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Abstract 

Background: 

Aneurysmal subarachnoid hemorrhage (aSAH) is an heterogeneous disease with 

variable outcomes, even among patients with similar clinical and radiological 

severity. Additional research is needed to better stratify aSAH patients. 

Objectives: 

To identify distinct clinical subphenotypes of aSAH, we applied clustering 

analysis using clinical, radiological, and laboratory data.  

Methods: 

We conducted a retrospective cohort study of adult patients with aSAH admitted 

to the ICU between 2010 and 2021. K-means clustering was applied to 

standardized demographic, clinical, and laboratory variables collected at 

admission. Principal component analysis was used for dimensionality reduction 

and visualization. Additionally, we analyzed whether these clusters were 

associated with serum biomarkers (S100B, HMGB1, and TLR4) in a subset of 

patients. 

Results: 

The study included 511 patients with aSAH. Two distinct subphenotypes were 

identified: a High-Risk Cluster (n=301, 58.9%) characterized by severe systemic 

complications, and higher mortality, and a Low-Risk Cluster (n=210, 41.1%) with 

less severe symptoms and better outcomes. Serum S100B levels were 

significantly elevated in the High-Risk Cluster (0.077 [0.056–0.179] vs. 0.055 
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[0.040–0.079] µg/L, p=0.008) and showed moderate discriminatory power 

(AUC=0.72). 

Conclusions: 

Clustering analysis revealed two aSAH subphenotypes associated with DCI, 

mortality and functional. Integrating early clinical and biomarker data could 

enhance patient stratification. 
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INTRODUCTION 

Spontaneous Subarachnoid Hemorrhage is a neurological emergency 

characterized by nontraumatic bleeding into the subarachnoid space. In 

approximately 80% of cases, SAH is caused by the rupture of an arterial 

aneurysm (aSAH) (1). Although the incidence of aSAH is relatively low—around 

6 cases per 100,000 person-years—it carries a high pre-hospital mortality rate 

ranging from 12% to 26%, and a substantial burden of morbidity among survivors.  

Up to 46% of patients who survive the initial hemorrhagic event suffer long-term 

cognitive impairment, significantly affecting functional independence and quality 

of life (1-3). The clinical course of aSAH is shaped by a combination of early brain 

injury, systemic complications (e.g., neurogenic cardiomyopathy, acute 

pulmonary edema), and late secondary neurological events such as delayed 

cerebral ischemia (DCI)(4-8). DCI has multiple contributory factors including 

vasospasm, microthrombosis, cortical spreading depolarizations, and 

neuroinflammation (9-13). These different pathways contribute to the marked 

heterogeneity of the disease as a result, patients with comparable radiological 

findings may experience a very different prognosis(14-17).  

In addition to traditional clinical and radiological markers, recent studies have 

identified serum biomarkers related to inflammation and blood-brain barrier 

disruption as potential contributors to neurological outcomes after aSAH(18, 19). 

The investigation of these biomarkers in aSAH may provide additional biological 

characterization of clinical subphenotypes and contribute to understanding the 

pathophysiology of DCI. 
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Given the substantial heterogeneity among patients with SAH and the wide 

variability in clinical outcomes—even among individuals with similar radiological 

severity—we conducted a clustering analysis to identify distinct subphenotypes 

of aSAH, using data-driven clustering, and to explore their association with 

clinical outcomes and serum biomarkers of brain injury and inflammation. 

METHODS 

Patients 

We conducted a retrospective, longitudinal study of adults with a confirmed 

diagnosis of aSAH admitted to the ICU between January 2010 and December 

2021. 

For the k-means clustering analysis, the variables collected included; 

demographics and comorbidities: age, hypertension, diabetes, dyslipidemia, and 

migraine history; clinical presentation and severity: presence of headache at 

onset, seizure at onset, cranial nerve palsy, pupillary abnormalities (anisocoria, 

mydriasis), and cardiac arrest at ictus; radiological severity: modified Fisher 

scale; vital signs (heart rate,  systolic blood pressure, respiratory rate, SpO2, 

body temperature); cardiac involvement: electrocardiographic changes (ST-

segment, T-wave abnormalities), angina; laboratory parameters: hemoglobin, 

leukocyte count, neutrophil count, blood glucose, and sodium levels; initial 

hemorrhage characteristics: presence of intracerebral, subdural, or 

intraventricular hemorrhage on initial imaging and treatment strategy (surgical 

clipping or endovascular treatment). 

These variables were chosen to comprehensively characterize the initial clinical 

profile, encompassing the spectrum of neurological compromise, systemic 
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physiological derangement, and bleeding patterns that define early disease 

heterogeneity in aSAH. Variables not available at admission (e.g., delayed 

complications) or with >20% missing data were excluded from the clustering 

analysis. 

For subsequent outcome analysis and cohort characterization, we also collected 

data on treatment strategy, SAH-related complications (e.g., rebleeding, 

vasospasm, delayed cerebral ischemia [DCI]), the occurrence of seizures during 

hospitalization, and functional status assessed using the modified Rankin Scale 

(mRS).  

All adult patients (≥18 years) with a diagnosis of subarachnoid hemorrhage (20) 

and a confirmed aneurysmal etiology were included. The aneurysmal etiology 

was established by contrast-enhanced brain CT, MRI, or conventional 

angiography. We excluded patients who did not undergo vascular evaluation 

because of futility of care (e.g. signs of brain death) or a follow-up <3 days (death, 

transfer to other facility, etc). 

DCI was defined as the occurrence of a new focal neurological deficit or a 

decrease of ≥2 points in the Glasgow Coma Scale (GCS) lasting at least one 

hour, after carefully excluding other causes such as rebleeding, hydrocephalus, 

seizures, fever, or metabolic disturbances. In comatose patients, DCI was defined 

as the appearance of a new cerebral infarction on follow-up neuroimaging not 

attributable to the initial hemorrhage or confirmed at autopsy (21). Given the 

retrospective design of the study, the entire cohort was systematically reviewed 

post hoc to verify the accuracy of DCI diagnoses and to identify possible cases 

that might have been misclassified or overlooked at the time of initial assessment.  
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All clinical scores were obtained from the medical records; if not explicitly 

documented, they were inferred from the neurological examination at admission. 

Cerebral vasospasm was defined as a narrowing of the cerebral arteries identified 

by digital subtraction angiography or CT angiography (CTA). 

Cardiac involvement was defined as elevated troponin T, the presence of new or 

reversible segmental wall motion abnormalities, or new global dysfunction on 

echocardiography. 

Biomarker Analysis 

For this study, serum samples were available from a subset of 80 patients from 

the main cohort. These samples had been prospectively collected at ICU 

admission as part of a previous research project conducted by our group, aimed 

at investigating inflammatory and neuroinjury biomarkers after aneurysmal 

subarachnoid hemorrhage. The biospecimens were stored under standardized 

conditions at −80°C and were subsequently used for the present analysis. 

We selected high mobility group box 1 (HMGB1), toll-like receptor 4 (TLR-4), and 

S100 calcium-binding protein B (S100B)  for the analysis because they represent 

complementary pathways involved in neuroinflammation, blood–brain barrier 

disruption, and glial injury, all of which are central mechanisms in early brain injury 

and delayed cerebral ischemia (DCI) after aSAH (22-24). Together, these 

markers capture complementary aspects of the neuroinflammatory axis that links 

early brain injury with subsequent ischemic complications. Their combined 

evaluation thus provides a biologically coherent panel for exploring 

pathophysiological subphenotypes of aSAH. 
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Biomarker levels were obtained from blood samples collected within the first 24 

hours of admission and analyzed using commercially available ELISA kits 

according to manufacturer instructions.  

Baseline demographic and clinical characteristics of this biomarker subset were 

comparable to those of the overall cohort, minimizing selection bias. 

Statistical analysis 

Statistical analysis was conducted using R software (version 4.4.1) and the 

software IBM SPSS Statistics version 27.0. 

Cluster analysis by K-means was used including demographic, clinical variables 

and others factors and scales collected in ICU admission. For this purpose, 

quantitative and categorical variables were normalized according to James D. 

McCaffrey's approach (25).  

For the cluster analysis, we evaluated first the optimal number of clusters with the 

use of the function fviz_nbclust from "factoextra" R package, checking two 

methods of clusters selection: the average silhouette width and the elbow method 

(based in the total within sum of square). Thus, clustering with kmeans function 

was performed and principal component analysis was done to reduce the 

dimensionality of data, in order to show a plot of the resulting clusters with 

individuals and variables in a same figure (fviz_pca_biplot function). 

After cluster attribution, patients were compared for clinical characteristics and 

outcomes. Continuous variables were expressed as mean (standard deviation) 

and compared with Student's t test, clinical scales were reported as median (inter-

quartile range) and compared with Wilcoxon signed rank test, and categorical 

variables as frequency (percentage) and compared with Pearson's chi square. 
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Stacked box-plots were performed to show some associations between clusters 

and outcomes. 

For the biomarker subanalysis, the relationship between the identified clusters 

and biomarker levels was assessed using the Mann-Whitney U test. A receiver 

operating characteristic (26) curve was performed to evaluate the discriminatory 

power of the most representative biomarker (S100B) in classifying patients. The 

optimal cutoff point for patient stratification into high- or low-risk groups was 

determined using the Youden index. 

A p-value < 0.05 was considered as statistically significant. 

Ethics Approval 

This study was approved by the Institutional Review Board of our institution 

(reference PR(AG)72/2022). For the blood-analysis sub-study, separate approval 

was granted under reference PR(AG)212/2017. Informed consent was waived for 

the retrospective component, whereas written informed consent was obtained 

from all patients or their legal representatives participating in the prospective 

biomarker study prior to enrollment. The study was conducted in accordance with 

the Declaration of Helsinki and applicable local regulations. 

RESULTS 

Demographics and Clinical Characteristics 

From an initial database of 743 SAH patients, 511 were included in the final 

analysis after applying the predefined exclusion criteria. The mean age was 56.9 

years (SD ± 14.0), and 65.8% were male. Baseline characteristics are 

summarized in Table 1. 
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Cluster analysis 

The optimal number of clusters was determined using two methods: average 

silhouette width and the elbow method, both supporting the selection of two 

clusters. 

A principal component analysis was performed to represent the results in two 

dimensions. The clustering revealed two groups (Figure 1): Cluster 1, comprising 

310 patients (58,9%), and Cluster 2, comprising 210 patients (41,1%).  

Two distinct clinical profiles emerged from the clustering analysis (see Table 2). 

The High-Risk Cluster was defined by greater initial severity, higher rates of 

systemic and neurological complications, and more pronounced laboratory 

abnormalities. In contrast, the Low-Risk Cluster presented with milder 

neurological impairment, more frequent headache at onset, and a higher 

prevalence of prior migraine. These divergent profiles translated into clear 

prognostic differences, with the High-Risk Cluster showing a higher incidence of 

DCI, worse functional outcomes and higher mortality at both discharge and 3 

months. 

Figure 2 illustrates the distribution of functional outcomes at 3 months according 

to cluster. Patients in the High-Risk Cluster showed markedly poorer prognosis, 

with nearly 70% presenting a mRS >2, compared with only about 20% of patients 

in the Low-Risk Cluster. 

Even though cerebral vasospasm was not associated with the high-risk cluster 

(vasospasm: 20.5% vs. 29.6%, p = 0.021), delayed cerebral ischemia (DCI) was 

significantly associated with the high-risk cluster (DCI: 17.1% vs. 28.9%, p = 

0.002). 
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Severity scales were not included in the clustering model; however, post-hoc 

comparisons showed that the High-Risk cluster corresponded to patients with 

lower GCS scores (12 [6–14] vs. 15 [15–15], p < 0.001) and higher WFNS (4 [2–

5] vs. 1 [1–2], p < 0.001) and Hunt–Hess grades (4 [4–4] vs. 2 [1–2], p < 0.001) 

compared with the Low-Risk cluster. 

Biomarker subanalysis 

In the subgroup of 80 patients (47 in the High-Risk Cluster and 33 in the Low-

Risk Cluster), we analyzed three candidate biomarkers associated with brain 

injury and neuroinflammation. HMGB1 and TLR-4 showed no significant 

differences between clusters [HMGB1: 1041 (781–1516) vs. 1045 (829–1349), 

p=0.868; TLR-4: 0.64 (0.59–1.22) vs. 0.88 (0.57–1.27), p=0.56, respectively]. 

However, S100B levels were significantly elevated in the High-Risk Cluster [0.077 

(0.056–0.179) vs. 0.055 (0.040–0.079), p=0.008] (Figure 3). 

ROC analysis of S100B (Figure 4) yielded an area under the curve (AUC) of 

72.4% (95% CI: 60.6%–84.2%) for distinguishing High-Risk from Low-Risk 

clusters. The optimal cutoff value was 0.063 µg/L, achieving a negative predictive 

value (NPV) of 63.6% and a positive predictive value (PPV) of 78.6% for Low-

Risk and High-Risk cluster assignment, respectively. 

DISCUSSION 

In this study, we applied an automated clustering approach to patients with aSAH 

to identify distinct clinical phenotypes based on demographic, clinical, 

radiological, and biochemical characteristics at admission.  Our findings suggest 

that early phenotypic stratification can effectively distinguish patients with 

markedly different clinical courses, complication profiles, and outcomes. 
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We did not include neurological severity scales (GCS, WFNS, or Hunt–Hess) in 

the clustering analysis. This approach aimed to capture multidimensional 

physiological patterns without the potential circularity introduced by predefined 

severity grading. Instead, we included variables that comprehensively describe 

the initial clinical presentation, systemic physiological derangement, and bleeding 

characteristics that define early disease heterogeneity in aSAH. 

The High-Risk Cluster showed marked systemic derangement and the poorest 

outcomes, with higher rates of delayed cerebral ischemia, cardiac involvement, 

seizures, and intracerebral or intraventricular hemorrhage. Laboratory findings 

reflected metabolic and inflammatory stress (hyperglycemia, leukocytosis, and 

neutrophilia). Although severity scales were not included in the model, post-hoc 

comparisons confirmed that this cluster corresponded to patients with lower GCS 

and higher WFNS and Hunt–Hess grades, validating its clinical coherenceAs 

vasospasm is a delayed complication, it was not included among the clustering 

variables; nonetheless, future studies could apply this subphenotyping framework 

to assess whether early profiles predict its occurrence or outcomes, as recently 

explored in endovascular series (27). 

These findings are consistent with previous literature that connects early 

systemic inflammatory responses and neurocardiogenic injury to worse 

neurological outcomes in aSAH patients (4-7).  

While this cluster overlaps with established severity patterns, our data-driven 

approach objectively integrates neurological, systemic, and inflammatory 

dimensions into a unified high-risk phenotype. The strong association of the High-

Risk phenotype with delayed cerebral ischemia supports the idea that these 

clusters reflect early biological vulnerability rather than only initial neurological 
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impairment.  Furthermore, functional outcomes and mortality were significantly 

worse in this group, both at discharge and at 3 months. This supports the notion 

that clinical and systemic severity at admission is a strong predictor of long-term 

prognosis, as shown in earlier studies (6, 16, 28).  

On the other hand, the Low-Risk Cluster was characterized by milder 

presentation, preserved consciousness, and better systemic parameters, along 

with a higher prevalence of prodromal symptoms such as headache or migraine 

history. These features may indicate earlier recognition of symptoms or a less 

aggressive initial hemorrhagic event. However, patients in the High-Risk group 

may have been unable to report headache because of reduced consciousness, 

potentially inflating this difference. Even though this limitation must be 

acknowledged, previous studies have described a similar association between 

headache and more favorable outcomes (29), suggesting that headache at onset 

may identify a subgroup of patients with inherently better prognosis.  

Levels of S100B were significantly higher in the High-Risk Cluster and showed 

good discriminatory capacity (AUC 72.4%), reinforcing the biological divergence 

between these phenotypes. Previous studies in acute stroke and aSAH have 

shown that S100B correlates with final infarct volume and functional outcome, but 

its delayed kinetics mean that a single measurement may not capture the full 

evolution of brain injury (30, 31). A limitation of our study is that S100B was 

measured only within the first 24 hours; Serial sampling could improve its 

prognostic precision. While not routinely used in aSAH management, our results 

support its potential for early risk stratification, pending external validation. 

Emerging studies suggest that circulating and cerebrospinal microRNAs may 

serve as prognostic biomarkers in aneurysmal aSAH (32). While these results 



14 

 

are still preliminary, future multi-omic approaches incorporating microRNA 

profiling could further refine data-driven subphenotyping by capturing molecular 

dimensions of inflammation and vascular injury. 

Our study has some limitations. It was conducted at a single center, and some 

laboratory values were incomplete. Advanced neuroimaging data were not 

available, which could further enhance clustering resolution, and follow-up 

beyond three months might better characterize recovery trajectories. 

Nevertheless, our findings establish a reproducible and clinically relevant 

foundation for phenotyping patients with aSAH. 

Clustering techniques enabled us to uncover patterns not evident through 

conventional univariate or multivariate analyses, highlighting the heterogeneity of 

aSAH and supporting a move toward individualized risk stratification. 

Future studies with external validation cohorts and prospective designs are 

needed to confirm the reproducibility of these clusters. In addition to incorporating 

dynamic information such as serial biomarkers and continuous physiological 

monitoring, further work could integrate complementary omic layers—including 

transcriptomic, microRNA, and genetic profiles—to capture the biological 

pathways underlying early brain injury and delayed complications(33-35), 

Advanced imaging modalities, such as perfusion CT and vessel-wall MRI, may 

also refine phenotyping by quantifying microvascular dysfunction and secondary 

ischemia(36, 37), while adding more accurate imaging and biomarker profiles 

could better distinguish the different subphenotypes.  

Beyond cluster identification, developing predictive models through logistic 

regression or simplified scoring systems could allow bedside estimation of 



15 

 

subphenotype probability at admission, similar to approaches recently applied in 

other inflammatory critical illnesses such as ARDS and sepsis (26, 38). These 

tools would facilitate early recognition of high-risk profiles and support the design 

of phenotype-guided interventions aimed at improving outcomes. Finally, 

prospective interventional studies could determine whether early identification of 

high-risk phenotypes enables personalized management and improved 

outcomes.  

In conclusion, our study presents a novel, data-driven classification of aSAH 

patients using early-phase clinical and biochemical data. The High-Risk Cluster 

was consistently associated with worse outcomes and higher S100B levels, 

suggesting both clinical and biological coherence. This work provides a 

framework for personalized care and paves the way for biomarker-integrated 

prognostic models in acute aSAH. 
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Figure Legends 

 

Figure 1. Clustering analysis. The plot shows the distribution of 511 patients 

with spontaneous subarachnoid hemorrhage according to k-means clustering 

based on clinical, radiological, and laboratory variables. Principal component 

analysis (PCA) was used to reduce dimensionality and visualize the clustering 

results. Cluster 1 (red dots, circles) and Cluster 2 (blue triangles) represent 

distinct clinical subphenotypes. The blue arrows (loadings) indicate the 

direction and strength of the contribution of the original clinical variables to the 

principal components. 
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Figure 2. Modified Rankin Scale (mRS) low-Risk and high-Risk Cluster. 
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Figure 3. Comparison of S100B levels between clusters. 

 

Figure 4. ROC curve of S100B for identifying High-Risk cluster 

 

Table Legends 

 Value 

Sex, male (%) 65.8% 

Age, years ± sd 56.9 ± 14.0 

mRS, mean ± sd 0.33 ± 0.67 

WFNS, mean ± sd 2.71 ± 1.60 

mFisher scale, mean ± sd 3.59 ± 0.74 

Hunt & Hess, mean ± sd 2.77 ± 1.48 

GCS at ICU admission, mean ± sd 10.9 ± 4.9 

 

Vasograde (%) 

 Red 36.8% 

Yellow 55.2% 

Green 8% 

Hypertension (%) 43.8% 
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Diabetes mellitus (%) 6.7% 

Dyslipidemia (%) 25.0% 

Chronic pulmonary disease (%)                        9.0% 

 

Table 1. Demographics and clinical characteristics. mRS: modified Rankin 

Scale; WFNS: World Federation of Neurosurgical Societies score; mFisher 

scale: modified fisher scale; GCS: Glasgow Coma Scale; ICU: Intensive 

Care Unit. 

 

 

 

Low-Risk 

Cluster (n=210) 

High-Risk 

Cluster (n=301) 

p-value 

Clinical characteristics    

Gender (male) 127 (60.5%) 209 (69.4%) 0.036 

Age (years) 53.4±13.7 59.4±13.6 <0.001 

Diabetes mellitus 8 (3.8%) 26 (8.6%) 0.031 

Dyslipidemia 36 (17.1%) 92 (30.6%) <0.001 

BMI >30 11 (5.2%) 48 (15.9%) <0.001 

CKD 2 (1.0%) 16 (5.3%) 0.008 

Heart rate (bpm) 74.2±14.9 80.2±19.4 <0.001 

Invasive ventilation 23 (11.0%) 243 (80.7%) <0.001 

Headache at onset 184 (87.6%) 202 (67.1%) <0.001 

Seizure at onset 18 (8.6%) 59 (19.6%) <0.001 

Migraine headache 37 (7.6%) 20 (6.6%) <0.001 

Cardiac arrest 1 (0.5%) 12 (4.0%) 0.013 

Anormal ECG 8 (3.8%) 49 (16.3%) <0.001 

Cardiac involvement 18 (8.6%) 75 (24.9%) <0.001 

Intracerebral hemorrhage 19 (9.0%) 96 (31.9%) <0.001 

Intraventricular 

hemorrhage 

51 (24.3%) 258 (85.7%) <0.001 

Ventricular drainage 13 (6.2%) 192 (63.8%) <0.001 
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Vasospasm 43 (20.5%) 89 (29.6%) 0.021 

Acute symptomatic seizure 21 (10.0%) 74 (24.6%) <0.001 

Laboratory values    

Hemoglobin (g/dL) 12.6±2.9 11.8±3.2 0.005 

Leukocytes (109/L) 12.3±4.2 14.4±5.9 <0.001 

Neutrophils (109/L) 9.8±4.2 12.2±5.5 <0.001 

Creatinine (mg/dL) 0.69±0.18 0.76±0.41 0.011 

Glucose (mg/dL) 126.8±43.9 159.5±51.8 <0.001 

Outcomes    

DCI 36 (17.1%) 87 (28.9%) 0.002 

Death at discharge 10 (4.8%) 97 (32.2%) <0.001 

mRS at discharge 1 (0-2) 4 (2-6) <0.001 

GOS at discharge 5 (5-5) 3 (1-4) <0.001 

Death at 3 months 10 (4.8%) 106 (35.6%) <0.001 

mRS at 3 months 1 (0-1) 4 (2-6) <0.001 

GOS at 3 months 5 (5-5) 3 (1-5) <0.001 

 

Table 2. Comparison of clinical variables between clusters. DCI: Delayed 

Cerebral Ischemia; mFisher scale: modified Fisher scale; ECG: 

electrocardiogram; mRS: modified Rankin Scale; GOS: Glasgow Outcome 

Scale 

 

 


