12855a7a138e7873a2fc69c2140ab0bb 320323.pdf 7409ca872270155661a67bffa7b1b8d038cd4e4e 320323.pdf 09000f65c7be6410b992c14a9d9a05007aa6ccfe3b6bd879c7cb903076ea303e 320323.pdf Title: A model based on artificial intelligence for the prediction, prevention and patient-centred approach for non-communicable diseases related to metabolic syndrome Subject: Doi: 10.1093/eurpub/ckaf098 European Journal of Public Health, 35, 4, 2025 Publication Date: 03/07/2025 Abstract Metabolic syndrome (MetS) is related to non-communicable diseases (NCDs) such as type 2 diabetes (T2D), metabolic-associated steatotic liver disease (MASLD), atherogenic dyslipidaemia (ATD), and chronic kidney disease (CKD). The absence of reliable tools for early diagnosis and risk stratification leads to delayed detection, preventable hospitalizations, and increased healthcare costs. This study evaluates the impact of Transformer-based artificial intelligence (AI) model in predicting and managing MetS-related NCDs compared to classical machine learning models. Electronical medical data registered in the MIMIC-IV v2.2database from 183 958 patients with at least two recorded medical visits were analysed. A two-stage AI approach was implemented: (1) pretraining on 60% of the dataset to capture disease progression patterns, and (2) fine-tuning on the remaining 40% for disease-specific predictions. Transformer-based models was compared with traditional machine learning approaches (Random Forest and Linear Support Vector Classifier [SVC]), evaluating predictive performance through AUC and F1-score. The Transformer-based model significantly outperformed classical models, achieving higher AUC values across all diseases. It also identified a substantial number of undiagnosed cases compared to documented diagnoses fold increase for CKD 2.58, T2D 0.78, dyslipidaemia 1.89, hypertension 3.33, MASLD 5.78, and obesity 4.07. Diagnosis delays ranged from 90 to 500 days, with 35% of missed intervention opportunities occurring within the first five appointments. These delays correlated with an 84% increase in hospitalizations and a 69% rise in medical procedures. This study demonstrates that Transformer-based AI models offer superior predictive accuracy over traditional methods by capturing complex temporal disease patterns. Their integration into clinical workflows and public health strategies could enable scalable, proactive MetS management, reducing undiagnosed cases, optimizing resource allocation, and improving population health outcomes. Keywords: artificial intelligence; metabolic syndrome; non-communicable disease Creator: Servigistics Arbortext Advanced Print Publisher 11.1.4667/W Producer: PDFlib+PDI 9.0.7p3 (C++/Win32); modified using iTextSharp.LGPLv2.Core 3.7.4.0 CreationDate: Sat Jul 26 10:22:19 2025 CEST ModDate: Tue Oct 14 09:47:51 2025 CEST Custom Metadata: yes Metadata Stream: yes Tagged: yes UserProperties: no Suspects: no Form: none JavaScript: no Pages: 8 Encrypted: no Page size: 612.283 x 790.866 pts Page rot: 0 File size: 1125133 bytes Optimized: no PDF version: 1.5 name type encoding emb sub uni object ID ------------------------------------ ----------------- ---------------- --- --- --- --------- WYFORK+MinionPro-It Type 1C Custom yes yes yes 49 0 KTFIPK+MinionPro-Regular Type 1C Custom yes yes yes 22 0 TFOJWA+STIX-Regular Type 1C Custom yes yes yes 159 0 VIWYXA+TimesNewRomanPSMT CID TrueType Identity-H yes yes yes 653 0 CXRLDZ+FrutigerLTStd-Bold Type 1C Custom yes yes yes 23 0 HVDWNJ+FrutigerLTStd-Roman Type 1C Custom yes yes yes 24 0 TeX_CM_Roman Type 1 Builtin yes no yes 50 0 TeX_CM_Maths_Symbols Type 1 Builtin yes no yes 63 0 Frutiger-Roman Type 1 Builtin yes no yes 51 0 TeX_CM_Maths_Italic Type 1 Builtin yes no yes 25 0 KQPOBF+ArialMT TrueType WinAnsi yes yes no 1 0 HNVNSH+FrutigerLTStd-Italic Type 1C Custom yes yes yes 26 0 Symbol Type 1 Builtin yes no no 52 0 PTVQLE+STIX-BoldItalic Type 1C Custom yes yes yes 53 0 EuroCurrency(FSI) Type 1 Builtin yes no yes 85 0 HIVVLD+MinionPro-Bold Type 1C Custom yes yes yes 97 0 Jhove (Rel. 1.28.0, 2023-05-18) Date: 2025-10-15 03:52:52 CEST RepresentationInformation: 320323.pdf ReportingModule: PDF-hul, Rel. 1.12.4 (2023-03-16) LastModified: 2025-10-14 09:48:13 CEST Size: 1125133 Format: PDF Version: 1.5 Status: Well-Formed and valid SignatureMatches: PDF-hul MIMEtype: application/pdf Profile: Tagged PDF PDFMetadata: Objects: 706 FreeObjects: 1 IncrementalUpdates: 0 DocumentCatalog: ViewerPreferences: HideToolbar: false HideMenubar: false HideWindowUI: false FitWindow: false CenterWindow: false DisplayDocTitle: true NonFullScreenPageMode: UseNone Direction: L2R ViewArea: CropBox ViewClip: CropBox PrintArea: CropBox PageClip: CropBox PageLayout: SinglePage PageMode: UseOutlines Language: en Outlines: Item: Title: Active Content List Destination: mkchap_artid Children: Item: Title: Introduction Destination: mkchap1__sec Item: Title: Methods Destination: mkchap2__sec Item: Title: Results Destination: mkchap10__sec Item: Title: Discussion Destination: mkchap14__sec Item: Title: Supplementary data Destination: mkchap15__sec Item: Title: Funding Destination: mkchap16__sec Item: Title: Data availability Destination: mkchap17__sec Item: Title: References Destination: mkchap18_ref1_ref-list Info: Title: A model based on artificial intelligence for the prediction, prevention and patient-centred approach for non-communicable diseases related to metabolic syndrome Subject: Doi: 10.1093/eurpub/ckaf098 European Journal of Public Health, 35, 4, 2025 Publication Date: 03/07/2025 Abstract Metabolic syndrome (MetS) is related to non-communicable diseases (NCDs) such as type 2 diabetes (T2D), metabolic-associated steatotic liver disease (MASLD), atherogenic dyslipidaemia (ATD), and chronic kidney disease (CKD). The absence of reliable tools for early diagnosis and risk stratification leads to delayed detection, preventable hospitalizations, and increased healthcare costs. This study evaluates the impact of Transformer-based artificial intelligence (AI) model in predicting and managing MetS-related NCDs compared to classical machine learning models. Electronical medical data registered in the MIMIC-IV v2.2database from 183 958 patients with at least two recorded medical visits were analysed. A two-stage AI approach was implemented: (1) pretraining on 60% of the dataset to capture disease progression patterns, and (2) fine-tuning on the remaining 40% for disease-specific predictions. Transformer-based models was compared with traditional machine learning approaches (Random Forest and Linear Support Vector Classifier [SVC]), evaluating predictive performance through AUC and F1-score. The Transformer-based model significantly outperformed classical models, achieving higher AUC values across all diseases. It also identified a substantial number of undiagnosed cases compared to documented diagnoses fold increase for CKD 2.58, T2D 0.78, dyslipidaemia 1.89, hypertension 3.33, MASLD 5.78, and obesity 4.07. Diagnosis delays ranged from 90 to 500 days, with 35% of missed intervention opportunities occurring within the first five appointments. These delays correlated with an 84% increase in hospitalizations and a 69% rise in medical procedures. This study demonstrates that Transformer-based AI models offer superior predictive accuracy over traditional methods by capturing complex temporal disease patterns. Their integration into clinical workflows and public health strategies could enable scalable, proactive MetS management, reducing undiagnosed cases, optimizing resource allocation, and improving population health outcomes. Keywords: artificial intelligence; metabolic syndrome; non-communicable disease Creator: Servigistics Arbortext Advanced Print Publisher 11.1.4667/W Producer: PDFlib+PDI 9.0.7p3 (C++/Win32); modified using iTextSharp.LGPLv2.Core 3.7.4.0 CreationDate: Sat Jul 26 10:52:19 CEST 2025 ModDate: Tue Oct 14 09:47:51 CEST 2025 ID: 0x03987850217fec4dd9b43f07b4edc8e6, 0xcb9ae58c2097744555f98c2b2e8e823e Filters: FilterPipeline: FlateDecode FilterPipeline: DCTDecode Images: Image: NisoImageMetadata: FormatName: image/jpg CompressionScheme: JPEG ImageWidth: 2000 ImageHeight: 1418 ColorSpace: RGB BitsPerSample: 8 BitsPerSampleUnit: integer Image: NisoImageMetadata: FormatName: image/jpg CompressionScheme: JPEG ImageWidth: 2095 ImageHeight: 1211 ColorSpace: RGB BitsPerSample: 8 BitsPerSampleUnit: integer Image: NisoImageMetadata: FormatName: image/jpg CompressionScheme: JPEG ImageWidth: 995 ImageHeight: 535 ColorSpace: RGB BitsPerSample: 8 BitsPerSampleUnit: integer Fonts: Type0: Font: BaseFont: VIWYXA+TimesNewRomanPSMT Encoding: Identity-H ToUnicode: true Type1: Font: BaseFont: HIVVLD+MinionPro-Bold FontSubset: true FirstChar: 10 LastChar: 10 FontDescriptor: FontName: HIVVLD+MinionPro-Bold Flags: Nonsymbolic, ForceBold FontBBox: -318, -360, 1684, 1024 FontFile3: true EncodingDictionary: BaseEncoding: WinAnsiEncoding Differences: true ToUnicode: true Font: BaseFont: WYFORK+MinionPro-It FontSubset: true FirstChar: 1 LastChar: 50 FontDescriptor: FontName: WYFORK+MinionPro-It Flags: Nonsymbolic, Italic FontBBox: -201, -360, 1684, 1002 FontFile3: true EncodingDictionary: BaseEncoding: WinAnsiEncoding Differences: true ToUnicode: true Font: BaseFont: TeX_CM_Roman FirstChar: 1 LastChar: 127 FontDescriptor: FontName: TeX_CM_Roman Flags: Symbolic FontBBox: -50, -180, 1000, 720 FontFile: true ToUnicode: true Font: BaseFont: Frutiger-Roman FirstChar: 32 LastChar: 252 FontDescriptor: FontName: Frutiger-Roman Flags: Symbolic FontBBox: -50, -180, 1000, 720 FontFile: true ToUnicode: true Font: BaseFont: Symbol FirstChar: 1 LastChar: 255 FontDescriptor: FontName: Symbol Flags: Symbolic FontBBox: -50, -180, 1000, 720 FontFile: true Font: BaseFont: PTVQLE+STIX-BoldItalic FontSubset: true FirstChar: 1 LastChar: 1 FontDescriptor: FontName: PTVQLE+STIX-BoldItalic Flags: Nonsymbolic, Italic, ForceBold FontBBox: -753, -359, 1430, 1004 FontFile3: true EncodingDictionary: BaseEncoding: WinAnsiEncoding Differences: true ToUnicode: true Font: BaseFont: EuroCurrency(FSI) FirstChar: 69 LastChar: 101 FontDescriptor: FontName: EuroCurrency(FSI) Flags: Symbolic FontBBox: -50, -180, 1000, 720 FontFile: true ToUnicode: true Font: BaseFont: KTFIPK+MinionPro-Regular FontSubset: true FirstChar: 1 LastChar: 81 FontDescriptor: FontName: KTFIPK+MinionPro-Regular Flags: Nonsymbolic FontBBox: -290, -360, 1684, 989 FontFile3: true EncodingDictionary: BaseEncoding: WinAnsiEncoding Differences: true ToUnicode: true Font: BaseFont: CXRLDZ+FrutigerLTStd-Bold FontSubset: true FirstChar: 1 LastChar: 43 FontDescriptor: FontName: CXRLDZ+FrutigerLTStd-Bold Flags: Nonsymbolic, ForceBold FontBBox: -166, -250, 1000, 935 FontFile3: true EncodingDictionary: BaseEncoding: WinAnsiEncoding Differences: true ToUnicode: true Font: BaseFont: HVDWNJ+FrutigerLTStd-Roman FontSubset: true FirstChar: 1 LastChar: 71 FontDescriptor: FontName: HVDWNJ+FrutigerLTStd-Roman Flags: Nonsymbolic FontBBox: -169, -250, 1000, 935 FontFile3: true EncodingDictionary: BaseEncoding: WinAnsiEncoding Differences: true ToUnicode: true Font: BaseFont: TeX_CM_Maths_Italic FirstChar: 1 LastChar: 127 FontDescriptor: FontName: TeX_CM_Maths_Italic Flags: Symbolic FontBBox: -50, -180, 1000, 720 FontFile: true ToUnicode: true Font: BaseFont: HNVNSH+FrutigerLTStd-Italic FontSubset: true FirstChar: 1 LastChar: 27 FontDescriptor: FontName: HNVNSH+FrutigerLTStd-Italic Flags: Nonsymbolic, Italic FontBBox: -169, -250, 1091, 930 FontFile3: true EncodingDictionary: BaseEncoding: WinAnsiEncoding Differences: true ToUnicode: true Font: BaseFont: TeX_CM_Maths_Symbols FirstChar: 1 LastChar: 138 FontDescriptor: FontName: TeX_CM_Maths_Symbols Flags: Symbolic FontBBox: -50, -180, 1000, 720 FontFile: true ToUnicode: true Font: BaseFont: TFOJWA+STIX-Regular FontSubset: true FirstChar: 1 LastChar: 1 FontDescriptor: FontName: TFOJWA+STIX-Regular Flags: Nonsymbolic FontBBox: -970, -486, 2208, 1023 FontFile3: true EncodingDictionary: BaseEncoding: WinAnsiEncoding Differences: true ToUnicode: true TrueType: Font: BaseFont: KQPOBF+ArialMT FontSubset: true FirstChar: 32 LastChar: 121 FontDescriptor: FontName: KQPOBF+ArialMT Flags: Nonsymbolic FontBBox: -664, -324, 2000, 1039 FontFile2: true Encoding: WinAnsiEncoding CIDFontType2: Font: BaseFont: VIWYXA+TimesNewRomanPSMT CIDSystemInfo: Registry: Adobe Registry: Identity Supplement: 0 FontDescriptor: FontName: VIWYXA+TimesNewRomanPSMT Flags: Nonsymbolic FontBBox: -568, -307, 2000, 1007 FontFile2: true XMP: uuid:0c5167a1-6306-2b30-5d2f-3416f6c7d7be uuid:6DBA7244-F39B-C67C-5FF2-2E214213D5B9 2025-07-26T13:52:19+05:30 2025-10-14T07:47:51+00:00 Servigistics Arbortext Advanced Print Publisher 11.1.4667/W 2025-10-14T07:47:51+00:00 PDFlib+PDI 9.0.7p3 (C++/Win32); modified using iTextSharp.LGPLv2.Core 3.7.4.0 artificial intelligence; metabolic syndrome; non-communicable disease A model based on artificial intelligence for the prediction, prevention and patient-centred approach for non-communicable diseases related to metabolic syndrome Alejandro Clarós Andreea Ciudin Jordi Muria Lluis Llull Jose Àngel Mola Martí Pons Javier Castán Juan Carlos Cruz Rafael Simó Doi: 10.1093/eurpub/ckaf098 European Journal of Public Health, 35, 4, 2025 Publication Date: 03/07/2025 Abstract Metabolic syndrome (MetS) is related to non-communicable diseases (NCDs) such as type 2 diabetes (T2D), metabolic-associated steatotic liver disease (MASLD), atherogenic dyslipidaemia (ATD), and chronic kidney disease (CKD). The absence of reliable tools for early diagnosis and risk stratification leads to delayed detection, preventable hospitalizations, and increased healthcare costs. This study evaluates the impact of Transformer-based artificial intelligence (AI) model in predicting and managing MetS-related NCDs compared to classical machine learning models. Electronical medical data registered in the MIMIC-IV v2.2database from 183 958 patients with at least two recorded medical visits were analysed. A two-stage AI approach was implemented: (1) pretraining on 60% of the dataset to capture disease progression patterns, and (2) fine-tuning on the remaining 40% for disease-specific predictions. Transformer-based models was compared with traditional machine learning approaches (Random Forest and Linear Support Vector Classifier [SVC]), evaluating predictive performance through AUC and F1-score. The Transformer-based model significantly outperformed classical models, achieving higher AUC values across all diseases. It also identified a substantial number of undiagnosed cases compared to documented diagnoses fold increase for CKD 2.58, T2D 0.78, dyslipidaemia 1.89, hypertension 3.33, MASLD 5.78, and obesity 4.07. Diagnosis delays ranged from 90 to 500 days, with 35% of missed intervention opportunities occurring within the first five appointments. These delays correlated with an 84% increase in hospitalizations and a 69% rise in medical procedures. This study demonstrates that Transformer-based AI models offer superior predictive accuracy over traditional methods by capturing complex temporal disease patterns. Their integration into clinical workflows and public health strategies could enable scalable, proactive MetS management, reducing undiagnosed cases, optimizing resource allocation, and improving population health outcomes. © The Author(s) 2025. Published by Oxford University Press on behalf of the European Public Health Association. artificial intelligence metabolic syndrome non-communicable disease application/pdf PStill version 1.84.42 True 3 A http://ns.adobe.com/pdf/1.3/ pdf Adobe PDF Schema internal A name object indicating whether the document has been modified to include trapping information Trapped Text http://ns.adobe.com/xap/1.0/mm/ xmpMM XMP Media Management Schema internal UUID based identifier for specific incarnation of a document InstanceID URI internal The common identifier for all versions and renditions of a document. OriginalDocumentID URI http://www.aiim.org/pdfa/ns/id/ pdfaid PDF/A ID Schema internal Part of PDF/A standard part Integer internal Amendment of PDF/A standard amd Text internal Conformance level of PDF/A standard conformance Text Pages: Page: Sequence: 1 Annotations: Annotation: Subtype: Link Rect: 191, 608, 195, 618 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 274, 608, 278, 618 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 280, 608, 284, 618 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 286, 608, 291, 618 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 292, 614, 299, 621 Flags: Print Annotation: Subtype: Link Rect: 359, 608, 363, 618 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 412, 608, 416, 618 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 500, 608, 504, 618 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 163, 597, 168, 607 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 234, 597, 239, 607 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 322, 597, 326, 607 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 388, 597, 392, 607 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 394, 597, 398, 607 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 400, 597, 405, 607 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 193, 180, 197, 189 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 85, 83, 89, 92 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 175, 72, 179, 81 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 273, 61, 278, 70 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 349, 222, 353, 231 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 518, 201, 522, 210 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 431, 179, 435, 188 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 312, 51, 317, 59 Flags: Print Destination: 96 Page: Sequence: 2 Annotations: Annotation: Subtype: Link Rect: 181, 722, 185, 731 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 57, 701, 62, 710 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 185, 616, 193, 625 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 274, 606, 283, 615 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 101, 595, 110, 604 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 170, 468, 178, 477 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 288, 458, 297, 467 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 78, 447, 87, 456 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 129, 447, 138, 456 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 178, 447, 186, 456 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 179, 268, 187, 277 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 230, 257, 238, 266 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 193, 215, 201, 224 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 91, 194, 100, 203 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 245, 71, 253, 80 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 261, 71, 269, 80 Flags: Print Destination: 158 Page: Sequence: 3 Annotations: Annotation: Subtype: Link Rect: 318, 210, 346, 219 Flags: Print Destination: 48 Page: Sequence: 4 Annotations: Annotation: Subtype: Link Rect: 140, 372, 168, 381 Flags: Print Destination: 62 Annotation: Subtype: Link Rect: 306, 244, 306, 253 Flags: Print Destination: 79 Annotation: Subtype: Link Rect: 54, 234, 76, 243 Flags: Print Destination: 79 Annotation: Subtype: Link Rect: 133, 149, 169, 158 Flags: Print Destination: 79 Annotation: Subtype: Link Rect: 154, 138, 180, 147 Flags: Print Destination: 79 Annotation: Subtype: Link Rect: 428, 700, 544, 709 Flags: Print Annotation: Subtype: Link Rect: 408, 625, 460, 634 Flags: Print Destination: 84 Annotation: Subtype: Link Rect: 435, 501, 564, 510 Flags: Print Annotation: Subtype: Link Rect: 316, 491, 380, 500 Flags: Print Annotation: Subtype: Link Rect: 393, 234, 401, 243 Flags: Print Destination: 158 Annotation: Subtype: Link Rect: 454, 234, 463, 243 Flags: Print Destination: 158 Annotation: Subtype: Link Rect: 425, 201, 434, 210 Flags: Print Destination: 158 Page: Sequence: 5 Page: Sequence: 6 Annotations: Annotation: Subtype: Link Rect: 127, 197, 136, 206 Flags: Print Destination: 96 Annotation: Subtype: Link Rect: 496, 638, 505, 647 Flags: Print Destination: 158 Annotation: Subtype: Link Rect: 551, 292, 559, 301 Flags: Print Destination: 158 Page: Sequence: 7 Annotations: Annotation: Subtype: Link Rect: 47, 532, 120, 541 Flags: Print Annotation: Subtype: Link Rect: 47, 102, 51, 109 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 183, 82, 283, 89 Flags: Print Annotation: Subtype: Link Rect: 59, 72, 85, 79 Flags: Print Annotation: Subtype: Link Rect: 47, 60, 51, 67 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 536, 713, 557, 720 Flags: Print Annotation: Subtype: Link Rect: 321, 703, 425, 710 Flags: Print Annotation: Subtype: Link Rect: 309, 691, 313, 698 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 309, 648, 313, 655 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 489, 637, 554, 644 Flags: Print Annotation: Subtype: Link Rect: 321, 627, 385, 634 Flags: Print Annotation: Subtype: Link Rect: 309, 615, 313, 622 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 514, 594, 557, 601 Flags: Print Annotation: Subtype: Link Rect: 321, 584, 395, 591 Flags: Print Annotation: Subtype: Link Rect: 309, 572, 313, 579 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 350, 551, 452, 558 Flags: Print Annotation: Subtype: Link Rect: 456, 551, 539, 558 Flags: Print Annotation: Subtype: Link Rect: 321, 541, 362, 548 Flags: Print Annotation: Subtype: Link Rect: 309, 529, 313, 536 Flags: Print Destination: 235 Annotation: Subtype: Link Rect: 362, 519, 509, 526 Flags: Print Annotation: Subtype: Link Rect: 309, 507, 313, 514 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 506, 497, 557, 504 Flags: Print Annotation: Subtype: Link Rect: 321, 486, 393, 493 Flags: Print Annotation: Subtype: Link Rect: 309, 474, 313, 481 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 454, 454, 547, 461 Flags: Print Annotation: Subtype: Link Rect: 321, 443, 354, 450 Flags: Print Annotation: Subtype: Link Rect: 309, 431, 316, 438 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 529, 431, 557, 438 Flags: Print Annotation: Subtype: Link Rect: 321, 421, 552, 428 Flags: Print Annotation: Subtype: Link Rect: 321, 411, 398, 418 Flags: Print Annotation: Subtype: Link Rect: 309, 399, 316, 406 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 524, 378, 555, 385 Flags: Print Annotation: Subtype: Link Rect: 321, 368, 423, 375 Flags: Print Annotation: Subtype: Link Rect: 309, 356, 316, 363 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 321, 325, 454, 332 Flags: Print Annotation: Subtype: Link Rect: 309, 313, 316, 320 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 349, 292, 473, 299 Flags: Print Annotation: Subtype: Link Rect: 309, 280, 316, 287 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 485, 270, 557, 277 Flags: Print Annotation: Subtype: Link Rect: 321, 259, 373, 266 Flags: Print Annotation: Subtype: Link Rect: 309, 248, 316, 255 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 345, 227, 532, 234 Flags: Print Annotation: Subtype: Link Rect: 309, 215, 316, 222 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 488, 194, 555, 201 Flags: Print Annotation: Subtype: Link Rect: 321, 184, 358, 191 Flags: Print Annotation: Subtype: Link Rect: 309, 172, 316, 179 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 461, 151, 544, 158 Flags: Print Annotation: Subtype: Link Rect: 321, 141, 362, 148 Flags: Print Annotation: Subtype: Link Rect: 309, 129, 316, 136 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 481, 129, 548, 136 Flags: Print Annotation: Subtype: Link Rect: 321, 119, 371, 126 Flags: Print Annotation: Subtype: Link Rect: 309, 107, 316, 114 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 449, 96, 532, 103 Flags: Print Annotation: Subtype: Link Rect: 309, 84, 316, 91 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 361, 74, 485, 81 Flags: Print Annotation: Subtype: Link Rect: 309, 62, 316, 69 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 309, 40, 316, 47 Flags: Print Destination: 21 Page: Sequence: 8 Annotations: Annotation: Subtype: Link Rect: 54, 734, 61, 741 Flags: Print Destination: 21 Annotation: Subtype: Link Rect: 119, 714, 285, 721 Flags: Print Annotation: Subtype: Link Rect: 54, 702, 61, 709 Flags: Print Destination: 62 Annotation: Subtype: Link Rect: 188, 692, 296, 699 Flags: Print Annotation: Subtype: Link Rect: 66, 682, 180, 689 Flags: Print Annotation: Subtype: Link Rect: 54, 670, 61, 677 Flags: Print Destination: 62 Annotation: Subtype: Link Rect: 183, 650, 301, 657 Flags: Print Annotation: Subtype: Link Rect: 316, 734, 323, 741 Flags: Print Destination: 62 Annotation: Subtype: Link Rect: 460, 724, 516, 731 Flags: Print Annotation: Subtype: Link Rect: 316, 712, 323, 719 Flags: Print Destination: 84 Annotation: Subtype: Link Rect: 328, 692, 503, 699 Flags: Print Annotation: Subtype: Link Rect: 316, 680, 323, 687 Flags: Print Destination: 84 Annotation: Subtype: Link Rect: 446, 670, 540, 677 Flags: Print Annotation: Subtype: Link Rect: 328, 660, 552, 667 Flags: Print Annotation: Subtype: Link Rect: 328, 650, 345, 657 Flags: Print Checksum: 35887ed9 Type: CRC32 Checksum: 12855a7a138e7873a2fc69c2140ab0bb Type: MD5 Checksum: 7409ca872270155661a67bffa7b1b8d038cd4e4e Type: SHA-1 Checksum: 09000f65c7be6410b992c14a9d9a05007aa6ccfe3b6bd879c7cb903076ea303e Type: SHA-256