

3 | Clinical Microbiology | Research Article

Novel PiuC, PirA, and PiuA mutations leading to in vivo cefiderocol resistance progression in IMP-16- and KPC-2producing Pseudomonas aeruginosa from a leukemic patient

Joaquim Viñes,^{1,2,3} Sabina Herrera,⁴ Andrea Vergara,^{1,2,5,6} Ignasi Roca,^{1,2,5,6} Jordi Vila,^{1,2,5,6} Tommaso Francesco Aiello,⁴ José Antonio Martínez, 4.5.6 Ana del Río, 4 Carlos Lopera, 4 Carolina Garcia-Vidal, 4.5.6 Climent Casals-Pascual, 1.2.5.6 Àlex Soriano, 4.5.6 Cristina Pitart 1.2.5

AUTHOR AFFILIATIONS See affiliation list on p. 8.

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen capable of causing severe infections in immunocompromised individuals, who often require prolonged antibiotic therapy. The emergence of carbapenemase-producing P. aeruginosa has further complicated the management of nosocomial infections, limiting therapeutic options. Cefiderocol has recently emerged as a promising antipseudomonal agent, using the bacterial iron transport system to gain entry into the cell; however, there have been reports of P. aeruginosa resistant to cefiderocol. We describe the in vivo cefiderocol resistance progression of four consecutive P. aeruginosa isolates from one patient with T-cell acute lymphoblastic leukemia. Analysis of potential genes involved in cefiderocol transport resulted in three genes mutated in two resistant isolates. One isolate presented a S116F substitution in PiuC, and the other presented a deletion of 29 amino acids in the signal peptide of PiuA and a STOP substitution in PirA, resulting in the deletion of a piece of the channel. These mutations increased 24- and 64-folds the cefiderocol minimum inhibitory concentration, respectively. The mutations in the aforementioned genes may directly impact siderophore internalization, thereby contributing to an elevation in the MIC of the antibiotic.

IMPORTANCE Carbapenem-resistant *Pseudomonas aeruginosa* poses a significant challenge due to its broad antibiotic resistance. Cefiderocol is a novel antibiotic aimed at combating infections caused by such organisms. However, if these pathogens develop resistance to this new drug, it hinders treatment efficacy and options. Therefore, it is crucial to identify and describe mutations in the genes involved in the uptake of cefiderocol to find better treatment strategies for patients infected with multidrug-resistant P. aeruginosa.

KEYWORDS Pseudomonas aeruginosa, carbapenem-resistant, cefiderocol, PiuA, PiuC, PirA, leukemia, Oxford Nanopore

osocomial infections, particularly those caused by Pseudomonas aeruginosa, represent a significant clinical challenge in healthcare settings and remains one of the major causes of healthcare-associated infections in Europe (1). Pseudomonas aeruginosa is an opportunistic pathogen capable of causing severe infections, especially in immunocompromised individuals, who often require prolonged antibiotic therapy due to their compromised immune systems. In the last decade, there has been a worldwide spread of multidrug-resistant or difficult-to-treat resistance high-risk clones of Pseudomonas aeruginosa (2-4). These emerging clones are often associated with the production of carbapenemases, thus also becoming highly resistant to last-resort carbapenem antibiotics (5).

Editor Felix Ngosa Toka, Ross University School of Veterinary, Basseterre, Saint Kitts and Nevis

Address correspondence to Joaquim Viñes, joaquim.vines.pujol@gmail.com, or Ignasi Roca, Ignasi.roca@isglobal.org.

A.S. has received honoraria for lectures and advisory boards from Pfizer, MSD, Angelini, Shionogi, Menarini, and Gilead. C.G.-V. has received honoraria for talks on behalf of MSD, Pfizer, and Shionogi, as well as a grant from Gilead Science and GSK.

See the funding table on p. 8.

Received 31 July 2024 Accepted 18 December 2024 Published 28 January 2025

Copyright © 2025 Viñes et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Downloaded from https://journals.asm.org/journal/spectrum on 05 November 2025 by 158.109.221.167.

Consequently, there has been a growing reliance on newer antibiotics, such as cefiderocol, designed to target multidrug-resistant gram-negative bacteria. Cefiderocol, a siderophore cephalosporin, uses the bacterial iron transport system to gain entry into the cell, which theoretically enhances its efficacy against resistant strains. However, recent reports (6, 7) indicating resistance to cefiderocol in *P. aeruginosa* are alarming and underscore the urgent need for vigilant antimicrobial stewardship and the development of novel therapeutic strategies. The rapid evolution of antibiotic resistance mechanisms in *P. aeruginosa* requires continuous surveillance and research to mitigate the impact of these formidable nosocomial pathogens on vulnerable patient populations, such as patients with hematological malignancies.

This report aims to highlight the current landscape of *P. aeruginosa* infections in neutropenic patients, the rise of carbapenemase-producing strains, and the implications of emerging resistance to cefiderocol.

MATERIALS AND METHODS

Samples, strain identification, cefiderocol susceptibility, and carbapenemase detection

Four *P. aeruginosa* isolates collected in different time points from a leukemic patient admitted to the intensive care unit at the Hospital Clinic of Barcelona in 2023 were included in this study. This patient was a 65-year-old woman native of Cuzco, Peru, who was diagnosed with T-cell acute lymphoblastic leukemia (T-ALL) in June 2022.

Isolates were recovered on selective and differential media from rectal and wound swabs as well as from a urine sample. Routine matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (Bruker Daltonics GmbH & Co. KG, Bremen, Germany) identified the isolates at the species level. Cefiderocol susceptibility testing was performed using diffusion-gradient strips (Liofilchem, Roseto degli Abruzzi, Italy). Interpretation of antibiotic susceptibility and minimum inhibitory concentration (MIC) values followed European Committee on Antimicrobial Susceptibility Testing guidelines and breakpoints for *Pseudomonas* (European Committee on Antimicrobial Susceptibility Testing, 2024 v.14). *P. aeruginosa* American Type Culture Collection 27853 was used for quality control. Production of carbapenemases (KPC, OXA-48 like, IMP, VIM, and NDM) was detected using the lateral flow test NG-CARBA 5 (NG-BIOTECH, France).

DNA extraction and Nanopore sequencing

ZymoBIOMICS DNA miniprep Kit (Zymo Research, Irvine, USA) was used according to the manufacturer's protocol to perform DNA extraction, and DNA quality and quantity were assessed with NanoDrop 2000 Spectrophotometer and Quantus Fluorometer with the QuantiFluor dsDNA System (Promega, Madison, USA), respectively.

Nanopore sequencing was performed by using approximately 400 ng of DNA of each isolate to prepare a library with the Rapid Barcoding Sequencing kit (SQK-RBK004; Oxford Nanopore Technologies [ONT], Oxford, UK). The library was sequenced in a MinION FLO-MIN106 v.9.1.4 flow cell (ONT) and the MinION Mk1C device (ONT) for approximately 48 h.

Genome assembly and analysis

Fast5 reads were live basecalled, and those with a quality of <8 and a length of <200 bp were excluded. Genome assembly was performed with Unicycler v.0.5.0 (8) and polished with Medaka v.1.7.2 (9). Completeness of the polished genomes was assessed with CheckM v.1.2.2 (10) and BUSCO v.5.3.2 (11).

Abricate v.1.0.1 (12), alongside Comprehensive Antibiotic Resistance Database (13) and National Center for Biotechnology Information databases, was used to describe the presence of antibiotic resistance genes, and PlasmidFinder (14) database was used for plasmid replicons. Multilocus sequence type was determined using PubMLST (15).

Mutations in different genes were described by aligning the genes of the PAO1 reference genome (GenBank accession number AE004091.2) to the genes within our isolates using BioEdit v.7.2.5 (16), which also allows translation of nucleotide sequences to protein. PiuC and PirA proteins were modeled with AlphaFold2 (17) and SWISS-MODEL (18), respectively.

RESULTS

Case history

Here, we present the case of a 65-year-old woman with a history of acute lymphoblastic leukemia pre-B maturation stage, phi-negative, with central nervous system (CNS) involvement that was diagnosed in July 2022 in Peru. She received induction chemotherapy per PETHEMA protocol without L-asparaginase due to her age. She presented with the following complications: neutropenic enterocolitis, *Klebsiella pneumoniae* bloodstream infection, norovirus infection, and COVID-19. At her re-evaluation, she had morphological complete remission, with no blasts in the cerebrospinal fluid. However, she experienced systemic relapse in September 2022 and received rescue therapy with high-dose cytosine arabinoside and mitoxantrone regimen and was kept on maintenance therapy with mercaptopurine. She was first evaluated in our center in search of therapeutic options. She had CNS infiltration and was started on rescue chemotherapy with miniHyperCVAD + rituximab + inotuzumab, together with triple intrathecal therapy.

On 19 February, the patient experienced progressive worsening of respiratory symptoms. A chest X-ray showed consolidation in the mid-right lung field, and the patient was admitted to intensive care with septic shock due to hospital-acquired pneumonia. She was started on piperacillin/tazobactam and teicoplanin. She required invasive ventilation together with vasopressor support. Stenotrophomonas maltophilia was isolated on bronchoalveolar lavage. The patient was treated with ceftazidime/avibactam + aztreonam as an alternative regimen to cotrimoxazole to prevent worsening cytopenias. After starting treatment, she presented favorable clinical and radiological improvement and a decrease in inflammatory markers. However, the patient experienced a new febrile episode. A new chest tomography scan was performed, showing worsening bilateral pulmonary consolidations. On 2 March, she was started on cefiderocol, levofloxacin, and isavuconazole, and a new fibrobronchoscopy was performed, isolating <100 CFU/mL of S. maltophilia. A catheter tip culture isolated Enterococcus faecium and P. aeruginosa, so daptomycin was added to the treatment. The patient received a total of 27 days of cefiderocol, and she gradually improved and remained afebrile.

On 5 May, *P. aeruginosa* with KPC and IMP production was isolated in a urine culture without fever, resulting in urinary catheter replacement. A follow-up bone marrow aspiration on 04/12 showed complete morphological remission. In a sacral pressure ulcer swab, multidrug-resistant *P. aeruginosa* (producing KPC + IMP) resistant to cefiderocol was isolated. The ulcer showed no signs of superinfection, and topical dressings and chemical debridement were performed following the recommendations of a specialized pressure ulcer care team.

On 10 May 2023, the patient started having diplopia. As a result, an urgent cerebral angiography magnetic resonance imaging was conducted, revealing leptomeningeal carcinomatosis. With a diagnosis of relapsed pre-B acute lymphoblastic leukemia refractory to second-line treatment in the CNS and a positive minimal residual disease in the bone marrow, a decision was made in consensus with the entire medical team and the family to limit therapeutic efforts.

Therefore, the patient underwent initial treatment with ceftazidime/avibactam in combination with aztreonam, followed by administration of cefiderocol and levofloxacin. Upon the isolation of the initial strain (23–169, rectal swab, susceptible to cefiderocol with a MIC of 0.5 μ g/mL), the first antibiotic treatment had been administered for 2 days. The second strain (23–299, wound, susceptible to cefiderocol with a cefiderocol MIC of 0.5 μ g/mL) was obtained after 8 days of cefiderocol treatment, and the third strain

Research Article Microbiology Spectrum

(23–257, wound, resistant to cefiderocol with a MIC of 12 μ g/mL) was isolated during the continuation of this treatment for a period of 27 days. The fourth *P. aeruginosa* (23–299, urine, resistant to cefiderocol with a cefiderocol MIC of 32 μ g/mL) was isolated after the completion of the patient's entire course of antibiotic treatment (Fig. 1). IMP and KPC carbapenemases were detected in all four isolates.

Genetic analysis

All isolates belonged to the ST179 and harbored an integron with the bla_{IMP-16} gene and an IncP6 plasmid of approximately 34.6 kbp, which carried the bla_{KPC-2} carbapenemase gene. For antibiotic susceptibility testing and the antibiotic-resistance gene profile, all isolates presented results consistent with previous findings for isolate 23–169, available from Viñes et al. (5). Forty-eight genes potentially associated with cefiderocol resistance were analyzed (Table S1). Our findings revealed identical mutations in multiple genes shared across all isolates, but only three genes presented mutations exclusively in the two resistant strains: the piuC gene in isolate 23–257 and piuA and pirA genes in isolate 23–299, all of them involved in iron transport. However, shared mutations in concerning genes regarding cefiderocol resistance were also observed. Porin D (443 amino acids, encoded by the oprD gene) presented a nonsense mutation at position 49 in the four isolates, and the multidrug resistance operon repressor encoded by the mexR gene (147 amino acids) presented a deletion from amino acid 141 to 147. The piuC gene encodes the PiuC iron-dependent oxygenase (a TonB-dependent transporter), which features a Fe2OG dioxygenase domain extending from amino acids 78 to 178, and it is involved in the expression of piuA. It also presents a conserved β-barrel structure, forming a double-stranded β-helix core fold (19–21). In isolate 23–257, PiuC, whose corresponding piuC gene is adjacent to piuA, presented an S116F amino acid substitution (Fig. 2), located within this latter domain, entailing a switch from an amino acid with polar uncharged side chain (serine) to one with a hydrophobic side chain (phenylalanine), which could be involved in the binding of the siderophore. This isolate showed a 24-fold increase in cefiderocol MIC (12 μg/mL) compared to the first two isolates (0.5 μg/mL).

The *piuA* and *pirA* genes encode for the PiuA hydroxamate-type ferrisiderophore receptor and the PirA ferric enterobactin receptor (both TonB-dependent receptors), respectively. Both receptors share a common structural framework, comprising two distinct domains: (i) a TonB-dependent receptor plug spanning from amino acids 81 to 176 in PiuA and from amino acids 64 to 178 in PirA; this domain represents a folding subunit functioning as the gate for the channel which, upon ligand binding, undergoes conformational changes and leads to the opening of the channel; and (ii) a domain associated with a TonB-dependent receptor-like β -barrel which shapes the channel. This second domain encompasses amino acids 257–751 in PiuA and amino acids 273–740 in

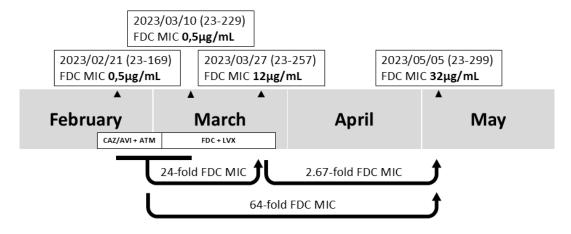


FIG 1 Sample collection date and β-lactam antibiotic therapy timeline. Ceftazidime (CAZ)/avibactam (AVI) plus aztreonam (ATM) treatment was administered from 18 February 2023 to 2 March 2023. Cefiderocol (FDC) plus levofloxacin (LVX) treatment was administered from 2 to 29 March 2023.

March 2025 Volume 13 Issue 3 10.1128/spectrum.01928-24 **4**

Research Article Microbiology Spectrum

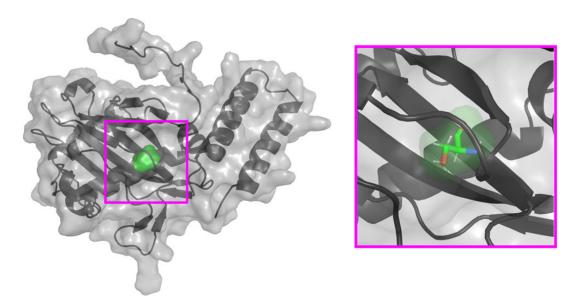
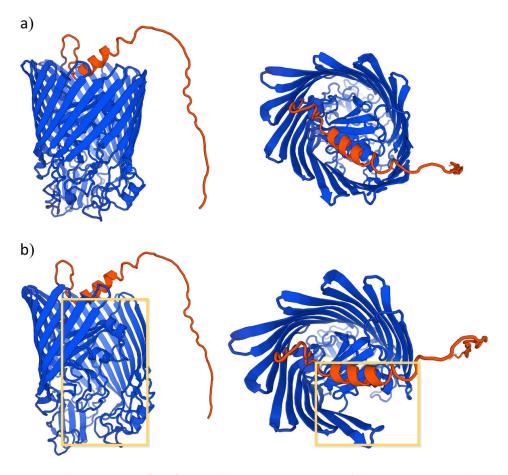


FIG 2 PiuC S116F visualization. The amino acid substitution is located in the center of the β-barrel structure. Created with AlphaFold2.

PirA. Additionally, both proteins feature an amino acid signal sequence from amino acids 1 to 35 in PiuA and from amino acids 1 to 28 in PirA (22, 23). In isolate 23–299, the *piuA* gene presented a deletion of 87 nucleotides, which was translated to a deletion of 29 amino acids (28–56, both included), resulting in the removal of a segment of the signal sequence. Moreover, the *pirA* gene presented a nonsense mutation C1908G translated into Y636STOP, which induces premature termination of the protein translation and alters the structure of the β-barrel (Fig. 3). This isolate showed a 64-fold increase in cefiderocol MIC (32 μ g/mL) compared to the first two isolates (0.5 μ g/mL) and a 2.67-fold increase compared to the 22–257 isolate (12 μ g/mL).


DISCUSSION

In this report, we present the in-patient evolution of cefiderocol resistance observed in four consecutive *P. aeruginosa* isolates recovered from a 65-year-old woman diagnosed with T-ALL and treated with cefiderocol for 27 days.

Cefiderocol, an antibiotic resulting from the fusion of a siderophore and a cephalosporine sharing similarities with cefepime and ceftazidime, has emerged as a promising candidate for the treatment of multidrug-resistant gram-negative bacteria, attributed to its demonstrated efficacy against a diverse spectrum of pathogens, including Enterobacterales, *Acinetobacter baumannii*, and *P. aeruginosa* resistant to carbapenems, resistant to β -lactam/ β -lactamase inhibitor combinations, as well as resistant to polymyxins. Nevertheless, several reviews (24–26) have outlined numerous cefiderocol resistance mechanisms, which can be summarized as

- 1. Carriage of certain β -lactamases, which can be correlated to higher cefiderocol MICs, such as in *Escherichia coli* with different copies of bla_{NDM-5} genes (27).
- Defects in cell permeability and/or increased efflux of cefiderocol due to mutations affecting porins or siderophore receptors, such as OprD (28) and PiuA/PirA (29, 30) in *P. aeruginosa*, and overexpression of efflux pumps, such as MexAB-OprM, also in *P. aeruginosa* (30).
- 3. Target modifications and presence of other genes with potential involvement in cefiderocol resistance, such as modification of PBP-3, which is the target of cefiderocol, shown in *E. coli* and *A. baumannii* (31, 32).

Nonetheless, it has been proposed that for a particular isolate to develop resistance to cefiderocol, it must exhibit a combination of some of the above (24, 25). Moreover,

FIG 3 PirA visualization. Structure of PirA from (a) wild-type PAO1 *P. aeruginosa* and (b) 23–299 *P. aeruginosa*. The missing fragment within the β -barrel is shown boxed in yellow. Visualization made with SWISS-MODEL.

it has been previously reported that treatment with a combination of a cephalosporine and a β -lactamase inhibitor (such as ceftolozane plus tazobactam or ceftazidime plus avibactam) in absence of cefiderocol treatment may contribute to the emergence of cefiderocol resistance. For instance, the emergence of mutations within the YSN region of AmpC in *P. aeruginosa* potentially results in reduced susceptibility to cefiderocol (33–35).

In this study, we compared the sequence evolution of 48 genes from four different isolates recovered from a single patient during the course of prolonged cefiderocol treatment (27 days) and compared them against the *P. aeruginosa* PAO1 reference genome. Our analysis included genes encoding for TonB-dependent receptor proteins involved in siderophore transport, genes involved in iron uptake, chromosomal β-lactamases, and penicillin-binding proteins, among others, all of which are potentially involved in cefiderocol resistance (Table S1). Mutations in porine D (*oprD*) and the multidrug resistance operon repressor (*mexR*) were described across the four isolates, and previous studies have shown that truncations in the *oprD* gene can increase cefiderocol MIC by 2-fold (0.125–0.25 mg/L) (30) and 16-fold (0.25–4.0 mg/L) (28). Additionally, a transposon insertion in the *mexR* gene can double the MIC (0.125–0.25 mg/L) (30). Various MexR amino acid substitutions, such as A66V and L57D, have been associated with four- and eightfold increases in MIC, respectively (34). Furthermore, the D89E mutation in MexR was linked to a fourfold increase in MIC (2–8 mg/L) in progressive *in vivo* samples (36).

However, despite the mutations in the *oprD* and *mexR* genes, the only mutations related to resistant isolates in this study were a S116F substitution in the *piuC* gene in

Downloaded from https://journals.asm.org/journal/spectrum on 05 November 2025 by 158.109.221.167

isolate 23–257 and an 87-nucleotide deletion in piuA gene and Y636STOP nonsense mutation in PirA in isolate 23-299. Siderophore transporters (also known as TonBdependent transporters) are located in the outer membrane of the bacterial cell. Their role involves capturing the siderophore-iron complex and facilitating its internalization into the periplasm (37, 38). Consequently, upon translation, the protein has to reach its final location, for which the signal sequence promotes the secretion of the protein to the outer membrane and subsequent insertion (39, 40). Therefore, a deletion in the signal sequence of PiuA in isolate 23–299 may lead to the receptor's absence in the outer membrane, resulting in a lower internalization of the siderophore-conjugated antibiotic. Conversely, the deletion observed in PirA from isolate 23-299 influences the structural configuration of the channel, as illustrated in Fig. 3. This alteration has the potential to impact the overall integrity and functionality of the protein, resulting in a reduced internalization of the antibiotic, as previously noted for PiuA. To support the potential role of mutations in PirA and PiuA proteins in cefiderocol resistance, prior studies have been conducted that linked them to lower susceptibility to siderophore-conjugated antibiotics. As described by van Delden et al. (41) and Ito et al. (30), deficiency of the PiuA receptor in some strains led to a decrease in the siderophore-antibiotic susceptibility, raising by 32- and 16-folds the MIC of the antibiotic tested, respectively. In another study performed by Luscher et al. (29), the absence of PiuA led to a 16-fold increase of the siderophore conjugate and a 32-fold increase when combined with a deletion in pirA. Other mutations in piuA and pirA genes, such as insertions, deletions, and frameshifts, did also increase the MIC to siderophore-conjugate molecules in P. aeruginosa, as described by Kim et al. (42). Regarding the PiuC S116F amino acid substitution in isolate 23-257, it has been previously discussed (43) that the influence of amino acid polarity and hydrophobicity on channel proteins is noteworthy. The research suggests that hydrophobic residues interact unfavorably with water, potentially creating an energetic impediment to ion conduction, a phenomenon referred to as hydrophobic gating. Hence, the substitution of a polar amino acid with a hydrophobic one in PiuC in isolate 23–257 may disrupt the interaction between the ion and the channel, thereby impeding further processes such as expression of piuA (21). Additionally, P. aeruginosa PiuC, which presented frameshift mutations, downregulations, and indels, showed increased MICs against siderophore-conjugated antibiotics (21, 41, 42, 44).

Of note, while cefiderocol resistance in isolate 23–257 was attributed to a mutation within the *piuC* gene, such mutation was not carried over by the latest isolate 23–299 that nevertheless showed higher cefiderocol MIC values through mutations in both the *piuA* and *pirA* genes. Therefore, development of cefiderocol resistance under selective pressure seemed to have occurred as two independent events within the same patient and on the same strain.

In conclusion, we describe the *in vivo* emergence of cefiderocol resistance in *P. aeruginosa* isolated from a patient with T-ALL who underwent treatment with ceftazidime-avibactam and cefiderocol. We identified several mutations among the analyzed genes shared by the four isolates, including mutations in *oprD* and *mexR* genes that may affect cefiderocol's MIC. Only three genes presented mutations specifically in those isolates resistant to cefiderocol, namely, *piuC*, *piuA*, and *pirA*. The mutations in the three aforementioned genes may directly impact siderophore internalization, thereby contributing to an elevation in the MIC of the antibiotic. Future steps will include experimentally demonstrating the effect of the mutations on the MIC of *P. aeruginosa*, as this study only identified them *in silico*.

ACKNOWLEDGMENTS

We thank Olga Francino Martí, the Servei Veterinari de Genètica Molecular, and Vetgenomics SL for letting us use the server to perform the bioinformatic analysis in this study, and Altair Chinchilla for his assistance regarding protein modeling.

This study was supported by the I+D+i grant PID2021-127402OB-I00, funded by MCIN/AEI/10.13039/501100011033, co-financed by the European Development Regional

Downloaded from https://journals.asm.org/journal/spectrum on 05 November 2025 by 158.109.221.167.

Fund "A Way to Achieve Europe" and grant 2017 SGR 0809 from the Departament d'Universitats, Recerca i Societat de la Informació, of the Generalitat de Catalunya. We also acknowledge support from the Spanish Ministry of Science, Innovation and Universities through the "Centro de Excelencia Severo Ochoa 2019–2023" Program (CEX2018-000806-S) and support from the Generalitat de Catalunya through the "CERCA Program."

T.F.A. has received research grants from the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III, with file code CM23/00277, in accordance with the "Resolución de la Dirección del Instituto de Salud Carlos III, O.A., M.P." of 13 December 2023, granting the Rio Hortega Contracts, and co-funded by the European Union. J.V. is the recipient of a Margarita Salas grant (Universitat Autònoma de Barcelona, 2021) from the Spanish Ministerio de Universidades.

AUTHOR AFFILIATIONS

¹Servei de Microbiologia i Parasitologia-CDB, Hospital Clínic de Barcelona, Barcelona, Spain

²Institut de Salut Global (ISGlobal), Barcelona, Spain

³Servei Veterinari de Genètica Molecular (SVGM), Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain

⁴Departament de Malalties Infeccioses, Hospital Clínic de Barcelona, Barcelona, Spain

⁵Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain

⁶CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain

AUTHOR ORCIDs

Joaquim Viñes http://orcid.org/0000-0003-0709-5236

Andrea Vergara http://orcid.org/0000-0002-5046-4490

Ignasi Roca http://orcid.org/0000-0002-1800-1576

Jordi Vila http://orcid.org/0000-0002-8025-3926

Tommaso Francesco Aiello http://orcid.org/0000-0003-4441-6318

FUNDING

Funder	Grant(s)	Author(s)
Ministerio de Ciencia e Innovación (MCIN)	PID2021-127402OB-I00, CEX2018-000806-S	Andrea Vergara
		Ignasi Roca
		Cristina Pitart
Government of Catalonia Departament d'Universitats, Recerca i Societat de la Informació (DURSI)	2017 SGR 0809	Andrea Vergara
		Ignasi Roca
		Jordi Vila
		Climent Casals-Pascual
		Cristina Pitart
Generalitat de Catalunya (Government of Catalonia)	CERCA	Andrea Vergara
		Ignasi Roca
		Jordi Vila
		Carolina Garcia-Vidal
		Climent Casals-Pascual
		Àlex Soriano
		Cristina Pitart
Ministerio de Sanidad, Consum y Bienestar (MSCBS)	o CM23/00277	Tommaso Francesco Aiello

Funder	Grant(s)	Author(s)
Ministerio de Universidades (MU)	Margarita Salas	Joaquim Viñes

AUTHOR CONTRIBUTIONS

Joaquim Viñes, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Supervision, Validation, Visualization, Writing - original draft, Writing - review and editing | Sabina Herrera, Supervision, Writing - original draft, Writing – review and editing | Andrea Vergara, Supervision, Writing – review and editing Ignasi Roca, Funding acquisition, Investigation, Project administration, Supervision, Validation, Writing - original draft, Writing - review and editing | Jordi Vila, Supervision, Writing - review and editing | Tommaso Francesco Aiello, Supervision, Writing review and editing | José Antonio Martínez, Supervision, Writing – review and editing Ana del Río, Supervision, Writing - review and editing | Carlos Lopera, Supervision, Writing - review and editing | Carolina Garcia-Vidal, Supervision, Writing - review and editing | Climent Casals-Pascual, Supervision, Writing - review and editing | Alex Soriano, Supervision, Writing - review and editing | Cristina Pitart, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Supervision, Writing - original draft, Writing - review and editing

DATA AVAILABILITY

Nanopore FastQ read files have been submitted to Sequence Read Archive from the National Center for Biotechnology Information under BioProject PRJNA984723. The GenBank accession numbers for the genome assemblies are as follows: 23-169 JAUAWL000000000.1, 23-229 JAXASH000000000, 23-257 JAXASG000000000, and 23-299 JAXASF000000000.

ETHICS APPROVAL

Bacterial samples studied here were recovered from clinical samples used for microbiological diagnosis at clinical microbiology laboratories. Informed consent was, therefore, not required. The protocol for this study was approved by the Ethics Committee on Clinical Research of the Hospital Clinic de Barcelona (HCB/2017/0923 and HCB/ 2022/0787).

ADDITIONAL FILES

The following material is available online.

Supplemental Material

Table S1 (Spectrum01928-24-s0001.xlsx). Mutations present in genes of interest that may be involved in cefiderocol resistance.

REFERENCES

- ECDC. 2020. Antimicrobial resistance in the EU/EEA (EARS-Net) Annual Epidemiological Report 2019. Stockholm.
- Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. 2012. Multidrug-resistant, extensively drug-resistant and pandrugresistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
- Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. 2021. Infectious Diseases Society of America guidance on the treatment of extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas
- aeruginosa with difficult-to-treat resistance (DTR- P. aeruginosa). Clin Infect Dis 72:1109-1116. https://doi.org/10.1093/cid/ciab295
- Kadri SS, Adjemian J, Lai YL, Spaulding AB, Ricotta E, Prevots DR, Palmore TN, Rhee C, Klompas M, Dekker JP, Powers JH 3rd, Suffredini AF, Hooper DC, Fridkin S, Danner RL, National Institutes of Health Antimicrobial Resistance Outcomes Research Initiative (NIH-ARORI). 2018. Difficult-totreat resistance in Gram-negative bacteremia at 173 US hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis 67:1803-1814. https:// doi.org/10.1093/cid/ciy378
- Viñes J, Lopera C, Vergara A, Roca I, Vila J, Casals-Pascual C, Martínez JA, García-Vidal C, Soriano A, Pitart C. 2024. Emergence of carbapenemresistant Pseudomonas aeruginosa ST179 producing both IMP-16 and

10.1128/spectrum.01928-24 **9**

Research Article Microbiology Spectrum

- KPC-2: a case study of introduction from Peru to Spain. Microbiol Spectr 12:e0061424. https://doi.org/10.1128/spectrum.00614-24
- Maruri-Aransolo A, López-Causapé C, Hernández-García M, García-Castillo M, Caballero-Pérez J de D, Oliver A, Cantón R. 2024. In vitro activity of cefiderocol in Pseudomonas aeruginosa isolates from people with cystic fibrosis recovered during three multicentre studies in Spain. J Antimicrob Chemother 79:1432–1440. https://doi.org/10.1093/jac/ dkae126
- Santerre Henriksen A, Jeannot K, Oliver A, Perry JD, Pletz MW, Stefani S, Morrissey I, Longshaw C, Willinger B, Leyssene D, et al. 2024. *In vitro* activity of cefiderocol against European *Pseudomonas aeruginosa* and *Acinetobacter* spp., including isolates resistant to meropenem and recent β-lactam/β-lactamase inhibitor combinations. Microbiol Spectr 12:e0383623. https://doi.org/10.1128/spectrum.03836-23
- Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595
- 9. Oxford Nanopore Technologies. 2018. Medaka. GitHub.
- Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114
- Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. https://doi.org/10.1093/bioinformatics/btv351
- 12. Seemann T. 2017. Abricate. GitHub.
- Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, Doshi S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T, Sardar D, Westman EL, Pawlowski AC, Johnson TA, Brinkman FSL, Wright GD, McArthur AG. 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45:D566–D573. https://doi.org/10.1093/nar/ gkw1004
- Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. *In silico* detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. https://doi.org/10.1128/ AAC.02412-14
- Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 3:124. https://doi.org/10.12688/ wellcomeopenres.14826.1
- Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98.
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature New Biol 596:583–589. https://doi.org/10.1038/s41586-021-03819-2
- Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. https://doi.org/10.1093/ nar/qky427
- Oxoglutarate/iron-dependent dioxygenase (IPR005123) InterPro entry. InterPro
- piuC PKHD-type hydroxylase PiuC Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1). UniProtKB | UniProt
- Gomis-Font MA, Sastre-Femenia MÀ, Taltavull B, Cabot G, Oliver A. 2023. In vitro dynamics and mechanisms of cefiderocol resistance development in wild-type, mutator and XDR Pseudomonas aeruginosa. J Antimicrob Chemother 78:1785–1794. https://doi.org/10.1093/jac/dkad172
- piuA Hydroxamate-type ferrisiderophore receptor Pseudomonas aeruginosa. UniProtKB | UniProt
- pirA Ferric enterobactin receptor PirA Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1). UniProtKB | UniProt
- Domingues S, Lima T, Saavedra MJ, Da Silva GJ. 2023. An overview of cefiderocol's therapeutic potential and underlying resistance mechanisms. Life (Basel) 13:1427. https://doi.org/10.3390/life13071427

- Karakonstantis S, Rousaki M, Kritsotakis El. 2022. Cefiderocol: systematic review of mechanisms of resistance, heteroresistance and *in vivo* emergence of resistance. Antibiotics (Basel) 11:1–20. https://doi.org/10. 3390/antibiotics11060723
- Losito AR, Raffaelli F, Del Giacomo P, Tumbarello M. 2022. New drugs for the treatment of *Pseudomonas aeruginosa* infections with limited treatment options: a narrative review. Antibiotics (Basel) 11:579. https:// doi.org/10.3390/antibiotics11050579
- Simner PJ, Mostafa HH, Bergman Y, Ante M, Tekle T, Adebayo A, Beisken S, Dzintars K, Tamma PD. 2022. Progressive development of cefiderocol resistance in *Escherichia coli* during therapy is associated with an increase in *bla*_{NDM-5} copy number and gene expression. Clin Infect Dis 75:47–54. https://doi.org/10.1093/cid/ciab888
- Takemura M, Yamano Y, Matsunaga Y, Ariyasu M, Echols R, Den Nagata T. 2020. Characterization of shifts in minimum inhibitory concentrations during treatment with cefiderocol or comparators in the phase 3 CREDIBLE-CR and APEKS-NP studies. Open Forum Infect Dis 7:S649– S650. https://doi.org/10.1093/ofid/ofaa439.1450
- Luscher A, Moynié L, Auguste PS, Bumann D, Mazza L, Pletzer D, Naismith JH, Köhler T. 2018. TonB-dependent receptor repertoire of Pseudomonas aeruginosa for uptake of siderophore-drug conjugates. Antimicrob Agents Chemother 62:e00097-18. https://doi.org/10.1128/ AAC.00097-18
- Ito A, Sato T, Ota M, Takemura M, Nishikawa T, Toba S, Kohira N, Miyagawa S, Ishibashi N, Matsumoto S, Nakamura R, Tsuji M, Yamano Y. 2018. *In vitro* antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacteria. Antimicrob Agents Chemother 62:e01454-17. https://doi.org/10.1128/AAC.01454-17
- Sato T, Ito A, Ishioka Y, Matsumoto S, Rokushima M, Kazmierczak KM, Hackel M, Sahm DF, Yamano Y. 2020. Escherichia coli strains possessing a four amino acid YRIN insertion in PBP3 identified as part of the SIDERO-WT-2014 surveillance study. JAC Antimicrob Resist 2:dlaa081. https://doi. org/10.1093/jacamr/dlaa081
- Yamano Y, Ishibashi N, Kuroiwa M, Takemura M, Sheng W-H, Hsueh P-R. 2022. Characterisation of cefiderocol-non-susceptible Acinetobacter baumannii isolates from Taiwan. J Glob Antimicrob Resist 28:120–124. https://doi.org/10.1016/j.jgar.2021.12.017
- López-Causapé C, Maruri-Aransolo A, Gomis-Font MA, Penev I, Castillo MG, Mulet X, de Dios Caballero J, Campo RD, Cantón R, Oliver A. 2023. Cefiderocol resistance genomics in sequential chronic *Pseudomonas aeruginosa* isolates from cystic fibrosis patients. Clin Microbiol Infect 29:538. https://doi.org/10.1016/j.cmi.2022.11.014
- Simner PJ, Beisken S, Bergman Y, Posch AE, Cosgrove SE, Tamma PD.
 2021. Cefiderocol activity against clinical *Pseudomonas aeruginosa* isolates exhibiting ceftolozane-tazobactam resistance. Open Forum Infect Dis 8:ofab311. https://doi.org/10.1093/ofid/ofab311
- Streling AP, Al Obaidi MM, Lainhart WD, Zangeneh T, Khan A, Dinh AQ, Hanson B, Arias CA, Miller WR. 2021. Evolution of cefiderocol nonsusceptibility in *Pseudomonas aeruginosa* in a patient without previous exposure to the antibiotic. Clin Infect Dis 73:e4472–e4474. https://doi. org/10.1093/cid/ciaa1909
- Sadek M, Le Guern R, Kipnis E, Gosset P, Poirel L, Dessein R, Nordmann P.
 2023. Progressive in vivo development of resistance to cefiderocol in Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 42:61–66. https://doi.org/10.1007/s10096-022-04526-0
- Schalk IJ, Mislin GLA, Brillet K. 2012. Structure, function and binding selectivity and stereoselectivity of siderophore–iron outer membrane transporters, p 37–66. In Current topics in membranes
- Moynié L, Luscher A, Rolo D, Pletzer D, Tortajada A, Weingart H, Braun Y, Page MGP, Naismith JH, Köhler T. 2017. Structure and function of the PiuA and PirA siderophore-drug receptors from *Pseudomonas* aeruginosa and Acinetobacter baumannii. Antimicrob Agents Chemother 61:e02531-16. https://doi.org/10.1128/AAC.02531-16
- Carlsson F, Stålhammar-Carlemalm M, Flärdh K, Sandin C, Carlemalm E, Lindahl G. 2006. Signal sequence directs localized secretion of bacterial surface proteins. Nature New Biol 442:943–946. https://doi.org/10.1038/ nature05021
- Fekkes P, Driessen AJM. 1999. Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev 63:161–173. https://doi. org/10.1128/MMBR.63.1.161-173.1999
- van Delden C, Page MGP, Köhler T. 2013. Involvement of Fe uptake systems and AmpC β-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in *Pseudomonas aeruginosa*. Antimicrob

10.1128/spectrum.01928-24 **10**

- Agents Chemother https://doi.org/10.1128/AAC.02474-12
- Kim A, Kutschke A, Ehmann DE, Patey SA, Crandon JL, Gorseth E, Miller AA, McLaughlin RE, Blinn CM, Chen A, Nayar AS, Dangel B, Tsai AS, Rooney MT, Murphy-Benenato KE, Eakin AE, Nicolau DP. 2015. Pharmacodynamic profiling of a siderophore-conjugated monocarbam in Pseudomonas aeruginosa: assessing the risk for resistance and attenuated efficacy. Antimicrob Agents Chemother 59:7743–7752. https://doi.org/10.1128/AAC.00831-15

57:2095-2102.

- Aryal P, Sansom MSP, Tucker SJ. 2015. Hydrophobic gating in ion channels. J Mol Biol 427:121–130. https://doi.org/10.1016/j.jmb.2014.07.
- McPherson CJ, Aschenbrenner LM, Lacey BM, Fahnoe KC, Lemmon MM, Finegan SM, Tadakamalla B, O'Donnell JP, Mueller JP, Tomaras AP. 2012. Clinically relevant Gram-negative resistance mechanisms have no effect on the efficacy of MC-1, a novel siderophore-conjugated monocarbam. Antimicrob Agents Chemother 56:6334–6342. https://doi.org/10.1128/ AAC.01345-12