw it in blue in the different bifurcation diagrams.

Bifurcation surface where the system has a weak finite singularity.

(S3) Classicaly only weak foci were objects of interest in bifurcation diagrams since they are
non-elementary singularities whose perturbation may produce limit cycles. And weak saddles
appear rarely in bifurcation diagrams since their topological effect must be linked with the
existence of a loop on that same saddle. However, by Vulpe’s Theorem [14, Theorem 6.2] it
is proved that weak saddles and weak foci are very close objects and the same invariants rule
them both, even their degree of weakness. There is also other invariants (as T3F) whose sign
determines if the detected weak singularity is a saddle of a focus.
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In our case, the invariant that detects the existence of one weak singularity is

T4 = 4f(f`+ 2m)n(−m2 + `n)

when this invariant is zero. So we will define surface

S3 : f(f`+ 2m)n(−m2 + `n) = 0

and we will draw it in solid yellow when it captures a weak focus and with dashed yellow when
it captures a weak saddle (to reflect the topological relevance of the first in front of the second).

Bifurcation surface where at least two infinite singularities coalesce.

(S5) The invariant that captures the coalescence of two infinite singularities is η which for
family (1) is

η = 4n2(m2 − `n).

So we will define surface

S5 : n(m2 − `n) = 0

and we will draw it in red.

Bifurcation surface where we have a focus-node transition.

(S6) An elementary point whose discriminant of its jacobian is zero is a node but a small
perturbation of it may turn it into a focus. This phenomena is captured by invariant W4 which
for family (1) is

W4 = 16(−2 + f)(2 + f)(4`2 + f2`2 + 4f`m+ 4m2)n2(−m2 + `n)2.

So we will define surface

S6 : (−2 + f)(2 + f)(4`2 + f2`2 + 4f`m+ 4m2)n(−m2 + `n) = 0

and we will draw it in dashed black since it does never imply a topological change.

Existence of an invariant straight line.

(S4) This bifurcation surface will contain the values of the parameters for which we possibly
have an invariant straight line in the portrait. We note that this straight line will always exist
unless it has gone to infinity. Therefore, the existence of an affine invariant straight line is not
guaranteed on this surface. We note that this is a necessary but not sufficient situation. Notice
also that the invariant line may coincide with a connection of separatrices in which case it is
topologically relevant, or not. This invariant line feature is captured by the set of comitants B1,
B2 and B3. Since for family (1) the invariant B1 is always zero, we must put our attention to
comitant B2 which is

B2 = − 648(`2 + 2f`m+ 4m2 − 2`n+ f2`n+ 2fmn+ n2)

(`2 + 2f`m+ 2`n+ f2`n+ 2fmn+ n2)x4.

So we will define surface

S4 : (`2 + 2f`m+ 4m2 − 2`n+ f2`n+ 2fmn+ n2)

(`2 + 2f`m+ 2`n+ f2`n+ 2fmn+ n2) = 0

and we will draw it in solid magenta when it corresponds with a separatrix connection and with
dashed magenta when it does not.

Other surfaces.
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(S9) The case n = 0 and m 6= 0 (taken as m = 1) which will correspond to one full slice
under study belongs both to surfaces S3 and S5. We call it with a different number to remind
the double meaning it has. In this surface, the invariant T4 vanishes as well as T3 = T2 = T1 = 0
but σ = f + 2mx2 6= 0. So we are in condition (e) of [14, Theorem 6.2] and the next relevant
invariant is F1 = 2`m. So, the role to decide the type of weak singularity is captured by the
parameter `. Thus, the straight line ` = 0 will be denoted with code “3” as in 3.9L1 in this
surface. Moreover, this slice coincides with the case already studied in [35].

(S8) We will call surface S8 to the case m = 0 and n 6= 0 (taken as n = 1) which corresponds
to one full slice under study. The value m = 0 does not vanish any needed invariant, but on this
slice, several invariants coincide. Moreover, this slice coincides with the case already studied in
[31].

The set n = m = 0 will be denoted as the line 8.9L (plus some points) and will play the role
of the “equator” of the parameter space.

Finally, there exists another non-algebraic (and possible also non-analytical) surface where
we will find separatrix connections. We will call such surface as S7 and we will draw it in solid
magenta, the same as S4 since in both cases we have separatrix connections, but the name of the
regions, whether they are 4Si or 7Si will indicate us the type of connection it is. This surface
can only be detected by means of coherence arguments as we will do in Section 5.

Existence of an invariant parabola.

The algebraic invariants to detect an invariant conic have been recently developed by Vulpe
et al. [41], but we will not use them here since they are quite many and heavy invariants, and
we simply need to detect the presence of such a parabola in a few specific cases. In order that an
invariant parabola may be relevant for our study, we need it to conform a separatrix connection
and this implies that we must have an infinite singularity at least of nilpotent type. This implies
that we must be on the surface S5. So, we will prove next lemma:

Lemma 1. On every slice m = m∗ (thus n = 1), the point (f, `,m) = (−m∗/2, (m∗)2,m∗)
produces a phase portrait with an invariant parabola. Moreover, one of the branches of the
parabola corresponds to a separatrix connection between the finite saddle and an infinite saddle-
node. The phase portrait obtained is 5.7L2 from Figure 1.

Proof. We start from family of systems (1) which for ` = m2/n (i.e. η = 0) have a double
infinite singularity (in fact it is a multiplicity 4 singularity coming from the coalesence of two
infinite and two finite singularities) at the point [−m : n] of local chart U1. We apply a rotation
of angle − arctan( n

m) so to move this infinite singularity at the point [0 : 0] of local chart U2 and
we obtain the family of systems:

ẋ =
fx

m2 + 1
+
y
(
fm+m2 + 1

)

m2 + 1
+
√
m2 + 1x2

ẏ = −x
(
−fm+m2 + 1

)

m2 + 1
+

fm2y

m2 + 1
+
√
m2 + 1mx2.

Then, if this system has an invariant parabola passing through the point [0 : 0] of local chart
U2 (or its symmetric), this parabola will have the form F : y = a x2 + b x+ c. And it is a simple
exercise to check that the condition f = −m/2 is needed so to obtain the desired parabola with
parameters

(a, b, c) =

(
−2
√
m2 + 1

(
m2 + 1

)

m2 + 2
,− m3

m2 + 2
,

√
m2 + 1

m2 + 2

)
.

The existence of the separatrix connection comes from the fact that the parabola passes
through the finite saddle at (1/m2, 0) (then it conforms its two stable separatrices), does not
pass through any other finite singularity and that the singularity [0 : 0] of local chart U2 is a
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nilpotent saddle-node. So the parabola arrives to this point on one side along one orbit of the
parabolic sector, but on the other side it can only be the separatrix of the saddle-node. �

3.2. Location of the singular slices.

Since we our parameter space is R4 minus one point, and this can be identified with a union
of spaces R3 ∪ R2 ∪ R1 ∪ R0, most of the work will take place when studying the R3 part,
and in it, we will split the parameter space in planes. We do not need to study an infinite
number of planes. The bifurcation surfaces may have singularities and may intersect among
them generically, so there will be slices whose partition due to the bifurcation surfaces will be
topologically equivalent. But there will be some “singular” slices where either three (or more)
surfaces will intersect, or the singular part of one surface intersects another surface, or other
geometrical features which will make such slices special. We must detect all those singular slices.
The next lemmas help us in such goal.

Lemma 2. For n = 1 and m = 1, the surfaces S3, S4, S5 and S6 intersect them all at the point
f = −2 and ` = 1. Moreover the surfaces S4 and S5 are tangent at that point.

Lemma 3. For n = 1 and m = 1/2, the surfaces S1, S4 and S6 intersect each other in the point
f = −2 and ` = 0. Moreover the surfaces S4 and S6 are tangent at that point.

Lemma 4. For n = 1 and m = 1/3, the surfaces S3, S4 and S6 intersect each other at the point
f = 2 and ` = −1/3.

Lemma 5. For n = 1 and m = 1/4, the surfaces S1, S4 and S6 intersect each other at the point
f = −2 and ` = 0.

Lemma 6. For n = 1 and m = 2, the point (f, `) = (−1, 4) at which we have the invariant
parabola belongs to surface S3.

Lemma 7. For n = 1 and m = 4, the point (f, `) = (−2, 16) at which we have the invariant
parabola belongs to surface S6.

All the surfaces (except S4) are very simple, and this allows that all these lemmas can be
proved easily with basic algebra tools.

Our decision to split the 3-dimensional space in slices of the type m = cte comes now to
effect since we realize that the singular slices defined by the previous lemmas are precisely
m = 0, 1/4, 1/3, 1/2, 1, 2, 4. Between each couple of these slices, and about the topmost one,
we will take another value for m to chose a generic slice. That is, since these are all the
singular slices, the bifurcation diagram on any other slice will remain topologically the same for
small changes in m meanwhile it remains in the same interval between singular slices. In other
papers using this same technique, it was found that apart from the singular slices produced by
the algebraic bifurcation surfaces, other singular slices were produced when the non algebraic
surface S7 intersected some other surfaces. These other singular slices could only be determined
by continuity arguments and their values only computed numerically by bisection, and just in
a approximate way. However, in this paper, we have found two of these singular slices, and we
have been able to give an algebraic value since they coincide with the cases where the separatrix
connection takes form of a parabola, and thus we have obtained the values m = 2 and m = 4
when surface S7 intersects S3 and S6 respectively. It is not impossible that a non-algebraic
surface may intersect another surface (or even show a singularity) on an algebraic variety.

The surface S9 (n = 0 and m = 1) may be viewed as the slice of m = ∞, and the coherence
of the bifurcation diagram on it, and its phase portraits with those of the topmost slice we will
take, will proof that the bifurcation diagram is complete without need of other slices. So, the
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slices we will use will be:
m0 = 0 m8 = 1

m1 = 1/8 m9 = 3/2

m2 = 1/4 m10 = 2

m3 = 2/7 m11 = 3

m4 = 1/3 m12 = 4

m5 = 2/5 m13 = 5

m6 = 1/2 m14 =∞ (i.e.n = 0, m = 1).

m7 = 2/3

The even subindeces correspond to the singular slices and the odd ones to the generic ones.
The subsets of the partition of the parameter space of dimensions 3, 2, 1 and 0, will be

denoted respectively by (V ), (S), (L) and (P ) for Volume, Surface, Line and Point, respectively.
The surfaces are named using a number which corresponds to each bifurcation surface which
is placed on the left side of S. To describe the portion of the surface we place an index. The
curves that are intersection of surfaces are named by using their corresponding numbers on the
left side of L, separated by a point. To describe the segment of the curve we place an index.
Volumes and Points are simply indexed (since three or more surfaces may be involved in such
an intersection). If three or more surfaces intersect not just in a point but along a Line, we will
use the code of the two surfaces with stronger geometrical meaning.

We consider an example: the surface S3 splits into 16 different 2–dimensional parts named
from 3S1 to 3S16, plus some 1–dimensional arcs named as 3.xLy or x.3Ly (where x denotes the
other surface intersected by S3 and y is a number), and some 0–dimensional parts. Then, for
example, in Figure 3 we may see V1 (respectively 1S1, 1.4L1) which stands for V1 (respectively
1S1, 1.4L1). And the same happens with many other pictures.

4. Study of the main slice

We start by taking one generic slice. Normally we chose either the topmost or the bottom
most generic slice. However in this case we started by m = m9 = 3/2 and2 we put there, in their
respective color, all its intersections with the algebraic surfaces already described. The image we
show is not numerically exact since some parts of the bifurcation diagram would be too small to
put there a label, or even sometimes almost invisible. So we produce a topologically equivalent
image of the bifurcation diagram, respecting also the tangencies between surfaces (see Figure
3). Then we label every region on it: the two dimensional parts correspond in fact to Volumes
in the 3-dimensional bifurcation diagram, and so on. Since this slice is generic, the parts which
are seen as points and in fact lines in the bigger space. The reader may notice that we have
skipped some labels as for example V5, V6, V8 and others since we will need these labels later
and we will explain it in short.

Then, knowing that inside every part, the number and type of the singularities is already
known using the signs of invariants and the tables from [14], we use program P4 (see [23]), to
obtain one phase portraits of every region. We check if the phase portraits of the 3-dimensional
regions are coherent with those of the borders of the regions. If there is coherence, then there
is no need of existence of another bifurcation related with separatrix connections, but if there
is no such coherence, then this proves that such a bifurcation must split that region in two or
more pieces. This is what happens for example in V7 since the phase portrait we obtain for a
point close to 3S5 is different from the one we obtain at a point close to 3S4, Concretely, the
phase portrait close to 3S4 contains a limit cycle while the other not. This phenomena happens

2The history is that we were initially convinced that the slice m = m10 = 2 was generic and started there, but
later we realized that it was singular for a very particular detail related with non-algebraic surface S7, and that
even another singular slice (m = m13 = 4) was above. Since all the regions were already named and renaming
most of them could lead to mistakes, we preferred to start with generic slice m = m9 = 3/2.
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6S2
4S10

V1

V2

V3

V4

V7

V9

V10

V11

V12

V14

V15

V16

5.6L1

4.6L1

3.5L1 5.6L2

4.6L2

3.6L1

1.6L1

1.4L2
1.3L1 1.6L2

3.4L1

4.6L3

4.6L4

4.6L5

3.6L2

4.6L6

3.4L2
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Figure 3. Bifurcation diagram for slice m = m9 = 3/2 with only the algebraic
bifurcation surfaces.

usually linked to the surface S3 when this surfaces detects the presence of a weak focus, which
by the Poincar-Hopf bifurcation may produce one limit cycle close to it. The limit cycle that
it is produced when we cross 3S4 coming from V3 must disappear in some graphic which is not
captured by any of the algebraic bifurcation surfaces we have detected. So, there must be a
piece of surface S7 splitting region V7 in two regions, which we rename as V7 and V5. In V5 we
have the limit cycle and in V7 not. The part of S7 producing the bifurcation receives the name
of 7S1 (see Figure 4) and portrays a loop where the limit cycle of V5 dies. Even more, in region
V9 we have a similar phenomena since the bifurcation surface S7 prolongs its part 7S1 into 7S2

splitting regions V6 from V9. But this is not enough since the phase portrait V8 that we obtain
when the loop breaks, is not the same as the V9 we obtain close to 3S6 or 4S4. So surface S7

needs to have another component where another separatrix connection not linked to a graphic
must occur. This way we obtain phase portrait 7S3 which is the border between V8 and V9. The
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prolongation of 7S1 into 7S2 induces a crossing point with surface S5 which is the line 5.7L1

splitting 5S4 from 5S5.
Notice that the parts 7S1 and 7S2 deal with the connection of separatrices of one same

finite saddle forming a loop, and this has logical sense at both sides of surface S5. However,
part 7S3 deals with the connection of a separatrix of a finite saddle with the separatrix of an
infinite saddle. So, when we cross surface S5 and two infinite singularities become complex, such
separatrix connection may not persist (at least in the real set) and the bifurcation must stop at
S5. In principle, the part 7S3 could have ended on any point of surface S7, but the bifurcation
values m = m10 = 2 and m = m12 = 4 detect when surface S7 intersects surfaces S3 and S6

respectively. So we have that for values m < m10 = 2, the part 7S1 ends at a point in surface
S5 between 3.5L1 and 3.5L2 and since it must be right to the recently detected 5.7L1, it must
split segment 5S4 in two subsegments renamed 5S4 and 5S10.
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Figure 4. Bifurcation diagram for m = 1.5.
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In a similar way, if we follow parts 7S2 and 7S3 down towards surface S1 (in blue) we see that
the saddle that produces both connections is escaping towards infinity, and once it coalesces
with an infinite singularity and the saddle remains at infinity, the loop connection is no more
possible. So, below surface S1 only one part with separatrix connection may remain which is
denoted by 7S4 needed also to split V13 with limit cycle from V14 without. Part 7S4 must end
at 4.7L1 where we have a system with a center and reappears later as 7S5 needed to split V31

with limit cycle from V32 without.

Observation 1. Notice that the parts 7S1 to 7S5, of the surface S7 could at some point cross
the surface S3 which we have draw in dashed yellow because it corresponds to the weak saddle.
But in case it happened, since the only finite saddle would be weak, that would imply that at
some point, two limit cycles would be possible and this is in contradiction with Rychkov result
[40] that states that systems (1) have at most one limit cycle. In principle it would be possible
that S7 were tangent at some point with surface S3 but apart from its unstability, it would not
create any new topologically different phase portrait, so we have not drawn any such contact.

Now we start studying the rest of the slices. In order to do that, we will start with the first
singular slice m = m8 = 1 below the main slice we have studied. But we will not draw all the
bifurcation diagram of it. We will just focus our attention on the part of the bifurcation diagram
where the changes occur. We will denote with red labels those parts which remain the same as
in the previous slice, and denote with black labels the new parts that appear.

In this way, in slice m = m8 = 1 the only relevant fact is that the parts 4.5L1, 5.6L1 and
4.6L1 coalesce at P1 (in fact, this is simply the triple intersection of surfaces S4, S5 and S6), thus
parts V17, 5S2, 6S6 and 4S2 disappear. In fact, also surface S3 intersects there and the part V11

altogether with its borders coalesces at P1. Moreover, the singularity of surface S4 at 4.4L1 also
coalesces at the same point P1 and this forces the collapse of other parts of the diagram. So,
only one new part P1 appears in this slice which corresponds to a single point in the parameter
space (see Figure 5).

V9

V10

V12

V16

P1

1.6L1

1.4L1

V22

V21

V23

V24

V26

3S5

6S7

1S3

4S14

1S21S1

6S34S18

3S9

4S1

5S1
5S10

4S4

4S13

Figure 5. Bifurcation diagram for m = 1.
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The next slice is m = m7 = 2/3 and it is generic. The intersection of several bifurcation
surfaces produced in P1 splits again. We see the born of parts V44, V45 and V46, altogether with
all their borders. This has been a higher level bifurcation since it has been an intersection of four
surfaces, when generically we have intersections of three surfaces in singular slices (see Figure
6).

The next (singular) slice is m = m6 = 1/2. Here part V26 and all its borders coalesce at P2.
This is the most typical bifurcation that can be found in these kind of diagrams: Three surfaces
intersect at one point, and one “triangular” part disappears with all its borders (three “curves”
and three “points”) and reappears later at the other side of the bifurcations with new names
(see Figure 7). In fact, for this slice, another bifurcation happens: the parts 4S12 and 3S12

(which border part V41 on the right part of the diagram) that we can see in Figure 6, coincide
at infinity. So, we do not notice any difference yet, but after the singular slice we will see some
new parts appearing there.

The next slice is m = m5 = 2/5 and it is generic. We draw it larger since we have to reflect
changes in different parts of the diagram. A new part V47 (altogether with its borders) appears
from P2. Moreover, new unbounded part V48 appears together with two 2-dimensional parts
3S15 and 4S25 plus a 1-dimensional part 3.4L4 (see Figure 8).

The next (singular) slice is m = m4 = 1/3. Here part V41 and all its borders coalesce at P3

in a generic triple intersection of surfaces (see Figure 9).
The next slice is m = m3 = 2/7 and it is generic. The “triangle” around V41 reappears as V49

and its new borders (see Figure 10).
The next (singular) slice is m = m2 = 1/4. Here part V12 and all its borders coalesce at P4

in a generic triple intersection of surfaces (see Figure 11).
The next slice is m = m1 = 1/8 and it is generic. The “triangle” around V12 reappears as V50

and its new borders (see Figure 10).
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Figure 6. Bifurcation diagram for m = 2/3.



QUADRATIC VECTOR FIELDS IN CLASS I 15

V9

V10

V7

V12

V16

V46

V43

V44

V45

4S21

3S14

4S23

P2

4S22

6S17

V22

V21

V23

V24

3S5

6S7

1S31S1

4S18

3S9

4S1

5S1
5S10

4S4

5.6L3

6S15

3.6L3

5S9

6S16

4.5L2

5S8

3.5L3 3S13

4.6L7

3.4L3

4S13

Figure 7. Bifurcation diagram for m = 1/2.
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Figure 8. Bifurcation diagram for m = 2/5.
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V2
V4

1.6L2

4.6L5

V33

V36

V34

P3

V38

V39

V42

V48
V40

6S10

6S9

4S19

4S25

4S20

6S13

6S12

1S6 1S7

3S15

3S11

4S11

Figure 9. Bifurcation diagram
for m = 1/3.
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Figure 10. Bifurcation dia-
gram for m = 2/7.
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Figure 11. Bifurcation dia-
gram for m = 1/4.
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Figure 12. Bifurcation dia-
gram for m = 1/8.
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Finally we arrive to the bottom-most slice m = m0 = 0 and we will plot it, not as an affine
plane but as compactified disc including as its border the case m = n = 0. In this slice, all
the parts are new and denoted with black labels; the generic 2-dimensional parts are really
2-dimensional parts of the bifurcation diagram, as well as the same with other lower dimension
parts. Notice that for this slice (and also for the cases m = n = 0) there is a vertical symmetry
f → −f . Notice also that in contraposition with what would have happened if the compactified
parameter space would have been the projective space, we do not have an identification of the
opposite equator points, but an identification of points from the upper half cercle to the bottom
one. That is, The point P18 corresponds to P16 and the parts 8.9L1 and 8.9L2 correspond to
8.9L4 and 8.9L3 respectively (see Figure 13).

It is important at this point to check, region by region, that the 2-dimensional parts in this
slice are the borders of one 3-dimensional part from the slice m = m1 = 1/8, and that if some
2-dimensional part in m = m1 = 1/8 has no continuity in m = m0 = 0, it is because it has
collapsed into one of the 1-dimensional parts, or even 0-dimensional parts of slice m = m0.
Every phase portrait in slice m = m1 must be explained as the perturbation of a phase portrait
in m = m0. We have done this work, region by region, but here we are going to describe only
some few examples. Part V39 which is present in all slices (see Figures 7 or 8) has 8S8 as its
bottom border. Part V15 which is also present in all slices and we can see it in last Figure 12,
collapses at point P10. All the parts that we have seen between surfaces S1 and S5 (which appear
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Figure 13. Bifurcation diagram for m = 0.
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as parallel lines in every slice) collapse in different segments or points of the axis ` = 0. It is this
coherence in continuity between the parts on slice m = m0 and parts on m = m1 along with
the continuity in their associated phase portraits which supports the argument that we are not
leaving unstudied any non algebraic singular slice between they both.

We have moved from initial slice m = m9 = 3/2 down up to m = m0, but now we must move
up.

So we take the next slice m = m10 = 2 and we see there that the parts 5.7L2 and 3.5L2 from
Figure 4 coalesce at P19. In this case, the only part that has collapsed is 5S10 (see Figure 14).

The rest of slices simply follow the movement of the end point of surface S7 along surface
S5. For m = m11 = 3 it ends at 5.7L3 splitting part 5S3 into a new 5S11 (see Figure 15). For
m = m12 = 4 it ends at P20 (see Figure 16) and for m = m13 = 5 it ends at 5.7L4 splitting part
5S2 into a new 5S12 (see Figure 17).

There is no other algebraic singular slice above m = m13 so we move to the top cover as
m→∞ which can be seen as system (1) when n = 0 (and thus we may take m = 1 as explained
before). We again draw this slice as a compactified disc, including the border as the equator
of the parameter space. In this casse, we have a symmetry l → −l which coincides with the
symmetry we have at the border of the disc (see Figure 18).
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Figure 14. Bifurcation diagram for m = 2.
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Figure 15. Bifurcation diagram for m = 3.
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Figure 16. Bifurcation diagram for m = 4.
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Figure 17. Bifurcation diagram for m = 5.

As we have done for slice m = m0 we have checked that every part in this slice is the border
of one region in slice m = m14 or suposses the collapse of several of them giving coherence to
the whole bifurcation diagram, and corroborating that no extra non-algebraic singular slice is
needed to complete the study.

Remark 2. Even this may seem quite a complicate bifurcation diagram if this is the first time
that the reader sees in a 4-dimensional parameter space (reduced to 3 dimensions with the tech-
nique already explained), in fact it is quite simple compared with other works of the same type
as [18] where more than 50 slices were needed, more than 600 parts were produced, and more
than 200 different phase portraits were found. Moreover, it is worth to notice also that in all
the singular slices that have appeared here, all the intersections of surfaces involved at most two
solid curves, while the other where dashed ones. This has a very important consequence and this
is that every slice from m = m1 to m = m14, whether if they are generic or singular, contain
always all the different topological phase portraits. No set of parts corresponding to a same phase
portrait, completely collapses as we move from one slice to another. The slices m = m0 and
m = m14 contain different phase portraits that had already been found in previous works, but
the goal of this paper was precisely to find the rest of cases. So, it seems as if we had done too
much extra work by finding the complete bifurcation diagram while only any slice of it would
have sufficed to do it, but one cannot be sure of that fact until one has completed the whole
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Figure 18. Bifurcation diagram for m =∞.

study. Moreover, some geometrical features as having two invariant straight lines in 4.4L1 or
coincidences of geometrical features as having an invariant parabola with a node with a double
eigenvalue as in P20 are only available after the complete study since these phenomena appear
only in some slices and not in others. This proves that it was not possible a further reduction
os parameters from normal form (1) to one parameter less.

4.1. Compararition with the Ph. D. Thesis of B. Coll.

In [19] (1987) B. Coll made the closest attempt for the complete study of this family. And he
was very close to obtain the full set of different phase portraits that we found here. He missed
only two, concretely 4.5L1 and 4.7L1. Coll tried to study this 4 dimensional parameter space
by choosing some wisely selected straight lines on it which covered all the possible cases. Such
attempt in a more complicated family would have been a complete failure since just lines in a 4
dimensional space (or even a 3 dimensional one) would be just a splinter of the whole set. But
thanks to Remark 2, a good election of lines in a two dimensional space, has more possibilities
to be close to completeness. With two more wisely elected lines, he would have achieved it.
Anyway, this could not have been accepted as a proof since the complete study was needed.

4.2. Possible islands in the parameter space.

In every paper of this kind, this is a compulsory subsection that we must add. We have
done our bifurcation diagram for systems (1) and our main theorem claims that there are 49
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topologically different phase portrait in it. But this “there exists” must not be read as “there
exist exactly” but as “there exists at least”. The reason is that there may be non algebraic
bifurcations, mainly related with double limit cycles or separatrix connections which could escape
to this study. In this family, we cannot have double limit cycles since Rychov [40] already proved
the uniqueness and hyperbolicity. But more separatrix connections could exist. However, since
we have proved the completeness and coherence of the bifurcation diagram as it is given here,
we have proved that no other bifurcation is needed in order to describe it. So, if any other
separatrix connection were possible, this should have to take place on the border of a bubble
and inside it, we could maybe have a different phase portrait. Since such bubbles, in case they
exists, could have any small size, it is not worth trying to find them by a numerical search. It
would already be worthless in a 2-dimensional space, even much more in a 4-dimensional one.
This is why we have called them “islands”. It is also worth to mention that in none of the
previous families studied up to now with this technique, such an island has ever been proved to
exist.

5. Completion of the proof of Theorem 1

5.1. Topological Invariants.

We have split the bifurcation diagram in 261 different parts of different dimensions from 0 to
3. We already know by the type of bifurcations we have found, that some of them only produce
geometrical changes that do not affect to the topology of the phase portrait, the most common
of them being changes from node to focus, invariant straight lines which are not connection of
separatrices and weak saddles. But even reducing all these facts, it is still possible that two
separated parts of the bifurcation diagram may have topologically equivalent phase portraits,
which initially have been drawn in such a way that it is not easy to compare them to decide
if they are the same or not. Of course, one can do a comparison two by two of all the phase
portraits and decide if they are the same or not, but apart from the lack of rigor of such a proof,
it is easy to make mistakes there. Since similar works have had the duty of distinguishing among
hundreds of phase portraits, we better use the same technique as them.

We will create a set of topological invariants such that they may be assigned to each part of
the bifurcation diagram. Let S be a quadratic system of Class I.

Definition 1. Let p1, . . . , pn (with n ≤ 4) be the finite singularities of S and assume that each
one of them receives (or sends) respectively s(p1), . . . , s(pn) separatrices. We define I1(S) as the
chain of s(p1), . . . , s(pn) such that it produces the biggest possible natural number. If a separatrix
arrives to (or departs from) a limit cycle, we will consider it as arriving to the interior focus.
For example, if we have two finite singularities, one is a saddle which has 4 separatrices and
another is an antisaddle receiving one separatrix, then I1 = 41.

Definition 2. Let p1, . . . , pn (with n ≤ 6) the infinite singularities of S and each one of them
receives (or sends) s(p1), . . . , s(pn) separatrices without taking into consideration the ones which
lay on the intinity. We define I2(S) as the chain of s(p1), . . . , s(pn) ordered such that starting
from whichever point, and moving either clockwise or counter-clocwise sense, the integer produced
is the biggest possible. For example, phase portrait V2 has six singularities at infinity which
starting at the point [0 : 0] of local chart U2 and moving clockwise sense has I2(S) = 411010.
If we had moved the other sense, the number would have been lower. Since a phase portrait
is equivalent to any rotation or symmetry of itself, in this way we are sure to assign the same
number to any equivalent phase portrait.

Definition 3. We define I3(S) as the number of limit cycles of S.

Definition 4. We define I4(S) as 1 if S has a center or 0 if not.

Definition 5. We define I5(S) as the maximum number of separatrices received (or sent) by an
elemental singularity at infinity.
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This last invariant is needed to distinguish two phase portraits which seem very similar but
they are not equivalent. In 5S6 an infinite node receives three separatrices, and there is a nilpo-
tent saddle-node which has one separatrix, and receives another from a finite saddle. However
in 5S4 the elemental infinite node node only receives 2 separatrices, and the infinite nilpotent
saddle-node, apart from its own separatrix, receives two separatrices from the finite saddle.

Theorem 2. The invariant I = (I1, I2, I3, I4, I5) makes a partition in the set of phase por-
traits of quadratic systems of class I (see Table 1). Moreover, for each value of I there is a
unique phase portrait from Figure 1, i.e., I(S) = I(S′) if and only if S is topologically equivalent
to S′.

In Table 1, if the name of the phase portrait is given inside square brackets, it means the
phase portrait has a limit cycle. If it is given inside one set of brackets {}, it means that it
has one graphic. If it is given inside two set of brackets {{}}, it means that it has two graphics
(in this sense, we consider the infinite set of graphics formed by an elliptic sector are just one
including its external border).

I1 =





0 & I2 =





0 {P13},
1010 {{P11}},
2000 {P9},
111010 {1.7L1},

1 & I2 =





1110 {1.9L1},
2100 (1.8L1),
110100 (1.4L2),
111110 (1S4),
211010 & I3 =

{
0 (1S6),
1 [1S5],

2 & I2 = 110110 (1S1),

40 & I2 =





11 & I4 =
{

0 {7S1},
1 {3.8L1},

2101 {{7.9L1}},
2200 {5.7L1},
110110 {4.7L1},
111111 & I4 =

{
0 {7S4},
1 {3.8L2},

220110 & I4 =
{

0 {7S5},
1 {3.8L3},

311010 {7S2},

41 & I2 =





21 & I3 =

{
0 (V1),
1 [V5],

1110 {4.9L1},
2100 (5.7L2),
2101 {9S6},
2210 {9S4},
3101 & I3 =

{
0 {9S1},
1 {[9S3]},

3200 & I3 =

{
0 & I5 =

{
2 (5S4),
3 (5S6),

1 [5S5],
111110 (4S5),
210110 (4S6),
211010 (7S3),
211111 & I3 =

{
0 (V14),
1 [V13],

320110 & I3 =
{

0 (V29),
1 [V31],

321010 (V8),
411010 & I3 =

{
0 (V2),
1 [V6],

42 & I2 =





2101 (5S1),
111010 (4S1),
211110 & I5 =

{
1 (V15),
2 (V9),

43 & I2 =

{
2120 (4.5L1),
111110 (V12),

Table 1. Classification of the phase portraits according to the invariants of
Theorem 2.
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Proof. This theorem comes from a simple application of the invariants to all the phase portraits
from all the regions of the bifurcation diagram. If a region does not appear in this list is because
it has exactly the same invariants as one already displayed, and then, it has been checked that
the phase portraits are really the same. In the next subsection we give the correlation among all
the parts that do not appear here (and thus neither in Figure 1) and the ones we have selected
of representatives of their classes (the most generic one with lower index). Note that a phase
portrait from one part of the diagram may have a focus while from another part, it may be
exactly the same, except it has a node. In Figure 1 they are drawn indistinctly as focus or nodes
depending of the representative chosen. �
5.2. Table of topological equivalences.

In this section we will give Table 2 where we link the representative of every phase portrait
given in Figure 1 with all the different regions in which the parameter space has been divided.
Two phase portraits from different regions may be topologically equivalent for different reasons.
The most common ones that we will see here are that a phase portrait has a focus and another
a node, or one has a weak singularity (focus or saddle) while the other has a strong singularity
of the same type, or a system has an invariant straight line which does not conform a separatrix
connection and thus, it may be equivalent to another phase portrait without such geometrical
property. But there are other different reasons and in other classifications may also appear new
ones (multiple singularities with equivalent phase portrait, or simply the same phase portrait
appears in a region far from the first).

We will group them along several columns putting on the left column the representative
region, and in the same row, the equivalent portraits. Moreover, in different sub rows, we will
group the equivalent regions according the dimension of the part they have. That is, the regions
having the same dimension as the representative phase portrait will be in the exactly same line,
and below we will have other regions of lower dimension. For the representative regions, we have
always taken one of the biggest possible dimension and with the lowest cardinal.

If several consecutive named regions belong to the same block, we have joined them as in
V19−21 in order to reduce the width of the table.

Proof of Theorem 1. The union of Sections 4 and 5 conforms the proof of the theorem since we
have found a complete and coherent partition of the parameter space, and have extracted from
it the set of topologically different phase portraits. �
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Main Focus - node Weak Weak Invariant Other
phase focus of saddle straight reasons

portrait order 1 line
V1 V3 V7, V10, V16, V46

6S14, 6S7, 6S15 3S4 3S5, 3S13 8S1−2

6.8L1 3.6L3 8.9L1−4

P16, P18

V2 V4

6S13 3S3

V5

V6

V8 V51−52

6S21 3S17

V9 V17,V43 V11, V22, V45

6S6, 6S16 3S6, 3S14

V12 V19−21, V23−26, V44 V18

6S3−5, 6S17 3S7−9 4S14−18, 4S23

3.6L1 4.4L1, 4.6L2, 4.6L8

V13

V14 V50 V34, V40, V48−49

6S12, 6S19, 6S20 3S2 3S15 3S16 8S3, 8S10

6.8L2 3.6L4

V15 V27, V28, V47 V33, V36, V38−39, V41−42

6S2, 6S9−11, 6S18 3S11, 3S12 4S13, 4S19−20, 4S24 8S4, 8S7−9

6.8L3, 6.8L4 3.6L2 4.6L5, 4.6L9, 4.8L5−6

P7

V29 V30 V32, V35, V37

6S1, 6S8 3S1 3S10 8S5, 8S6

6.8L5

V31

Table 2.



QUADRATIC VECTOR FIELDS IN CLASS I 25

Main Focus - node Weak Weak Invariant Other
phase focus of saddle straight reasons

portrait order 1 line
1S1 1S3 1S2, 1S8

1.6L1, 1.6L3 1.4L1, 1.4L3

P2

1S4 1S9

1.6L4

1S5

1S6 1S7

1.6L2 1.3L1

4S1 4S2−4, 4S21−22

4.6L1, 4.6L7 3.4L1, 3.4L3

4S5 4S27 4S11−12, 4S25−26

4.6L4, 4.6L10−11 3.4L4−5 4.8L1−2

P6 P3

4S6 4S8 4S7, 4S9, 4S10

4.6L3, 4.6L6 3.4L2 4.8L3−4

P8

5S1 5S2−3, 5S8, 5S10

5.6L1 3.5L2

5S4 5S9 5S11−12

5.6L3−4 3.5L3

5S5

5S6 5S7

5.6L2 3.5L1

7S1

7S2

7S3 7S5

3.7L1

7S4

7S5

9S1 9S2

6.9L1 3.9L1

9S3

9S4 9S5

6.9L2

Table 3. Continuation of Table 2.
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Main Focus - node Weak Weak Invariant Other
phase focus of saddle straight reasons

portrait order 1 line
9S6 9S8 9S7, 9S9

6.9L3−4 4.9L3−4

P14

1.4L2 1.4L4

P4

1.7L1

1.8L1 1.8L2

P5

1.9L1 1.9L2

P12

3.8L1

P17

3.8L2

3.8L3

4.5L1 4.5L2

P1

4.7L1

P10

4.9L1 4.9L2

P15

5.7L1

5.7L2 5.7L3−4

P19−20

7.9L1

P9

P11

P13

Table 4. Continuation of Table 2.
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