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 This study explores how a pre-service mathematics teacher mobilizes specialized knowledge 

while teaching three geometric concepts: similarity, homothety, and Thales’ theorem. Drawing 
on the mathematics teachers’ specialized Knowledge model and Duval’s (1995) theory of 
registers of semiotic representation, the study examines how knowledge domains are enacted 
through multiple representations. Data were collected from three consecutive lessons during 
the teacher’s practicum in a socioeconomically disadvantaged and traditionally structured 
classroom. Findings indicate that the pre-service teacher evidenced representational fluency 
and procedural clarity, particularly in the use of diagrams and gestures to convey proportional 
reasoning. However, conceptual generalizations and formative engagement with students’ 
thinking remained limited. The study underscores the importance of teacher education 
programs in explicitly linking representational practices with epistemic goals and student 
reasoning, especially in socioeconomically disadvantaged contexts where systemic constraints 
often restrict opportunities. This research contributes to ongoing discussions on pre-service 
teacher development and the pedagogical demands of geometry instruction in authentic 
classroom settings. 
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INTRODUCTION 

Preparing future mathematics teachers remains a significant challenge, particularly in supporting pre-
service teachers to develop both strong content knowledge and the ability to teach for conceptual 
understanding (e.g., Ball et al., 2008; Hill et al., 2005; Shulman, 1986). In geometry education, this challenge is 
especially evident, as instruction often emphasizes definitions, formulas, and procedures while giving limited 
attention to reasoning processes and the coordinated use of diverse representations (e.g., Battista, 2007; 
Caviedes et al., 2024; Clements, 2003; Freudenthal, 1983). Such practices constrain students’ geometric 
reasoning and spatial thinking, as highlighted in international assessments (OECD, 2023), and expose deeper 
weaknesses in teacher preparation. Research further shows that many pre-service and in-service teachers 
share misconceptions with their students, particularly in recognizing geometric properties and understanding 
relationships between figures (e.g., Avcu, 2022; Seah & Horne, 2020; Sinclair, 2016). This concern has been 
foregrounded in the 26th ICMI study on advances in geometry education, which underscores the persistent 
difficulty of fostering meaningful geometric understanding (Lowrie et al., 2024).  
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Within this landscape, three interconnected topics–homothety, similarity, and Thales’ theorem (TT)–offer 
a valuable lens for investigating teacher knowledge. All draw on proportional reasoning and require the 
coordination of multiple semiotic registers, including visual, algebraic, and spatial forms (Duval, 2017; 
Espinoza-Vásquez et al., 2025; Henríquez Rivas et al., 2021; Seago et al., 2014). Although they pose distinct 
instructional challenges, together they engage core geometric ideas of dilation, transformation, and 
invariance, which are central to developing reasoning, proof, and representational use in geometry instruction 
(NCTM, 2000). Examining how teachers mobilize knowledge in these areas sheds light on the broader 
demands of geometry education, particularly the selection and coherent coordination of representations 
across diverse teaching contexts (e.g., Mwadzaangati, 2019; Mwadzaangati et al., 2022; Tachie, 2020). 

Recent studies have explored task design and instructional strategies for teaching homothety, similarity, 
and TT (e.g., Aguilera-Moraga et al., 2025; Basu et al., 2022). For example, Basu et al. (2022) show that rich, 
well-sequenced tasks using nonstandard shapes can deepen students’ understanding of similarity, 
homothety and proportionality. Homothety, a geometric transformation involving proportional scaling from 
a center, requires the coordination of spatial reasoning and algebraic relationships, demanding fluency across 
semiotic registers to support conceptual understanding. Although central to transformation geometry 
curricula, most studies have focused either on student misconceptions (e.g., Oliveira & Lima, 2018; Sarpkaya 
Aktaş & Ünlü, 2017) or on the use of digital tools (e.g., Araújo & Gitirana, 2022; Gómez-Chacón & Kuzniak, 
2015). Belbase et al. (2020) further show that pre-service teachers’ beliefs about dynamic geometry software 
often determine whether learning opportunities become conceptual or remain procedural, while little 
research has examined how teachers mobilize knowledge in authentic classroom contexts. 

Similarity is closely related to homothety but is frequently introduced statically through side ratios and 
angle congruence, without establishing connections to transformation. Research shows that teachers often 
default to ratio-based reasoning, rarely engaging students in exploring homothety, invariance, or 
transformation (e.g., Seago et al., 2013, 2014). Even when representational fluency is present, these deeper 
conceptual links often remain implicit. TT complements these ideas by providing a structured context for 
proportional reasoning involving parallel lines and transversals. Beyond its geometric conclusion, TT offers 
opportunities for integrative reasoning across arithmetic, algebra, and geometry (e.g., Espinoza-Vásquez et 
al., 2025), yet in practice it is often reduced to empirical verification or visual demonstration, bypassing the 
deductive reasoning central to geometric proof (Filloy & Lema, 1996).  

The knowledge gaps discussed above are often intensified in developing countries, where systemic and 
material constraints strongly influence classroom instruction (Mwadzaangati, 2019). Increasingly, research 
emphasizes the importance of studying teaching in real, non-idealized settings, where institutional and socio-
economic factors shape practice (Bartell et al., 2017; Ensor, 2001). In such contexts, teachers may display 
procedural fluency but struggle to connect representations with student thinking or conceptual goals. This is 
particularly evident in geometry, where fragmented use of representations can hinder engagement with 
foundational ideas such as transformation and invariance (e.g., Caviedes et al., 2024; Caviedes et al., 2025; 
Espinoza-Vásquez et al., 2025; Seago et al., 2014). The central challenge, then, is to develop strategic, context-
sensitive approaches to support effective geometry teaching. This shift requires moving beyond deficit views 
to empower teachers to foster exploration using accessible, low-cost tools like paper and pencil 
(Mwadzaangati, 2024). 

Building on these insights, this study characterizes how a pre-service secondary mathematics teacher (PST) 
mobilized specialized knowledge through semiotic registers across a sequence of geometry lessons. The 
analysis focuses on how this knowledge is enacted through the coordination of multiple representations and 
how instructional practices respond to broader epistemic and contextual demands. Rather than evaluating 
effectiveness, the study examines knowledge-in-use within a resource-constrained classroom. In doing so, it 
contributes to ongoing discussions in mathematics teacher education on preparing teachers for meaningful 
and contextually grounded geometry instruction. 

THEORETICAL FRAMEWORK 

This study draws on two complementary theoretical perspectives to analyze the specialized knowledge 
mobilized by a pre-service teacher during geometry instruction: the mathematics teachers’ specialized 
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knowledge (MTSK) model (Carrillo-Yáñez et al., 2018) and Duval’s (1995) theory of registers of semiotic 
representation. 

Mathematics Teachers’ Specialized Knowledge 

Understanding what teachers need to know to teach mathematics effectively has been the focus of 
considerable research over the past three decades. Shulman’s (1986) concept of pedagogical content 
knowledge (PCK) and its refinement in the form of mathematical knowledge for teaching (MKT) (Ball et al., 
2008) highlight that effective teaching requires a combination of content and pedagogical knowledge. The 
MTSK model offers a more fine-grained structure that emphasizes the disciplinary specificity of mathematics 
and the specialized nature of teachers’ mathematical work (Carrillo-Yáñez et al., 2018). The model 
distinguishes between two main domains–mathematical knowledge (MK) and PCK–with further subdomains. 
This study focuses on three subdomains: knowledge of topics (KoT), knowledge of mathematics teaching 
(KMT), and knowledge of features of learning mathematics (KFLM). 

KoT refers to the teacher’s understanding of mathematical concepts, definitions, properties and the 
relationships that structure the content (Montes et al., 2013). KMT involves the design and selection of 
explanations, examples, representations, and instructional sequences tailored to students’ needs (Carrillo-
Yáñez et al., 2013). KFLM involves awareness of how students engage with mathematical ideas cognitively and 
emotionally, including common misconceptions, difficulties and learning progressions (Carrillo-Yáñez et al., 
2018). These three subdomains provide a conceptual structure for identifying the forms of specialized 
knowledge that become visible in teaching practice. 

Registers of Semiotic Representation 

Duval’s (1995) theory of registers semiotic representation offers a complementary perspective by focusing 
on how mathematical meaning is constructed and communicated through multiple representations. 
According to Duval (2006, 2017), two cognitive processes are essential to mathematical understanding: 
treatment, which refers to operations performed within a single register (e.g., manipulating algebraic 
symbols), and conversion, which involves transitioning between registers (e.g., symbolic expression into a 
geometric figure). These processes enable students to access mathematical objects from multiple 
representations and to build integrated conceptual structures (Caviedes et al., 2024). 

Registers can be verbal (natural language [NL]), symbolic (algebraic notation), iconic (figures or sketches), 
geometric (spatial configurations), or graphical (Cartesian diagrams). In practice, teachers constantly shift 
between these registers through gestures, spoken explanations, written symbols, and drawn figures to 
convey mathematical concepts. Duval’s (1995) theory provides a framework for analyzing not only what 
knowledge is activated in teaching but how that knowledge is communicated and made accessible. 

Recent research has emphasized the need to address the semiotic and cognitive dimensions of MK, 
particularly how teachers understand and navigate the challenges students face when interpreting and 
working with different representations (e.g., Iori, 2018; Presmeg, 2006; Verdugo-Hernández & Caviedes, 2024). 
For instance, Iori (2018) found that while many secondary teachers show intuitive awareness of the distinction 
between a mathematical object and its semiotic representations, their understanding often lacks conceptual 
clarity and reflects non-specialist interpretations of key notions such as representation, treatment, and 
conversion. This gap constrains their ability to anticipate or respond to students’ difficulties in working across 
multiple semiotic registers and highlights the need to explicitly integrate semiotic reasoning into teacher 
education programs. 

In response to this call, the present study incorporates the semiotic dimension as an essential aspect of 
what makes mathematics teacher knowledge specialized. Although the study does not formally adopt the 
networking of theories framework, it draws on its principles (Prediger et al., 2008) to coordinate two 
complementary perspectives. The MTSK is used to identify and interpret the type of knowledge enacted 
during instruction, while Duval’s (1995) theory serves as a lens for analyzing how this knowledge is 
constructed, communicated, and transformed through the use of multiple semiotic resources (e.g., Caviedes 
et al., 2023). For example, when a teacher transitions from a geometric diagram to an algebraic proportion, 
this conversion not only reflects the coordination of symbolic and geometric representations, but also 
illustrates the simultaneous activation of KoT, through reference to proportional properties, and KMT, 
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through intentional instructional design that supports student engagement with various forms of 
representation. 

While the combined use of MTSK and Duval’s (1995) framework offers robust tools for analyzing 
instruction, neither fully addresses the sociocultural or institutional factors that shape teaching (Bartell et al., 
2017; Ensor, 2001). Nonetheless, their integration provides a focused lens for examining how a PST enacts 
specialized knowledge in geometry through the coordination of semiotic resources using low-cost materials 
(e.g., paper and pencil), highlighting the situated nature of teaching in resource-constrained contexts. 

METHODOLOGY 

General Characteristics of the Research 

This study is part of a national project focused on pre-service secondary teachers, particularly in the 
context of their professional training during the final year of their teacher education program. The participant 
in this study was enrolled in the tenth semester of a five-year program and completed all academic 
coursework in mathematics, pedagogy, and didactics. As part of the program’s culminating practicum 
component, the participant undertook 27 hours per week of supervised school-based teaching. Importantly, 
the program’s didactics of mathematics course encompasses key aspects such as the analysis of student 
difficulties and epistemological obstacles, curriculum organization, and the critical review of educational 
research. These topics are intended to be linked to major mathematical domains including Number Systems, 
Algebra, and Functions. 

Research Design  

This study adopts a qualitative case study methodology to explore how a PST mobilizes specialized 
knowledge when teaching geometric concepts. Specifically, it follows what Stake (1995) terms an instrumental 
case study, in which a particular case is examined to gain insight into a broader issue, in this case, the 
enactment of specialized knowledge in classroom practice. The study is situated within a mathematics 
education program in a Latin American country (Chile), and the classroom context corresponds to a low-
income secondary school characterized by a traditional, teacher-centered instructional model still prevalent 
in many such settings. The PST was purposefully selected due to the relevance of the lesson content to the 
study’s objectives. 

Data Corpus and Unit of Analysis  

The data corpus includes video recordings and transcriptions of three consecutive mathematics lessons 
delivered by the PST during the practicum. A total of eleven lessons were recorded; however, those directly 
addressing homothety, similarity and TT were selected for analysis. These consisted of three 90-minute 
sessions covering:  

(1) similarity of triangles,  

(2) the definition of homothety, including direct and inverse cases, and  

(3) a review session incorporating TT.  

Non-participant observation was employed (Cohen et al., 2007), allowing researchers to document 
classroom interactions without influencing the instructional process. Transcriptions include verbal 
explanations by the PST, student contributions, gestures, drawings, and inscriptions made on the whiteboard. 
Lesson plans were prepared by the PST and reviewed by the school-based mentor teacher, with the support 
of a university tutor. While the mentor retained primary responsibility for supervision, the university tutor 
contributed formative guidance. 

The unit of analysis was the PST’s instructional activity, delivered to a group of 40 students aged 14–15, 
and segmented into instructional episodes–defined as coherent sequences of interaction centered on a 
concept or task (Cohen et al., 2007). Each episode consisted of a series of discursive interventions (by both 
the PST and the students) sequentially numbered and served as the analytic unit through which both teacher 
knowledge and semiotic activity were examined. 
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Analysis  

Data were analyzed using a deductive-inductive approach, structured around a cyclical process of 
segmentation, coding, comparison, and refinement. Full transcripts of the three selected lessons were 
systematically segmented in Excel spreadsheet into instructional episodes. The qualitative analysis was 
conducted in two stages, integrating principles of thematic and interpretive analysis suited to classroom-
based inquiry (Burns & Grove, 2004). In the first stage, instructional episodes in which specialized knowledge 
became visible were identified and analyzed using the MTSK model (KoT, KMT, and KFLM) (see Table 1). In the 
second stage, the same episodes were examined through Duval’s (1995) theory of registers of semiotic 
representation with attention to the use of NL, algebraic, geometric, iconic, and gestural registers, as well as 
the cognitive operations of treatment and conversion between registers (see Table 1). 

A manual coding scheme was developed to operationalize constructs from both frameworks, including 
explicit definitions, guiding indicators, and illustrative examples to support consistency and analytic clarity. To 
enhance reliability, all episodes were independently coded by both researchers. The process was cyclical and 
iterative: initial coding was followed by collaborative review, refinement of categories, and re coding when 
necessary. This procedure supported progressively aligned interpretations and enabled a robust analysis of 
how specialized teacher knowledge was mobilized and communicated through the coordination of 
representations in authentic classroom practice. 

First session: Triangle similarity  

The first session focused on introducing triangle similarity through proportional reasoning and similarity 
criteria. The PST began with a brief review of proportionality and then stated the lesson objective: “Identify 
criteria for triangle similarity and apply them to given pairs of triangles”. To activate students’ prior knowledge, 
the PST asks, “Do you know what similarity is?” initiating a dialogue with the students. The PST addressed 
concepts such as congruence and similarity in triangles, defining them as: “Two figures are congruent when they 
have the same shape, the same dimensions, and the same angles … and … two figures are similar when they have 
the same shape, the same angles, but their measurements are not equal.” This phrasing gives indications of KoT, 
specifically an operational understanding of similarity and congruence grounded in visual attributes. 
However, the framing remains static and visual, without any mention of dynamic or transformational 
approaches. The lack of reference to transformation may reflect limitations in conceptual depth.  

Table 1. Analytical framework: Subdomains of MTSK and registers of semiotic representation 
Constructs/code Definition Example 
MTSK 
KoT Accuracy and conceptual depth in the 

mathematical content 
Providing a precise definition of geometric concepts; 
explaining properties of homothety 

KMT Use of appropriate pedagogical strategies and 
multiple representations 

Selecting illustrative examples; using representations 
to support explanations 

KFLM Anticipation of student difficulties and 
connection to prior knowledge 

Identifying common misconceptions; adjusting 
instruction based on observed errors 

Registers of semiotic representation 
NL register Use of verbal explanations and descriptions Explaining geometric concepts orally using every day 

or mathematical language 
AR Use of symbols, formulas, and algebraic 

expressions 
Writing proportions or equations to represent 
relationships between figures 

GeR Use and reference to geometric diagrams and 
properties 

Drawing and analyzing figures such as triangles and 
parallel lines to illustrate theorems and properties 

IR Use of alternative images, such as visual 
representations or analogical images 

Using simplified sketches or textbook visuals to 
evoke geometric ideas 

GR Use of gestures and physical movement to 
illustrate mathematical ideas 

Indicating transformations like dilation or direction 
using hand gestures 

Treatment (T) Transformations within a single semiotic register Solving an equation or manipulating a figure within 
(AR) and (GeR) respectively 

Conversion (C) Translation between different semiotic registers Moving from a geometric figure (GeR) to an algebraic 
expression (AR) to represent similarity 
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The PST then linked similarity to proportion, describing a ratio as: “a comparison between two or more 
quantities,” and connects this idea with proportion, defined as “an equality between two or more quantities.” 
These definitions were mathematically imprecise–particularly in describing a proportion as an “equality 
between quantities” rather than between ratios, which may lead to conceptual ambiguity. Nevertheless, the 
phrasing suggests an attempt to connect students’ prior arithmetic understanding with the new geometric 
content. This illustrates a common challenge in mathematics instruction: navigating the shift from informal, 
everyday language to formal mathematical discourse. The episode gives indications of limitations in the PST’s 
KoT, particularly in articulating definitions with mathematical precision. Despite this, the PST used these 
definitions as a bridge into a practical example involving triangle side lengths, coordinating the geometric 
register (GeR) through board drawings, NL for explanation, and the algebraic register (AR) to construct and 
manipulate ratios. Subsequently, the PST drew two triangles on the board and introduced a worked example 
involving specific side lengths: 

1 PT: “Now we’re going to compare … just like a ratio. Let’s say, for example, 21 is to 7. If I have here 
A’C, which side am I going to compare it with?” 

2 S5: “With A’C’.” 

3 PT: “With A’C’ […] Here we establish a ratio; we are comparing two quantities, two measurements, 
okay? We’re comparing one side of a triangle with its corresponding side, that is, the side that, when 
looking at the figures, corresponds to it because it is formed by the same angles, okay? [Writes ratio 
A’C’/AC] […] So, if we compare the sides to obtain the ratio, how do we calculate the ratio? What is 
the value of a ratio?” 

4 S3: “Its quotient.” 

5 PT: “Very good, so 21 divided by seven, how much is it?” 

6 S3: “Three.” 

7 PT: “That’s the ratio, the ratio we obtained by comparing [writes] […] So now, we’ve established 
our first ratio; we find that these triangles are at a ratio of three.” 

This segment involved conversions between the GeR, AR, and NL. The use of side labeling and proportion 
writing on the board (Figure 1) supported procedural identification of corresponding sides and their 
numerical relationships. The coordination of registers gives indications of KoT and KMT, as the PST structured 
a visual-symbolic path to quantify similarity. However, while the register use was appropriate, the 
mathematical focus remained procedural. The concept of why this ratio validates similarity was not discussed. 
For example, student 3’s response (“three”) was accepted without further discussion. This absence indicates 
minimal enactment of KFLM, as the PST did not address possible misconceptions or alternative explanations. 

Later, the PST stated: “you must compare the longest side with the longest side, the shortest side with the 
shortest side” This instruction was accompanied by written algebraic proportions (AR) and gesture-based 
reference to the labeled triangles (IR-GeR) (Figure 1). The PST’s explanation gives further indications of KoT, 
particularly in referencing invariant properties of similar figures such as shape and angle preservation. The 

 
Figure 1. Activity proposed by the PT (the authors’ compilation) 
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repeated matching of side types suggests attention to visual proportionality, although the concept remained 
undeveloped in theoretical terms. The coordination of registers might provide an indicator of the PST’s KMT, 
as it supported clarity in identifying corresponding parts. However, this segment focused on reinforcing rule-
following over concept exploration.  

Following this introduction, the PST transitioned into the similarity criteria. The first was the side-side-side 
(SSS) criterion: “If the three sides of one triangle are proportional to the three sides of another, the triangles are 
similar.” This explanation was accompanied by a diagram on the board illustrating two triangles with 
proportional side markings (GeR), written ratios comparing the side lengths (AR), and verbal elaboration (NL) 
(Figure 2). The coordination across these registers gives indications of the PST’s KoT, particularly in applying 
the proportionality condition correctly. The structured and sequential use of representations may evidence 
KMT, as it facilitates clarity and alignment between the visual and symbolic components. However, the 
explanation was declarative, and no exploration of the underlying reasoning behind the criterion was offered. 
Students were not prompted to generate examples, question the sufficiency of the condition, or compare it, 
which limited conceptual engagement. 

The second criterion, side-angle-side (SAS), was introduced as: “Two triangles are similar if two of their sides 
are proportional and the included angle is the same”. To support this explanation, the PST incorporated gestures 
(IR) and a triangle sketch (GeR) in which the right angle between two sides was emphasized. The PST used a 
hand gesture–bringing index fingers together–to illustrate the position of the included angle (Figure 3). This 
representational move gives indications of KMT, as it attempted to visually highlight the spatial configuration 
relevant to the criterion. The integration of gestures with symbolic and visual elements suggests attention to 
multimodal clarity. However, the PST did not engage students in verifying whether the position of the angle 
matters, nor did the explanation address potential misconceptions about angle placement, which are common 
in similar tasks. As such, while the explanation was technically correct, it lacked opportunities for elaboration 
or formative assessment. 

 
Figure 2. SSS criterion (the authors’ compilation) 

 
Figure 3. SAS criterion (the authors’ compilation) 
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The third and final criterion presented was angle-side-angle (ASA). The PST used a labeled triangle on the 
board, marking two equal angles and a proportional included side. One side was labeled with a variable (x) to 
indicate proportional scaling. The PST explained: “If two angles are equal and the included side is proportional… 
this side is double the other one, so the ratio is 2.” This explanation involved GeR, AR, and NL simultaneously 
(Figure 4). The coordination of symbolic notation and diagrammatic representation gives further indications 
of KoT, particularly in recognizing that similarity can be justified through angle congruence and 
proportionality. The use of the variable and ratio evidenced the PST representational fluency. This episode 
might indicate PST’s KMT, as it showed intentional alignment between algebraic scaling and geometric 
structure. However, similar to the previous cases, the presentation did not include comparisons across 
criteria. The PST did not ask whether two angles alone were sufficient, nor did he contrast ASA with other 
cases, which limited opportunities for deeper conceptual analysis, thus giving little indication of KFLM. 

Finally, the PST presented a short task in which students were asked to determine whether two given 
triangles were similar (Figure 5). The task required students to identify the appropriate similarity criterion 
based on the information provided. The PST facilitated the activity through brief verbal prompts: 

8 PT: “If two triangles are similar, you can’t just use any of the three criteria. No. You need to look 
at the information carefully. Are they similar?” 

9 S1: “No.” 

10 PT: “Side-side-side.” 

This exchange gives indications of KMT, as the PST attempted to direct students’ attention to the sufficiency 
of the given data and the correct application of the similarity criteria. While the question was closed and did 
not elicit elaborate reasoning, it suggests some awareness of the need to distinguish between the criteria 
based on available information. Furthermore, by foregrounding that “you can’t just use any of the three,” the 
PST implicitly acknowledged that students might overgeneralize or misapply similarity conditions–a point that 
gives indications of KFLM. However, the instructional move stopped short of exploring this issue in depth. The 

 
Figure 4. ASA criterion (the authors’ compilation) 

 
Figure 5. Activity provided by the PT to the students (the authors’ compilation) 
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student’s one-word response was accepted without follow-up, and the opportunity to engage in justification 
or discussion was not pursued. As such, while there is evidence of representational and procedural fluency, 
the interaction remained directive (Figure 5). 

Second session: Definition of homothety and direct and inverse homothety 

The second observed session focused on introducing and exploring the concept of homothety through six 
cases illustrating different values of the homothety ratio (K). The PST began by stating the lesson’s objective: 
“Understand the concept of homothety and its associated elements.” The session followed a structured 
progression, with emphasis on visual and algebraic representations to convey the transformation properties 
of homothetic figures. The PST defined homothety as a “geometric transformation by which a geometric figure 
changes its dimensions according to a scale factor, which we call the homothety ratio.” This verbal definition was 
accompanied by a freehand sketch of two similar triangles connected to a shared center of homothety, 
labeled O (Figure 6). The use of NL in tandem with geometric drawings (GeR) gives indications of KoT, 
specifically in recognizing that homothety preserves shape while altering size. However, the explanation 
remained descriptive rather than conceptual, with no reference to underlying transformational principles 
such as dilation, which limits the theoretical depth.  

To anchor the definition, the PST introduced a numerical example: “𝐴𝐴𝐴𝐴 = 3 cm, 𝐵𝐵𝐵𝐵 = 3 cm, 𝐶𝐶𝐶𝐶 = 3 cm, and 
𝐴𝐴′𝐵𝐵′ = 6 cm, 𝐵𝐵′𝐶𝐶′ = 6 cm, 𝐶𝐶′𝐴𝐴′ = 6 cm.” To illustrate the homothetic transformation, the PST explained that by 
applying the scale factor 𝐾𝐾 to these measures 𝑂𝑂𝑂𝑂 = 2.3 cm, 𝑂𝑂𝑂𝑂 = 4.5 cm, and 𝑂𝑂𝑂𝑂 = 2.6 cm, the new segment 
lengths 𝑂𝑂𝑂𝑂, 𝑂𝑂𝑂𝑂, and 𝑂𝑂𝑂𝑂 were obtained. This numeric scaling was supported by visual markings on the triangle 
sides and proportional comparisons, coordinating GeR with the AR. The explanation gives further indications 
of KoT and KMT as it employs familiar values to illustrate the effect of scaling. Next, the PST explained how to 
determine the homothety ratio by calculating distances from the center of homothety to each vertex, stating: 
“To calculate the scale factor, we divide the distance between the center of homothety ‘O’ and a homothetic point by 
the distance between ‘O’ and the corresponding original point.” This explanation coordinated AR and GeR with 
NL, and gives indications of both KoT and KMT, as it transformed an abstract idea into a practical procedure 
through multiple registers. The PST then initiated a guided dialogue to introduce the concepts of direct and 
inverse homothety. The interaction provided a moment of verbal engagement, where students offered 
tentative definitions that were then refined by the PST. However, despite the presence of student responses, 
the transcripts reveal instances where the PST did not acknowledge or build upon student contributions. In 
some of the exchanges (17–19), the PST overlooked some responses, missing opportunities to validate or 
clarify student thinking. These omissions reflect limitations in KFLM, particularly in terms of dialogic 
engagement and formative assessment. 

11 PT: “What is a homothety?” 

12 S1: “A numerical transformation where the figure changes.” 

13 PT: “Right, as S1 says, it’s a geometric transformation where a figure changes. S2, what can 
happen to the figure? Does it enlarge or shrink?” 

14 S2: “It enlarges or shrinks.” 

 
Figure 6. Example of the definition of homothety (the authors’ compilation) 
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15 PT: “Exactly, it increases or decreases in size […] And what do we call that?” 

16 S3: “Proportional.” 

17 PT: “Proportional, correct? Very good. So today, we will look at two types of homothety: direct 
and inverse. What determines if it is direct or inverse? It depends on a factor we studied. What is 
the factor that makes the figure increase or decrease in size?” 

18 S4: “Homothety.” 

19 PT: “The scale factor, which is the value we multiply by. What range of numbers can this factor 
take?” 

This exchange gives indications of KMT, as the PST used sequential questioning to guide students toward 
identifying the scale factor (K) as the determinant of homothetic transformation. It also suggests some 
attention to KFLM, as the PST responded flexibly to students’ informal or imprecise responses and reoriented 
them toward the desired mathematical vocabulary and concept. The coordination of NL, AR, and GeR within 
this dialogic context highlights the semiotic dimension of knowledge mediation. 

The remainder of the session was organized around six cases, each exploring a specific range or value of 
K. The PST consistently employed diagrams, labels, and numerical values to illustrate each scenario, with 
register coordination across AR, GeR, and occasionally gestural representations (IR). 

Case 1 and 2: K = 1 and K > 1: The PST stated that “The homothetic figure is identical to the original” when K 
= 1, and “larger than the original” when K > 1. Diagrams (GeR) showed side lengths increasing proportionally 
(Figure 7). This segment gives indications of KoT, and the coordinated use of visual and verbal registers 
provide indications of KMT. The explanation supported procedural clarity but did not elaborate on underlying 
geometric properties or invite student interpretation. 

Case 3: 0 < K < 1: In this case, the PST drew a reduced triangle in red and wrote “The homothetic figure is 
smaller than the original” (Figure 8). The visual use of color and relative size supported meaning-making and 
might provide an indicator of KMT, particularly in using visual strategies to convey proportional reduction. 
The explanation also gave indications of KoT by connecting fractional scale factors with dimensional 
reduction. However, as in previous cases, the discussion centered on descriptive outcomes–what happens–
rather than explanatory reasoning about why the transformation behaves this way. 

 
Figure 7. First and second example of the homothety ratio (the authors’ compilation) 

 
Figure 8. Third example of the homothety ratio (the authors’ compilation) 
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Case 4: 0 > K > –1: To introduce the concept of a negative homothety ratio, the PST assigned a value of 2 
units to the OA segment and applied a homothety ratio of K = –0.5. The PST physically showed the 
transformation using IR–mimicking a shortening of the segment–and drew the inverted image (Figure 9). The 
PST stated: “The negative sign indicates that the figure flips.”  

This explanation involved conversion between AR, GeR, and IR, giving indications of both KoT and KMT. 
Additionally, the explanation anticipated the common misconception of “negative distance,” suggesting 
emerging KFLM. The following exchange occurred during this explanation: 

20 PT: “The distance between 𝑂𝑂 and 𝐴𝐴 is two units, and let’s suppose 𝐾𝐾 is –0.5. What is 2 multiplied 
by –0.5.” 

21 S4: “It’s –1.” 

22 PT: “–1, right? Can we have negative distances?” 

23 S5: “No.” 

24 S4: “No, it flips.” 

25 PT: “Exactly. We project this line segment [points to the two-unit segment], and the new length 
is our result. If it was 2, now it’s 1. Distances can’t be negative. The negative sign indicates that the 
figure flips. So, point 𝐴𝐴′ is here [draws on the board].”  

26 PT: “So, if we know that for negative values the figure flips, what happens for values less than 
–1.” 

27 S10: “The same, but larger.” 

28 PT: “Exactly. The figure will be larger and inverted. But since it’s negative, it tells us that the 
orientation will flip. Therefore, for values less than –1 the figure will be larger and inverted [draws 
on the board].” 

This sequence gives indications of KoT, particularly in identifying the dual impact of negative homothety 
ratios–both inversion and scaling. The use of coordinated AR (–0.5), GeR (inverted triangle), IR (hand gestures 
to show shortening), and NL supports conversion between symbolic, visual, and embodied representations. 
The explanation gives indication of KMT, as the PST reinforced the idea that the sign of K determines 
orientation, while its magnitude affects size. Additionally, the dialogue reflects emerging KFLM, as the PST 
anticipated and addressed a typical student misconception–whether negative distances are meaningful in 
geometry. The strategy of physically exemplifying and then redrawing the transformation provided a 
concrete, multimodal anchor for interpreting negative homotheties. 

Case 5: K < –1: This case extended the exploration of negative homothety ratios by focusing on the 
combined effects of sign and magnitude. The PST guided the discussion using both questions and board-
based visual representations to clarify how values inferior to –1 invert and enlarge the figure. 

29 PT: “So, for values where 𝐾𝐾 is between 0 and –1 … the homothetic figure is smaller and inverted. 
Now, what happens for values less than –1?” 

 
Figure 9. Fourth example of the homothety ratio (the authors’ compilation) 
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30 S10: “The same, but larger.” 

31 S4: “The figure shrinks more.” 

32 PT: “Does it shrink?” 

33 S10: “When it is a decimal number less than –1, it gets larger.” 

34 PT: “[…] if I have a value multiplied by something negative, the greater the absolute value of the 
negative number, the farther it will be from zero. Suppose the center of homothety is my zero. If 
the distance from 0 to 𝐴𝐴 is 2 units, and I apply a homothety ratio, for example, of –100, it means 
that from 0 to 𝐴𝐴 there are –100 units. But we said that homothety involves straight lines, so this line 
cannot have –100 in that direction [pointing towards 𝐴𝐴] because that direction only accommodates 
positive values. Therefore, it must be represented from 0 in the opposite direction. That’s why it 
inverts.” 

This interaction gives indications of KoT, particularly in the PST’s attempt to unpack the mathematical 
relationship between the homothety ratio’s absolute value and its geometric effects. By posing questions 
about relative size and prompting clarification, the PST also engaged in pedagogical mediation indicating his 
KMT. The use of a hypothetical extreme value (K = –100) and the visual pointing toward the direction of 
projection suggested an effort to anchor abstract symbolic reasoning (AR) in concrete spatial understanding 
(GeR). The PST further integrated NL and gestures (IR) to describe directionality and orientation reversal, 
creating a multimodal learning experience.  

Moreover, the PST also gave indications of KFLM, as he responded to contradictory or inaccurate student 
claims (e.g., “the figure shrinks more”) and redirected them toward a correct interpretation. Figure 10 
depicted the result as larger and inverted, reinforcing the idea that transformations under K < –1 result in a 
reversal of orientation and an increase in size. This explanation aligned algebraic, verbal, and visual elements, 
offering multiple points of access to the underlying geometric concept. The emphasis on directionality, 
inversion, and proportional scaling highlighted how semiotic conversions across AR ↔ GeR ↔ IR were used 
to support the explanation.  

Case 6: K = –1: The final case introduced the special instance of a homothety ratio equal to −1. This 
transformation preserves size but inverts orientation. The PST concluded the typology with a short dialogue, 
reinforcing the pattern established in earlier examples:  

35 “PT: So, for values where K < –1 the figure becomes larger and inverted … what happens for K = 
–1?” 

36 S4: “It’s the same, but inverted.” 

This interaction gives indications of KoT, as it addressed the particular effect of a homothety ratio with 
magnitude –1. The PST coordinated AR and GeR by drawing two triangles of equal size but with reversed 

 
Figure 10. Fifth example of the homothety ratio (the authors’ compilation) 
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orientation on the board (Figure 11). This conversion between registers offered a visual anchor to support 
student interpretation. The prompt encouraged brief student engagement, and the PST confirmed the 
response without further elaboration. While the explanation was procedurally correct, no generalization was 
made regarding the homothety ratio’s behavior across categories, nor was a link drawn to transformational 
geometry more broadly. The interaction gives indications of KMT, particularly in reinforcing the classification 
logic of the homothety types. However, no further conceptual questioning or reflection was introduced. 
Although the use of NL, GeR, and AR supported semiotic coordination, the activity remained largely 
illustrative. The PST did not use this closing case to synthesize patterns or invite student conjecture, which 
limited the opportunity to further explore KFLM. 

Third session: Feedback on Thales’ theorem 

The third session focused on introducing and reviewing TT, as well as drawing initial connections to 
Pythagorean and Euclidean theorems, although the latter were not analyzed in detail. The PST began by 
declaring the lesson’s objective: “State Thales’ theorem and apply it to the calculation of means and introduce 
Pythagoras’ and Euclid’s theorems.” This session extended the topic of similarity and proportional reasoning by 
emphasizing TT as a foundation for understanding geometric relationships between parallel lines and 
transversals. 

The PST first states TT as “a proportional relationship between segments formed by two or more parallel lines 
intersected by two or more transversals.” While the phrasing was accessible, it lacked formal mathematical 
precision and did not refer to triangle similarity, which underpins the theorem’s justification. This definition 
gives indications of KoT, particularly in recognizing the proportional relationship among segments, but the 
absence of a conceptual derivation from similarity (as in prior sessions) suggests limitations in theoretical 
integration. 

To illustrate the theorem, the PST drew a diagram showing three horizontal lines intersected by two 
transversals, labeling them “𝐿𝐿1 ∥ 𝐿𝐿2 ∥ 𝐿𝐿3 as parallel lines, and 𝑅𝑅1, 𝑅𝑅2 as transversals” (part A in Figure 12).  

 
Figure 11. Sixth example of the homothety ratio (the authors’ compilation) 

 
Figure 12. Representation of TT (the authors’ compilation) 
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As the PST explained the parallelism, he used hand gestures (IR) to mimic the equal spacing of the lines, 
reinforcing the structural relationship. The coordination between gestures (IR) and the GeR gives further 
indications of KMT, as these representations helped convey the spatial structure of the situation. This was 
followed by a visual explanation of segment ratios using symbolic expressions. The PST wrote: “AB / A′B′ = BC 
/ B′C′ = AC/A′C′” and connected the algebraic form with the geometric configuration. This segment involved a 
conversion between the AR and GeR, suggesting coordination of representations to support interpretation. 
The explanation gives further indications of KoT and KMT, respectively–in constructing proportional 
relationships among corresponding segments and in referencing those segments through labeled diagrams. 
The PST used labeled side lengths to guide students in identifying and comparing corresponding parts, 
supporting both conceptual understanding and instructional clarity. The following actions suggest a treatment 
transformation within GeR, as the PST drew two similar triangles formed by the intersections, emphasizing 
their shared angles and proportional sides. The use of visual highlighting and side labeling suggested an effort 
to link TT back to similarity, although the connection remained implicit. This missed opportunity to explicitly 
reference the similarity criteria from Session 1 limited the conceptual continuity of the teaching sequence. 

 To guide student interpretation, the PST returned to gestures and spatial explanations, emphasizing 
parallelism using arm movements and then tracing corresponding segments on the board. This multimodal 
approach involved coordinated use of IR, NL, and GeR, which may indicate KMT, as the PST reinforced 
attention to invariant relationships through semiotic integration. However, no direct questions were posed to 
elicit student reasoning, nor were students asked to validate the proportionality claims or provide 
justifications. As a result, KFLM was minimally evident in this episode. 

Later in the session, the PST generalized: “Thales’ theorem tells us that corresponding sides are proportional.” 
This phrasing gave indication of KoT, as it summarized the procedural implication of the theorem but again 
omitted a geometric justification. The use of algebraic relationships to assert proportionality, without 
reference to the geometric transformations or angle relationships involved, reinforces the session’s 
procedural emphasis. The PST coordinated registers effectively and used multiple representations to support 
interpretation. However, similar to prior sessions, the lesson focused primarily on presenting and illustrating 
the content, without engaging students in exploratory reasoning, justification, or comparison. 

RESULTS AND DISCUSSION 

In the first session, the PST introduced triangle similarity by defining congruence and similarity through 
NL and supported the definitions with algebraic (AR) and geometric (GeR) representations. While this initial 
exposition evidenced procedural clarity, the definitions contained inaccuracies–e.g., describing a proportion 
as an “equality of quantities”–which suggest limitations in KoT. Such phrasing may reflect instructional 
tendencies where informal or everyday language is relied upon in lieu of more rigorous definitions–possibly 
due to limitations in content-specific pedagogical training, as observed in other contexts (Seago et al., 2013). 
The lesson continued with a worked example involving the ratio of corresponding triangle sides. The PST 
coordinated GeR, AR, and NL to set up and solve proportions between labeled side pairs and emphasized the 
idea of “matching the longest side with the longest side” (Figure 1). This coordination gives indications of both 
KoT and KMT, as the PST supported procedural fluency with visual reinforcement, but did not engage students 
in reasoning about why such proportional relationships hold. There was little dialogic exchange beyond 
checking answers, limiting KFLM enactment. Subsequently, the PST introduced the three standard similarity 
criteria–SSS, SAS, and ASA–through diagrams (GeR), algebraic ratios (AR), gestures (RFI), and verbal elaboration 
(NL). Each criterion was explained procedurally and illustrated through labeled triangle sketches. The 
explanations were technically correct but remained declarative and teacher centered. Students were not 
invited to compare cases, justify criteria, or explore conceptual underpinnings such as dilation or invariance. 
This lack of conceptual elaboration indicates a limited mobilization of KFLM. The lesson concluded with a short 
task asking students to determine whether given triangles were similar. The PST guided the task through 
closed questions, emphasizing the selection of the appropriate criterion. While the PST correctly anticipated 
common misconceptions (e.g., applying criteria arbitrarily), there was minimal follow-up on student reasoning 
or alternative interpretations. Table 2 summarizes the findings of this session. 
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The second session focused on the concept of homothety and the interpretation of the homothety ratio 
(K). The PST introduced homothety as a transformation that modifies a figure’s dimensions according to a 
scale factor (K). The lesson began with a verbal definition supported by a hand-drawn diagram (GeR) featuring 
triangle ABC and its image A’B’C’, with center O. This illustration enabled students to visualize geometric 
relations, and the alignment between NL and GeR provided indications of KoT. To operationalize the 
definition, the PST assigned numerical values to segments (e.g., AB = 3 cm, A’B’ = 6 cm) and computed the 
ratio K = 2. This example linked algebraic (AR) and GeR and showed the PST’s representational fluency. The 
PST also explained how the direction and magnitude of K determine whether a transformation is direct (same 
orientation) or inverse (inverted), using gestures (RFI) and guided questioning to involve students in identifying 
patterns, giving indications of both KMT and initial KFLM.  

To build procedural fluency, the PST presented five cases of homothety based on different values of K. 
Each case involved conversions between algebraic (AR), geometric (GeR), and iconic (IR) representations, 
emphasizing proportional measurement and directionality. These semiotic transitions supported visual clarity 
and rule-based application (KoT and KMT), particularly in distinguishing between direct and inverse 
transformations. While the approach facilitated procedural accuracy, opportunities for conceptual 
exploration, such as linking homothety to similarity or discussing geometric properties in coordinate systems, 
were not developed (Seago et al., 2013). The instructional approach remained largely expository, and although 
the PST anticipated difficulties with negative values of K, there was limited evidence of formative assessment 
or dialogic feedback (KFLM). Nonetheless, the PST did offer moments of instructional interaction aligned with 
KFLM. For instance, when a student incorrectly claimed that “the figure shrinks more” under K < –1, the PST 
redirected this reasoning by emphasizing that such transformations result in figures that are both enlarged 
and inverted. This explanation–supported by Figure 10–coherently aligned algebraic, verbal, and visual 
elements, offering multiple entry points to the geometric concept. The emphasis on directionality, inversion, 
and proportional scaling showcased the purposeful conversion across AR ↔ GeR ↔ IR registers to reinforce 
the explanation. Table 3 summarizes the findings for this session. 

The final session addressed TT and its applications. The PST defined TT using NL as “a proportional 
relationship between segments formed by two or more parallel lines intersected by two or more transversals.” 
The verbal description was paired with a hand-drawn diagram of parallel lines and transversals labeled with 

Table 2. PST’s mobilized knowledge in session 1 

Episode/segment 
MTSK 
subdomains 

Registers 
used 

Semiotic activity Analytical notes 

Definition of similarity and 
congruence 

KoT NL Treatment (within NL) Static framing; lacks transformational 
aspect 

Proportion as “equality of 
quantities” 

KoT NL, AR Treatment (within NL) 
Conversion (NL → AR) 

Imprecise mathematical language; 
reflects procedural orientation 

Worked example with side 
lengths 

KoT, KMT GeR, AR, 
NL, GR 

Conversion 
(GeR ↔ AR ↔ NL) 

Clear visual-symbolic alignment; lacks 
conceptual justification 

Instruction on comparing 
sides 

KoT, KMT AR, GeR, 
NL 

Treatment (within NL) 
Conversion (GeR ↔ AR) 

Procedural matching emphasized; no 
exploration of underlying propositions 

SSS, SAS, and ASA criteria 
explanations 

KoT, KMT GeR, AR, 
NL, RFI 

Conversion (AR ↔ GeR) Multimodal clarity; limited student 
interaction or comparative reasoning 

Application task: Identifying 
correct criterion 

KMT, KFLM GeR, NL Conversion (GeR ↔ NL) Anticipates overgeneralization; minimal 
probing of student thinking 

 

Table 3. PST’s mobilized knowledge in session 2 

Episode/segment 
MTSK 
subdomains 

Registers 
used 

Semiotic activity Analytical notes 

Definition and diagram KoT NL, GeR Treatment (NL), Treatment 
(GeR) 

Conceptual basis present; no dynamic 
framing 

Example with numeric 
ratios 

KoT, KMT AR, GeR Conversion (AR ↔ GeR) Ratio interpretation supports 
procedural fluency 

Direct vs. inverse 
homothety 

KoT, KMT, 
KFLM 

NL, AR, 
RFI 

Conversion (NL ↔ AR), RFI 
use 

Some elicitation; student thinking not 
deeply engaged 

Cases for varying K values KoT, KMT AR, GeR, 
RFI 

Conversion (AR ↔ GeR ↔ 
RFI) 

Effective visualization; conceptual links 
not fully developed 
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segment lengths (GeR). This explanation was descriptive but did not mention the conditions necessary for TT–
particularly parallelism or its deductive basis. Thus, KoT was present, but conceptual depth was limited. Using 
gestures (RFI), the PST emphasized the idea of “equal separation” between lines and illustrated how 
corresponding segments form ratios. These were subsequently written as algebraic equalities (e.g., AB/A’B’ = 
BC/B’C’)–a conversion from GeR to AR.  

The PST moved between these registers fluidly but focused on the procedural use of TT to compute 
unknown segment lengths. While the PST effectively coordinated diagrams and algebraic notation, the lesson 
lacked dialogic engagement. Students were not prompted to justify why TT holds or to consider the geometric 
conditions–such as parallelism–under which it applies. Furthermore, the empirical focus on segment 
measurement took precedence over theoretical reasoning, reflecting patterns previously identified in the 
literature (e.g., Espinoza-Vásquez et al., 2025). The PST did not draw connections between TT and previously 
introduced topics (e.g., similarity), missing an opportunity to foster mathematical coherence and connections 
(e.g., Rodríguez-Nieto et al., 2023). Although the representations were accurate, they served to reinforce rule-
based computation. The lesson included one student task involving labeled lines, where learners were asked 
to compute missing values using TT. The PST confirmed answers but did not provide alternative strategies or 
conceptual explanations, offering limited evidence of KFLM. Table 4 shows the PST’s mobilized knowledge in 
session 3. 

Across the three sessions, the PST mobilized KoT and KMT through effective coordination of semiotic 
registers. Representational transitions–particularly GeR ↔ AR and GeR ↔ NL–were central to how 
mathematical ideas were structured and transmitted (in line with Verdugo-Hernández & Caviedes, 2024). 
However, the enactment of KFLM was sporadic. While occasional gestures and questions suggested 
awareness of student challenges, there was little follow-up probing or adaptation of instruction. Instruction 
across sessions was expository, visually clear, and procedurally sound, but largely teacher centered. Student 
contributions were rarely expanded or challenged. The lack of explicit connections across sessions–e.g., from 
similarity to homothety to TT–further limited the development of structural understanding. This pattern 
reflects structural characteristics of traditional educational contexts, particularly in under-resourced settings 
where instructional innovation may be limited (Bartell et al., 2017; Ensor, 2001). 

Table 5 offers a structured overview of how the PST enacted subdomains of MTSK across the three 
observed lessons but also underlying properties and connections that were not emphasized. Notably, while 
KoT and KMT were mobilized, the articulation of KFLM was more limited and often implicit, aligning with prior 
findings on the challenges PSTs face in anticipating and addressing student thinking (Espinoza-Vásquez et al., 
2025; Seago et al., 2014; Verdugo-Hernández & Caviedes, 2024). Table 5 also highlights how semiotic work–
particularly the use of algebraic (RA), geometric (RGe), numerical (RN), and iconic (IR) registers–served as key 
mediators of the PST’s instructional strategies and conceptual framing across all three mathematical topics. 

Table 4. PST’s mobilized knowledge in session 3 

Episode/segment 
MTSK 
subdomains 

Registers 
used 

Semiotic activity Analytical notes 

Definition of TT KoT NL Treatment (NL) Descriptive definition; lacks deductive 
grounding or reference to parallelism 

Diagram and gesture-
based explanation 

KoT, KMT GeR, RFI, 
AR 

Conversion (GeR ↔ AR); RFI 
support 

Visual-symbolic alignment; reinforces 
procedural calculation 

Segment proportion 
equalities 

KoT, KMT AR, GeR Conversion (AR ↔ GeR) Algebraic formalization; does not 
support conceptual justification 

Application task KMT, KFLM GeR, NL Treatment (GeR); 
Conversion (GeR ↔ NL) 

Procedural accuracy; lacks dialogic or 
exploratory engagement 
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CONCLUSIONS 

Grounded in the MTSK model and Duval’s (1995) theory of registers of semiotic representations, this study 
aimed to characterize how a PST mobilized specialized knowledge through the coordination of semiotic 
registers across a sequence of geometry lessons on similarity, homothety, and TT. 

Findings indicate that KoT and KMT were frequently mobilized across the three sessions, particularly 
through diagrams, algebraic expressions, NL, and gestures to support procedural understanding. These 
semiotic registers functioned as the main vehicles for communicating mathematical ideas and making the 
PST’s specialized knowledge visible in classroom practice (e.g., Verdugo-Hernández & Caviedes, 2024). In 
lessons on similarity and homothety, the coordination of geometric and symbolic representations articulated 
proportional relationships and the mechanics of geometric transformation. However, some definitions lacked 
mathematical precision–for example, describing a proportion as “an equality between quantities”, revealing 
limitations in KoT and a procedural orientation. These issues highlight the need for teacher education 
programs to strengthen definitional clarity (e.g., Caviedes et al., 2025) and promote greater conceptual depth 
(e.g., Seago et al., 2014; Tachie, 2020). 

Evidence of KFLM was limited. Although the PST occasionally anticipated student difficulties (e.g., 
interpreting negative scale factors in homothety), there was minimal use of formative assessment or dialogic 
strategies to elicit and respond to student thinking. These findings align with prior research on the dominance 
of expository practices among PSTs and the disconnect between the use of multiple representations and the 

Table 5. PST’ specialized knowledge across sessions 
Session Subdomain Indicator 
1 KoT Definitions: Similarity of triangles and types of similarity. 

Justifications: Use of proportions to justify triangle similarity. 
Properties: Invariance of shape and angles in similar figures. 
Representations: Use of AR (algebraic), NR (numerical), GeR (geometric), and IR (iconic) registers to 
illustrate and communicate similarity. 
Procedures: Calculation of the similarity ratio between corresponding sides. 
Connections: Conceptual links between similarity and proportion. 

KMT Teaching strategies: Integration of IR and GeR to support verbal explanations and visually 
communicate key relationships. 
Guided questions: Activation of prior knowledge, clarification of misconceptions, and structured 
guidance through similarity criteria. 

KFLM Student difficulties: Anticipation and partial identification of misconceptions related to the 
application of similarity criteria. 

2 KoT Definitions: Homothety as a transformation that scales figures from a center using a ratio (K). 
Justifications: Explanation of how the homothety ratio determines dilation and orientation. 
Properties: Preservation of shape and angles; orientation depends on the sign of K. 
Representations: Use of AR, GeR, and IR to communicate, visualize and reason about homothety. 
Procedures: Determining scale factors and applying them to transform figures. 
Connections: Links between homothety, proportionality, and similarity. 

KMT Teaching strategies: Use of GeR and IR to visually communicate and distinguish direct and inverse 
homothety. 
Guided questions: Support for understanding the effects of positive and negative scale factors. 

KFLM Student difficulties: Anticipation of errors in interpreting negative ratios and use of practical 
examples to scaffold conceptual understanding. 

3 KoT Definitions: TT as a statement about proportional segments induced by parallel lines intersected by 
a transversal. 
Justifications: Application of TT to support proportional relationships. 
Properties: Identification of corresponding segment ratios. 
Representations: Use of AR, NR, and GeR to model and calculate proportions. 
Procedures: TT application to solve proportional problems. 
Connections: Integration of TT with broader concepts of similarity and dilation. 

KMT Teaching strategies: Coordination of GeR and IR to clarify spatial relationships in TT. 
Guided questions: Structured elicitation of student understanding around geometric configurations. 

KFLM Student difficulties: Anticipation of confusion regarding the role of parallelism and the interpretation 
of segment ratios in visual tasks. 
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development of conceptual understanding (e.g., Iori, 2018; Seago et al., 2014). In the case of TT, for instance, 
geometric proportionality was addressed through ratios and diagrams but not linked to broader deductive or 
theoretical frameworks. 

From a mathematics teacher education perspective, the findings highlight how initial preparation shapes 
classroom enactment. Although the PST had completed coursework on curriculum, common student 
difficulties, and mathematics education research, the lessons remained largely expository. This points to the 
need for teacher education to foster semiotic awareness (Duval, 2017; Iori, 2018; Presmeg, 2006) and the 
ability to engage with students’ mathematical thinking–key elements of KFLM (Carrillo-Yáñez et al., 2018). As 
illustrated here, PSTs may evidence procedural competence without promoting exploratory discourse or 
reasoning, a limitation that might reflect the design of preparation programs themselves.  

These findings must be understood within the context of a traditionally structured classroom with limited 
resources, where instruction is relied primarily on paper and pencil. This underscores the need to prepare 
teachers to use semiotic resources flexibly and meaningfully in such settings (e.g., Iori, 2018; Mwadzaangati, 
2019, 2024). More broadly, the study illustrates how systemic constraints shape what pre-service teachers are 
able to enact (Bartell et al., 2017; Ensor, 2001). Future research should investigate how teacher knowledge 
and semiotic coordination evolve across varied practicum contexts and how reflective practices support the 
development of specialized knowledge. Longitudinal studies could also examine how early instructional 
patterns influence later teaching, particularly in relation to equitable access to conceptual mathematics. 

While the study offers important insights, it is bounded by methodological limitations: the analysis focuses 
on a single case and context, observer effects cannot be fully excluded, and triangulation with student data 
or interviews was not feasible. Nevertheless, it provides a situated perspective on how teacher knowledge 
unfolds in real classrooms and highlights areas of growth for teacher training. 
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