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Abstract

Background:
Aneurysmal subarachnoid hemorrhage (aSAH) is an heterogeneous disease with
variable outcomes, even among patients with similar clinical and radiological

severity. Additional research is needed to better stratify aSAH patients.

Objectives:
To identify distinct clinical subphenotypes of aSAH, we applied clustering

analysis using clinical, radiological, and laboratory data.

Methods:

We conducted a retrospective cohort study of adult patients with aSAH admitted
to the ICU between 2010 and 2021. K-means clustering was applied to
standardized demographic, clinical, and laboratory variables collected at
admission. Principal component analysis was used for dimensionality reduction
and visualization. Additionally, we analyzed whether these clusters were
associated with serum biomarkers (S100B, HMGB1, and TLR4) in a subset of

patients.

Results:

The study included 511 patients with aSAH. Two distinct subphenotypes were
identified: a High-Risk Cluster (n=301, 58.9%) characterized by severe systemic
complications, and higher mortality, and a Low-Risk Cluster (n=210, 41.1%) with
less severe symptoms and better outcomes. Serum S100B levels were

significantly elevated in the High-Risk Cluster (0.077 [0.056-0.179] vs. 0.055



[0.040-0.079] pg/L, p=0.008) and showed moderate discriminatory power

(AUC=0.72).

Conclusions:
Clustering analysis revealed two aSAH subphenotypes associated with DCI,
mortality and functional. Integrating early clinical and biomarker data could

enhance patient stratification.



INTRODUCTION

Spontaneous Subarachnoid Hemorrhage is a neurological emergency
characterized by nontraumatic bleeding into the subarachnoid space. In
approximately 80% of cases, SAH is caused by the rupture of an arterial
aneurysm (aSAH) (1). Although the incidence of aSAH is relatively low—around
6 cases per 100,000 person-years—it carries a high pre-hospital mortality rate

ranging from 12% to 26%, and a substantial burden of morbidity among survivors.

Up to 46% of patients who survive the initial hemorrhagic event suffer long-term
cognitive impairment, significantly affecting functional independence and quality
of life (1-3). The clinical course of aSAH is shaped by a combination of early brain
injury, systemic complications (e.g., neurogenic cardiomyopathy, acute
pulmonary edema), and late secondary neurological events such as delayed
cerebral ischemia (DCI)(4-8). DCI has multiple contributory factors including
vasospasm, microthrombosis, cortical spreading depolarizations, and
neuroinflammation (9-13). These different pathways contribute to the marked
heterogeneity of the disease as a result, patients with comparable radiological

findings may experience a very different prognosis(14-17).

In addition to traditional clinical and radiological markers, recent studies have
identified serum biomarkers related to inflammation and blood-brain barrier
disruption as potential contributors to neurological outcomes after aSAH(18, 19).
The investigation of these biomarkers in aSAH may provide additional biological
characterization of clinical subphenotypes and contribute to understanding the

pathophysiology of DCI.



Given the substantial heterogeneity among patients with SAH and the wide
variability in clinical outcomes—even among individuals with similar radiological
severity—we conducted a clustering analysis to identify distinct subphenotypes
of aSAH, using data-driven clustering, and to explore their association with

clinical outcomes and serum biomarkers of brain injury and inflammation.

METHODS

Patients

We conducted a retrospective, longitudinal study of adults with a confirmed
diagnosis of aSAH admitted to the ICU between January 2010 and December

2021.

For the k-means clustering analysis, the variables collected included,;
demographics and comorbidities: age, hypertension, diabetes, dyslipidemia, and
migraine history; clinical presentation and severity: presence of headache at
onset, seizure at onset, cranial nerve palsy, pupillary abnormalities (anisocoria,
mydriasis), and cardiac arrest at ictus; radiological severity: modified Fisher
scale; vital signs (heart rate, systolic blood pressure, respiratory rate, SpO2,
body temperature); cardiac involvement: electrocardiographic changes (ST-
segment, T-wave abnormalities), angina; laboratory parameters: hemoglobin,
leukocyte count, neutrophil count, blood glucose, and sodium levels; initial
hemorrhage characteristics: presence of intracerebral, subdural, or
intraventricular hemorrhage on initial imaging and treatment strategy (surgical

clipping or endovascular treatment).

These variables were chosen to comprehensively characterize the initial clinical

profile, encompassing the spectrum of neurological compromise, systemic



physiological derangement, and bleeding patterns that define early disease
heterogeneity in aSAH. Variables not available at admission (e.g., delayed
complications) or with >20% missing data were excluded from the clustering

analysis.

For subsequent outcome analysis and cohort characterization, we also collected
data on treatment strategy, SAH-related complications (e.g., rebleeding,
vasospasm, delayed cerebral ischemia [DCI]), the occurrence of seizures during
hospitalization, and functional status assessed using the modified Rankin Scale

(MRS).

All adult patients (=218 years) with a diagnosis of subarachnoid hemorrhage (20)
and a confirmed aneurysmal etiology were included. The aneurysmal etiology
was established by contrast-enhanced brain CT, MRI, or conventional
angiography. We excluded patients who did not undergo vascular evaluation
because of futility of care (e.g. signs of brain death) or a follow-up <3 days (death,

transfer to other facility, etc).

DCI was defined as the occurrence of a new focal neurological deficit or a
decrease of 22 points in the Glasgow Coma Scale (GCS) lasting at least one
hour, after carefully excluding other causes such as rebleeding, hydrocephalus,
seizures, fever, or metabolic disturbances. In comatose patients, DCI was defined
as the appearance of a new cerebral infarction on follow-up neuroimaging not
attributable to the initial hemorrhage or confirmed at autopsy (21). Given the
retrospective design of the study, the entire cohort was systematically reviewed
post hoc to verify the accuracy of DCI diagnoses and to identify possible cases

that might have been misclassified or overlooked at the time of initial assessment.



All clinical scores were obtained from the medical records; if not explicitly

documented, they were inferred from the neurological examination at admission.

Cerebral vasospasm was defined as a narrowing of the cerebral arteries identified

by digital subtraction angiography or CT angiography (CTA).

Cardiac involvement was defined as elevated troponin T, the presence of new or
reversible segmental wall motion abnormalities, or new global dysfunction on

echocardiography.

Biomarker Analysis

For this study, serum samples were available from a subset of 80 patients from
the main cohort. These samples had been prospectively collected at ICU
admission as part of a previous research project conducted by our group, aimed
at investigating inflammatory and neuroinjury biomarkers after aneurysmal
subarachnoid hemorrhage. The biospecimens were stored under standardized

conditions at —80°C and were subsequently used for the present analysis.

We selected high mobility group box 1 (HMGB1), toll-like receptor 4 (TLR-4), and
S100 calcium-binding protein B (S100B) for the analysis because they represent
complementary pathways involved in neuroinflammation, blood—brain barrier
disruption, and glial injury, all of which are central mechanisms in early brain injury
and delayed cerebral ischemia (DCI) after aSAH (22-24). Together, these
markers capture complementary aspects of the neuroinflammatory axis that links
early brain injury with subsequent ischemic complications. Their combined
evaluation thus provides a biologically coherent panel for exploring

pathophysiological subphenotypes of aSAH.



Biomarker levels were obtained from blood samples collected within the first 24
hours of admission and analyzed using commercially available ELISA kits

according to manufacturer instructions.

Baseline demographic and clinical characteristics of this biomarker subset were

comparable to those of the overall cohort, minimizing selection bias.

Statistical analysis

Statistical analysis was conducted using R software (version 4.4.1) and the

software IBM SPSS Statistics version 27.0.

Cluster analysis by K-means was used including demographic, clinical variables
and others factors and scales collected in ICU admission. For this purpose,
quantitative and categorical variables were normalized according to James D.

McCaffrey's approach (25).

For the cluster analysis, we evaluated first the optimal number of clusters with the
use of the function fviz_nbclust from "factoextra" R package, checking two
methods of clusters selection: the average silhouette width and the elbow method
(based in the total within sum of square). Thus, clustering with kmeans function
was performed and principal component analysis was done to reduce the
dimensionality of data, in order to show a plot of the resulting clusters with

individuals and variables in a same figure (fviz_pca_biplot function).

After cluster attribution, patients were compared for clinical characteristics and
outcomes. Continuous variables were expressed as mean (standard deviation)
and compared with Student's t test, clinical scales were reported as median (inter-
quartile range) and compared with Wilcoxon signed rank test, and categorical

variables as frequency (percentage) and compared with Pearson's chi square.



Stacked box-plots were performed to show some associations between clusters

and outcomes.

For the biomarker subanalysis, the relationship between the identified clusters
and biomarker levels was assessed using the Mann-Whitney U test. A receiver
operating characteristic (26) curve was performed to evaluate the discriminatory
power of the most representative biomarker (S100B) in classifying patients. The
optimal cutoff point for patient stratification into high- or low-risk groups was

determined using the Youden index.

A p-value < 0.05 was considered as statistically significant.

Ethics Approval

This study was approved by the Institutional Review Board of our institution
(reference PR(AG)72/2022). For the blood-analysis sub-study, separate approval
was granted under reference PR(AG)212/2017. Informed consent was waived for
the retrospective component, whereas written informed consent was obtained
from all patients or their legal representatives participating in the prospective
biomarker study prior to enrollment. The study was conducted in accordance with

the Declaration of Helsinki and applicable local regulations.

RESULTS

Demographics and Clinical Characteristics

From an initial database of 743 SAH patients, 511 were included in the final
analysis after applying the predefined exclusion criteria. The mean age was 56.9
years (SD + 14.0), and 65.8% were male. Baseline characteristics are

summarized in Table 1.



Cluster analysis

The optimal number of clusters was determined using two methods: average
silhouette width and the elbow method, both supporting the selection of two

clusters.

A principal component analysis was performed to represent the results in two
dimensions. The clustering revealed two groups (Figure 1): Cluster 1, comprising

310 patients (58,9%), and Cluster 2, comprising 210 patients (41,1%).

Two distinct clinical profiles emerged from the clustering analysis (see Table 2).
The High-Risk Cluster was defined by greater initial severity, higher rates of
systemic and neurological complications, and more pronounced laboratory
abnormalities. In contrast, the Low-Risk Cluster presented with milder
neurological impairment, more frequent headache at onset, and a higher
prevalence of prior migraine. These divergent profiles translated into clear
prognostic differences, with the High-Risk Cluster showing a higher incidence of
DCI, worse functional outcomes and higher mortality at both discharge and 3

months.

Figure 2 illustrates the distribution of functional outcomes at 3 months according
to cluster. Patients in the High-Risk Cluster showed markedly poorer prognosis,
with nearly 70% presenting a mRS >2, compared with only about 20% of patients

in the Low-Risk Cluster.

Even though cerebral vasospasm was not associated with the high-risk cluster
(vasospasm: 20.5% vs. 29.6%, p = 0.021), delayed cerebral ischemia (DCI) was
significantly associated with the high-risk cluster (DCI: 17.1% vs. 28.9%, p =

0.002).
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Severity scales were not included in the clustering model; however, post-hoc
comparisons showed that the High-Risk cluster corresponded to patients with
lower GCS scores (12 [6-14] vs. 15 [15-15], p < 0.001) and higher WFENS (4 [2—
5] vs. 1 [1-2], p < 0.001) and Hunt—Hess grades (4 [4—4] vs. 2 [1-2], p < 0.001)

compared with the Low-Risk cluster.

Biomarker subanalysis

In the subgroup of 80 patients (47 in the High-Risk Cluster and 33 in the Low-
Risk Cluster), we analyzed three candidate biomarkers associated with brain
injury and neuroinflammation. HMGB1 and TLR-4 showed no significant
differences between clusters [HMGB1: 1041 (781-1516) vs. 1045 (829-1349),
p=0.868; TLR-4: 0.64 (0.59-1.22) vs. 0.88 (0.57-1.27), p=0.56, respectively].
However, S100B levels were significantly elevated in the High-Risk Cluster [0.077

(0.056-0.179) vs. 0.055 (0.040-0.079), p=0.008] (Figure 3).

ROC analysis of S100B (Figure 4) yielded an area under the curve (AUC) of
72.4% (95% CIl: 60.6%—-84.2%) for distinguishing High-Risk from Low-Risk
clusters. The optimal cutoff value was 0.063 ug/L, achieving a negative predictive
value (NPV) of 63.6% and a positive predictive value (PPV) of 78.6% for Low-

Risk and High-Risk cluster assignment, respectively.

DISCUSSION

In this study, we applied an automated clustering approach to patients with aSAH
to identify distinct clinical phenotypes based on demographic, clinical,
radiological, and biochemical characteristics at admission. Our findings suggest
that early phenotypic stratification can effectively distinguish patients with

markedly different clinical courses, complication profiles, and outcomes.
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We did not include neurological severity scales (GCS, WFNS, or Hunt—Hess) in
the clustering analysis. This approach aimed to capture multidimensional
physiological patterns without the potential circularity introduced by predefined
severity grading. Instead, we included variables that comprehensively describe
the initial clinical presentation, systemic physiological derangement, and bleeding

characteristics that define early disease heterogeneity in aSAH.

The High-Risk Cluster showed marked systemic derangement and the poorest
outcomes, with higher rates of delayed cerebral ischemia, cardiac involvement,
seizures, and intracerebral or intraventricular hemorrhage. Laboratory findings
reflected metabolic and inflammatory stress (hyperglycemia, leukocytosis, and
neutrophilia). Although severity scales were not included in the model, post-hoc
comparisons confirmed that this cluster corresponded to patients with lower GCS
and higher WFNS and Hunt—Hess grades, validating its clinical coherenceAs
vasospasm is a delayed complication, it was not included among the clustering
variables; nonetheless, future studies could apply this subphenotyping framework
to assess whether early profiles predict its occurrence or outcomes, as recently

explored in endovascular series (27).

These findings are consistent with previous literature that connects early
systemic inflammatory responses and neurocardiogenic injury to worse

neurological outcomes in aSAH patients (4-7).

While this cluster overlaps with established severity patterns, our data-driven
approach objectively integrates neurological, systemic, and inflammatory
dimensions into a unified high-risk phenotype. The strong association of the High-
Risk phenotype with delayed cerebral ischemia supports the idea that these

clusters reflect early biological vulnerability rather than only initial neurological
12



impairment. Furthermore, functional outcomes and mortality were significantly
worse in this group, both at discharge and at 3 months. This supports the notion
that clinical and systemic severity at admission is a strong predictor of long-term

prognosis, as shown in earlier studies (6, 16, 28).

On the other hand, the Low-Risk Cluster was characterized by milder
presentation, preserved consciousness, and better systemic parameters, along
with a higher prevalence of prodromal symptoms such as headache or migraine
history. These features may indicate earlier recognition of symptoms or a less
aggressive initial hemorrhagic event. However, patients in the High-Risk group
may have been unable to report headache because of reduced consciousness,
potentially inflating this difference. Even though this limitation must be
acknowledged, previous studies have described a similar association between
headache and more favorable outcomes (29), suggesting that headache at onset

may identify a subgroup of patients with inherently better prognosis.

Levels of S100B were significantly higher in the High-Risk Cluster and showed
good discriminatory capacity (AUC 72.4%), reinforcing the biological divergence
between these phenotypes. Previous studies in acute stroke and aSAH have
shown that S100B correlates with final infarct volume and functional outcome, but
its delayed kinetics mean that a single measurement may not capture the full
evolution of brain injury (30, 31). A limitation of our study is that S100B was
measured only within the first 24 hours; Serial sampling could improve its
prognostic precision. While not routinely used in aSAH management, our results

support its potential for early risk stratification, pending external validation.

Emerging studies suggest that circulating and cerebrospinal microRNAs may

serve as prognostic biomarkers in aneurysmal aSAH (32). While these results
13



are still preliminary, future multi-omic approaches incorporating microRNA
profiling could further refine data-driven subphenotyping by capturing molecular

dimensions of inflammation and vascular injury.

Our study has some limitations. It was conducted at a single center, and some
laboratory values were incomplete. Advanced neuroimaging data were not
available, which could further enhance clustering resolution, and follow-up
beyond three months might better characterize recovery trajectories.
Nevertheless, our findings establish a reproducible and clinically relevant

foundation for phenotyping patients with aSAH.

Clustering techniques enabled us to uncover patterns not evident through
conventional univariate or multivariate analyses, highlighting the heterogeneity of

aSAH and supporting a move toward individualized risk stratification.

Future studies with external validation cohorts and prospective designs are
needed to confirm the reproducibility of these clusters. In addition to incorporating
dynamic information such as serial biomarkers and continuous physiological
monitoring, further work could integrate complementary omic layers—including
transcriptomic, microRNA, and genetic profiles—to capture the biological
pathways underlying early brain injury and delayed complications(33-35),
Advanced imaging modalities, such as perfusion CT and vessel-wall MRI, may
also refine phenotyping by quantifying microvascular dysfunction and secondary
ischemia(36, 37), while adding more accurate imaging and biomarker profiles

could better distinguish the different subphenotypes.

Beyond cluster identification, developing predictive models through logistic

regression or simplified scoring systems could allow bedside estimation of

14



subphenotype probability at admission, similar to approaches recently applied in
other inflammatory critical illnesses such as ARDS and sepsis (26, 38). These
tools would facilitate early recognition of high-risk profiles and support the design
of phenotype-guided interventions aimed at improving outcomes. Finally,
prospective interventional studies could determine whether early identification of
high-risk phenotypes enables personalized management and improved

outcomes.

In conclusion, our study presents a novel, data-driven classification of aSAH
patients using early-phase clinical and biochemical data. The High-Risk Cluster
was consistently associated with worse outcomes and higher S100B levels,
suggesting both clinical and biological coherence. This work provides a
framework for personalized care and paves the way for biomarker-integrated

prognostic models in acute aSAH.
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Figure 1. Clustering analysis. The plot shows the distribution of 511 patients
with spontaneous subarachnoid hemorrhage according to k-means clustering
based on clinical, radiological, and laboratory variables. Principal component
analysis (PCA) was used to reduce dimensionality and visualize the clustering
results. Cluster 1 (red dots, circles) and Cluster 2 (blue triangles) represent
distinct clinical subphenotypes. The blue arrows (loadings) indicate the
direction and strength of the contribution of the original clinical variables to the

principal components.
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Figure 2. Modified Rankin Scale (mRS) low-Risk and high-Risk Cluster.
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Figure 3. Comparison of S100B levels between clusters.
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Figure 4. ROC curve of S100B for identifying High-Risk cluster

Table Legends

Value
Sex, male (%) 65.8%
Age, years + sd 56.9 £14.0
mRS, mean * sd 0.33+£0.67
WFNS, mean + sd 2.71+£1.60
mFisher scale, mean + sd 3.59+0.74
Hunt & Hess, mean * sd 2.77+£1.48
GCS at ICU admission, mean * sd 10.9+4.9

Red 36.8%
Vasograde (%) Yellow 55.2%

Green 8%
Hypertension (%) 43.8%
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Diabetes mellitus (%) 6.7%
Dyslipidemia (%) 25.0%

Chronic pulmonary disease (%) 9.0%

Table 1. Demographics and clinical characteristics. mRS: modified Rankin
Scale; WFNS: World Federation of Neurosurgical Societies score; mFisher
scale: modified fisher scale; GCS: Glasgow Coma Scale; ICU: Intensive

Care Unit.

Low-Risk High-Risk p-value

Cluster (n=210) Cluster (n=301)
Clinical characteristics
Gender (male) 127 (60.5%) 209 (69.4%) 0.036
Age (years) 53.4£13.7 59.4+13.6 <0.001
Diabetes mellitus 8 (3.8%) 26 (8.6%) 0.031
Dyslipidemia 36 (17.1%) 92 (30.6%) <0.001
BMI >30 11 (5.2%) 48 (15.9%) <0.001
CKD 2 (1.0%) 16 (5.3%) 0.008
Heart rate (bpm) 74.2+14.9 80.2+19.4 <0.001
Invasive ventilation 23 (11.0%) 243 (80.7%) <0.001
Headache at onset 184 (87.6%) 202 (67.1%) <0.001
Seizure at onset 18 (8.6%) 59 (19.6%) <0.001
Migraine headache 37 (7.6%) 20 (6.6%) <0.001
Cardiac arrest 1 (0.5%) 12 (4.0%) 0.013
Anormal ECG 8 (3.8%) 49 (16.3%) <0.001
Cardiac involvement 18 (8.6%) 75 (24.9%) <0.001
Intracerebral hemorrhage 19 (9.0%) 96 (31.9%) <0.001
Intraventricular 51 (24.3%) 258 (85.7%) <0.001
hemorrhage
Ventricular drainage 13 (6.2%) 192 (63.8%) <0.001
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Vasospasm 43 (20.5%) 89 (29.6%) 0.021
Acute symptomatic seizure 21 (10.0%) 74 (24.6%) <0.001
Laboratory values

Hemoglobin (g/dL) 12.6+2.9 11.813.2 0.005
Leukocytes (10%/L) 12.344.2 14.415.9 <0.001
Neutrophils (10%/L) 9.844.2 12.2+5.5 <0.001
Creatinine (mg/dL) 0.69+0.18 0.76£0.41 0.011
Glucose (mg/dL) 126.8+43.9 159.5+51.8 <0.001
Outcomes

DCI 36 (17.1%) 87 (28.9%) 0.002
Death at discharge 10 (4.8%) 97 (32.2%) <0.001
mRS at discharge 1 (0-2) 4 (2-6) <0.001
GOS at discharge 5 (5-5) 3 (1-4) <0.001
Death at 3 months 10 (4.8%) 106 (35.6%) <0.001
mRS at 3 months 1 (0-1) 4 (2-6) <0.001
GOS at 3 months 5 (5-5) 3 (1-5) <0.001

Table 2. Comparison of clinical variables between clusters. DCI: Delayed

Cerebral

Ischemia;

mFisher

scale:

modified Fisher

scale;

ECG:

electrocardiogram; mRS: modified Rankin Scale; GOS: Glasgow Outcome

Scale
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