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Vancomycin-resistant Enterococcus faecium (VREfm) has become a significant nosocomial pathogen due to its potential to cause 
outbreaks. Whole-genome sequencing (WGS) is considered the reference method for determining genomic relatedness among 
outbreak strains, but its routine use in clinical microbiology laboratories remains challenging. Consequently, faster and simpler 
typing methods are needed. Fourier transform infrared spectroscopy (FTIR) captures the unique infrared fingerprint of each 
isolate, enabling the comparison of spectral profiles to infer genomic relatedness. In this study, we evaluated the performance 
of FTIR for identifying genomic clusters of VREfm in a tertiary hospital, in comparison with three WGS-based methods: 
core-genome multilocus sequence typing (cgMLST), core-genome single nucleotide polymorphism analysis (cgSNP), and 
split k-mer analysis (SKA). A total of 87 VREfm isolates, collected between April 2020 and October 2023, were typed using 
both FTIR and WGS. Among these, 56 were associated with three outbreaks in the surgery, nephrology, and oncohematology 
units, according to conventional epidemiology. Concordance between typing methods was assessed using the Adjusted Rand 
index (AR) and Adjusted Wallace coefficient (AW). All three WGS-based methods yielded similar clustering results and 
revealed one monoclonal and two polyclonal outbreaks. Using cgMLST as the reference, an optimal FTIR cutoff range of 
0.210–0.227 was determined. FTIR clustering results showed strong concordance with WGS-based methods; however, 
concordance with SKA was slightly lower. These findings suggest that FTIR provides clustering information comparable to 
WGS-based methods, providing a rapid and practical alternative to support timely infection control measures during VREfm 
outbreaks.
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Infections caused by vancomycin-resistant Enterococcus faeci
um (VREfm) pose a considerable challenge due to multidrug 
resistance [1] and their capacity to spread in hospital environ
ments, where they can cause outbreaks [2] and exacerbate the 
already significant burden of healthcare-associated infections 
[3]. In 1988, the first vancomycin-resistant E. faecium isolates 
were reported independently in France and the United 
Kingdom, marking the emergence of this resistance mecha
nism as a public health concern [4]. In Europe, the proportion 

of VREfm infections rose from 12.3% (2016) to 19.8% (2023), 
increasing mortality and costs [5]. The rise in VREfm cases 
has been particularly noteworthy in Germany [6], where the 
proportion of VREfm cases reached a peak of 26.3% in 2019 
but subsequently declined to 12.7% in 2023 [7]. Conversely, 
the percentage of VREfm in Spain remained below 3% from 
2016 to 2022 [8]. Particularly, in the hospitals of Catalonia, 
there were no reported cases of VREfm until 2020 when the first 
cases were detected shortly after the beginning of the 
COVID-19 pandemic. Currently, the VREfm resistance pro
portion remains around 3% in Catalonia. At Hospital 
Germans Trias i Pujol the proportions were 8.5% in 2020, 
10.0% in 2021, and 1.0% in 2023.

The 2020–2021 increase in our hospital prompted the evalu
ation of faster typing tools for outbreak management. 
DNA-based methods such as pulsed-field gel electrophoresis 
(PFGE) and whole-genome sequencing (WGS) have been 
widely used [9, 10], being WGS the current gold standard 
due to its high discriminatory power [11]. However, routine 
implementation of WGS remains limited by high turnaround 
times primarily caused by bioinformatic analysis [12]. A lack 
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of a gold standard WGS analysis approach for VREfm outbreak 
delimitation also exists. Core genome multilocus sequence typ
ing (cgMLST) has been widely used due to its standardized and 
stable nomenclature and the availability of commercial soft
ware tools [13]. Single nucleotide polymorphism (SNP) dis
tances generated from core genome alignments are also 
usually used for outbreak delimitation. In this case, some stud
ies have proposed that recombination masking may be inaccu
rate for highly recombinant species such as E. faecium, as it can 
underestimate the number of SNPs and artificially cluster iso
lates more closely than they really are [14]. Alternatively, split 
k-mer analysis (SKA) may offer greater discriminatory power 
than cgMLST for VREfm outbreak delimitation, though cur
rent evidence is limited [12, 15]. For these methods, determin
ing the adequate clustering threshold to define close genomic 
relatedness can also be an important limitation. Therefore, se
lecting an appropriate WGS-based analysis method for VREfm 
outbreak analysis requires careful consideration.

Fourier-transform infrared (FTIR) spectroscopy has 
emerged as a phenotypic alternative with resolution suitable 
for typing and outbreak delimitation [16]. FTIR quantifies ab
sorption by carbohydrates, lipids, and proteins [17, 18]. Each 
isolate’s infrared fingerprint is then compared with the rest 
so that relationships between bacterial lineages can be estab
lished based on spectrum analysis [19]. Previous work supports 
FTIR for Gram-positive [2] and Gram-negative pathogens with 
internal validation [20–23].

The aim of the present study was to evaluate the capacity of 
IR Biotyper (Bruker GmbH, Leipzig, Germany) to track emer
gent VREfm genomic clusters at a tertiary hospital in compar
ison with three different WGS analysis methods.

MATERIAL AND METHODS

Study Design and Setting

Retrospective cross-sectional study in a tertiary care hospital 
serving 200 000 inhabitants and reference for 1 200 000 in 
Barcelona’s Northern Metropolitan Area (Spain). We ana
lyzed 87 VREfm isolates from hospitalized patients (n = 83) 
and four environmental samples from the surgery depart
ment, collected April 2020–October 2023. Fifty-six isolates 
were associated with three epidemiologically defined out
breaks (surgery, nephrology, oncohematology). A nosocomial 
outbreak was declared by the infection control team upon the 
detection of ≥2 clinical or ≥3 rectal swab isolates within one 
month in a single ward. Only isolates from patients who were 
VREfm negative at the time of admission were considered. 
Thus, all included isolates were detected after the first 
48 hours of hospitalization by routine screening. The date of 
outbreak closure was set when no VREfm isolates were iden
tified in the same hospital ward for 3 months since the last 

identification. The remaining isolates were considered unre
lated to these outbreaks (Supplementary Table 1).

Ethics Statement

This study was approved by the Clinical Research Ethics 
Committee (CEIC) of the University Hospital Germans Trias 
i Pujol in Barcelona, Spain (PI-24–118).

Routine Microbiological Diagnostics and Antimicrobial Susceptibility 
Testing

All isolates were firstly identified with matrix-assisted laser de
sorption ionization-time of flight mass spectrometry 
(MALDI-TOF MS, Bruker Daltonik GmbH, Bremen, 
Germany). The antibiotic susceptibility of vancomycin and tei
coplanin was assessed using a gradient test (bioMérieux SA, 
Marcy-l’Étoile, France), while linezolid susceptibility was eval
uated through disk diffusion (Bio-Rad Laboratories Inc., 
California, United States). For blood cultures, susceptibility 
to vancomycin, teicoplanin, and linezolid was determined us
ing the VITEK-2 Compact system (bioMérieux SA, 
Marcy-l’Étoile, France). Interpretation of minimum inhibitory 
concentration (MIC) values and disk diffusion zone diameters 
followed the criteria established by the European Committee 
on Antimicrobial Susceptibility Testing (EUCAST) [24]. All 
isolates were subsequently preserved in Cryoinstant® Natural 
storage medium (Scharlab S.L., Barcelona, Spain) at −80°C un
til further analyses.

Sample Preparation for FTIR Analysis and Spectrum Analysis

All VREfm isolates were thawed at room temperature and cul
tured in Columbia Agar + 5% sheep blood (bioMérieux SA, 
Marcy-l’Étoile, France) for 24 hours at 37°C. Then, bacterial 
isolates were subcultured in Mueller-Hinton agar medium 
from a single colony (Becton Dickinson GmbH, Heidelberg, 
Germany) for another 24 hours at 37°C before testing. 
Preparation of bacterial suspensions was performed as previ
ously described by Wang-Wang et al. [23] Briefly, a loopful 
of bacterial cells was resuspended in 50 μL of deionized water 
in a 1.5-mL suspension vial containing metal beads (Bruker 
GmbH, Leipzig, Germany) and homogenized by vortexing. 
Subsequently, 50 μL of 70% (v/v) ethanol was added to each 
vial, followed by a second homogenization step. Then, 15 μL 
of each bacterial suspension was spotted in quadruplicate 
onto a 96-spot silicon plate (Bruker GmbH, Leipzig, 
Germany). For quality control, 12 μL of two infrared test stan
dards (IRTS 1 and IRTS 2, each containing an Escherichia coli 
strain with a defined reference spectrum) were placed in dupli
cate on the same silicon plate. The plate was then dried at 37°C 
for 30 minutes prior to insertion into the Biotyper system. For 
spectrum acquisition, all samples were analyzed in transmis
sion mode using the default analysis settings (wavelength re
gion 1300–800 cm−1).
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Samples that did not meet the manufacturer’s quality criteria 
were excluded. The acceptance parameters were as follows: 
absorption between 0.4 and 2, noise (×10−6) < 300, 
signal-to-noise ratio R2 > 200, signal-to-noise ratio R3 > 40, 
water vapor (×10−6) < 300, signal-to-water ratio (R2) > 100, 
signal-to-water ratio (R3) > 20, and fringes (×10−6) < 100. 
Based on these criteria, 19 samples required reanalysis until 
at least three valid spectra were obtained for each isolate. Of 
these, 13 yielded valid spectra, whereas no valid spectra could 
be recovered for the remaining six samples, which were there
fore excluded from the study. An average spectrum for each in
dividual strain was subsequently generated from the qualified 
spectra using the OPUS 8.2.28 software (Bruker GmbH, 
Leipzig, Germany).

The resulting average spectra were then used to construct a 
dendrogram based on hierarchical cluster analysis (HCA) using 
the Euclidian metric distance and the average linkage method 
(UPGMA) without dimensionality reduction techniques. The 
optimal clustering cutoff within a slightly extended range 
(0.15–0.25) of that recommended by the manufacturer (0.15– 
0.20) was calculated. Isolates showing an FTIR spectral distance 
equal to or below this cut-off value were classified within the 
same FTIR cluster, whereas those exceeding the threshold 
were considered FTIR singletons.

Sample Preparation for WGS Analysis and Bioinformatics Analyses

For WGS analysis, all VREfm samples were prepared and se
quenced as previously described [23], except for solid sample 
culture that was performed in Columbia CNA agar 
(bioMérieux SA, Marcy-l’Étoile, France). The WGS clustering 
analysis of VREfm isolates was performed based on pairwise 
genome comparisons using three different genomic approach
es: cgMLST, cgSNP, and SKA. Additionally, antimicrobial re
sistance genes were detected using Abricate v1.0.1 against the 
NCBI database [25, 26].

Regarding clustering analysis, the observed distributions of 
pairwise allelic differences and SNPs were used to infer clus
tering cutoffs. More specifically, for each clustering methodol
ogy, the distribution of pairwise distances was modeled 
applying a Gaussian Mixture Model (GMM) using the 
Mclust function from the mclust R package (https://www.r- 
project.org/). The clustering cut-off was then set at the 99th 
percentile of the fit corresponding to the first component 
(cgMLST: ≤11 allelic differences; cgSNP: ≤22 SNPs for 
ST80 and ST80-like isolates, ≤9 SNPs for ST117 isolates; 
SKA: ≤30 SNPs; Supplementary Fig. 1). For cgMLST analysis, 
genomic clusters were defined as ≥2 isolates of the same se
quence type (ST) and a genetic below the established thresh
old of allelic differences. cgMLST analysis was performed 
with Ridom SeqSphere + software 8.5 (Ridom GmbH, 
Münster, Germany) using SPAdes v3.15.4 for de novo assem
bly, using the typing scheme of 1423 genes published by Been 

et al., [27] and the parameter “pairwise ignoring missing val
ues”. A quality criterion of ≥97% good cgMLST targets and a 
coverage of ≥30× was applied. From this analysis, ST, clonal 
complexes (CC) and complex types (CT) were also obtained. 
For cgSNP analysis, raw reads were trimmed using Trimmomatic 
v0.39 (LEADING:3 TRAILING:3 SLIDINGWINDOW:5:25 
MINLEN:60) [28]. cgSNP analysis was performed separately for 
ST80 (and ST80-like) and ST117 isolates to provide a greater de
gree of pairwise SNP resolution, as recommended [16]. To estab
lish the population structure of the isolates, for each predominant 
ST, trimmed reads were mapped to a close reference genome 
when possible, using snippy v4.6.0 (mincov 10, minfrac 0.9); ge
nome alignments without masking for recombination were then 
used to infer a phylogenetic tree using IQtree v2.2.2.3 [29] with 
1000 ultrafast bootstraps and a generalized time-reversible model 
(GTR). snp-dists was used to calculate pairwise SNP distances. 
Clusters were defined as ≥2 isolates of the same ST, with a genetic 
distance below the established SNP threshold according to ST and 
a monophyletic origin supported by a bootstrap value ≥90%. For 
SKA analysis, SNPs were defined as “number of split kmers found 
in both samples where the middle base is an A, C, G, or T but dif
fers between files” [30].

Concordance Between Clustering Methodologies

Concordance between FTIR and each WGS method was as
sessed using Adjusted Rand (AR) and Adjusted Wallace (AW) 
[31–33], using an online tool (www.comparingpartitions.info) 
with 95% confidence intervals (95% CI). AR indicates the overall 
agreement of each cluster composition between two techniques. 
AW measures the directional probability that two isolates detect
ed in a cluster by a reference technique are also detected in the 
same cluster using an alternative technique.

RESULTS

Emergence of VREfm

On April 2020, the first VREfm isolates were recovered from 
rectal swabs of two ICU patients. In November 2020, an out
break was declared in surgery (three clinical and one surveil
lance sample). Secondary outbreaks occurred in January and 
April 2021 in oncohematology and nephrology, respectively. 
During late 2021, most isolates came from surgery, peaking 
in September. From February 2022 onward, sporadic cases ap
peared across wards, mostly not linked to outbreaks (Figure 1, 
Supplementary Table 1). All isolates showed phenotypic resis
tance to vancomycin and all but one (isolate 84) susceptibility 
to linezolid. Regarding teicoplanin, only isolate 87 was 
sensitive.

cgMLST and cgSNP Analysis

Initial cgMLST analysis using a cutoff of ≤11 allelic differences 
revealed that most isolates belonged to two differentiated 
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populations: one consisting of ST80 (n = 69; of which 66 be
longed to CT5967, two to CT6492 and one to CT847) and 
ST80-like isolates (n = 4; three with a novel gyd allele and one 
with a novel purK allele; all four belonging to CT5967), and 
the other comprising isolates of ST117 (n = 12). Additionally, 
one isolate belonged to ST761, and another belonged to novel 
ST2840 (atpA 9, ddl 1, gdh 1, purK 73, gyd 12, pstS 1, adk 1). 
All typed isolates belonged to clonal complex 17 (CC17). 
vanA was detected in all isolates except 87 (vanB); cfr(D) was 
present in isolate 84, matching phenotype. cgMLST grouped 
all but seven isolates into four clusters (cgMLST_1– 
cgMLST_4; Figure 2). cgMLST_1 contained 80.5% (70/87), in
cluding four environmental isolates, all of which belonged to 
CT5967. Other clusters had 2–4 isolates each. cgSNP with cut
offs ≤22 (ST80/ST80-like) and ≤9 (ST117) matched cgMLST 
clustering, identifying four clusters and seven singletons 
(Figure 2). Of note, the potential effect of not masking recom
bination sites on the identified clusters was assessed. Masking 
for recombination consistently resulted in lower pairwise 
SNP distances than their unmasked counterparts. However, 
cluster composition after readjusting clustering cut-offs (ie, 
≤18 SNPs for ST80 and ST80-like isolates, ≤6 SNPs for 
ST117 isolates) was identical to that obtained without masking 
for recombination (Supplementary Figs. 2 and 3). Regarding 
outbreaks identified by conventional epidemiology, nephrol
ogy’s outbreak was monoclonal (cgMLST_1), whereas surgery 
and oncohematology were polyclonal but dominated by 
cgMLST_1 (Supplementary Table 1).

SKA Clustering Reveals Little Subdivision Within cgMLST Clusters

SKA identified five clusters (SKA_1–SKA_5) and eight single
tons using a cut-off of 30 SNPs. Among the cgMLST-defined 

clusters, only cgMLST_1 was further subdivided by SKA into 
two distinct clusters (SKA_1 and SKA_2) and one singleton. 
SKA_1 was the largest cluster, comprising 75.9% (66/87) of 
the study isolates, while SKA_2 included the remaining three 
isolates originally assigned to cgMLST_1 (Figure 2). For all oth
er isolates, identical clustering results between cgMLST and 
SKA were obtained (ARcgMLST-SKA = 0.850 [0.708–0.998]). No 
clear epidemiological link existed among SKA_2 isolates; as 
they were ≥2 months apart and from different wards. 
Additionally, as the SNP threshold used for SKA clustering 
considerably differed from those commonly used in the litera
ture (7–12 SNPs) [12–15], a sensitivity analysis was performed 
on this parameter. Lowering the threshold from 30 to 12 SNPs 
subdivided cluster SKA_1 into three clusters and one singleton, 
while not affecting the clustering of the remaining isolates 
(Supplementary Fig. 4). This resulted in a lower concordance 
between SKA and cgMLST (ARcgMLST-SKA12 = 0.418 [0.260– 
0.581]). Further decreasing the threshold continued to reduce 
the concordance between SKA and cgMLST (Supplementary 
Table 2).

FTIR Largely Captures WGS Clusters and Reflects Epidemiological 
Outbreaks

Given the similar results obtained across the three WGS-based 
approaches, and to facilitate interpretation, FTIR clustering 
performance was first compared with cgMLST as the reference 
method, and subsequently evaluated against SKA (confusion 
matrices are provided in Supplementary Tables 3–5). For 
FTIR clustering, an optimal cutoff range of 0.210 to 0.227 
was obtained after maximizing AR (Supplementary Fig. 5) us
ing cgMLST as the reference. Using this cutoff, FTIR yielded six 
clusters (FTIR_1–FTIR_6) plus five singletons (Figure 3). 

Figure 1. Distribution of VREfm isolates according to their hospital location. Isolates associated with each of the three epidemiological outbreaks (surgery, nephrology and 
oncohematology wards) are indicated with a black border.
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Cluster cgMLST_1 was largely captured by cluster FTIR_1, 
which included 60 of the 70 cgMLST_1 isolates (85.7%), includ
ing all four environmental isolates. However, seven cgMLST_1 

isolates were misclassified by FTIR into clusters FTIR_2 (n = 5) 
and FTIR_6 (n = 2), and three were identified as singletons 

Figure 2. Maximum-likelihood phylogenetic tree (GTR) obtained from cgSNP 
analysis of VREfm isolates showing clusters identified by cgMLST, cgSNP and 
SKA approaches as well as epidemiological outbreak. ST80 reference: 
AUSMDU00004142 (accession no. CP027501.1); ST117 reference: VRE5755 (acces
sion no. DAIGYV000000000.1).

Figure 3. Dendrogram obtained by clustering the FTIR spectra of 87 VREfm. The 
vertical dashed line indicates the used cutoff value (0.21) for clustering analysis. 
The resulting FTIR clusters are shadowed in gray. Isolates belonging to epidemio
logical outbreaks are annotated in color.
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(Figure 4). FTIR_2 also included all four isolates of cgMLST_3 
(n = 4, ST117) and isolate 68, of ST2840, thus clustering togeth
er isolates of different STs. Conversely, full concordance be
tween cluster cgMLST_4 and FTIR_5 (n = 2) was observed. 
Lastly, three out of five cgMLST singletons were grouped to
gether into cluster FTIR_4. Overall, these results yielded a value 
of 0.644 (95% CI, 0.457–0.838), and 0.944 (95% CI, 0.928– 
0.960) for AR and AW respectively, when comparing FTIR ver
sus cgMLST (AWFTIR→cgMLST) as the reference method. An 
AW value of 0.489 (95% CI, 0.224–0.754) for cgMLST versus 
FTIR (AWcgMLST→FTIR) as the reference method. The concor
dance of FTIR with the SKA was slightly lower as SKA further 
subdivided cluster cgMLST_1 into clusters SKA_1 and SKA_2, 
and a singleton. Therefore, the comparison of SKA versus FTIR 
yielded an AR value of 0.543 (95% CI, 0.352–0.745), an 
AWFTIR→SKA of 0.660 (95% CI, 0.396–0.923) and an 
AWSKA→FTIR of 0.462 (95% CI, 0.187–0.737). Regarding the 
three hospital outbreaks, FTIR correctly inferred a true geno
mic relationship for 33 out of 41 (80.5%) VREfm isolates of 
the surgery department outbreak: 29 were assigned to cluster 
FTIR_1 (cgMLST_1) and 4 to cluster FTIR_2 (cgMLST_3); 
all 10 isolates of the nephrology department outbreak were 

grouped into FTIR_1 (cgMLST_1); and, for the oncohematol
ogy department outbreak, FTIR clustered 3 of the 5 isolates of 
cluster cgMLST into cluster FTIR_1.

To further investigate the performance of FTIR in different 
epidemiological scenarios, we divided the cases in two periods: 
an “outbreak emergence and peak” period from April 2020 to 
December 2021 (n = 60), when most isolates were associated 
with outbreaks in the surgery, nephrology and oncohematology 
wards, and a “sporadic cases” period from February 2021 to 
October 2023 (n = 27). The corresponding ARcgMLST-FTIR for 
the emergence and peak period was 0.686 (95% CI, 0.462– 
0.919), slightly higher than that of the post-outbreak period, 
which was 0.562 (95% CI, 0.215–0.938). This suggests that 
the performance of FTIR might be slightly higher during active 
outbreak periods.

DISCUSSION

VREfm is a major cause of a range of infections in humans, in
cluding, urinary tract infections, wound infections, blood
stream infections, and endocarditis, and is frequently 
associated with nosocomial outbreaks. Although our 2020– 

Figure 4. Relationship between Fourier-Transform Infrared spectroscopy (FTIR) and genomic methods (cgMLST, cgSNP, SKA) for genomic clustering of VREfm isolates. 
Clustering cutoffs (FTIR: ≤0.21, cgMLST: ≤11 allelic differences, cgSNP: ≤22 SNPs for ST80 and ≤9 SNPs for ST117, SKA: ≤30 SNPs). Clusters and singletons detected 
by each method are indicated with a correlative number along with the number of cases in partition.
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2021 outbreaks had limited clinical impact, since most cases 
represented colonization (rectal swabs) rather than infection 
and no associated fatalities occurred, they demanded substan
tial infection-control efforts. These included patient isolation, 
reinforcement of hygiene measures and enhanced environmen
tal disinfection. Four environmental isolates were also recov
ered, confirming the persistence of VREfm in the hospital 
environment and supporting targeted cleaning interventions. 
These measures were guided by typing results, which enabled 
the rapid identification of transmission clusters and differenti
ation between unrelated cases, thereby underscoring the im
portance of rapid and reliable typing methods for outbreak 
management. Therefore, in the present study, we evaluated 
FTIR for identifying VREfm genomic clusters. We show that 
FTIR clusters VREfm isolates in close agreement with multiple 
WGS approaches, supporting its use as a practical first-line tool 
for initial screening and outbreak detection to enable faster 
infection-control responses. In addition to its value for early 
outbreak detection, FTIR can be particularly useful for ruling 
out sporadic cases that are not related to previous outbreak 
strains, thereby avoiding unnecessary investigations and infec
tion control measures. Moreover, identifying sporadic VREfm 
cases with FTIR can support antimicrobial stewardship pro
grams by indicating elevated antibiotic pressure and facilitating 
targeted interventions to reduce unnecessary antimicrobial use 
in those clinical units.

Previous studies have demonstrated the potential of FTIR as 
a typing tool for Gram-negative bacteria, including 
Pseudomonas aeruginosa, Klebsiella pneumoniae and 
Acinetobacter baumannii [20–22]. In line with this, we previ
ously evaluated FTIR for typing Klebsiella pneumoniae nosoco
mial outbreaks, with successful implementation in our hospital 
setting [23]. More recently, FTIR has also been applied to 
Gram-positive bacteria, including Enterococcus faecium, as 
demonstrated in recent studies [2, 34, 35]. Here, we provide ad
ditional evidence for the expansion of FTIR applicability to out
break management beyond Gram-negative pathogens.

Most isolates were ST80 and ST117, high-risk clones associ
ated with nosocomial spread [36, 37]. ST80 (83.9% of isolates) 
predominates in Spain [38], and a recent study in Barcelona re
ported perfect early-detection concordance between FTIR and 
genomic methods for an ST80 spread [35]. Although confirma
tion would be required to determine whether the strains re
sponsible for the outbreaks in our hospital and in the 
Barcelona study are related, these findings collectively suggest 
the emergence of ST80 VREfm isolates causing nosocomial 
outbreaks in this geographic area. Given the rapid dissemina
tion of this ST, continuous surveillance is crucial.

Given the absence of a single gold-standard WGS strategy, 
we compared cgMLST, cgSNP, and SKA [12, 15]. In the litera
ture, cgMLST analysis has been widely used and is often consid
ered as the standard for outbreak analysis of diverse bacterial 

species in many settings. cgMLST uses a defined scheme which 
comprises a large number of conserved genes, which allows for 
dataset comparison in a standardized manner. Compared with 
cgMLST, cgSNP analysis offers higher cluster resolution by re
lying on SNP differences rather than allele distances. However, 
its performance is highly dependent on the choice of the refer
ence genome. Using a distantly related reference can artificially 
inflate the number of detected pairwise SNPs, thereby compro
mising the fine-scale resolution required for accurate outbreak 
delineation [14]. More recently, SKA has emerged as a robust 
method for VREfm outbreak investigation, offering higher dis
criminatory power than cgMLST [12, 15]. Studies by Higgs 
et al. and Maechler et al. have shown that SKA more accurately 
infers patient-to-patient transmission, outperforming cgMLST 
at commonly used thresholds of ≤25 and ≤20 allelic differenc
es, respectively. At these levels, cgMLST often lacks sufficient 
resolution to differentiate closely related strains. Despite its 
strengths, a key challenge in SKA—and in WGS-based ap
proaches in general—is defining appropriate clustering cutoffs. 
These must be interpreted alongside epidemiological data, 
which are often complex and context-dependent. In our study, 
clustering thresholds were selected at the 99th percentile first 
peak in the global distribution of pairwise allelic or SNP differ
ences and were supported by strong spatiotemporal links 
among isolates. This approach resulted in a clustering cutoff 
for cgMLST of ≤11 allelic differences, improving cgMLST res
olution compared with commonly used thresholds of ≤25 or 
≤20. cgSNP cutoffs differed among STs: ≤22 SNPs for ST80 
and ST80-like, and ≤9 SNPs for ST117. Finally, for SKA, a 
threshold of 30 SNPs was selected—considerably higher than 
the 7–12 SNP range commonly reported in the literature 
[12–15]. However, it is important to note that FTIR perfor
mance was still acceptable when compared with SKA clustering 
at a threshold of 12 SNPs. Besides, our tailored approach led to 
considerable harmonization across the three WGS analyses, in 
contrast with previous studies where results varied substan
tially depending on the method and parameters used [12, 15].

In the present study, an AR of 0.644 (95% CI, 0.457–0.838), 
an AWFTIR→cgMLST of 0.944 (95% CI, 0.928–0.960) and an 
AWcgMLST→FTIR of 0.489 (95% CI, 0.224–0.754) were obtained. 
Teng et al [16]. suggested that an AW of 0.95 or higher should 
be met when comparing FTIR versus WGS as the gold standard 
method. This ensures that FTIR clusters the large majority of 
isolates clustered by WGS without missing potential transmis
sion events. Additionally, an AW of at least 0.5 should be met 
when using WGS compared with FTIR as a reference method 
to avoid detection of falsely clustered isolates, which would 
trigger unnecessary WGS confirmation. In this work, both 
AW values were marginally below those proposed by Teng 
et al. A slightly lower concordance was observed between 
FTIR and SKA clustering (AR 0.543 [95% CI, 0.352–0.745]). 
This value was similar to the results obtained by Park and 
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Ryoo, who assessed the performance of the FTIR for VREfm 
clustering in a neonatal intensive care unit outbreak involving 
four patients. The outbreak was predominantly caused by ST17 
and an AR of 0.718 (95% CI, 0.466–0.996) between FTIR and 
SKA was obtained [39]. In contrast, our study includes three 
distinct epidemiological outbreaks—one monoclonal and two 
polyclonal—involving 87 patients, thereby representing a high
er level of epidemiological complexity. Thus, our results taken 
together with those reported by Pitart et al [35]. Highlight a po
tentially broader applicability of FTIR beyond monoclonal out
break scenarios. It is also important to note that it has been 
suggested that the performance of FTIR decreases as the dataset 
size increases [16], which could be partially the cause of the 
lower performance of FTIR observed in the present study in 
comparison to the previously published literature. 
Consequently, further investigation of the performance of 
FTIR using large datasets of different STs and geographical ar
eas is still needed.

As with WGS, the lack of a standardized clustering cutoff 
across different laboratories represents a key limitation of 
FTIR. Before implementing FTIR for early detection of geno
mic clusters, each laboratory must validate its own clustering 
cutoff, which may vary based on local epidemiology and the 
culture media used. The manufacturer recommends a cutoff 
range of 0.15 to 0.20 for E. faecium. Our findings, consistent 
with previously published data, suggest that the optimal cutoff 
lies within or near this recommended range [2, 35, 39]. Another 
limitation of FTIR is its lower discriminatory power relative to 
WGS-based methods. FTIR provides a global spectral finger
print that reflects multiple cellular components, including 
polysaccharides, fatty acids, and proteins. However, the wave
length range applied in our study (1300–800 cm⁻¹) primarily 
targets the polysaccharide region of the bacterial envelope. 
Consequently, isolates with identical genomic backgrounds 
may exhibit differences in their polysaccharide profiles, poten
tially leading to misclassification [22].

Our study also has several limitations. Firstly, isolates were 
predominantly ST80 and ST117 and originated from a single 
hospital. This limited genetic diversity and single-center design 
restrict the generalizability of our findings, as FTIR perfor
mance may differ when applied to other VREfm sequence 
types, geographic regions, or epidemiological contexts. As 
FTIR spectral signatures can be influenced by strain-specific 
phenotypic characteristics, further validation using a more ge
netically diverse set of isolates is warranted. Expanding FTIR 
analyses to multicenter collections could not only strengthen 
methodological validation but also facilitate the early detection 
of new emerging VREfm lineages, as recently proposed in 
large-scale FTIR surveillance studies [40]. Secondly, despite 
the acknowledged inherent differences between genotypic 
and phenotypic methods, the reasons behind the lack of 

concordance between FTIR and cgMLST for some isolates 
were beyond the scope of this study and remain unclear.

Collectively, our results showed that FTIR clustering pro
vides results comparable to those obtained from WGS analyses. 
While FTIR delivers more limited information, its speed and 
simplicity make it a viable method for real-time outbreak man
agement. FTIR represents a cost-effective approach (approxi
mately 17€ per sample compared with 70€ for WGS 
considering only reagents) and does not require highly special
ized technical personnel. In terms of turnaround time, WGS re
sults from a positive culture may take up to approximately a 
week, whereas FTIR can deliver results in about 3 hours.

Based on these findings, we propose a practical workflow for 
outbreak management. In suspected outbreak situations, FTIR 
could be used as an initial screening tool to rapidly assess the 
relatedness of isolates. If FTIR results indicate clonal spread, in
fection control measures to tackle active transmission should 
be initiated. However, in the case of epidemiologically linked 
cases not clustered by FTIR, WGS analysis should be per
formed to assess genomic relatedness and guide further inter
ventions. Thus, FTIR can serve as a frontline tool for 
outbreak confirmation in settings where WGS is not immedi
ately accessible, enabling faster and more targeted outbreak 
responses.
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