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Abstract

INTRODUCTION: We previously applied generalized additive models for location,

scale, and shape to derive amyloid β–negative next-generation norms (NGN) for a com-

prehensive neuropsychological battery. Here, we evaluated the accuracy of NGN in

detecting cognitive impairment compared to traditional norms (TN).

METHODS: This multicenter study included N = 2405 participants classified as cog-

nitively normal (CN, n = 987) or with mild cognitive impairment (MCI, n = 1418)

using conventional criteria. All participants underwent neuropsychological testing and

cerebrospinal fluid Alzheimer’s disease (AD) biomarker assessment. We used actu-

arial neuropsychological criteria to reclassify all participants using TN and NGN.
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Diagnostic groups were compared on cognitive performance, AD biomarker positivity,

and longitudinal cognitive trajectories.

RESULTS:Nineteenpercent of TN-classifiedCNparticipantswere diagnosedwithMCI

byNGN,whereas3%ofTN-classifiedMCIwere identified asCNbyNGN.NGNdemon-

strated stronger associations with neuropsychological performance, AD biomarkers,

and progression than TN.

DISCUSSION: NGN enhance the detection of objective cognitive impairment, with

direct implications for clinical practice and research.

KEYWORDS

Alzheimer’s disease, biomarkers, clinical trials, cognitive trajectories, diagnosis, disease-
modifying therapies, MCI, neuropsychological norms, normative data

Highlights

∙ Next-generation norms (NGN) reclassify one of every five cases from cognitively

normal (CN) tomild cognitive impairment (MCI).

∙ This group shows poor cognitive performance and a high prevalence of amyloid β
positivity.

∙ NGN-based diagnosis ofMCI predicts cognitive progression on follow-up.

∙ Results indicate that NGN improve the detection of objective cognitive impairment.

∙ NGN can inform biomarker use, therapy indication, and clinical trial design.

1 BACKGROUND

Alzheimer’s disease (AD) is the leading cause of dementia;1 yet, the

majority of individuals on the AD continuum are in the predemen-

tia stages, including the preclinical AD (i.e., positive AD biomarkers,

but performance in the normal range on objective cognitive assess-

ment) and prodromal AD (i.e., mild cognitive impairment [MCI] due to

AD) stages.2 The recent approval of the first disease-modifying drugs

for AD, targeting amyloid β (Aβ) plaques in individuals at early symp-

tomatic stages,3–5 underscores the importance of timely, biomarker-

confirmed AD diagnosis, as these therapies show the greatest benefit

in earlier disease stages.6,7 At the same time, in the absence of effec-

tive preventive treatments, biomarkers are not recommended for use

in cognitively normal (CN) individuals in clinical practice.8,9 Accurate

neuropsychological norms are therefore critical to identify the ear-

liest objectively measurable cognitive deficits that inform the use of

biomarkers and the selection of patients for therapeutic interventions.

We recently developed comprehensive neuropsychological nor-

mative data, referred to as next-generation norms (NGN).10 NGN

incorporated two methodological advancements: (1) the selection of

a normative sample consisting of CN individuals without biomarker

evidence of Aβ accumulation, and (2) the modeling of normative data

under the generalized additive models for location, scale, and shape

(GAMLSS). Normswere adjusted for age, education, and sex.

In the present follow-up study, we aim to evaluate the accuracy

of NGN in detecting cognitive impairment compared to traditional

norms (TN). However, direct comparison of neuropsychological norms

is challenged by the lack of both uniform test batteries and an oper-

ationalized definition of MCI.11,12 Conventional MCI criteria rely

on subjective cognitive decline, clinical judgment based on cogni-

tive and functional screening tools, and impairment in one or more

neuropsychological tests,13,14 which may result in false-positive and

false-negative diagnostic errors.15,16 In contrast, actuarialMCI criteria

such as the Jak/Bondi approach, which require impairment on at least

twomeasureswithin a cognitive domain,17 have demonstrated greater

diagnostic stability and stronger associations with AD biomarkers and

progression.18,19

Accordingly, to compare NGN and TN, we selected a large multi-

center dataset of individuals without dementia and applied actuarial

neuropsychological criteria to cognitive scores based on both NGN

and TN from the same test battery. We hypothesized that NGNwould

yield stronger associations with neuropsychological performance, AD

biomarker positivity, and clinical progression than TN.

2 METHODS

2.1 Participants and design

Data were prospectively collected as part of the longitudinal mul-

ticenter SIGNAL study, which harmonized core neuropsychological

procedures across several Spanish centers.20 For the present study,

we retrospectively selected N = 2405 individuals without dementia

(CN: n = 987; MCI: n = 1418) recruited between March 2006 and
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RESEARCH INCONTEXT

1. Systematic Review: Current Spanish neuropsychological

norms do not account for biomarker status and are based

on traditional norming methods. Building upon accumu-

lated knowledge from prior studies, we recently derived

next-generation norms (NGN) from a large sample of

amyloid β–negative cognitively normal individuals using

generalized additive models for location, scale, and shape

(GAMLSS).

2. Interpretation: Despite the theoretical advantages of

NGN, evidence is needed to establish their actual added

value. NGN-based cognitive classification demonstrated

enhanced associations with neuropsychological perfor-

mance, Alzheimer’s disease biomarker positivity, and

longitudinal cognitive trajectories compared to current

normative standards. These results suggest that NGN

enhance the detection of cognitive impairment and may

therefore improve clinical and research outcomes.

3. Future Directions: Future research should provide fur-

ther evidence to confirm the utility of NGN.

July 2022. Participants were recruited from both outpatient memory

clinics and community-based volunteer populations. The inclusion cri-

teria were: (1) absence of dementia, (2) age ≥ 30 years, and baseline

availability of both (3) a neuropsychological evaluation and (4) cere-

brospinal fluid (CSF) AD biomarker assessment, including Aβ status.

The exclusion criterion was a history of neurological, psychiatric, or

systemic conditions that might affect cognitive performance (Figure

S1). Participants were classified at baseline as CN or MCI using

conventional criteria13,14 based only on clinical and neuropsycholog-

ical data at the time of CSF collection, without regard to biomarker

results or follow-up information. We previously derived NGN from

a normative dataset comprising all Aβ-negative (Aβ−) CN individuals

(n = 774).10 This study adhered to the 1964 Declaration of Helsinki

andwas approved by the ethics committees of all participating centers.

Written informed consent was obtained from all participants before

enrollment.

2.2 Materials and procedure

2.2.1 Neuropsychological evaluation

All participants underwent a baseline neuropsychological evaluation

according to their center’s protocol (Table S1). The assessment incor-

porated the Mini-Mental State Examination (MMSE; range 0–30, with

lower scores reflecting greater impairment) as a measure of general

cognitive functioning.21 The neuropsychological measures included in

thepresent validation studywere those forwhichNGNwerederived in

our prior study, and included at least twomeasures across the domains

of: visuospatial skills (the Visual Object and Space Perception Bat-

tery [VOSP] number location subtest and the Rey-Osterrieth Complex

Figure [ROCF] copy), memory (the Free and Cued Selective Reminding

Test [FCSRT] total free recall, FCSRT total recall, FCSRT delayed free

recall, FCSRT delayed total recall, and the ROCF delayed recall), atten-

tion/executive function (the Trail Making Test Part A [TMT-A], Trail

Making Test Part B [TMT-B], Digit Span Forward, Digit Span Backward,

andphonetic fluency [wordsbeginningwithP]), and language (semantic

fluency [animal names] and the Boston Naming Test [BNT]).

Raw neuropsychological scores of all participants (N = 2405) were

converted into demographically adjusted normed scores according

to NGN and published Spanish normative data (the Neuronorma

Project22,23—from this point forward, “TN”will specifically refer to this

set of traditional neuropsychological norms). Data were missing for

10% of the observations, with copy and delayed recall of the ROCF

each accounting for 37% of the overall missing data.

2.2.2 CSF biomarkers of AD

All participants underwent a baseline lumbar puncture to analyze CSF

AD biomarkers, of which Aβ 1–42 (Aβ42) was the most widely avail-

able Aβ biomarker across centers. Individuals were classified as either

Aβ-positive (Aβ+) or Aβ− based on each center’s cutoff for Aβ42
(SupplementaryMethods).

2.2.3 Cognitive trajectories

In a subset of participants from Hospital de la Santa Creu i Sant Pau

forwhomat least a 1-year longitudinal neuropsychological assessment

was available (n = 812), follow-up changes in the MMSE score were

used to track their cognitive performance over time.

2.3 Added value of NGN

To explore the potential added value of NGN over TN, we exam-

ined if NGN-derived cognitive status classification (i.e., CN or MCI)

improved the associations with neuropsychological performance, CSF

AD biomarkers, and cognitive trajectories compared to TN.

To compare the norms, we applied the same actuarial neuropsycho-

logical criteria, adapted from Jak/Bondi criteria,17 to both NGN- and

TN-based scores. Adaptation of Jak/Bondi criteria involved defining

impairment as a performance<−1.5 standard deviations (SD) from the

normative mean (corresponding to a z-score < −1.5 and a scaled score
≤ 5), as opposed to < −1 SD put forward by Jak/Bondi. This midpoint

cutoff (−1.5 vs. −1 or −2 SD) aligns with common practices in the field

and offers a good compromise between sensitivity and specificity. Par-

ticipants were actuarially diagnosed with MCI if they had two or more

impaired normed scores within at least one cognitive domain across

memory, attention/executive function, or language. Participants were

considered CN only if they had at least two cognitive measures avail-

able across all the examined domains, and the criteria forMCIwere not
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met. In making actuarial diagnoses, we did not account for visuospa-

tial function, as 47% of the participants had insufficient data available

for classification in this domain; thus, considering visuospatial skills

would have precluded many otherwise CN individuals from receiving

a neuropsychological diagnosis.

Four possible combinations of actuarial neuropsychological diag-

noseswere expected: individualswith a normal performance according

to both TN and NGN (CNtn/CNngn); individuals performing abnormally

by both norms (MCItn/MCIngn); individuals classified as CN based on

TN, but diagnosed with MCI under NGN (CNtn/MCIngn); and those

classified as MCI according to TN, but performing normally as per

NGN (MCItn/CNngn). We explored the frequencies of these diagnostic

groups and conducted between-group comparisons on their demo-

graphic characteristics, neuropsychological performance, and rates

of AD-related biomarkers. We also compared cognitive trajectories

across diagnostic groups, as measured by changes in MMSE scores

over time: we first analyzed the complete longitudinal dataset; sub-

sequently, we performed separate subanalyses for Aβ+ and Aβ−
participants to capture cognitive progressiondrivenbyADandnon-AD

underlying etiologies, respectively.

2.4 Statistical analyses

Statistical analyses were conducted using R, version 4.2.3.24 Between-

group differences in continuous variables were assessed using t-tests

for two-group comparisons and one-way analysis of variance (ANOVA)

for three or more groups. For unequal variances, we applied Welch’s

t-test and Welch’s ANOVA. Group differences in categorical variables

were examined using chi-squared tests. Statistical significance for all

tests was set at p value < 0.05 (α = 0.05). Standardized effect size

statistics were calculated to quantify the magnitudes of between-

group differences: we reported Cohen’s d (d) for t-tests, eta-squared

(η2) for ANOVA, and Cramér’s V (φc) for chi-squared tests. The mag-

nitudes of the differences were interpreted as small, medium, or large

based on generally accepted thresholds.25 To account for demographic

influences when comparing neuropsychological performance across

diagnostic groups, we calculated w-scores (standardized residuals)

using a fully adjusted regression approach. For each neuropsycho-

logical measure, a multiple linear regression model was fitted in the

CNtn/CNngn reference group. Based on clinical knowledge, age, edu-

cation, and sex were included as covariates in all models, irrespective

of their univariate or multivariate significance. The predicted value

for each participant was subtracted from their observed raw score

and divided by the model’s residual SD, yielding a w-score that rep-

resents individual deviation from demographically adjusted expected

performance. Post hoc analyses were corrected for multiple com-

parisons using the Bonferroni method. To conduct difference and

equivalence tests, we prespecified thresholds for a meaningful differ-

ence (δ): ≥ 0.20 for d, ≥ 0.01 for η2, and ≥ 0.10 for φc, according to

conventions.25 We concluded that differences in between-group com-

parisons existed whenever a statistically significant and meaningful

difference was found. Equivalence between groups was established

when the upper limit of the 90% (1–2α) confidence interval for the

effect size fell entirely below the predefined equivalence threshold

δ.26 We applied linear mixed-effects (LME) models for the longitudinal

analyses to predict annual changes in MMSE scores across diagnostic

groups. Themodels incorporated fixed effects for the group (up to four

levels: CNtn/CNngn, MCItn/MCIngn, CNtn/MCIngn, and MCItn/CNngn),

time, and their interaction. Age at baseline, education, and sex were

also incorporated as fixed effects to account for their potential influ-

ence on cognitive trajectories. To consider individual variability in

baseline scores and rates of change over time, a random intercept,

as well as a random slope for time, were included for each partici-

pant. We used the restricted maximum likelihood method for model

estimation. Akaike Information Criterion was used to assess our final

models’ fit.

3 RESULTS

3.1 Demographics and baseline characteristics

Table 1 presents baseline characteristics of all participants, stratified

by conventional diagnosis. The MCI group was older, had fewer years

of education, lowerMMSE scores, and a higher proportion of CSF Aβ+
participants than the CN group. The sex distribution was equivalent

between the MCI and CN groups. Raw neuropsychological scores of

MCI individuals were significantly worse than those of CN individuals

on all 14 cognitive measures, with large effect sizes.

3.2 Added value of NGN

Of the 2405 participants, 2185 had enough baseline neuropsycho-

logical data to receive an actuarial cognitive classification based on

both TN and NGN. Among these, 81% of the individuals actuarially

identified as CN by TN, and 97% of those diagnosed with MCI by

TN, were classified the same by NGN (CNtn/CNngn and MCItn/MCIngn

groups, respectively). Conversely, 19%ofTN-classifiedCNparticipants

were diagnosed with MCI by NGN (CNtn/MCIngn). Finally, 3% of TN-

classified MCI individuals were considered CN by NGN (MCItn/CNngn;

Figure 1). Table 2 displays baseline demographics, neuropsychologi-

cal performance, and proportions of CSF Aβ+ individuals across the

four actuarially reclassified diagnostic groups. Comparisons of TN- and

NGN-derived actuarial classifications versus conventional diagnoses

made at each center are provided in Tables S2 and S3.

3.2.1 Demographic characteristics

Across the four diagnostic groups, statistically significant overall differ-

ences were observed for age and years of education, with effect sizes

indicating amedium-to-large difference for age and a small-to-medium

difference for education. No significant differences were observed for

sex distribution (Table 2).
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TABLE 1 Baseline demographic, neuropsychological, and biomarker characteristics of participants.

Characteristics

All participants

N= 2405*

CN

n= 987*

MCI

n= 1418* p value† Effect size‡

Demographics

Age (years) 67 (9.5) 62 (8.9) 70 (8.4) < 0.001 d = 0.98

Education (years) 12 (4.8) 13 (4.3) 11 (4.8) < 0.001 d = 0.50

Sex (female) 1367 (57%) 594 (60%) 773 (55%) 0.007 φc = 0.05

Clinical measures

MMSE (/30) 27.0 (2.9) 28.7 (1.5) 25.8 (3.0) < 0.001 d = 1.17

Neuropsychological performance (raw scores)

VOSP number location (/10) 8.0 (2.3) 9.1 (1.2) 7.4 (2.5) < 0.001 d = 0.80

ROCF copy (/36) 29.8 (6.2) 32.0 (3.6) 26.9 (7.5) < 0.001 d = 0.90

FCSRT total free recall (/48) 17.2 (10.3) 26.7 (6.3) 11.4 (7.6) < 0.001 d = 2.15

FCSRT total recall (/48) 33.0 (12.8) 43.3 (4.7) 26.6 (12.1) < 0.001 d = 1.67

FCSRT delayed free recall (/16) 6.4 (4.8) 10.7 (2.9) 3.7 (3.6) < 0.001 d = 2.10

FCSRT delayed total recall (/16) 11.3 (4.9) 15.1 (1.4) 8.9 (4.8) < 0.001 d = 1.64

ROCF delayed recall (/36) 13.2 (7.0) 16.1 (5.9) 9.2 (6.4) < 0.001 d = 1.14

TMT-A (s) 62.6 (36.1) 41.3 (18.4) 77.5 (37.9) < 0.001 d = 1.16

TMT-B (s) 176.1 (98.8) 103.0 (63.5) 227.3 (86.1) < 0.001 d = 1.60

Digit Span Forward (/9) 5.2 (1.2) 5.7 (1.2) 4.9 (1.1) < 0.001 d = 0.75

Digit Span Backward (/8) 3.9 (1.2) 4.4 (1.2) 3.5 (1.1) < 0.001 d = 0.88

Phonetic fluency (n) 12.2 (5.6) 15.8 (4.9) 9.6 (4.6) < 0.001 d = 1.31

Semantic fluency (n) 16.3 (6.8) 21.1 (6.0) 12.9 (5.0) < 0.001 d = 1.51

BNT (%) 81.7 (14.5) 90.5 (7.8) 75.6 (15.0) < 0.001 d = 1.18

CSFAβ status

Aβ+ 1008 (42%) 213 (22%) 795 (56%) < 0.001 φc = 0.34

Note: Descriptive and inferential statistics on baseline demographics,MMSE scores, raw neuropsychological scores, and frequencies of CSFAβ+ participants,

stratified by conventional diagnosis. Bold p values indicate statistical significance (< 0.05).

Abbreviations: Aβ, amyloid β; Aβ+, Aβ–positive; AD, Alzheimer’s disease; BNT, Boston Naming Test; CN, cognitively normal; CSF, cerebrospinal fluid; FCSRT,

Free and Cued Selective Reminding Test; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; ROCF, Rey–Osterrieth Complex Figure;

SD, standard deviation; TMT-A/B, Trail Making Test Part A/Part B; VOSP, Visual Object and Space Perception Battery.

*Mean (SD); n (%).
†Welch’s two sample t-test; Pearson’s chi-squared test.
‡d=Cohen’s d, φc=Cramér’s V.

3.2.2 Neuropsychological performance

For most neuropsychological measures, visual inspection of results

indicated a stepwise cognitive performance across the four diagnos-

tic groups: participants in the CNtn/CNngn group performed better

than those in the MCItn/CNngn group, who in turn outperformed the

CNtn/MCIngn group; finally, the MCItn/MCIngn group showed the low-

est performance. Inferential analyses confirmed significant and mean-

ingful between-group differences across all neuropsychological mea-

sures after adjusting for relevant demographic factors, with the largest

differences in FCSRT subtests (i.e., verbal memorymeasures; Table 2).

3.2.3 CSF biomarkers of AD

A chi-squared test revealed significant between-group differences in

CSF Aβ+ prevalence. The largest difference was observed between

the CNtn/CNngn (22%) and MCItn/MCIngn (65%) groups. Notably, the

MCItn/CNngn group showed an Aβ+ prevalence (8.7%) statistically

equivalent to that in the CNtn/CNngn group, while the proportion

of Aβ+ individuals in the CNtn/MCIngn group (48%) more closely

resembled that in theMCItn/MCIngn group (Table 2; Figure 2).

3.2.4 Cognitive trajectories

Longitudinal data were available for 812 participants (CNtn/CNngn,

n = 374; MCItn/CNngn, n = 8; CNtn/MCIngn, n = 105; MCItn/MCIngn,

n= 325), representing 34%of the total sample. The longitudinal cohort

consisted of 322 Aβ+ and 490 Aβ− participants. Significant between-

groupdifferences in baselineMMSE scoreswere observed,with a large

effect size. The differences in baseline MMSE scores followed this

pattern: CNtn/CNngn >MCItn/CNngn > CNtn/MCIngn >MCItn/MCIngn.

Participants underwent a mean (SD) of 3.6 (1.9) MMSE assessments,
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F IGURE 1 Cognitive classification by NGN versus TN. Absolute and relative frequencies of actuarial cognitive classifications based onNGN
compared to those based on TN. CN, cognitively normal; MCI, mild cognitive impairment; NGN, next-generation norms; TN, traditional norms.

with a median (range) of 3 (2–11) evaluations, over a mean (SD)

follow-up period of 4.2 (2.7) years, with a median (range) of 3.5 (1.0–

14.1) years. Importantly, no statistically significant between-group

differences were found in terms of follow-up number of visits or dura-

tion, enhancing the comparability of longitudinal cognitive trajectories

across groups (Table S4).

We first applied an LMEmodel to the complete longitudinal dataset

to explore general trends. Next, we conducted subanalyses on the Aβ+
and Aβ− cohorts. The MCItn/CNngn group was not included in the

models due to insufficient sample size (n= 8) for valid estimation.

When analyzing the complete longitudinal dataset, the LME model

revealed statistically significant differences in baseline MMSE scores

and their annual changes for the MCItn/MCIngn and the CNtn/MCIngn

groups compared to the reference CNtn/CNngn group. Specifically, the

MCItn/MCIngn group exhibited a mean MMSE score that was 1.97

points lower at baseline and decreased by an additional 0.80 points

per year relative to the CNtn/CNngn group. The cognitive trajectory

of the CNtn/MCIngn group was also significantly different from that of

the CNtn/CNngn group, with a mean MMSE score that was 0.72 points

lower at baseline and an annual decline that exceeded by 0.32 points

that of the CNtn/CNngn group (Figure 3A; Table S5).

Subsequently, we conducted separate LME models of the Aβ+ and

Aβ− subsamples. The diagnostic groups exhibited similar tendencies

in cognitive trajectories as observed in the complete dataset, although

not all comparisons reached statistical significance (Figure 3B,C; Tables

S6 and S7).

4 DISCUSSION

We previously derived Aβ− NGN for a comprehensive neuropsy-

chological battery using GAMLSS.10 In this study, we evaluated the

added value of NGN in detecting cognitive impairment compared

to TN. Our results indicate that NGN enhance diagnostic sensi-

tivity, while preliminary analyses do not reveal any overt loss of

specificity.

We observed notable discrepancies between TN- and NGN-based

cognitive classifications. Specifically, one of every five (19%) partic-

ipants considered CN under TN was diagnosed with MCI by NGN,

while 3% of those diagnosed withMCI under TNwere classified as CN

by NGN. These reclassifications were supported by patterns of neu-

ropsychological performanceandADbiomarkerpositivity. Participants

consistently classified asCN (CNtn/CNngn) performedbest, followedby

those TN-diagnosed with MCI but NGN-classified CN (MCItn/CNngn);

these, in turn, outperformed participants TN-classified CN but NGN-

diagnosed with MCI (CNtn/MCIngn); finally, participants consistently

diagnosed with MCI (MCItn/MCIngn) showed the poorest neuropsy-

chological performance. Regarding AD biomarkers, the MCItn/CNngn

group had the lowest proportion of Aβ+ individuals (8.7%), statistically

equivalent to that in the CNtn/CNngn group (22%). In turn, the propor-

tion of Aβ+ participants in the CNtn/MCIngn group (48%) more closely

resembled that in theMCItn/MCIngn group (65%).

These findings suggest that CNtn/MCIngn individuals likely repre-

sent false-negative diagnostic errors under TN. The enhanced sensitiv-

ity achieved byNGNwas primarily driven by impairments in the FCSRT

subtests, detected by NGN but not by TN. This aligns with established

evidence that episodic memory deficits are the hallmark ofMCI due to

AD.27–29 Conversely, MCItn/CNngn individuals might represent false-

positive diagnostic errors by TN, possibly related to alternative, more

benign etiologies.

Longitudinal analyses further validated the utility of NGN. The

CNtn/MCIngn group demonstrated baseline MMSE scores and annual

decline rates that were intermediate between those observed in the

CNtn/CNngn and MCItn/MCIngn groups. These trends remained con-

sistent across Aβ+ and Aβ− subgroups, although some comparisons

did not reach statistical significance due to limited statistical power.
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TABLE 2 Baseline demographic, neuropsychological, and biomarker characteristics across actuarially reclassified diagnostic groups.

Characteristics

CNtn/CNngn

n= 1066*

MCItn/CNngn

n= 23*

CNtn/MCIngn
n= 242*

MCItn/MCIngn
n= 854* p value† Effect size‡

Demographics

Age (years) 63.0 (9.7) 57.4 (11.7) 70.3 (8.8) 68.8 (8.4) < 0.001 η2 = 0.11

Education (years) 13.0 (4.7) 12.2 (5.2) 10.0 (4.2) 11.7 (4.8) < 0.001 η2 = 0.04

Sex (female) 625 (59%) 14 (61%) 146 (60%) 466 (55%) 0.2 φc = 0.03

Clinical measures

MMSE (/30) 28.5 (1.7) 27.2 (2.8) 26.5 (2.8) 25.2 (3.1) < 0.001 η2 = 0.28

Neuropsychological performance (w-scores)

VOSP number location 0.0 (1.0) −0.5 (1.2) −0.4 (1.3) −0.7 (1.5) < 0.001 η2 = 0.07

ROCF copy 0.0 (1.0) −0.4 (1.3) −0.3 (1.4) −1.0 (1.8) < 0.001 η2 = 0.1

FCSRT total free recall 0.0 (1.0) −0.9 (0.9) −1.2 (0.9) −2.5 (1.0) < 0.001 η2 = 0.59

FCSRT total recall 0.0 (1.0) −0.7 (1.1) −2.0 (1.5) −4.9 (2.5) < 0.001 η2 = 0.62

FCSRT delayed free recall 0.0 (1.0) −0.6 (1.0) −1.4 (1.0) −2.5 (1.0) < 0.001 η2 = 0.58

FCSRT delayed total recall 0.0 (1.0) −0.5 (1.0) −2.1 (1.7) −5.4 (3.0) < 0.001 η2 = 0.59

ROCF delayed recall 0.0 (1.0) −0.4 (1.2) −0.7 (1.0) −1.3 (1.0) < 0.001 η2 = 0.25

TMT-A 0.0 (1.0) −0.9 (1.4) −1.0 (1.8) −1.6 (2.1) < 0.001 η2 = 0.18

TMT-B 0.0 (1.0) −0.8 (1.0) −1.0 (1.2) −1.5 (1.4) < 0.001 η2 = 0.27

Digit Span Forward 0.0 (1.0) −1.0 (0.9) −0.3 (0.9) −0.5 (1.0) < 0.001 η2 = 0.05

Digit Span Backward 0.0 (1.0) −1.1 (0.8) −0.4 (0.9) −0.6 (1.0) < 0.001 η2 = 0.09

Phonetic fluency 0.0 (1.0) −0.9 (1.0) −0.6 (0.8) −1.0 (1.0) < 0.001 η2 = 0.18

Semantic fluency 0.0 (1.0) −0.6 (1.1) −0.7 (0.7) −1.1 (0.9) < 0.001 η2 = 0.25

BNT 0.0 (1.0) −0.7 (0.8) −1.1 (1.5) −1.9 (2.1) < 0.001 η2 = 0.24

CSFAβ status

Aβ+ 234 (22%) 2 (8.7%) 115 (48%) 558 (65%) < 0.001 φc = 0.42

Note: Descriptive and inferential statistics on baseline demographics, MMSE scores, neuropsychological performance, and frequencies of CSF Aβ+ partic-

ipants across actuarially reclassified diagnostic groups. Raw neuropsychological scores were converted to demographically adjusted w-scores (reference
group: CNtn/CNngn) to account for the potential influence of demographic variables on neuropsychological performance and to facilitate comparison across

measures. Bold p values indicate statistical significance (< 0.05).

Abbreviations: Aβ, amyloid β; Aβ+, Aβ–positive; AD, Alzheimer’s disease; ANOVA, analysis of variance; BNT, Boston Naming Test; CN, cognitively normal;

CSF, cerebrospinal fluid; FCSRT, Free andCued Selective Reminding Test;MCI, mild cognitive impairment;MMSE,Mini-Mental State Examination; ngn, next-

generation norms; ROCF, Rey–Osterrieth Complex Figure; SD, standard deviation; TMT-A/B, Trail Making Test Part A/Part B; tn, traditional norms; VOSP,

Visual Object and Space Perception Battery.

*Mean (SD); n (%).
†One-way ANOVA;Welch’s ANOVA; Pearson’s chi-squared test.
‡η2 = eta-squared, φc=Cramér’s V.

These results support the utility of NGN in detecting early cognitive

impairment and reflect the accelerating nature of cognitive decline

observed in previous longitudinal studies.30 Additionally, consistent

with the progressive nature of AD, the Aβ+ CNtn/CNngn subgroup

exhibited a steeper cognitive decline than the Aβ− CNtn/CNngn sub-

group, which was likely composed primarily of individuals without

neurodegenerative pathology.

The diagnostic advantage of NGN over TN likely stems from a com-

bination of factors. First, our approach of excluding individuals with

biomarker evidence of Aβ accumulation from the normative sample

is endorsed by prior research,31–34 and was further validated by our

previous findings.10 This approach may thus have reduced the risk of

attributing to normal aging the cognitive decline due to undetected

pathology, thereby enabling a more accurate assessment of neuropsy-

chological performance and AD-related cognitive decline.35 Second,

theGAMLSS framework enables the inclusion of continuous predictors

(e.g., age and education) and modeling of all distribution parameters

(not just the mean), leading to more precise and realistic normative

estimates.36,37 Finally, adjusting NGN for sex, along with age and

education, has likely contributed to their improved accuracy.38

These results have relevant implications for clinical practice and

research. Current diagnostic criteria and expert consensus recom-

mend that, in clinical settings, AD biomarkers be reserved for cogni-

tively impaired individuals.8,9 Our findings suggest that NGN could

support clinical decision-making by enhancing the identification of

individuals who qualify for biomarker testing. Additionally, because
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F IGURE 2 Proportions of CSF Aβ+ participants across actuarially reclassified diagnostic groups and Bonferroni-corrected pairwise
comparisons. Aβ, amyloid β; Aβ−, Aβ-negative; Aβ+, Aβ-positive; adj. p value, Bonferroni-adjusted p value; CI, confidence interval; CN, cognitively
normal; CSF, cerebrospinal fluid; MCI, mild cognitive impairment; ngn, next-generation norms; tn, traditional norms; φc, Cramér’s V.

F IGURE 3 Longitudinal trajectories ofMMSE scores across actuarially reclassified diagnostic groups. LMEmodel estimates of temporal
changes inMMSE scores are shown for the complete longitudinal dataset (A), and for the Aβ+ (B) and Aβ− (C) subsamples. TheMCItn/CNngn group
was not included in themodels due to insufficient sample size for reliable analysis. The shaded areas represent 95%CI. Aβ, amyloid β; Aβ−,
Aβ-negative; Aβ+, Aβ-positive; CI, confidence interval; CN, cognitively normal; LME, linear mixed-effects; MCI, mild cognitive impairment; MMSE,
Mini-Mental State Examination; ngn, next-generation norms; tn, traditional norms.

copathology occurs frequently, it is recommended that a positive

biomarker result should not lead to a diagnosis of AD unless backed

by a suggestive clinical phenotype, including a consistent profile of

cognitive impairment.6,8,9,39 In this regard, a comprehensive neu-

ropsychological evaluation covering the main cognitive domains (i.e.,

memory, language, attention/executive, and visuospatial functions) is

essential to capture the nature and extent of the deficits.40 NGN

contribute to the characterization of cognitive impairment and the

assessment of severity across these primary domains, thereby inform-

ing the interpretation of biomarkers in routine clinical practice.

Importantly, timely and accurate detection of AD-related cognitive

impairment enables earlier treatment, which may improve patient

outcomes and boost the ability of clinical trials to detect drug

efficacy.7,41
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This study has limitations. The first limitation is that the valida-

tion sample is not completely independent of the normative dataset.

The preceding effort to maximize the sample size of the normative

datasetmade it unfeasible to obtain a contemporaneous, entirely inde-

pendent validation sample. However, more than two thirds of the

participants (1507 out of 2185, 69%) involved in assessing the util-

ity of NGN were independent of the normative sample. We judged

that maintaining the overlapping normative participants in the valida-

tion sample (678 out of 2185, 31%) was the best available option, as

excluding themwould likely have introducedother limitations.Notably,

this would have biased the Aβ+ prevalence in the validation sample,

particularly in the CNtn/CNngn group, by enriching it with Aβ+ partic-

ipants above the expected prevalence in the general population.42 This

overrepresentation of Aβ+ CNtn/CNngn individuals could dilute the

comparative results. Thus, although the lack of entirely independent

samples is a limitation, we believe our approach offers the most reli-

able validation given the constraints. Second, the absence of autopsy

or biomarker confirmation for non-AD neurodegenerative diseases

limits the interpretability of our findings. To address this limitation,

we used longitudinal analyses to capture cognitive deterioration over

time as a surrogate marker of neurodegeneration. Finally, because the

MCItn/CNngn subgroup—providing the most direct test of specificity—

was small, and only a minority had at least 1-year follow‑up data, our

study cannot definitively quantify specificity. Future research should

aim to replicate these findings in an independent sample. In addition,

future studies could incorporate base‑rate approaches that explic-

itly model false‑positive rates43 and longitudinal clinical outcomes to

provide amore rigorous estimate of specificity.

In conclusion, our findings indicate that, by integratingmethodolog-

ical strengths, NGN improve the detection of cognitive impairment,

particularly AD-related cognitive impairment. Implementing NGN in

clinical and research settings could refine decision-making, enhance

clinical trial design, and ultimately improve patient outcomes.
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