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Abstract

Wastewater Treatment Plants (WWTPs) rely on automatic control strategies to regulate
pollutant concentrations and comply with environmental standards. Among them, Pro-
portional Integral (PI) controllers are widely adopted for their simplicity and robustness,
yet their effectiveness is limited by the nonlinear and time-varying dynamics of biological
processes. In this work, Long Short-Term Memory (LSTM)-based Artificial Neural Network
(ANN) PI controllers are proposed as data-driven replacements for conventional PIs in
key WWTP feedback loops. Using the Benchmark Simulation Model No. 1 (BSM1), ANN
controllers were trained to replicate the behavior of default nitrate and nitrite nitrogen
(SNO,2) and dissolved oxygen (SO,5) loops, under both time-agnostic and time-aware strate-
gies with three- and four-input configurations. The four-input time-aware model delivered
the best results, reproducing PI behavior with high accuracy (coefficient of determination,
R2 ≈ 0.99) and considerably reducing control errors. For instance, under storm influent
conditions, the SO,5 controller reduced the Integral of Squared Error (ISE) and Integral
of Absolute Error (IAE) by 84.7% and 68.4%, respectively, compared with the default PI.
Beyond loop-level improvements, a Transfer Learning (TL) extension was explored: the
trained SO,5 controller was directly applied to additional aerated reactors (SO,3 and SO,4)
without retraining, replacing fixed aeration and demonstrating adaptability while reducing
design effort. Plant-wide evaluation with the SNO,2 loop and three dissolved oxygen loops
(SO,3–SO,5), all controlled by LSTM-based PI controllers, under storm influent conditions,
showed further reductions in the Effluent Quality Index (EQI) and the Overall Cost Index
(OCI) by 0.84% and 1.47%, respectively, highlighting simultaneous gains in effluent quality
and operational economy. Additionally, the actuator and energy analyses showed that the
LSTM-based controllers produced realistic and smooth control signals, maintained consis-
tent energy use, and ensured stable overall operation, confirming the practical feasibility of
the proposed approach.

Keywords: Artificial Neural Networks (ANNs); Benchmark Simulation Model No. 1
(BSM1); data-driven process control; Long Short-Term Memory (LSTM); Operational Cost
Index (OCI); Proportional–Integral (PI) control; transfer learning

1. Introduction
Wastewater treatment plants (WWTPs) are at the core of modern environmental

protection, yet their operation is becoming increasingly demanding. Rising energy costs,
particularly those associated with aeration, can represent more than half of a plant’s
total electricity use [1], while tightening environmental regulations continues to lower
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permissible nutrient levels in treated effluent [2]. At the same time, climate commitments
and sustainability goals demand that these facilities operate with greater efficiency and
lower greenhouse gas footprints [3]. Under these pressures, effective control of treatment
processes is no longer optional but a prerequisite for balancing water quality compliance,
environmental responsibility, and economic viability. Early evidence of nitrous oxide
emissions from municipal WWTPs was reported by Czepiel et al. [4], emphasizing the
environmental trade-offs involved.

Beyond their economic and environmental challenges, WWTPs remain essential infras-
tructure for safeguarding public health and aquatic ecosystems. Their main task is to reduce
the levels of contaminants present in residual urban waters, with nitrogen- and phosphorus-
derived compounds among the most critical due to their contribution to eutrophication
and aquatic toxicity [5]. Effective removal of these pollutants relies on tightly controlled
biological processes such as nitrification and denitrification, which in turn require stable
dissolved oxygen (DO) concentrations in aerobic tanks and low nitrate (SNO,2) levels in
anoxic zones [6]. To meet regulatory discharge standards, modern WWTPs are equipped
with automatic control systems that adjust aeration, recirculation, and related operations in
real time.

Designing advanced control strategies for WWTPs, however, is far from straightfor-
ward. Biological treatment processes are highly nonlinear, subject to variable influent loads,
and influenced by complex microbial interactions, making reliable plant-wide models
difficult to obtain [7]. Direct testing of new controllers in full-scale facilities is expensive,
site-specific, and may risk operational stability. For this reason, the wastewater research
community has developed standardized benchmark models that serve as common refer-
ence platforms for testing, comparing, and improving control strategies under realistic
yet safe conditions [6,7]. These frameworks provide a reproducible environment in which
competing solutions can be evaluated fairly, accelerating the development of practical and
robust control methodologies.

The development of mathematical frameworks has played an important role in advanc-
ing control solutions for WWTPs. The Activated Sludge Model No. 1 (ASM1) describes the
underlying biochemical processes, while the Benchmark Simulation Model No. 1 (BSM1)
provides a standardized plant-wide simulation platform with realistic influent profiles
and evaluation metrics [8,9]. As shown in Figure 1, BSM1 represents a typical WWTP
layout composed of five interconnected biological reactors followed by a secondary clar-
ifier. Default control loops regulate nitrate (SNO,2) in the second reactor via the internal
recycle and dissolved oxygen (SO,5) in the fifth reactor via aeration, both implemented with
Proportional–Integral (PI) controllers. PI control is widely applied in full-scale facilities
because of its simplicity and general reliability under stable operating conditions [10].

However, WWTPs operate in dynamic environments where influent loads fluctuate
daily and seasonally, oxygen transfer efficiencies vary with operating conditions, and
microbial activity shifts over time [11]. Under such nonlinear and time-varying conditions,
PI controllers often struggle to maintain optimal performance, requiring frequent retuning
and providing limited capability to anticipate disturbances [10].

These shortcomings have motivated the development of more advanced control strate-
gies. Model Predictive Control (MPC), fuzzy logic, and hybrid hierarchical schemes have
been applied to enhance pollutant removal and improve operational efficiency [12,13]. At
the same time, Artificial Neural Networks (ANNs) have emerged as data-driven tools well
suited to capturing the nonlinear behavior of WWTPs without requiring explicit mecha-
nistic models [14]. Recent reviews underscore the extensive application of neural network
approaches in wastewater treatment, particularly for feature identification, parameter pre-
diction, anomaly detection, and control optimization [15]. They have also been applied as
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soft sensors, effluent quality predictors, and as components in supervisory and predictive
controllers [16]. Among them, recurrent neural networks such as Long Short-Term Mem-
ory (LSTM) architectures have proven especially effective for time-dependent industrial
processes, including wastewater treatment, as they are able to exploit temporal correlations
in input–output signals [14,17,18].

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5
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Figure 1. Configuration of the Benchmark Simulation Model No. 1 (BSM1), consisting of an anoxic
section, an aerated section, and a ten-layer secondary settler. Flows (Q0, Qa, Qr, Qe, Qw) represent
influent, internal recycle, external recycle, effluent, and wastage, respectively. Dashed lines indicate
control signals, with PI controllers regulating SNO,2 in Unit 2 and SO,5 in Unit 5.

Recent studies have also emphasized the importance of stability and robustness in
neural control architectures. Lyapunov-based learning laws for LSTM networks have
been developed to ensure practical stability in nonlinear dynamic systems [19]. Adaptive
LSTM-based robust controllers have likewise been designed with formal Lyapunov stability
guarantees [20]. In addition, hybrid Model Predictive Control (MPC) frameworks integrat-
ing model-based and data-driven components have been proposed to improve process
control performance [21]. While the present work focuses on demonstrating feasibility
within the BSM1 environment, these contributions provide a theoretical foundation for
future extensions toward stability-certified and hybrid neural control strategies.

Despite these advances, most ANN-based approaches in wastewater treatment have
been used as add-ons or supervisory elements rather than direct replacements of the low-
level PI loops that remain central to plant operation. Addressing this gap, the present work
investigates the use of LSTM-based PI controllers as drop-in substitutes for the default
nitrate (SNO,2) and dissolved oxygen (SO,5) PI controllers in BSM1. The proposed controllers
were trained offline to reproduce the behavior of well-tuned PI loops under a range of
influent scenarios and then integrated into the BSM1 framework for closed-loop evaluation.
In addition, this study examines the potential for transferring the trained controllers to
similar control loops, offering greater flexibility and reducing the need for repeated tuning
and deployment efforts.

Beyond reproducing PI control, the proposed LSTM-based DO controller was success-
fully transferred to additional aerated reactors (SO,3 and SO,4), replacing fixed aeration rates.
This extension delivered further improvements in the Effluent Quality Index (EQI) and
the Operational Cost Index (OCI), showing that the approach can be scaled to multi-zone
aeration control. Such an extension is closely related to the concept of transfer learning,
where knowledge acquired in one domain is leveraged to improve performance in another,
thereby reducing the demand for large amounts of task-specific data [22]. Deep transfer
learning has recently been recognized as a rapidly expanding research area, particularly
in industrial applications where labeled data are scarce and process dynamics are subject
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to change [22]. Its potential has also been demonstrated in process systems engineering,
for example, in the design of soft sensors for industrial applications [23]. More recently,
transfer learning strategies have been applied directly in the control of wastewater treat-
ment plants, where transferring knowledge between neural controllers reduced design
time while significantly improving performance indices such as the Integrated Absolute
Error (IAE) and Integrated Squared Error (ISE) [24,25]. Similar approaches have also been
adopted for prediction tasks, such as dissolved oxygen concentration modeling in industrial
wastewater treatment units [26]. Building on these insights, the present work highlights the
applicability of transfer learning principles for data-driven control in wastewater treatment.

In summary, this work demonstrates that LSTM-based PI controllers can serve as prac-
tical and effective replacements for conventional PI controllers in WWTP. The contributions
of this study are threefold:

1. The design and evaluation of LSTM-based PI controllers that act as direct substi-
tutes for PI controllers in the BSM1 framework, targeting nitrate and dissolved oxy-
gen loops.

2. A comparative study of training strategies and input configurations, showing that
time-aware four-input models provide the most accurate and robust performance.

3. An extension of ANN-based control beyond individual loops, where the LSTM-based
dissolved oxygen (DO) controller for reactor 5 was successfully transferred to the
additional aerated reactors (reactors 3 and 4), yielding measurable improvements in
EQI and OCI.

2. Materials and Methods
2.1. General Characteristics and Plant Layout

The Benchmark Simulation Model No. 1 (BSM1) is one of the most widely used digital
testbeds for evaluating control strategies in WWTPs [9]. It is based on the Activated
Sludge Model No. 1 (ASM1) [8], which provides a mathematical description of the highly
non-linear biological and biochemical reactions governing wastewater treatment. BSM1
represents a medium-sized municipal facility designed for an average dry-weather influent
flow of 18,446 m3/day with a biodegradable chemical oxygen demand (COD) of 300 g/m3.
The total plant capacity is 12,000 m3, split equally between the biological reactor (6000 m3)
and the secondary clarifier (6000 m3). With these specifications, the system achieves an
average hydraulic retention time of about 14.4 h. Sludge handling is incorporated through
a wastage flow rate of 385 m3/day, corresponding to a solids retention time of roughly nine
days, which reflects typical full-scale operations.

The biological reactor is arranged in five interconnected compartments followed by
a clarifier (see Figure 1). The first two compartments operate under anoxic conditions to
facilitate denitrification, while the last three are aerated to support nitrification. Each anoxic
tank has a volume of 1000 m3, and each aerated tank holds 1333 m3. The downstream
clarifier is modeled as a ten-layer settling unit without biological reactions, with influent
entering at the sixth layer. Solids settle to form a sludge blanket that is recycled or wasted,
while clarified effluent exits at the top. The clarifier dimensions of 1500 m2 surface area
and 4 m height yield a volume of 6000 m3, equal to that of the reactor. Together, these units
mimic the essential processes of a conventional activated sludge system.

2.2. Default Control Loops

To regulate key process variables, BSM1 incorporates two default feedback loops
managed by Proportional–Integral (PI) controllers. These serve as the baseline against
which alternative strategies can be benchmarked:
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• Nitrate and Nitrite (SNO,2) loop in reactor 2: controls nitrate concentration by adjusting
the internal recycle flow rate (Qa) to maintain a setpoint of 1 mg/L.

• Dissolved Oxygen (SO,5) loop in reactor 5: controls oxygen levels by manipulating the
oxygen transfer coefficient (KLa,5) to maintain a setpoint of 2 mg/L.

Both controllers are pre-tuned by the BSM1 designers, with fixed proportional and in-
tegral parameters. Their performance provides a standard reference for assessing improve-
ments achieved by advanced control strategies, such as ANN- or LSTM-based controllers,
and both loops are explicitly illustrated in Figure 1.

2.3. Simulation Protocols and Performance Assessment

BSM1 simulations are designed to test control systems under realistic dynamic con-
ditions. Each run begins with a 100-day initialization under constant influent conditions
to stabilize biomass and reactor states. This is followed by 14 days of dynamic operation
using one of three influent scenarios:

• Dry-weather influent: Influent profile showing diurnal variations of concentrations,
without any perturbations induced by weather changes.

• Rain-weather influent: Influent profile with daily variations, including an extended
wet-weather disturbance during the second week (days 9–10).

• Storm-weather influent: Influent profile with daily variations, superimposed by two
short but intense storm disturbances (days 8 and 11).

Figure 2 illustrates the influent flow-rate (Q0) variations under dry-, rain-, and storm-
weather scenarios. The dry-weather profile shows regular diurnal oscillations, while the
rain and storm cases introduce extended and short-term flow disturbances, respectively,
consistent with the BSM1 specification.
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Figure 2. Influent flow-rate (Q0) profiles for dry, rain, and storm scenarios in the BSM1.

Although the simulation covers 14 days, only the final 7 days are used for evaluation,
following BSM1 guidelines.

Performance is assessed on two levels. At the local loop level, control accuracy is
quantified using the Integrated Absolute Error (IAE) and Integrated Squared Error (ISE)
between process measurements y(t) and their setpoints or reference values r(t):

IAE =
∫ 14d

7d
|r(t)− y(t)| dt (1)

ISE =
∫ 14d

7d

(
r(t)− y(t)

)2 dt (2)
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At the plant-wide level, two indices are used: the Effluent Quality Index (EQI), which
reflects the pollutant load in the discharge, and the Operational Cost Index (OCI), which
captures energy and pumping costs. These metrics allow fair comparison of control
strategies across different influent conditions. The detailed definitions of EQI and OCI are
provided in the BSM1 specification [9]; in summary, EQI aggregates effluent pollutants
such as COD, NH+

4 , and NO−
3 into a single water-quality measure, while OCI combines

aeration, pumping, and sludge-handling energy demands into a unified cost index.

2.4. LSTM-Based Controller Design

Long Short-Term Memory (LSTM) networks extend the classical recurrent neural
network framework with a structure that can selectively store and update information
across time. Instead of processing each input in isolation, LSTMs use a memory cell in
combination with three regulating gates (commonly referred to as input, forget, and output
gates) that determine what past information is carried forward, what is updated, and what
is discarded [14]. This architecture enables them to capture long- and short-term temporal
patterns while reducing the influence of noise, making them particularly suitable for
representing the nonlinear and time-varying dynamics of wastewater treatment systems.

In this study, LSTMs were adopted to replace the default Proportional–Integral (PI)
controllers in BSM1. The proposed LSTM-based PI controllers were designed to operate
as direct feedback regulators, mimicking the input–output behavior of the PI loops while
offering the ability to exploit temporal correlations in the data.

2.4.1. Input Configurations

Two controller configurations were tested:

1. Three-input model: consisting of the current process variable (SNO,2(t) or SO,5(t)), the
reference setpoint (SNO,2 setpoint or SO,5 setpoint), and the previous control action
(Qa(t − 1) or KLa,5(t − 1)).

2. Four-input model: extending the three-input design by including the influent flow
rate (Q0(t)), enabling the network to anticipate load disturbances.

Figure 3 illustrates the two controller configurations considered in this work. In the
three-input design, the network receives the current process variable, its corresponding
setpoint, and the previous control action (u(t − 1)). The four-input variant extends this
structure by including the influent flow rate (Q0(t)), allowing the controller to better
anticipate load disturbances.
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Figure 3. LSTM-based controller architecture with three or four inputs, two stacked LSTM layers, and
two dense layers. The final linear output is denormalized to yield the actuator signal (KLa(t) or Qa(t)).
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As shown in Figure 3, both configurations are built upon the same LSTM-based
neural structure, which is explained in detail in Section 2.4.3. In short, the controller
combines recurrent LSTM layers with fully connected feedforward layers, ending in a
linear output neuron that generates the control action. The only difference between the two
configurations lies in the number of input features: three in the baseline model and four in
the extended model.

2.4.2. LSTM Network Architecture

All controller variants developed in this work relied on a common LSTM-based neural
structure. The core of the architecture consisted of two stacked LSTM layers, with the
first layer comprising 100 hidden units and the second containing 50 hidden units. The
dimensionality of the weight matrices is shown in Figure 3: for the first LSTM block, the
input weight matrix is Wx ∈ Rl×100, the recurrent weight matrix is Ux ∈ Rl×100, and the
bias vector is bx ∈ R100×1. Here, l denotes the number of input features provided to the
network, which takes the value l = 3 in the baseline model (process variable, setpoint, and
previous control action) and l = 4 in the extended model (including influent flow rate).
These two configurations were trained as separate networks; the explicit parameterization
highlights that the only architectural difference lies in the input weight matrix, which
changes from 3 × 100 to 4 × 100. All other recurrent connections and dense layers remain
identical across both models.

Both recurrent layers were regularized using an L2 penalty of 5× 10−4, which reduced
overfitting and improved generalization across the different influent scenarios. The default
activation mechanisms provided by Keras were retained: hyperbolic tangent functions
governed the internal memory cells, while the gating mechanisms (input, forget, and
output gates) employed sigmoid activations. This configuration enables LSTM to regulate
the flow of information, selectively retaining or discarding past states while capturing
nonlinear dynamics.

The recurrent outputs were then passed through two fully connected feedforward
layers with 50 and 25 neurons, respectively. Both layers used the Rectified Linear Unit
(ReLU) activation to improve nonlinear approximation capability and to map the latent
features extracted by the LSTMs onto the control domain. Finally, a single linear output
neuron produced the normalized control signal. This value was subsequently rescaled
in a denormalization stage to its physical range, allowing it to be directly interpreted as
either the oxygen transfer coefficient KLa(t) in the dissolved oxygen loop or the internal
recirculation flow Qa(t) in the nitrate loop.

Although the networks were based on LSTM cells, training was performed using
a single-step temporal window (time_steps = 1). Instead of unfolding long historical
sequences, short-term dynamics were embedded explicitly by including the previous
control action u(t − 1) as an input, following a NARX-style formulation. This design choice
provided the networks with a degree of temporal awareness while keeping the structure
compact and computationally efficient.

Prior to training, all input variables were standardized to zero mean and unit variance,
while predicted outputs were denormalized during post-processing. Model develop-
ment was carried out in Python using TensorFlow (https://pypi.org/project/tensorflow/,
accessed on 20 October 2022) with the Keras API, and data preprocessing and scaling were
performed with NumPy (https://numpy.org/, accessed on 20 October 2022) and Scikit-
learn (https://scikit-learn.org/stable/, accessed on 20 October 2022).

https://pypi.org/project/tensorflow/
https://numpy.org/
https://scikit-learn.org/stable/
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2.4.3. Training Strategies

To investigate the effect of temporal memory on performance, two training strategies
were explored:

1. Time-agnostic training, where each sample is treated independently, disregarding
temporal sequence.

2. Time-aware training, where the sequential nature of the data is preserved, allowing
LSTM to utilize its internal memory for learning long-term dependencies.

Each training approach was tested using two input configurations: (i) a three-input
model, consisting of the process measurement, setpoint, and previous control action; and
(ii) a four-input model, which additionally included the influent flow rate to account for
disturbance anticipation. The time-aware, four-input model showed the closest agreement
with conventional PI behavior during training, achieving a determination coefficient of
about R2 ≈ 0.99.

This setup provided a clear framework for examining how various design choices—
both in input selection and training approach—influence the ability of LSTM-based con-
trollers to reproduce and, in some cases, surpass the performance of traditional PI control
within the BSM1 wastewater treatment plant model.

In this work, the term time-aware refers to preserving the chronological order of in-
fluent scenarios during training—specifically, the dry-, rain-, and storm-weather datasets
were concatenated in their natural temporal sequence without random shuffling. This ap-
proach allows the network to experience realistic transitions between operating conditions
and retain contextual information about process dynamics. In contrast, the time-agnostic
configuration pools and randomizes samples from all scenarios, effectively removing any
temporal continuity. Both strategies employ a single-step input window (time_steps = 1),
with short-term memory introduced explicitly through the inclusion of the previous control
action u(t − 1) as an input feature, following a NARX-style formulation. Key training
details, including the use of mean squared error (MSE) as the loss function, early stopping,
and dropout regularization, are described in Section 2.5 to ensure reproducibility.

2.5. Training and Implementation Protocols

The LSTM-based PI controllers were trained offline using data generated from the
BSM1 model operating under its default PI controllers. Simulation runs were conducted
across three influent scenarios—dry-weather, rain-weather, and storm-weather—so that
the training set would capture a wide range of operating conditions. For each run, the
process measurements, control signals, and influent characteristics were recorded to form
the input–output pairs needed for supervised learning.

Model development was carried out in Python (version 3.9.18), using the TensorFlow
and Keras libraries. Training relied on the mean squared error (MSE) between the predicted
and reference PI actions, with early stopping and dropout regularization applied to pre-
vent overfitting. Both the time-agnostic and time-aware training strategies described in
Section 2.4.3 were implemented, and model fidelity was evaluated using the coefficient
of determination (R2). High agreement with the PI responses was achieved (R2 ≈ 0.99),
confirming the LSTMs’ ability to reproduce the control dynamics.

After training, the neural network weights were exported and integrated back into
the BSM1 framework through Simulink, replacing the default PI controllers. Closed-loop
simulations were then performed under each influent scenario. Controller performance was
assessed using both loop-level indices—the Integrated Absolute Error (IAE) and Integrated
Squared Error (ISE)—and plant-wide indices, namely the Effluent Quality Index (EQI)
and the Operational Cost Index (OCI). This evaluation protocol ensured a fair comparison
between the baseline PI controllers and the proposed LSTM-based alternatives in terms of
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accuracy, robustness, and efficiency, with all closed-loop simulations under dry-, rain-, and
storm-weather conditions remaining stable. The actuator signals (KLa, Qa) stayed within
their physical operating ranges, and no constraint violations were observed.

The models were trained using the Adam optimizer with a learning rate of 1 × 10−3,
a batch size of 64, and a maximum of 500 epochs with early stopping (patience = 5). All
LSTM layers were implemented in stateless mode, and teacher forcing was not applied, as
the networks learned to predict the control action directly from process measurements and
setpoints. To ensure comparability and reproducibility, the same data split and random
seed (random_state = 42) were used across all training configurations. These details, along
with the regularization and architecture parameters described in Sections 2.4.2 and 2.4.3,
define the complete training setup used in this study.

2.6. Transfer Learning Extension

In addition to directly replacing the default PI controllers, this work explored the reuse
of trained models within the BSM1 framework, following the principles of transfer learning.
Specifically, the LSTM-based DO controller originally designed for reactor 5 was applied to
reactors 3 and 4, the other two aerated reactors in the benchmark, which normally operate
under fixed aeration rates and therefore without feedback control. By substituting these
fixed oxygen transfer coefficients with ANN-driven control signals, a multi-zone aeration
strategy was achieved without the need for additional training.

This approach can be interpreted as a form of inductive transfer learning, where the
knowledge captured by the DO controller in reactor 5 (setpoint = 2 mg/L) was extended to
reactors 3 and 4, which in the default BSM1 setup operate with fixed aeration. In the default
BSM1 setup, these reactors operate with fixed aeration and no feedback regulation; here,
they were instead assigned the same DO setpoint of 2 mg/L and controlled using the trans-
ferred LSTM model. The result was coordinated aeration across multiple zones, leading
to further improvements in plant-wide performance indices such as the Effluent Quality
Index (EQI) and the Operational Cost Index (OCI). Importantly, this demonstrates how an
ANN PI controller based on a single trained model can be leveraged to enhance broader
plant operation, reducing both the computational cost of retraining and the complexity of
controller design. The effectiveness of this extension is evaluated in detail in Section 4.5,
where its impact on loop-level tracking accuracy, effluent quality, and operational cost is
compared against both the default PI controllers and the baseline ANN designs.

2.7. Evaluation Metrics

Since controller design is only meaningful when paired with rigorous assessment, the
proposed LSTM-based PI controllers were benchmarked using both local and plant-wide
performance indices.

At the loop level, two classical tracking metrics were considered: the Integral Squared
Error (ISE) and the Integral Absolute Error (IAE). These quantify how well the controllers
maintained nitrate (SNO,2) and dissolved oxygen (SO,5) at their respective setpoints over the
evaluation horizon. Lower values indicate tighter regulation and smoother error correction.

At the plant-wide level, two composite indices defined in the BSM1 framework were
adopted. The Effluent Quality Index (EQI) provides a weighted measure of pollutant dis-
charge, reflecting compliance with environmental standards. The Operational Cost Index
(OCI) captures energy- and pumping-related costs, offering a proxy for operational efficiency.

This dual-level evaluation ensures that improvements are not only visible in individual
control loops but also translate into tangible benefits for overall wastewater treatment
plant performance.
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3. Transfer Learning-Based Extension
Designing dedicated controllers for every loop in a wastewater treatment plant can

be computationally demanding, especially when the process model itself is nonlinear and
high-dimensional. One way to reduce this effort is to reuse knowledge from an already
trained controller in related parts of the system. This idea, known as Transfer Learning
(TL), allows a model that has learned the dynamics of one loop to be adapted for use in
another, avoiding the need for full retraining [22].

In this work, the trained LSTM-based controller for dissolved oxygen regulation
in reactor 5 (SO,5) was directly applied to reactors 3 and 4. Under the default BSM1
configuration [9], these units operate with fixed oxygen transfer rates, which limit their
ability to adapt to variable influent conditions and different oxygen consumption needs.
By substituting the constant KLa values with the outputs of the LSTM model, a multi-zone
aeration control strategy was obtained. Importantly, no retraining was required, since the
control objectives across the three aerated reactors are the same: maintaining dissolved
oxygen at the desired setpoint of 2 mg/L.

This approach highlights the efficiency of transfer learning in process control [24,25].
Instead of developing three separate ANN-based controllers, a single well-trained model
was repurposed across multiple reactors. Beyond reducing design and training effort, this
reuse also led to measurable improvements in OCI and EQI performance, demonstrat-
ing plant-wide gains in both operational cost and effluent quality, as later shown in the
Section 4.5.

4. Results
The performance of the proposed LSTM-based PI controllers was assessed under

three dynamic influent scenarios—dry, rain, and storm weather—and compared with the
default traditional PI controllers of the BSM1 framework. Two training strategies were
investigated: time-agnostic (shuffled samples without preserving sequential order) and
time-aware (sequence-preserved samples exploiting LSTM memory). Within each strategy,
both three-input and four-input configurations were tested.

The detailed performance outcomes for all controller configurations and weather
scenarios are summarized below. These results form the basis for the analysis in the
following subsections (Table 1).

Table 1. Performance comparison of LSTM-based and default PI controllers under dry, rain, and
storm influent scenarios. Results are shown for time-agnostic and time-aware training with three-
and four-input configurations.

Performance Metric Default PI Controllers
3 Inputs 4 Inputs

Time-Agnostic Time-Aware Time-Agnostic Time-Aware

Dry Weather
ISE–SNO,2 0.47303 0.9011 0.0991 0.1030 0.1076
IAE–SNO,2 1.2511 2.0003 0.6385 0.5974 0.6216
ISE–SO,5 0.02167 0.0306 0.0316 0.0177 0.0133
IAE–SO,5 0.24819 0.2455 0.2358 0.1560 0.1341
EQI (kg/d) 6115.6291 6055.8449 6055.7305 6055.3903 6054.8419
OCI 16,381.9358 16,379.0056 16,381.7182 16,385.0717 16,385.7772

Rain Weather

ISE–SNO,2 0.69392 0.5497 0.2214 0.1655 0.1745
IAE–SNO,2 1.5659 1.4646 0.9238 0.7916 0.7887
ISE–SO,5 0.01636 0.0194 0.0206 0.0068 0.0051
IAE–SO,5 0.21488 0.1789 0.1747 0.1043 0.0885
EQI (kg/d) 8174.9853 8105.1798 8110.2304 8101.6773 8103.5190
OCI 15,984.8541 15,987.6249 15,979.6915 15,992.7864 15,993.3979
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Table 1. Cont.

Performance Metric Default PI Controllers
3 Inputs 4 Inputs

Time-Agnostic Time-Aware Time-Agnostic Time-Aware

Storm Weather

ISE–SNO,2 0.69348 0.8297 0.1875 0.1629 0.1734
IAE–SNO,2 1.5254 1.8659 0.8184 0.7496 0.7640
ISE–SO,5 0.02022 0.0203 0.0251 0.0055 0.0031
IAE–SO,5 0.24406 0.2045 0.2126 0.0965 0.0772
EQI (kg/d) 7211.4829 7166.5911 7149.3133 7141.7878 7143.1078
OCI 17,253.7516 17,254.5089 17,250.3220 17,262.2368 17,262.7220

Note: Performance relative to PI is color-coded: red = inferior, green = improved, bold green = best in each row.

4.1. Time-Agnostic Models

Time-agnostic training produced controllers that were stable and able to broadly repli-
cate PI dynamics. However, their handling of transient behavior was limited, particularly
under highly variable influent conditions.

• Three-input variant. For nitrate control (SNO,2), the time-agnostic 3-input model did
not consistently improve performance. Under dry and storm conditions, both ISE
and IAE were higher than PI, while rain weather showed only modest ISE and IAE
reductions (∼21% and ∼6%, respectively). For dissolved oxygen (SO,5), ISE values
were consistently worse than PI, though small IAE improvements (∼5–16%) were
observed in rain and storm scenarios.

• Four-input variant. Adding influent flow rate (Q0) as a fourth input produced clear im-
provements across all weather conditions. For nitrate control, performance improved
substantially in dry (∼78% ISE, ∼52% IAE reductions), rain (∼76% ISE, ∼49% IAE
reductions), and storm scenarios (∼76% ISE, ∼51% IAE reductions). For dissolved oxy-
gen, ISE was lower than PI under dry (∼18% reduction), rain (∼59% reduction), and
storm (∼73% reduction) conditions, while IAE improved by ∼37% (dry) and ∼51–60%
(rain and storm). Across all scenarios, EQI decreased slightly (indicating cleaner
effluent), while OCI remained nearly identical to PI (<0.05% difference). These results
confirm the benefit of providing disturbance-related information to the controller.

4.2. Time-Aware Models

By preserving sequential dependencies during training, time-aware models lever-
aged the memory capacity of LSTM cells and consistently outperformed their time-
agnostic counterparts.

• Three-input variant. For nitrate control (SNO,2), strong ISE reductions were observed:
∼79% under dry weather, ∼68% in rain, and ∼73% in storm. IAE performance was
also consistently better, with ∼49% improvement under dry weather and ∼41–46%
under rain and storm. For dissolved oxygen (SO,5), time-aware control did not reduce
ISE (slightly worse than PI), but IAE improved modestly (∼6–20%).

• Four-input variant. This configuration delivered the best overall results. For nitrate
control, ISE decreased by ∼78% under rain and ∼75% under storm, with IAE reduc-
tions of ∼50–51%. For dissolved oxygen, storm conditions showed dramatic gains
(∼85% ISE and ∼68% IAE reductions). Even under dry and rain conditions, ISE de-
creased by ∼38% (dry) and ∼69% (rain), while IAE improved by ∼46% (dry) and ∼59%
(rain). EQI values improved consistently, reflecting cleaner effluent, while OCI re-
mained nearly unchanged from PI. These results demonstrate that combining temporal
dependencies with influent flow information yields highly robust ANN-based control.

To complement the numerical results in Table 1, Figures 4 and 5 present the storm
weather responses for nitrate (SNO,2) and dissolved oxygen (SO,5), each including the four



Appl. Sci. 2025, 15, 12046 12 of 19

ANN configurations. In both cases, the setpoint and PI responses serve as a common
baseline, while the subplots illustrate the behavior of the 3-input and 4-input models
under time-agnostic and time-aware training. These profiles confirm the numerical trends,
showing that the LSTM-based PI controllers track the reference values more closely than
the PI controllers and demonstrating the effectiveness of the proposed approach under
storm conditions.
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Figure 4. Storm weather responses for the nitrate (SNO,2) loop. The setpoint and PI responses are
shown as a common baseline (red dashed for the reference (1 mg/L), black solid for the default PI
controller), while the four panels compare the behavior of the LSTM-ANN controllers, shown as
black dotted lines with colors: orange for (3-Input, T-Agnostic), purple for (4-Input, T-Agnostic), blue
for (3-Input, T-Aware), and green for (4-Input, T-Aware).
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Figure 5. Storm weather responses for the dissolved oxygen (SO,5) loop. The setpoint and PI responses
are shown as a common baseline (red dashed for the reference (2 mg/L), black solid for the default PI
controller), while the four panels compare the behaviour of the LSTM-ANN controllers, shown as
black dotted lines with colors: orange for (3-Input, T-Agnostic), purple for (4-Input, T-Agnostic), blue
for (3-Input, T-Aware), and green for (4-Input, T-Aware).

4.3. Comparative Insights

From the evaluation across all models, three key conclusions emerge:
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1. Time-aware training consistently outperformed time-agnostic training, especially
under rain and storm scenarios where temporal correlations are dominant.

2. Adding influent flow rate (Q0) as a fourth input enhanced disturbance rejection,
particularly for dissolved oxygen regulation.

3. The time-aware four-input LSTM-based PI controllers achieved the best overall perfor-
mance, delivering the lowest ISE and IAE across both loops and all-weather scenarios,
while simultaneously improving EQI without increasing OCI.

Taken together, these findings establish LSTM-based PI controllers—particularly in
their time-aware, four-input configuration—as effective drop-in replacements for conven-
tional PI controllers in BSM1. This provides a solid foundation for exploring transfer
learning approaches, where knowledge from one well-trained controller can be repurposed
to improve or accelerate the design of others.

4.4. Actuator Dynamics and Energy Implications

To further analyze loop-to-plant consistency and the energetic implications of the
proposed control strategy, actuator signal behavior was examined for the oxygen transfer
coefficient (KLa,5) and internal recirculation flow (Qa) under storm influent conditions. This
analysis was performed for the default PI and the best-performing LSTM-based controllers
(time-aware, four-input configuration).

Figure 6 presents the actuator time-series profiles, showing that both KLa,5 and Qa

signals remain within their physical bounds and exhibit smoother trajectories under LSTM
control, with no saturation or abrupt switching. Quantitative checks confirmed that both
actuators operated within their physical limits (0–360 d−1 for KLa,5 and up to 2 × Qin for
Qa), showing realistic rate dynamics consistent with the BSM1 framework. Figure 7 shows
the corresponding histograms, which provide insight into the variability and distribution of
control signals. The LSTM-driven actuators demonstrate more concentrated distributions,
reflecting stable yet adaptive control actions. The KLa,5 signal exhibited only modest
variation, while Qa displayed slightly higher-frequency responses during storm periods,
associated with transient peaks in influent flow but remaining dynamically stable and
within realistic limits. Figure 8 illustrates the proxy-power curves based on the squared
signals (K2

La,5 and Q2
a), linking smoother control to comparable aeration energy and a slight

increase in pumping energy. Together, these results confirm that the LSTM controller
achieves improved effluent quality with realistic actuator behavior and without additional
energy demand.

4.5. Transfer Learning

Building upon the best-performing design (time-aware, four-input LSTM-based for
SO,5), transfer learning was used to extend the controller to reactors 3 and 4. In the default
BSM1 setup, these units operate with fixed aeration, limiting their adaptability to dynamic
influent. By substituting the fixed oxygen transfer rates with ANN-driven control signals,
a multi-zone aeration strategy was achieved without retraining.

This approach represents inductive transfer learning, where knowledge from one
control loop (DO in reactor 5) is reused in other aerated reactors with similar objectives.
Together with the LSTM-based NO controller in reactor 2, the plant operated with four
ANN-regulated loops. A comparative summary of the default PI setup, the standalone time-
aware four-input ANN, and the transfer learning extension is provided below (Table 2).



Appl. Sci. 2025, 15, 12046 14 of 19

Actuator	Signal	Profiles	(KLa,5	and	Qa)	-	Storm	Influent

Days
7 8 9 10 11 12 13 14

K L
a,
5	
(d
	−
1 )

50

100

150

200

250 Default	PI
LSTM-ANN	(4-Input,	T-Aware)

Days
7 8 9 10 11 12 13 14
0

2

4

6

8
Q
a	
(m

3 /
d)

#104

Default	PI
LSTM-ANN	(4-Input,	T-Aware)

Figure 6. Actuator signal profiles (KLa,5 and Qa) under storm influent conditions. Comparison
between the default PI and LSTM-ANN (4-input, time-aware) controllers showing smoother actuator
trajectories and consistent operation within bounds.
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Figure 7. Histograms of actuator signal distributions (KLa,5 and Qa) under storm influent conditions.
The normalized distributions show reduced variability and stable control actions for the LSTM-ANN
compared with the PI controller.
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Figure 8. Proxy power curves of actuator signal profiles (K2
La,5 and Q2

a) under storm influent condi-
tions. The LSTM-ANN achieves comparable aeration energy demand and only a slight increase in
pumping effort relative to the default PI.
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Table 2. Performance comparison of default PI controllers, the best LSTM-based PI configuration
(time-aware, four-input), and the transfer-learning setup under dry, rain, and storm influent scenarios.

Performance Metric Default PI Controllers 4 Inputs
(Time-Aware)

Transfer Learning
(DO Extended to R3–R5)

Dry Weather

ISE–SNO,2 0.4730 0.1076 0.0549
IAE–SNO,2 1.2511 0.6216 0.4544
ISE–SO,5 0.0217 0.0133 0.0384
IAE–SO,5 0.2482 0.1341 0.2601
EQI (kg/d) 6115.6291 6054.8419 6048.1882
OCI 16,381.9358 16,385.7772 16,149.0824

Rain Weather

ISE–SNO,2 0.6939 0.1745 0.1391
IAE–SNO,2 1.5659 0.7887 0.6612
ISE–SO,5 0.0164 0.0051 0.0204
IAE–SO,5 0.2149 0.0885 0.1662
EQI (kg/d) 8174.9853 8103.5190 8148.4594
OCI 15,984.8541 15,993.3979 15,666.3883

Storm Weather

ISE–SNO,2 0.6935 0.1734 0.1272
IAE–SNO,2 1.5254 0.7640 0.6062
ISE–SO,5 0.0200 0.0031 0.0269
IAE–SO,5 0.2441 0.0772 0.1996
EQI (kg/d) 7211.4829 7143.1078 7151.1641
OCI 17,253.7516 17,262.7220 17,000.0773

Note: Performance relative to PI is color-coded: red = inferior, green = improved, bold green = best in each row.

As a complement to the results in Table 2, Figure 9 presents the transfer learning
responses for nitrate (SNO,2) under dry, rain, and storm influent conditions. In each case, the
LSTM-based transfer learning controller achieves closer tracking of the setpoint compared
to both the default PI and the baseline ANN controller, consistent with the numerical trends
in Table 2. This figure is included as a representative example, illustrating how knowledge
from a well-trained loop can be reused effectively across different operating conditions.
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Figure 9. Transfer learning responses for the nitrate (SNO,2) loop under dry, rain, and storm conditions.
The figure complements Table 2, showing improved setpoint tracking compared to the default PI and
standalone time-aware four-input LSTM-ANN controllers.
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Across all influent scenarios, the transfer learning case yielded further plant-wide benefits:

• EQI values decreased compared to both PI and the standalone ANN, demonstrating
improved effluent quality. Under dry weather, EQI was reduced by ∼1.1% relative to
PI (6115.63 → 6048.19), in rain weather by ∼0.3% (8174.99 → 8148.46), and in storm
conditions by ∼0.8% (7211.48 → 7151.16).

• OCI values also decreased, reflecting more efficient operation. Under dry weather,
OCI dropped by ∼1.4% (16,381.94 → 16,149.08), in rain weather by ∼2.0% (15,984.85
→ 15,666.39), and under storm conditions by ∼1.5% (17,253.75 → 17,000.08).

These improvements were achieved without training new models, underscoring the
scalability and efficiency of transfer learning in process control.

5. Conclusions
This study demonstrated the potential of LSTM-based neural networks as drop-in

replacements for conventional PI controllers in wastewater treatment plants, using the
BSM1 benchmark as a test platform. By leveraging the ability of LSTM cells to capture
temporal dependencies in process data, the proposed controllers achieved robust tracking
of dissolved oxygen (SO,5) and nitrate-nitrogen (SNO,2) concentrations under dry, rain, and
storm influent conditions. Among the tested designs, the time-aware four-input mod-
els consistently delivered the strongest performance, with storm-weather SO,5 tracking
showing substantial reductions in ISE and IAE compared to baseline PI control. These
improvements translated into better effluent quality (lower EQI) while maintaining opera-
tional costs (OCI) at levels comparable to or better than PI. Additional analysis of actuator
dynamics confirmed that the LSTM-based controllers produced realistic, smooth control
signals for KLa,5 and Qa, remaining within physical bounds and achieving comparable
aeration and pumping energy to the default PI setup.

Beyond direct PI replacement, this work applied transfer learning principles to ex-
tend the trained SO,5 controller from reactor 5 to reactors 3 and 4, enabling a coordinated
multi-zone aeration strategy without retraining. This approach not only simplified con-
troller design but also improved plant-wide performance, with both EQI and OCI reduced
relative to PI and standalone ANN setups. The results also highlighted an important
trade-off: while all LSTM-based PI controllers outperformed PI, the choice of training
strategy (time-agnostic vs. time-aware, three-input vs. four-input) influenced the degree
of improvement, underscoring the importance of including influent context and temporal
memory in the model.

Overall, the findings confirm that LSTM-based PI controllers can reliably replace
conventional PI control in WWTPs while offering scalability through transfer learning.
Designing a single robust ANN controller and reusing it across multiple loops not only
reduces the computational burden of training but also enhances plant-wide efficiency.
Moreover, their consistent actuator performance and stable energy behavior further support
their suitability for real-plant implementation. Although this study focused on the BSM1
framework, the approach is generalizable to other industrial control systems where multiple
loops share common objectives, making it a promising pathway for modernizing process
automation with neural network-based control.

While formal robustness and stability analyses were beyond the present scope, the
results demonstrate consistent closed-loop stability and safe actuator behavior across all
tested scenarios. Future work will extend this framework through analytical stability assess-
ments and robustness metrics, including delay sensitivity, constraint-violation tracking, and
gain-margin testing. Furthermore, forthcoming studies will aim to establish formal stability
guarantees for neural network-based feedback controllers, drawing on recent advances in
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Lyapunov-based analysis, hybrid MPC–ANN frameworks, and other emerging approaches
to achieve theoretically grounded, stability-certified control design.
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