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ABSTRACT
C-truncating variants in the charged multivesicular body protein 2B (CHMP2B) gene are a rare cause of frontotemporal lobar 
degeneration (FTLD), previously identified only in Denmark, Belgium, and China. We report a novel CHMP2B splice-site vari-
ant (c.35-1G>A) associated with familial FTLD in Spain. The cases were two monozygotic male twins who presented at ages 62 
and 66 years with a slowly progressive behavioral variant of frontotemporal dementia and a syndrome mimicking dementia with 
Lewy bodies, respectively. Functional and in silico analyses supported the pathogenicity of this variant. Our findings contribute 
new insights into the genetic landscape and clinical heterogeneity of FTLD.

1   |   Introduction

Frontotemporal lobar degeneration (FTLD) is a pathological um-
brella term for a heterogeneous group of neurodegenerative dis-
eases primarily affecting the frontal and temporal lobes of the 
brain [1]. Clinically, FTLD can present with behavioral changes, 
speech and language impairment, and pyramidal or extrapyra-
midal motor dysfunction [1]. Pathologically, FTLD is classified 
into four main molecular subtypes according to the biochemical 

composition of intracellular protein inclusions, namely: trans-
active response DNA-binding protein 43 (FTLD-TDP, which 
accounts for about 45% of FTLD cases), microtubule-associated 
protein tau (FTLD-tau, 45%), fused in sarcoma (FTLD-FUS, 9%), 
and ubiquitin–proteasome system positive inclusions that are 
negative for TDP-43, tau, and FUS (FTLD-UPS, 1%) [2, 3].

FTLD clinical-pathological correlations are imperfect; how-
ever, approximately 20%–25% of cases are caused by autosomal 
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dominant variants with strong genetic-pathological associa-
tions. The most common FTLD-causing genes are C9orf72, GRN 
(both leading to FTLD-TDP), and MAPT (linked to FTLD-tau), 
but other less commonly reported genetic causes have been de-
scribed [1]. C-truncating variants in the charged multivesicular 
body protein 2B (CHMP2B) gene, associated with FTLD-UPS, 
have been previously documented only in Denmark [4], Belgium 
[5], and China [6].

Here, we report a novel splicing variant in the first CHMP2B-
associated FTLD family identified in Spain. We provide compel-
ling evidence supporting the pathogenicity of this variant and 
describe its atypical phenotypic expression in two monozygotic 
(identical) twins.

2   |   Case Reports

2.1   |   Family History

Family history was notable for several neuropsychiatric cases 
of unknown etiology, including the suicide death of 2 second-
degree relatives. The patients' father had died at age 86 from 
late-onset dementia. Their mother had died from a stroke at age 
61. The monozygotic twin patients were the third and fourth of 
five siblings, the rest of whom suffered from no neurological or 
psychiatric problems. The proband had one healthy daughter. 
Family history was therefore compatible with an autosomal 
dominant inheritance pattern (Figure 1).

2.2   |   Case 1

The index case was a right-handed male with 20 years of for-
mal education. He presented at age 64, at his wife's initiative, 
with a 2-year history of slowly progressive personality change 

characterized by compulsive behaviors (e.g., object and animal 
hoarding), diminished empathy (e.g., social and emotional de-
tachment), and changes in his dietary and eating behavior (e.g., 
idiosyncratic food preferences, taking food from others' plates). 
She also reported difficulties in attention and language. The pa-
tient exhibited limited awareness of these changes.

At presentation, his Mini-Mental State Examination (MMSE) [7] 
score was 28/30, and his Clinical Dementia Rating Scale-Sum of 
Boxes (CDR-SoB) [8] score was 3.5. Neuropsychological assess-
ment revealed executive dysfunction and language impairment 
characterized by deficits in naming, verbal fluency, and compre-
hension, with preserved repetition and reading. Episodic memory 
and visuospatial skills were also relatively preserved. He exhibited 
no motor neuron signs or other abnormalities on neurological ex-
amination. Routine laboratory work-up was unremarkable. Brain 
magnetic resonance imaging (MRI) and [18F]fluodeoxiglucose 
positron emission tomography-computed tomography ([18F]FDG-
PET/CT) showed mild global atrophy and normal metabolism 
(Figure 2). Cerebrospinal fluid (CSF) biomarker analysis [amyloid 
β 1–42 (Aβ42), phosphorylated tau at threonine-181 (p-tau), total 
tau (t-tau), and Aβ42/t-tau ratio] ruled out Alzheimer's disease 
pathophysiology as the underlying etiology. Genetic testing for the 
C9orf72 repeat expansion was negative.

Based on clinical and complementary test information, a di-
agnosis of a behavioral variant of frontotemporal dementia 
(bvFTD) was initially considered [10]. However, the observed 
slow rate of cognitive and functional decline during the first 
4 years of follow-up led the clinical team to withhold a definitive 
diagnosis of frontotemporal dementia. He was referred for eval-
uation by an experienced psychiatrist, who determined that a 
personality disorder was a potential explanation for the patient's 
symptoms. All of the above led to considering the possibility of 
a bvFTD phenocopy syndrome [11]. Nonetheless, after 6 years of 
follow-up, the patient's MMSE score had declined to 25/30, and 

FIGURE 1    |    Pedigree chart. The arrows mark the cases reported in the main text. Letter P indicates the proband (case 1). Years (y) are the ages at 
onset or death. Death cause is given in parentheses when known. Detailed clinical data could not be obtained for all affected family members due to 
limited informant recall and their sparse contact with second-degree family members living in another city. The assessment of these relatives by our 
clinical team was not possible either because they had already deceased at the time of our patients' evaluation.
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his CDR-SoB score had reached 4. The gradual but persistent 
cognitive and functional deterioration, in conjunction with pro-
gressive atrophy evident on longitudinal MRI assessments quan-
tified through visual atrophy scales [9] ultimately supported a 
diagnosis of a slowly progressive neurodegenerative disease.

2.3   |   Case 2

His monozygotic male twin, a right-handed individual with 
12 years of formal education, was unmarried and living alone. 

He presented at age 66 with language impairment and delu-
sional beliefs about his neighbor poisoning him with chemical 
substances.

At the first visit, his MMSE score was 16/30, and neuropsy-
chological testing revealed widespread cognitive impairment 
consistent with mild dementia. He soon developed dyscalcu-
lia, speech stereotypies, hyperorality, and motor impairment 
characterized by right-dominant akinetic-rigid syndrome. 
He exhibited no motor neuron signs. Blood analyses were 
normal. Brain MRI and [18F]FDG-PET/CT imaging revealed 

FIGURE 2    |    Neuroimaging findings. Neuroimaging findings in Cases 1 (Panel A) and 2 (Panel B). The upper row in each panel displays T1-
weighted magnetic resonance imaging (MRI), left to right: axial, and coronal slices showing anterior cingulate and orbitofrontal, frontal insula, 
and anterior temporal regions [9]. All MRI images are in radiological orientation. The bottom row in each panel displays 3-dimensional stereotactic 
surface projection (3D-SSP) analyses of [18F]fluodeoxiglucose positron emission tomography-computed tomography ([18F]FDG-PET/CT) images, left 
to right: right lateral, left lateral, right medial, and left medial. Orientation in the body is described as anterior (Ant), posterior (Post), superior (Sup), 
and inferior (Inf). The intensity normalization is based on the cerebellum as a reference region. Green colors indicate normal glucose metabolism, 
blue colors indicate hypometabolism, and orange-red colors indicate high metabolic activity. (A) Case 1 showed mild global atrophy and normal me-
tabolism of the brain. (B) Case 2 exhibited prominent, left-lateralized, atrophy and hypometabolism of occipitoparietotemporal and frontal regions, 
with preservation of the posterior cingulate cortex.
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left-predominant occipitoparietotemporal and frontal hypome-
tabolism, with preservation of the posterior cingulate cortex 
(Figure 2). CSF biomarkers [Aβ42, amyloid β 1–40 (Aβ40), p-
tau, t-tau, and Aβ42/Aβ40 ratio] ruled out Alzheimer's disease 
pathophysiology.

Based on the clinical presentation and imaging findings, in-
cluding parkinsonism, psychotic symptoms (interpreted as 
probable visual hallucinations), and posterior brain changes 
with a cingulate island sign, he was initially diagnosed with 
dementia with Lewy bodies [12] and was prescribed donepezil 
10 mg per day. After 4 years of follow-up, he was dependent for 
basic activities of daily living, and his MMSE score had de-
clined to 6/30.

2.4   |   Genetic Analysis

Diagnostic uncertainty and the emergence of additional neuro-
psychiatric cases in the family prompted a deeper genomic study 
of the index case. Whole exome sequencing revealed that the pro-
band harbored a novel heterozygous CHMP2B variant in the ca-
nonical splice acceptor site of intron 1 (NM_014043.4:c.35-1G>A), 

which was confirmed by Sanger sequencing. Importantly, 
disease-causing variants were ruled out in other genes related 
to FTLD, amyotrophic lateral sclerosis, Alzheimer's disease, 
and dementia with Lewy bodies (Table  1). The G-to-A change 
caused a shift in the reading frame that resulted in a premature 
stop codon, predicting a C-truncated protein composed of only 
the first 16 amino acids (p.Asp12Glyfs*5). The variant had not 
been reported in the most comprehensive population database 
(gnomAD v4.1.0) and was strongly predicted to be deleterious 
by two deep learning models, spliceAI (score = 0.99) [13] and 
Pangolin (score = 1) [14]. The variant was subsequently identified 
by Sanger sequencing in his affected brother. Written informed 
consent was obtained from both patients.

To confirm the variant's pathogenicity, peripheral blood RNA of 
both siblings was reverse-transcribed and amplified using poly-
merase chain reaction. Sanger sequencing of the cDNA identi-
fied a wild-type transcript and a variant transcript skipping exon 
2 that was not found in RNA samples from non-variant carriers 
(Figure 3). The detection of the aberrant transcript confirmed 
that the variant altered the normal splicing of CHMP2B and led 
to classifying the variant as pathogenic according to the ACMG 
guidelines (PVS1 + PM1 + PS3) [15].

TABLE 1    |    Studied genes.

ABCA1 ABCA7 ADAM10 ADH1C ALS2

ANG ANXA11 APP ARHGEF28 ARPP21

ATP13A2 ATP1A3 ATP6AP2 ATP8B4 ATXN2

C19orf12 C21orf2 (=CFAP410) C9orf72 CCNF CHCHD10

CHCHD2 CHMP2B CP CTSF CYLD

DAO DCTN1 DJ1 (=PARK7) DNAJB2 DNAJC12

DNAJC6 EIF4G1 ERBB4 EWSR1 FBXO7

FIG4 FTL FUS GBA GCH1

GIGYF2 GLB1 GLE1 GLUD2 GRN

HNRNPA1 HNRNPA2B1 HTRA2 ITM2B KIF5A

LRRK2 MAPT MATR3 NEFH NEK1

NPC1 NPC2 OPTN PDGFB PDGFRB

PFN1 PINK1 PLA2G6 POLG PRKN (=PARK2)

PRKRA PRNP PRPH PSEN1 PSEN2

PTS RAB39B SETX SIGMAR1 SLC18A2

SLC20A2 SLC30A10 SLC30A3 SLC39A14 SLC6A3

SMPD1 SNCA SNCAIP SNCB SOD1

SORL1 SPG11 SPR SQSTM1 SS18L1

SYNJ1 TAF1 TAF15 TARDBP TBK1

TBP TH TIA1 TREM2 TRPM7

TUBA4A UBQLN2 UCHL1 UNC13A VAPB

VCP VPS13C VPS35 WDR45 XPR1

Note: List of the 110 genes screened in the index case. The selection of genes of interest for analysis was based on previously described associations with dementing 
neurodegenerative diseases, amyotrophic lateral sclerosis, or parkinsonian syndromes.
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3   |   Discussion

This report presents a novel splice-site variant in Spain's 
first pedigree with CHMP2B-associated FTLD. CHMP2B 
(chromosome 3) is a 6-exon gene encoding a 213-amino 
acid protein of the endosomal sorting complex required 
for transport-III (ESCRT-III). ESCRT-III is involved in the 
endosomal-lysosomal and autophagy pathways, essential for 

the lysosomal degradation of endocytosed and cytoplasmic 
cellular components [16]. Genetic variants in CHMP2B are 
the primary known cause of FTLD-UPS, a neuropathological 
subtype characterized by hippocampal and frontal neuronal 
cytoplasmic inclusions that stain for markers of the ubiquitin-
proteasome system, such as ubiquitin and p62, but are neg-
ative for TDP-43, tau, and FUS [2]. Neuronal accumulation 
of aberrant endosomes and autophagic organelles has been 

FIGURE 3    |    Genetic analysis. Functional RNA study of the genetic variant identified in the CHMP2B gene (NM_014043.4:c.35-1G>A). (A) In the 
reverse-transcription polymerase chain reaction (RT-PCR) image, two bands can be observed in Lanes 1 and 2 (cDNA samples from the two patients 
carrying the mutation): One band of 750 bp and another, smaller band, of approximately 660 bp. In contrast, a single band appears in Lanes 3 and 4 
(samples from non-mutation carriers). Lane 5: Negative control (no template cDNA). (B) Sanger sequencing of cDNA sample from a patient carrying 
the heterozygous CHMP2B variant.
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observed in CHMP2B variant carriers and other neurodegen-
erative diseases, presumably reflecting the impairment in 
endosomal-lysosomal trafficking [2, 16–18].

While multiple CHMP2B variants have been identified, only 
those loss-of-function variants resulting in C-terminal trun-
cations of the CHMP2B protein are considered pathogenic. In 
contrast, the pathogenicity of missense variants remains unclear 
[6, 16]. C-truncating variants in CHMP2B have been previously 
identified only in Denmark [4], Belgium [5], and China [6]. The 
variants found in both a Danish FTLD pedigree (c.532-1G>C) 
and a Chinese patient (c.532-2A>T) occurred in the splice accep-
tor site of intron 5. They were predicted to translate into proteins 
lacking the final wild-type 36 amino acids. In a Belgian famil-
ial FTLD patient, a nonsense variant was identified in exon 5 
(c.493C>T), predicting the deletion of the final 49 amino acids 
of the protein. Here, we report two affected monozygotic twins 
harboring a heterozygous variant in the splice acceptor site of in-
tron 1 (c.35-1G>A). We demonstrate that the splicing variant re-
ported impacts RNA processing, resulting in a truncated mRNA. 
However, functional studies are needed to confirm its effects 
at the protein level. The variant reported herein, as previously 
shown for similar variants in CHMP2B, may result in a trun-
cated protein, impairing endosomal function through a gain-of-
function mechanism [5]. On the other hand, it may result in the 
loss of the entire protein through nonsense-mediated decay. In 
this sense, the depletion of CHMP2B has been demonstrated to 
alter dendritic branching and induce synaptic defects [19], thus 
supporting the notion that this variant is pathogenic through a 
loss-of-function mechanism. Functional studies will be needed 
to determine whether the splicing variant is pathogenic through 
a loss-of-function or gain-of-function mechanism.

The presentation of the index case with a slowly progressive 
personality change aligns with previous literature identifying 
bvFTD as the most frequent phenotype among CHMP2B variant 
carriers. Psychosis, dyscalculia, and progressive aphasia have 
also been documented early in the disease course, as was ob-
served in the second case. Disease progression frequently leads to 
mutism and extrapyramidal signs. Neuroimaging in CHMP2B-
related FTLD typically shows mild global atrophy at diagnosis, 
with some cases exhibiting prominent parietal involvement. The 
usual age of onset is between 46 and 70 years, and disease dura-
tion ranges from 3 to more than 20 years [6, 16, 20].

The history of suicide in this family warrants attention, given 
prior studies suggesting a higher prevalence of suicidality 
among bvFTD patients and FTLD mutation carriers [21–23]. 
Indeed, a parental history of suicide has been recently reported 
in one CHMP2B variant case  [6]. However, the notion of the 
CHMP2B variant being the cause of the two suicide cases in 
this family remains speculative, as segregation analysis data are 
not yet available. Equally speculative is whether the phenotypic 
differences within these two monozygotic twins are explained 
only by nongenetic (i.e., environmental) factors, or if they could 
result from different tissue-specific variant effects in the brain. 
Nevertheless, individuals with a family history of personality 
change, suicide, or dementia with Lewy bodies may benefit 
from screening for CHMP2B variants. Future studies should 
better elucidate the prevalence and natural history of CHMP2B-
associated FTLD.

Taken together, the findings of this report provide valuable in-
sights into the genetic landscape, disease mechanisms, and clin-
ical heterogeneity of FTLD. Our data underscore the importance 
of comprehensive genetic testing with a low threshold for suspi-
cion, which has important implications for achieving a defini-
tive FTLD diagnosis.
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