

ORIGINAL RESEARCH

Noninvasive assessment of corticosterone and triiodothyronine levels in the endangered Pyrenean Capercaillie (*Tetrao urogallus aquitanicus*)

O. Nicolás de Francisco¹, A. Carbalal² , O. Grau³, I. Sacristán⁴ , A. C. Ewbank⁴ , A. Bellmunt⁵, A. Moreno⁶, I. Afonso Jordana⁷, M. F. Martínez⁸, J. Nadal¹ , M. López-Béjar², E. Ménoni⁹, A. Margalida^{10,11} & C. Sacristán⁴

¹Department of Forest Management and Natural Environment, School of Veterinary Medicine, University of Lleida, Lleida, Spain

²Department of Animal Health and Anatomy, School of Veterinary Medicine, Autonomous University of Barcelona, Barcelona, Spain

³Alt Pirineu Natural Park, Llavorsí, Spain

⁴Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain

⁵Carrer Toni Castellseguer, Lleida, Spain

⁶Fundación Artemisan, Ciudad Real, Spain

⁷Natural Environment Department, Consell Generau d'Aran, Vielha, Spain

⁸Geoinnova, Pamplona, Navarra, Spain

⁹French Biodiversity Agency, Dead End de la Chapelle, Villeneuve de Rivière, France

¹⁰Pyrenean Institute of Ecology (CSIC), Jaca, Spain

¹¹Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain

Keywords

conservation management; covert feather; hormone assay; noninvasive; physiological stress; *Tetrao urogallus aquitanicus*; corticosterone; galliformes.

Correspondence

Ana Carolina Ewbank, Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, 28130 Valdeolmos, Spain.

Email: ewbank@inia.csic.es

Editor: Elissa Cameron

Associate Editor: Airam Rodriguez/Isabel Barja

Received 26 June 2024; revised 3 June 2025; accepted 18 June 2025

doi:10.1111/jzo.70048

Abstract

Endocrine regulation and hormonal responses determine the capacity of an organism to cope with changing environmental conditions, such as variable or extreme temperatures. Hormones can also be regarded as “sensors” for environmental signals and as indicators of an organism’s or populations’ fitness. The levels of glucocorticoid hormones, such as corticosterone, are generally used as biomarkers for physiological stress and metabolic rate variations, while thyroid hormones (i.e., triiodothyronine—T3) are regarded as indicators of nutritional and thermal stress in birds. The Pyrenean Capercaillie (*Tetrao urogallus aquitanicus*) is an endangered galliform adapted to cold weather, and its population is in steep decline. This study used a noninvasive approach to assess hormone levels in the Pyrenean Capercaillie, in a first attempt to understand how hormone levels may respond to certain environmental variables. We determined the corticosterone and T3 levels in 139 freshly molted covert feathers of 113 Pyrenean Capercaillies (80 from Spain and 33 from France) using enzyme immunoassays. The relationships between hormone levels and several biotic and abiotic variables were assessed. Our findings showed that corticosterone levels were lower in feathers found further away from areas of human leisure activity (i.e., cycling trails). Lower corticosterone levels were also found in certain biogeographical areas (i.e., Northern Pyrenees and Pre-Pyrenees), suggesting that corticosterone levels may respond to certain climate-related variables (such as precipitation or temperature). Conversely, T3 levels were influenced by sex and feather length, but did not correlate with any of the environmental variables. The lack of statistically significant differences in corticosterone and T3 in relation to the types of covert feathers analyzed facilitates the collection process for noninvasive studies. Additional hormonal studies could provide essential data to understand the level of endocrine flexibility of the Pyrenean Capercaillie in response to external variables, which may ultimately define the species’ resilience to climate change and other drivers of environmental variation.

Introduction

Endocrine regulation and hormonal responses act as pleiotropic mediators of an organism's coping responses to environmental changes, and ultimately define a populations' health and fitness. Understanding the endocrine flexibility of individuals and species may help to predict their resilience to stochastic environmental events and long-term changes (Little & Seebacher, 2024). Hormone levels may also provide "sensors" for environmental signals, condition epigenetic processes, and modulate phenotypes (Little & Seebacher, 2024; Seebacher & Little, 2024). Nevertheless, the study of endocrine responses to environmental variability is challenging and requires a multidisciplinary approach, including endocrinological, ecological, and evolutionary considerations, mostly because hormones have evolved to be multifunctional and their effects on phenotypes can influence a broad range of ecological functions (Little & Seebacher, 2024; Orr *et al.*, 2020). For example, endocrine flexibility may affect the capacity of a species to cope with the extreme temperatures related to probable future climate change and, therefore, may be a predictor of its resilience (Taff *et al.*, 2024; Zwahlen *et al.*, 2024). Both the hypothalamic–pituitary–adrenal (HPA) and the hypothalamic–pituitary–thyroid (HPT) axes are major mediators of thermoregulation and have both direct and indirect effects on the responses to changing external temperatures (Orr *et al.*, 2020). For example, the glucocorticoid hormones produced by the HPA axis, can facilitate an animal's behavioral adaptations to extreme thermal conditions (Taff *et al.*, 2024) and optimize the energy available for its thermoregulation. In addition, thyroid hormones, produced by the HPT axis, can affect an animal's thermoregulation by influencing its metabolic rate and respiration (Taff *et al.*, 2024; Zwahlen *et al.*, 2024).

Glucocorticoid and thyroid hormones are both examples of multifunctional hormones. Glucocorticoids have been widely studied in endangered wildlife populations to assess physiological stress and identify biotic, environmental and/or anthropogenic variables influencing population trends (Thiel, Jenni-Eiermann, *et al.*, 2008). Acute responses to stress enable rapid physiological and behavioral changes in unpredictably changing environments (McEwen & Wingfield, 2003) so as to maintain stability, or "allostasis" during times of change (McEwen & Wingfield, 2003). In such situations, the HPA axis is activated, increasing the production of glucocorticoids by the adrenal cortex (Arlettaz *et al.*, 2007; Baltic *et al.*, 2005). Glucocorticoids play a major role in energy mobilization (Jimeno *et al.*, 2018), providing glucose to the blood plasma, hence allowing an organism to recover from a stress response and preparing it to respond to future stressors (MacDougall-Shackleton *et al.*, 2019). As a result, glucocorticoid levels reveal metabolic rate variations (Jimeno & Verhulst, 2023). Conversely, when recurrent, this physiological response may lead to an allostatic overload (i.e., chronic stress) and become physiologically or behaviorally detrimental for an individual, or even a population (Arlettaz *et al.*, 2007; McEwen & Wingfield, 2003). Disturbances leading to chronic stress may affect the fitness of birds through immunosuppression, reducing their reproductive success (Cyr & Michael Romero, 2007), and/or the amount of time dedicated to foraging (Fernández-Juricic & Tellería, 2000),

thus predisposing them to higher predation risks or increased energy expenditure (Amo *et al.*, 2006; Cassirer *et al.*, 1992), ultimately affecting their survival (Arlettaz *et al.*, 2007; Hofer & East, 1998; Jenni-Eiermann & Arlettaz, 2008). Thyroid hormones (THs; i.e., the biologically active form triiodothyronine and its precursor thyroxine, which is converted to T3 by deiodinase enzymes) are well-known avian growth promoters (Arancibia *et al.*, 1996; McNabb *et al.*, 1998; McNabb & King, 1993; Ruuskanen *et al.*, 2021) that also modulate metabolism and thermogenesis (Decuypere *et al.*, 2005; Ruuskanen *et al.*, 2021; Shahid *et al.*, 2020). Cold exposure can lead to increased conversion of T4 into T3 (and less frequently to the inactive form, rT3) (Van der Geyten *et al.*, 1999), thus leading to higher circulating T3 levels. THs have also been mechanistically linked to DNA methylation, at least partly by regulating the activity of DNA methyltransferase 3a, one of the main enzymes mediating epigenetic responses and influencing the timing of phenotypic adjustments to environmental change (Seebacher & Little, 2024).

Measurement of glucocorticoid levels (e.g., corticosterone) in the plasma of free-ranging animals is an invasive and stressful procedure that may lead to capture myopathy and perhaps even death, as previously reported in several wild bird species (Breed *et al.*, 2019; Höfle *et al.*, 2004; Nicolás Francisco *et al.*, 2022; Ruder *et al.*, 2012). In particular, Pyrenean capercaillies (*Tetrao urogallus aquitanicus*) have been shown to be very sensitive to handling stress (Nicolás Francisco *et al.*, 2022). Noninvasive methods of measuring glucocorticoids have been validated in samples other than plasma, such as fresh droppings (Palme, 2005; Sheriff *et al.*, 2010), and used as an indicator of acute stress (Arlettaz *et al.*, 2007; Baltic *et al.*, 2005; Palme, 2005; Thiel *et al.*, 2005). Corticosterone is deposited in feathers during their growth (Monclús *et al.*, 2017), and both baseline and stress-induced secretion levels have been observed (Bortolotti *et al.*, 2008; Monclús, 2018; Will *et al.*, 2014). Feather samples therefore appear to be ideal candidates for the measurement of hormone levels over the long term (Bortolotti *et al.*, 2008; Monclús *et al.*, 2017; Romero & Fairhurst, 2016). For instance, high feather corticosterone concentrations were used to predict stress during the development of chicks in the nest (Will *et al.*, 2014) and the mortality rate and/or reproductive failure of several free-ranging avian species (Monclús, 2018).

THs have been previously measured and used in several wild bird species (Branco *et al.*, 2023; Hissa *et al.*, 1983; Kitaysky *et al.*, 2005; Pérez *et al.*, 2018; Reinert & Wilson, 1997; Welcker *et al.*, 2013) to indicate food deprivation (Kitaysky *et al.*, 2005), metabolic rates, and thermal regulatory capacity (Decuypere *et al.*, 2005; Shahid *et al.*, 2020). Noninvasive measurement of THs in feces has also been validated for several wildlife species (Wasser *et al.*, 2010). Conversely, there is scarce data regarding the assessment of THs and their validation in feathers in wild birds (Branco *et al.*, 2023).

The Pyrenean Capercaillie is a polygamous forest galliform well adapted to subalpine mountain forests and to their extreme bioclimatic conditions (Canut *et al.*, 2021), and exhibits a complete postnuptial molt (i.e., molts all of its feathers once a year), between the beginning of July and the

end of September (Castroviejo, 1975; Leclercq & Ménoni, 2018). This species was recently reclassified as “Endangered” in the Spanish List of Wildlife Species under Special Protection Regime (Spanish Extinct Species List, 2023), based on its currently low reproductive success (Gil *et al.*, 2020) and consequent population decline causes are still unclear. Related grouse populations, including the Western Capercaillie (*Tetrao urogallus*) and other galliform species such as the Black Grouse (*Lyrurus tetrix*) are very sensitive to habitat fragmentation, climate change, and human disturbances (Storch, 2000; Thiel, Jenni-Eiermann, *et al.*, 2008; Yoccoz *et al.*, 2011). Human disturbance may lead to increased corticosterone levels in Western Capercaillies (Thiel *et al.*, 2005; Thiel, Jenni-Eiermann, *et al.*, 2008; Thiel *et al.*, 2008a, 2008b), and can also lead to chronic stress with long term effects on their endocrine status, body condition, home range, habitat, activity level, and overall fitness (Arlettaz *et al.*, 2007; Jenni-Eiermann & Arlettaz, 2008; Thiel *et al.*, 2008a). THs have not been extensively studied in capercaillies (Hissa *et al.*, 1983); however, in other avian species, THs play a key role in growth and thermal regulation and have been shown to serve as indicators of nutritional or metabolic stress (Cogburn & Freeman, 1987; Kitaysky *et al.*, 2005; Klein *et al.*, 2006; Shang *et al.*, 2021).

As a resident boreal species living at the edge of the capercaillie distribution range (Escoda *et al.*, 2023), the Pyrenean Capercaillie is regarded as an “umbrella species,” being very sensitive both to stochastic events and long-term environmental changes (Leclercq & Ménoni, 2018). We hypothesized that corticosterone levels in Pyrenean Capercaillie feathers could be positively correlated with certain indicators of the presence of humans (as a proxy for human disturbance) or bioclimatic conditions and could be used as an indicator of higher metabolic demand or higher levels of physiological stress. In addition, we expected to detect some correlations between T3 levels in feathers and several environmental variables potentially related to nutritional or thermal stress—a novel approach to the use of THs evaluation in birds. The aim of this study was to assess the corticosterone and T3 levels in the Pyrenean Capercaillie using a noninvasive approach based on freshly molted covert feathers collected in the Pyrenees, and to see whether there are differences in corticosterone and T3 levels related to various spatial, biological, geostatistical, and human recreational activity variables. The assessment of hormone levels in free-ranging Pyrenean Capercaillies could provide essential data to help understand their capacity to cope with environmental changes and, thus, form an essential part in developing successful conservation strategies.

Materials and methods

Field sampling

The molted covert feathers of Pyrenean Capercaillies were collected from 45 subalpine forests (Table S1) located in Catalonia and Aragon (Spain), and Occitanie (France), in 2019, 2020, and 2021. These feathers are commonly found in the field in late summer and fall, and are generally easily seen and

identifiable due to their size and color (Fig. S1); iridescent black in males and brown in females (Leclercq & Ménoni, 2018), hence enabling sex identification.

Feather sampling was opportunistic, performed during census and other fieldwork activities, to avoid causing additional disturbance. Only covert feathers were included in this study, to reduce sampling variability and ensure intraindividual repeatability. Analysis of covert feathers provided the most consistent results in previous noninvasive studies in Cantabrian Capercaillies (*T. u. cantabricus*) (Martínez Padilla & Estrada, 2021). When several covert feathers of one sex were found together, they were assumed to be from the same individual. Pyrenean Capercaillies are confined to their territories (Leclercq & Ménoni, 2018). Thus, in order to minimize duplicate samples, a maximum of five feathers of each sex were collected from each forest during the same collecting year (Table S1). All feathers were georeferenced, identified, and stored in paper envelopes placed in a dark, dry environment at room temperature until their analysis in the lab.

Collected feathers

A total of 139 Pyrenean Capercaillie molted covert feathers from 113 individuals were collected (Fig. S1). All covert feathers were classified into three different types depending on the body area concerned, that is, wing (infra-covert wing feather), tail (uppertail or undertail covert feather), or body (body covert feather—chest, belly, or back areas) (Baker, 1993; Fernandez, 2024). Feathers that could not be classified into one of these three categories were discarded from this study. The birds’ sex was recorded, but not their age because it could not be inferred based on the appearance of the coverts in the great majority of cases (Castroviejo, 1975).

Laboratory procedures

The covert feathers were weighted (mg) with a precision scale to the nearest 0.1 mg (mean \pm SD: 62.92 ± 24.73 mg) and those weighing between 35 and 155 mg were selected. The type of feather was then classified by body area (i.e., wing, tail, or body). When a single feather was not heavy enough to reach the minimum chosen sample mass of 30 mg per individual, two covert feathers with similar morphological characteristics were lumped together.

An optimized protocol for extracting hormones from feathers was applied (Monclús *et al.*, 2017). Briefly, after removing the calamus, feathers were measured (mm) with a caliper to the nearest 0.1 mm (mean \pm SD: 109.40 ± 23.0 mm) and were then mechanically minced in a ball mill (Retsch®, type MM2, Haan, Germany) (Fig. S1). The resulting powder was weighed to the nearest 0.1 mg (53.48 ± 22.38 mg) using a precision scale (Fig. S1) and placed in a 2 mL polypropylene tube. Methanol reagent (1.5 mL of methanol reagent grade 99.9%; Scharlab, Sentmenat, Spain) was added to each tube and samples were incubated overnight at 32°C in a G24 Environmental Incubator Shaker (New Brunswick Scientific, Edison, NJ, USA) for steroid extraction. Samples were then centrifuged in a Hermle Z300K (Hermle® Labortechnik, Wehingen,

Germany) and 1 mL of supernatant was transferred to a new aliquot and placed in an oven at 37°C until total dryness. Dried extracts were reconstituted with enzyme-linked immunosorbent assay (ELISA) buffer, shaken for 5 min, and stored at -20°C until analysis.

Validation tests and corticosterone and T3 measurements were performed using commercial ELISA kits (direct competitive Corticosterone ELISA kit; Neogen® Corporation Europe, Ayr, UK, and T3 competitive ELISA kit; IBL International®, Hamburg, Germany). Assay validation was performed using pools of 20 extracts from different individuals (Carbalal *et al.*, 2014). Test precision was assessed by calculating the intra-assay and inter-assay coefficients of variation from all of the duplicated samples analyzed. The specificity was measured using the dilution test, determined by serially diluting the feather pool with ELISA buffer. Finally, the accuracy of the method was assessed using the spike-and-recovery test, measured by mixing different volumes of the pool with different volumes of the pure standard solution provided in the ELISA kit.

Analysis of geospatial, bioclimatic, and landscape anthropization indicators

To describe the landscape features associated with corticosterone and T3 levels, we generated a circular buffer area using ArcGIS Pro 3.1 (ESRI, Redland, CA, USA) that corresponded to the mean home range described for male capercaillies (mean male home range of 688.5 ha kernel 95; Authors' unpublished data) at each sample location. Home ranges were computed using the locations of 38 VHF (Holohil RI-2D, 19 g of weight) radio-tagged Pyrenean Capercaillies (22 males; 16 females) tracked in Catalonia between 2008 and 2018. We used Qgis (QGIS v3.10.12 [QGIS.org, 2019]) to vectorize the point layer and polygons of Kernel raster probabilities (P50, P90, and P95), and the AdehabitatHR Package (v 1.8.20, Clement Calenge 2004) to compute home ranges using the kernel density estimator.

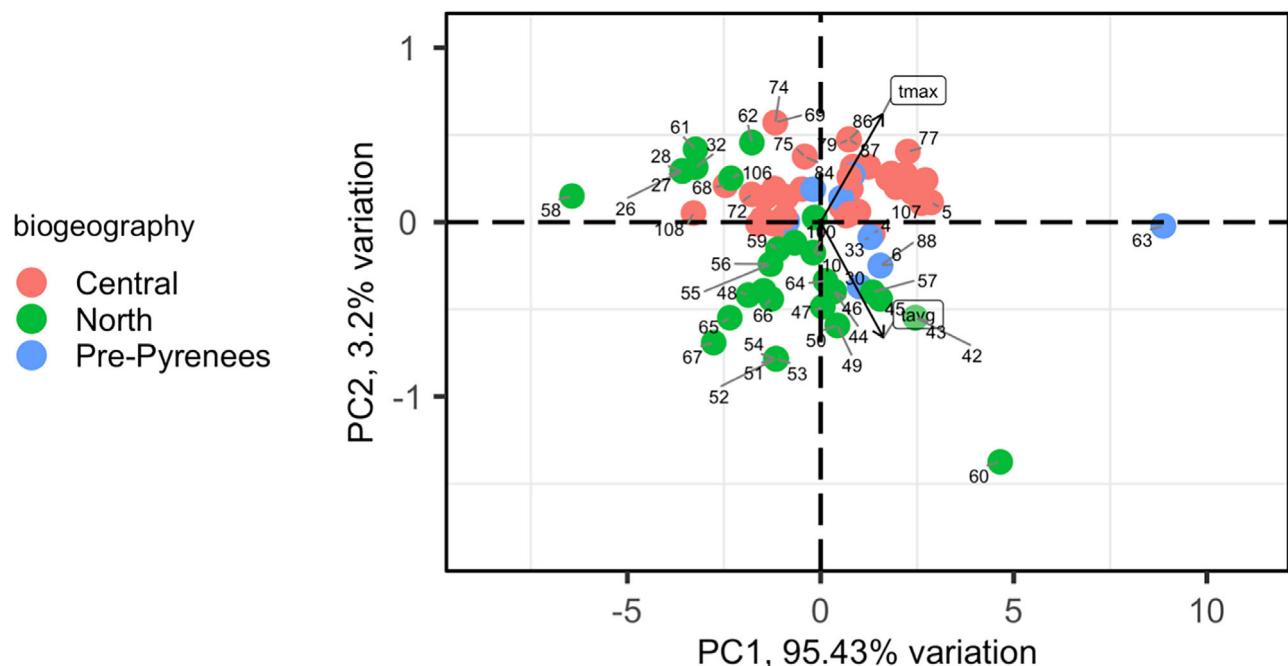
As well as quantifying the Pyrenean Capercaillie sex, covert feather type (i.e., wing, tail or body covert feathers), weight (mg after mincing the feathers), feather length (mm after removing the calamus), and molting year, we described and quantified 12 abiotic and biotic variables in each buffer area. The bioclimatic variables used comprised the average annual temperature (°C), maximum and minimum annual temperature (°C), and average monthly precipitation (mm). The variables related to topography comprised aspect (North, South, East, or West) and vegetation cover (%). Finally, estimates were made of the impact of human presence and recreational activities using data on the human population density, visitor frequency (Strava heatmap data, Appendix S1, Fig. S2), and the distances between sampling locations and cycling and hiking trails and roads (including only main paved roads, located mainly at the valley bottoms). All the time-dependent variables were averaged over the molting year, including the molting season (end of summer–beginning of fall) for each feather. All these variables, units, and sources are summarized in Table 1. The biogeographic region (i.e., Northern Pyrenees,

Central Pyrenees, or Pre-Pyrenees) was analyzed as an independent variable.

In order to detect clusters of corticosterone and T3 levels, hot spots of corticosterone and T3 levels were calculated using Getis's Gi^* statistic. A calculated value of $Gi Z > 1.96$ indicated that the sample points within that study area had a risk value rate that is significantly higher than the other points, indicating that it is a hot spot (Getis & Ord, 1992). The study was performed using Spatial statistic tools in ArcGIS Pro 3.1.

Statistical analyses and model selection

Prior to the selection of the putative drivers of hormone variability, we explored the association between the biogeographical assignation of our samples (i.e., Northern, Central, and Pre-Pyrenees) and the bioclimatic characteristics based on our dataset of bioclimatic variables (average annual temperature, maximum and minimum annual temperature, and average monthly precipitation), using a Principal Component Analysis (PCA), including bioclimatic variables. This confirmed that, as expected, these broad biogeographical regions could be treated as consistent, categorical bioclimatic units in the analyses and in the interpretation of the results (Fig. 1).


A Pearson's product–moment correlation test was performed to explore the correlation between the continuous variables (Table 1); and those variables that were highly correlated with other variables were discarded (i.e., mean annual temperature and feather weight). Based on these initial tests, we selected several continuous variables as putative explanatory variables to be included in the model M1 (i.e., vegetation cover, mean monthly precipitation, visitor frequency, distance to the nearest road, distance to cycling trails, distance to hiking trails, and population density), together with the five categorical variables "feather type," "sex," "molting year," "biogeography," and "aspect." Feather length was also added to the models. The two response variables explored were T3 and corticosterone levels.

Although our sampling design maximized the independence of samples as much as possible across a large study area (including 45 subalpine forests from two different countries; Table S1), it was uncertain whether the samples showed a completely independent, random distribution. In order to verify whether there were any underlying patterns of spatial aggregation in our data, autocorrelation semivariograms were performed using the "nlme" package (Pinheiro *et al.*, 2015) to measure the degree of spatial dependence between variables as a function of distance. A visual interpretation of the semivariograms indicated that spatial aggregation was probably not relevant and that our observations were essentially independent. However, a GLS model was constructed to assess whether autocorrelation should be accounted for in the models; this model included the "corSpatial" R function to account for spatial aggregation of our data, in which the coordinates (longitude and latitude) of each sampling point were specified. The initial, most complex GLS model (M1) included all of the explanatory variables listed above and an autocorrelation term. We then simplified the full models by removing as many nonsignificant variables and terms as possible using Likelihood

Table 1 Geospatial, biological, bioclimatic, and landscape anthropization variables included in the Generalized least squares (GLS) non-simplified models (M1) and simplified models (M2) for corticosterone and T3 detected in feathers of the Pyrenean Capercaillie

Variable type	Variables (units)	Source	Included in the M1 models	Included in the CORT M2 model	Included in the T3 M2 model
Samples	Sex (male or female) Feather type (wing, tail, or body covert feathers)	Collection dates and feather classification	Yes	No	Yes
Topography	Feather length (mm) Molting year Aspect (North, South, East, or West)	Calculated from Digital Terrain Model (https://pnoa.ign.es/pnoa-lida/modelo-digital-del-terreno)	Yes	No	Yes
Climatic	Vegetation cover (%) Mean annual temperature (°C) Maximum annual temperature (°C) Minimum annual temperature (°C)	Hansen <i>et al.</i> , 2013, version update 1.10 WorldClim (http://www.worldclim.org/)	Yes	No ^a	No
Biogeographic	Mean monthly precipitation (mm) Northern Pyrenees, Central Pyrenees, and Pre-Pyrenees	Classified based on climatic variables (mean, minimum and maximum annual temperature, and mean annual precipitation)	Yes	No	No
Anthropogenic presence and activities	Human population density (humans/km ²) Distance to the nearest road (m) Distance to the nearest bicycle or mountain bike trail (m) Distance to the nearest hiking trail (m)	CNIG, 2018 and data.gouv.fr (https://www.data.gouv.fr/fr/) Open Street Maps (https://www.openstreetmap.org/#map=6/40.01/-2.49 , https://wiki.openstreetmap.org/w/index.php?title=Route_3D_bicycle , https://wiki.openstreetmap.org/w/index.php?title=Route_3D_mtb)	Yes	Yes	No
Recreational activities:	Strava heatmap	Strava heatmap (https://www.strava.com/heatmap?global-heatmap?style=dark&terrain=false&sport=All&gColor=blue&gOpacity=100&labels=true&poi=true#4.99/42.29/1.7)	Yes	No	No

^aThey were included in the PCA to define the biogeographic regions.

Figure 1 The principal component analysis of the bioclimatic variables (average annual temperature, maximum and minimum annual temperature, and average monthly precipitation), based on the biogeographic classification of the sampling sites.

Table 2 Generalized least squares (GLS) simplified model (M2) exploring the correlations between corticosterone levels detected in feathers of the Pyrenean Capercaillie (log-transformed pg corticosterone/mg feather) and the variables from the M1 model (Table S3) that showed a significant correlation ($P < 0.05$) with corticosterone (included in a dataset called “all_data”)

Model M2: $\text{glm}(\log(\text{corticosterone}) \sim \text{biogeographic area} + \text{distance to the nearest road} + \text{distance to cycling trails}$, data = all_data, method = “ML”)

Coefficients	Value	SE	t-value	P-value
(Intercept)	3.402667	0.06973237	48.79609	0.0000
Biogeographic area-North	-0.198972	0.10032687	-1.98323	0.0495
Biogeographic area-Pre-Pyrenees	-0.383480	0.13468879	-2.84716	0.0051
Distance to the nearest road	0.0000034	0.00001838	1.84938	0.0667
Distance to cycling trails	-0.0000041	0.00001447	-2.83922	0.0053

The test value (Value) and the standard error (SE), t-value, and P-value are given. BIC: 177.0671; Degrees of freedom: 132 total; 127 residual.

Ratio Tests, obtaining the simplified models (M2), by selecting the models that showed a clearly lower Bayesian Information Criterion (BIC) score. We used maximized log-likelihood in all cases and checked the normal distribution of the data before running the models. Corticosterone was log-transformed in the models to obtain normally distributed data, whereas T3 was already normally distributed. All statistical analyses were performed in the R studio software v4.3.1 (R Core Team, 2021) with a significance level of $P < 0.05$.

Results

The validation results for the corticosterone and T3 levels in Pyrenean Capercaillie feathers are shown in Table S2. No correlation was found between the corticosterone and T3 levels ($P = 0.58$).

Corticosterone

The mean total corticosterone concentration was 29.80 (± 14.43) pg/mg feather. There was no correlation between corticosterone concentration and feather weight ($P = 0.73$) or length ($P = 0.66$) (Fig. S3). The GLS analyses (M1 [Table S3] and M2 [Table 2]) showed that samples from the Pre-Pyrenees and samples from the Northern Pyrenees presented lower concentrations of corticosterone compared with samples collected in the Central Pyrenees ($P = 0.0051$ and $P = 0.0495$, respectively). Finally, of the variables used as a proxy for human disturbance, the distance to roads correlated positively with corticosterone levels ($P = 0.0667$), while the distance to cycling trails was negatively correlated with the various hormone levels ($P = 0.0053$).

Table 3 Generalized least squares (GLS) simplified model (M2) exploring the correlations between T3 levels detected in feathers of the Pyrenean Capercaille (pg T3/mg feather) and the variables from M1 (Table S4) that showed a significant correlation ($P < 0.05$) with corticosterone (included in a dataset called “all_data”)

Model M2: gls (T3 ~ sex + feather length, data = all_data, method = “ML”)				
Coefficients	Value	SE	t-value	P-value
(Intercept)	22.730591	1.5602012	14.569013	0e+00
Sex_male	-2.659424	0.6648244	-4.000190	1e-04
Feather length	-0.073952	0.0131483	-5.624409	0e+00

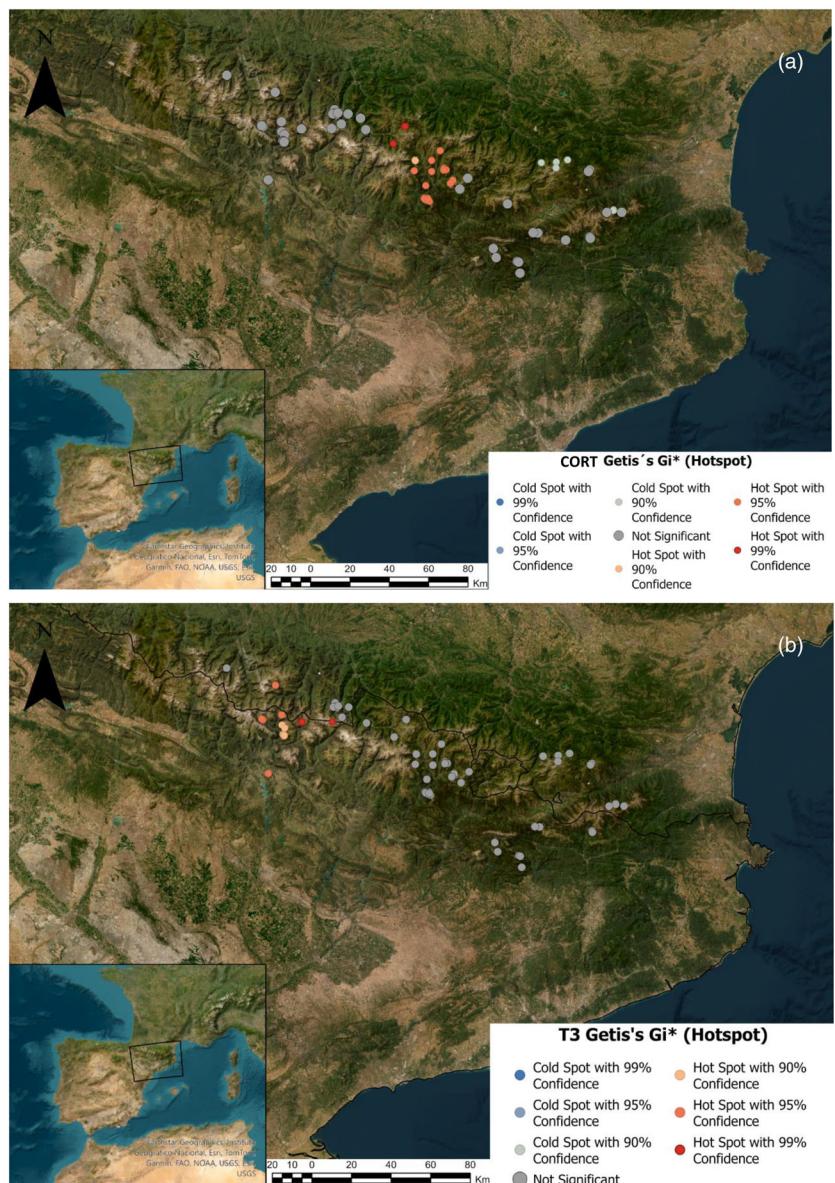
The test value (Value) and the standard error (SE), t-value, and P-value are given. BIC: 736.2911; Degrees of freedom: 132 total; 129 residual.

Thyroid hormones

The mean total T3 concentration was 12.96 (± 4.25) pg/mg feather. The GLS analyses (M1 [Table S4] and M2 [Table 3]) revealed that the T3 concentration (pg T3/mg feather) was significantly affected by the covariate “feather length” (negative correlation, $P = 0.0001$), and by sex, being significantly lower in males than in females ($P = 0.0001$), but it did not correlate with the rest of the variables. Feather length did not differ significantly between males and females ($P = 0.452$).

The hotspot analyses identified significant clusters and hotspots for corticosterone and T3 levels (Fig. 2a,b, respectively), corresponding to two different areas: Hotspots for corticosterone were located in the middle of the study area (Pallars Sobirà and Val d’Aran counties in Catalonia, Spain), while the hotspots for T3 values mostly corresponded to the western side of the study area (Aragon [Spain] and Occitanie [France]). The results of the correlations between T3 and the rest of the variables are shown in Table S4.

Discussion


In this study, we validated a method to determine corticosterone and T3 levels in Pyrenean Capercaille covert feathers; while covert feathers have been widely used for noninvasive hormone determination of corticosterone, they have not often been used to measure T3 in wild birds (Branco *et al.*, 2023; Martínez Padilla & Estrada, 2021). The ELISA validation assays gave reliable results that demonstrated the assay’s precision, specificity, and accuracy in measuring concentrations of both hormones in Pyrenean Capercaille feathers (Carbajal *et al.*, 2014; Monclús *et al.*, 2017). An ELISA validation of the T3 measurements in feathers was only recently published for the Purple Martin (*Progne subis*) (Branco *et al.*, 2023). It is well-known that, regardless of the time of the year in which feather sampling is performed, hormone levels in feathers correlate with blood hormone levels during the feather growth period (Monclús *et al.*, 2017), and vary according to feather length (Mallet-Rodrigues, 2012), with lower rates in smaller (Wolf *et al.*, 2003) and faster rates in larger feathers (Ingolfsson, 2008). In addition, the complete postnuptial molt of capercaille means that its feathers provide suitable samples to estimate physiological stress levels during the feather growth period, between July and September; females start molting about a month and a half later than males, but finish at approximately the same time (Castroviejo, 1975). In addition,

covert feathers are known to grow faster than their corresponding flight feathers (Castroviejo, 1975) so that their growing period is shorter and their hormone levels reflect conditions over a shorter specific time period, helping to minimize confounding factors (Hardy *et al.*, 2009; Monclús *et al.*, 2017).

To the best of our knowledge, this is the first determination of corticosterone and T3 levels in Pyrenean Capercailles, an endangered umbrella species known to be very sensitive to handling stress, and which can die suddenly due to capture myopathy during field studies (Nicolás Francisco *et al.*, 2022). Martínez Padilla and Estrada (2021) measured corticosterone in the feathers of another capercaille subspecies, the Cantabrian Capercaille, and concluded that physiological stress was higher in the wild than in captive individuals due to nutritional stress (i.e., the wild diet is less optimal than that in captivity) (Martínez Padilla & Estrada, 2021); however, these authors did not measure T3 levels, which are reportedly related to food deprivation in some avian species (Kitaysky *et al.*, 2005; Schew & Ricklefs, 1998).

Our samples from the Northern Pyrenees and Pre-Pyrenees showed lower concentrations of corticosterone compared with samples from the Central Pyrenees. The Northern Pyrenees are colder and more humid than the Pre-Pyrenees, and are considered to offer more suitable bioclimatic conditions for the Pyrenean Capercaille (Poirazidis *et al.*, 2019). Conversely, the Pre-Pyrenees is the biogeographic area where most of the recent local extinctions of the Pyrenean Capercaille have occurred (Canut *et al.*, 2021). Thus, lower corticosterone levels have been detected both in areas with theoretically favorable climatic conditions for the species and areas where the population seems to be struggling. A possible explanation is that the corticosterone levels found in the Northern Pyrenees and the Pre-Pyrenees may respond to certain characteristics of these biogeographic regions that have not been explored in this study (e.g., lower prevalence of certain diseases or internal parasites, higher habitat fragmentation, lower density of Pyrenean Capercailles, and thus, less opportunities to interact and breed).

Many human recreational activities have detrimental impacts on wildlife species (González *et al.*, 2006; Marion *et al.*, 2020; McClung *et al.*, 2004) and trigger stress responses in them (Thiel *et al.*, 2011; Thiel, Jenni-Eiermann, *et al.*, 2008; Thiel *et al.*, 2008a). This study found no correlations between corticosterone levels and human population density or visitor frequency, but there was a statistically significant negative correlation of corticosterone levels and the distance between sampling points and

Figure 2 Hotspot analyses for (a) corticosterone (CORT) and (b) triiodothyronine (T3) detected in feathers of the Pyrenean Capercaillie. The hotspot analyses identified significant clusters and hotspots for corticosterone and T3 values (Fig. 1a,b, respectively), corresponding to two different areas. Hotspots for corticosterone were located in the middle of the study area (Pallars Sobirà [Cucó, Esterri de Cardós, Lo Calbo, Orri, Virós and Baiasca forests] and Val d'Aran [Montgarri forest] counties in Catalonia, Spain), while hotspots for T3 values were mostly found on the western side of the study area (Costadue, Tabernes and Trigoniére forests in Aragon [Spain] and Viela d'Aura, Cauteret and Sarrat de Saubat in Occitaine [France]).

cycling trails that, in some cases, cross the habitat of the Pyrenean Capercaillies. Thus, it appears that this last variable could be a better indicator of human presence and the impact of leisure activities. A positive correlation was also found between corticosterone levels and the distance between sampling points and the main paved roads. Physiologically, this correlation is difficult to explain, but it is important to note that most of the subalpine Pyrenean Capercaillie forests are not crossed by proper roads but by unpaved roads, paths, and trails. The linear distances from

sampling points to main paved roads ranged from approximately 0.5 km to over 10 km, with a mean distance of 4.12 km, suggesting that this variable may not truly indicate the degree of human presence because roads do not really provide access to the mountain forest areas included in this study.

Among all of the variables tested, T3 levels (pg T3/mg feather) were influenced by sex and showed a negative correlation with feather length; the simplified GLS model revealed lower T3 values in male Pyrenean Capercaillie feathers than in female

feathers. T3 concentration in birds generally decreases as a result of stress related to food deprivation and nutritional deficits (Schew & Ricklefs, 1998), lowering the basal metabolic rate and resting energy expenditure (Rosen & Kumagai, 2008), and activating energy saving mechanisms (Cherel *et al.*, 2004; Nelson, 2005) as previously reported in the Tufted Puffin (*Fratercula cirrhata*) (Kitaysky *et al.*, 2005) and King Penguin (*Aptenodytes patagonicus*) (Cherel *et al.*, 2004). During the molting period, Pyrenean Capercaillies segregate according to sex; males and females use their habitat differently during this period and show distinct trophic variability and a corresponding dietary segregation (Blanco-Fontao *et al.*, 2012). Thus, the difference in T3 levels according to sex in the Pyrenean Capercaillie may be a result of their dietary segregation during the molting period, leading to different nutritional stress levels. An alternative hypothesis may be related to thermoregulation; thyroid hormones decrease when temperatures rise above, and increase when temperatures fall below, the species' thermal neutral zone (Silva, 2006; Silva *et al.*, 2023). Hissa *et al.* (1983) detected seasonal changes in blood plasma thyroid hormone levels in captive capercaillies (in both sexes) in Finland, with a marked drop in May–June, the time in the year when mean temperatures tend to increase. T3 plasma levels also showed a negative correlation with environmental temperatures in other avian species (such as Barn Owl [*Tyto alba*], chickens [*Gallus gallus*], Asian Short-toed Lark [*Alaudala cheleensis*]) (Cogburn & Freeman, 1987; Collin *et al.*, 2003; Klein *et al.*, 2006; Shang *et al.*, 2021). Therefore, an alternative hypothesis is that the thermoregulatory capacity of male Pyrenean Capercaillies is more challenged than that of females, due to their larger body mass (Leclercq & Ménoni, 2018), thus decreasing their thyroid hormone production during the molting period, which coincides with the European summer months (in July–September) (Abhay *et al.*, 2015).

The only previous noninvasive study on T3 levels in an avian species (Branco *et al.*, 2023) did not elucidate the correlations between the variables studied and T3 levels. Herein, T3 levels did not correlate either with environmental variables, as it was observed in other previous studies about THs blood levels in birds (Decuypere *et al.*, 2005; Kitaysky *et al.*, 2005; Shahid *et al.*, 2020). We hypothesize that this lack of correlation may be due to: (a) the lack of information regarding, for example, physiological stress data, food availability, and bioclimatic characteristics of the areas studied, all of which should be examined in future studies, and (b) the knowledge gap regarding the process of THs deposition in feathers, which is essential to the full understanding of the information that the noninvasive T3 measurement can offer. Only with this deeper knowledge regarding the accumulation of T3 in feathers, we will be able to judge whether this noninvasive hormonal assessment is truly a good proxy for evaluating certain physiological conditions or for its potential correlation with certain environmental variables. For example, we hypothesized that the negative correlation observed between T3 levels and feather length could indicate a dilution effect of T3 when it deposits in longer feathers. We can probably conclude that, despite the available information on how T3 responds to certain environmental variables in avian species (Decuypere *et al.*, 2005; Kitaysky *et al.*, 2005; Shahid *et al.*, 2020),

interpretation of T3 levels in feathers and their correlation with environmental variables is actually more complex than we assumed before this study.

This study provides valuable and novel data regarding corticosterone and T3 levels in the feathers of Pyrenean Capercaillies, and the correlations between corticosterone levels and anthropogenic or bioclimatic variables. Contrary to previous studies on capercaillie (Martínez Padilla & Estrada, 2021) and Purple Martin (Branco *et al.*, 2023), where no significant correlations were found between hormone levels and environmental variables, our results support the notion that measuring hormone levels in feathers is a valuable tool to assess the suitability of certain environmental conditions for the Pyrenean Capercaillie. Further longitudinal noninvasive studies could provide additional data to understand the THs deposit in feathers, the correlations detected between corticosterone levels and certain bioclimatic and anthropogenic variables, and the tolerance thresholds of the Pyrenean Capercaillie toward environmental changes and anthropogenic variables, such as rising environmental temperatures and leisure activities in subalpine forests, so as to improve management and conservation actions.

Acknowledgements

We thank the Departament d'Acció Climàtica, Alimentació i Agenda Rural de la Generalitat de Catalunya, Consell Generau d'Aran, Forestal Catalana, Cos d'Agents Rurals, Centre de Ciència i Tecnologia Forestal de Catalunya, Office Français de la Biodiversité, NGO Paisatges Vius, Parc Natural de l'Alt Pirineu, Parc Nacional d'Aiguëstortes i Estany de Sant Maurici, Parc Natural de les Capçaleres del Ter i del Freser, Parc Natural del Cadí Moixeró, Fondazione la Lomellina, Gobierno de Aragón y Federación Aragonesa de Caza, Fundación Artesian, Juan Fernandez, Job Roig, Anna Planella, and Elena Vega for their administrative and technical support. We thank Jesús Martínez-Padilla and an anonymous reviewer for comments to improve this article.

Author contributions

ONF, AC, and IAJ conceived the ideas and designed the methodology; ONF, AB, and IAJ collected the data; OG, IS, AB, AM, IAJ, MFM, JN, AM, and CS analyzed the data; ON, OG, ACE, CS, and AM led the writing of the manuscript; AC, OG, ACE, MLB, EM, AM, and CS did the manuscript review and editing. All authors contributed critically to the drafts and gave final approval for publication.

Conflicts of interest

The authors declare no conflict of interest.

Funding

This study was partially funded by a crowdfunding project (<https://www.totsuma.cat/projecte/1844/en-pui-el-pollet-de-gall-fer-te-un-missatge-per-a-tu-conte-illustrat>). We also thank Editorial Alpina for dedicating part of the selling profits of the

children's book "Pui, the Pyrenean Capercaillie chick, has a message for you" (ISBN: 9788480908689) to fund this study. Ana Carolina Ewbank and Irene Sacristán are recipients of Juan de la Cierva Formación fellowships (JDC2022-048632-I and FJC2020-046311-I, respectively). Carlos Sacristán received a Juan de la Cierva incorporation fellowship (IJC2020-046019-I). The Juan de la Cierva formación and incorporación grants were funded by Agencia Estatal de Investigación/Ministerio de Ciencia, Innovación y Universidades. We also thank the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI). Antoni Margalida was partially supported by DGA E03_23R-Conservacion de Ecosistemas Naturales.

Data availability statement

Data will be made available upon request.

References

Abhay, K., Tapan, K., David, C. C., & Sudipto, H. (2015). Effects of supplementation of betaine hydrochloride on physiological performances of broilers exposed to thermal stress. *Open Access Animal Physiology*, **7**, 111–120. <https://doi.org/10.2147/oaap.s83190>

Amo, L., López, P., & Martín, J. (2006). Nature-based tourism as a form of predation risk affects body condition and health state of *Podarcis muralis* lizards. *Biological Conservation*, **131**(3), 402–409. <https://doi.org/10.1016/J.BIOCON.2006.02.015>

Arancibia, S., Rage, F., Astier, H., & Tapia-Arancibia, L. (1996). Neuroendocrine and autonomous mechanisms underlying thermoregulation in cold environment. *Neuroendocrinology*, **64**, 257–267.

Arlettaz, R., Patthey, P., Baltic, M., Leu, T., Schaub, M., Palme, R., & Jenni-Eiermann, S. (2007). Spreading free-riding snow sports represent a novel serious threat for wildlife. *Proceedings of the Royal Society B: Biological Sciences*, **274** (1614), 1219–1224. <https://doi.org/10.1098/rspb.2006.0434>

Baker, K. (1993). *Identification guide to European non-passerines*. British Trust for Ornithology. <https://british-trust-for-ornithology.myshopify.com/products/identification-guide-to-european-non-passerines>

Baltic, M., Jenni-Eiermann, S., Arlettaz, R., & Palme, R. (2005). A noninvasive technique to evaluate human-generated stress in the black grouse. *Annals of the New York Academy of Sciences*, **1046**, 81–95. <https://doi.org/10.1196/ANNALS.1343.008>

Blanco-Fontao, B., Obeso, J. R., Bañuelos, M. J., & Quevedo, M. (2012). Habitat partitioning and molting site fidelity in *Tetrao urogallus cantabricus* revealed through stable isotopes analysis. *Journal of Ornithology*, **153**(2), 555–562. <https://doi.org/10.1007/s10336-011-0776-0>

Bortolotti, G. R., Marchant, T. A., Blas, J., & German, T. (2008). Corticosterone in feathers is a long-term, integrated measure of avian stress physiology. *Functional Ecology*, **22**(3), 494–500. <https://doi.org/10.1111/j.1365-2435.2008.01387.x>

Brando, J. M., Hingst-Zaher, E., Dillon, D., Jordan-Ward, R., Siegrist, J., Fischer, J. D., Schiesari, L., von Hippel, F. A., & Buck, C. L. (2023). A novel method for extraction and quantification of feather triiodothyronine (T3) and application to ecotoxicology of purple Martin (*Progne subis*). *Environmental Pollution*, **332**, 121943. <https://doi.org/10.1016/J.ENVPOL.2023.121943>

Breed, D., Meyer, L. C. R., Steyl, J. C. A., Goddard, A., Burroughs, R., & Kohn, T. A. (2019). Conserving wildlife in a changing world: Understanding capture myopathy – a malignant outcome of stress during capture and translocation. *Conservation Physiology*, **7**(1), coz027. <https://doi.org/10.1093/conphys/coz027>

Canut, J., Garcia-Ferrer, D., & Afonso-Jordana, I. (2021). Pyrenean capercaillie (*Tetrao urogallus*). In M. Franch, S. Herrando, M. Anton, D. Villero & L. Brotons (Eds.), *Catalan breeding bird atlas. Distribution and abundance 2015–2018 and change since 1980* (pp. 112–113). Cossetània and ICO.

Carabajal, A., Tallo-Parra, O., Sabes-Alsina, M., Mular, I., & Lopez-Bejar, M. (2014). Feather corticosterone evaluated by ELISA in broilers: A potential tool to evaluate broiler welfare. *Poultry Science*, **93**(11), 2884–2886. <https://doi.org/10.3382/PS.2014-04092>

Cassirer, E. F., Freddy, D. J., & Ables, E. D. (1992). Elk responses to disturbance by cross-country skiers in Yellowstone national park. *Wildlife Society Bulletin*, **20**, 375–381.

Castroviejo, J. (1975). *El urogallo en España. Monografías de la Estación Biológica de Doñana*. Consejo Superior de Investigaciones Científicas.

Cherel, Y., Durant, J. M., & Lacroix, A. (2004). Plasma thyroid hormone pattern in king penguin chicks: A semi-altricial bird with an extended posthatching developmental period. *General and Comparative Endocrinology*, **136**(3), 398–405. <https://doi.org/10.1016/j.ygcen.2004.02.003>

Cogburn, L. A., & Freeman, R. M. (1987). Response surface of daily thyroid hormone rhythms in young chickens exposed to constant ambient temperature. *General and Comparative Endocrinology*, **68**(1), 113–123. [https://doi.org/10.1016/0016-6480\(87\)90066-9](https://doi.org/10.1016/0016-6480(87)90066-9)

Collin, A., Buyse, J., van As, P., Darras, V. M., Malheiros, R. D., Moraes, V. M. B., Reyns, G. E., Taouis, M., & Decuypere, E. (2003). *General and comparative endocrinology* (Vol. **130**). Academic Press.

Cyr, N. E., & Michael Romero, L. (2007). Chronic stress in free-living European starlings reduces corticosterone concentrations and reproductive success. *General and Comparative Endocrinology*, **151**(1), 82–89. <https://doi.org/10.1016/j.ygcen.2006.12.003>

Decuypere, E., Van As, P., Van Der Geyten, S., & Darras, V. M. (2005). Thyroid hormone availability and activity in avian species: A review. *Domestic Animal Endocrinology*, **29**(1), 63–77. <https://doi.org/10.1016/j.domaniend.2005.02.028>

Escoda, L., Piqué, J., Paule, L., Foulché, K., Menoni, E., & Castresana, J. (2023). Genomic analysis of geographical structure and diversity in the capercaillie (*Tetrao urogallus*). *Conservation Genetics*, **25**, 277–290. <https://doi.org/10.1007/s10592-023-01567-6>

Fernández-Juricic, E., & Tellería, J. L. (2000). Effects of human disturbance on spatial and temporal feeding patterns of blackbird *Turdus merula* in urban parks in Madrid, Spain. *Bird Study*, **47**(1), 13–21. <https://doi.org/10.1080/00063650009461156>

Fernandez, P. (2024). *Plumarium project*. <https://plumarium.es/en/red-legged-partridge/>

Getis, A., & Ord, J. (1992). The analysis of spatial association by use of distance statistics. *Geographical Analysis*, **24**, 189–206.

Gil, J. A., Gómez-Serrano, M. Á., & López-López, P. (2020). Population decline of the capercaillie *Tetrao Urogallus aquitanicus* in the Central Pyrenees. *Ardeola*, **67**(2), 285–306. <https://doi.org/10.13157/arla.67.2.2020.ra4>

González, L. M., Arroyo, B. E., Margalida, A., Sánchez, R., & Oria, J. (2006). Effect of human activities on the behaviour of breeding Spanish imperial eagles *Aquila adalberti*: management implications for the conservation of a threatened species. *Animal Conservation*, **9**, 85–93.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. (2013). High-resolution global maps of 21st-century forest cover change. *Science*, **342**, 850–853.

Hardy, J., Crick, H., Wernham, C., Riley, H., Etheridge, B., & Thompson, D. (2009). *Raptors: A field guide for surveys and monitoring*. The Stationery Office.

Hissa, R., Saarela, S., Balthazart, J., & Etches, A. J. (1983). Annual variation in the concentrations of circulating hormones in capercaillie (*Tetrao urogallus*). *General and Comparative Endocrinology*, **51**, 183–190.

Hofer, H., & East, M. L. (1998). Biological conservation and stress. *Advances in the Study of Behavior*, **27**, 405–525.

Höfle, U., Millán, J., Gortázar, C., Buenestado, F. J., Marco, I., & Villafuerte, R. (2004). Self-injury and capture myopathy in net-captured juvenile red-legged partridge with necklace radiotags. *Wildlife Society Bulletin*, **32**(2), 344–350. [https://doi.org/10.2193/0091-7648\(2004\)32\[344:sacmin\]2.0.co;2](https://doi.org/10.2193/0091-7648(2004)32[344:sacmin]2.0.co;2)

Ingolfsson, A. (2008). The moult of remiges and rectrices in great black-backed gulls (*Larus marinus*) and glaucous gulls (*L. hyperboreus*) in Iceland. *Ibis*, **112**(1), 83–92. <https://doi.org/10.1111/j.1474-919X.1970.tb00077.x>

Jenni-Eiermann, S., & Arlettaz, R. (2008). Does ski tourism affect alpine bird fauna? *Chimia*, **62**(4), 301. <https://doi.org/10.2533/chimia.2008.301>

Jimeno, B., & Verhulst, S. (2023). Meta-analysis reveals glucocorticoid levels reflect variation in metabolic rate, not “stress”. *eLife*, **12**, 88205. <https://doi.org/10.7554/eLife.10077>

Jimeno, B., Hau, M., & Verhulst, S. (2018). Corticosterone levels reflect variation in metabolic rate, independent of ‘stress’. *Scientific Reports*, **8**(1), 13020. <https://doi.org/10.1038/s41598-018-31258-z>

Kitaysky, A. S., Romano, M. D., Piatt, J. F., Wingfield, J. C., & Kikuchi, M. (2005). The adrenocortical response of tufted puffin chicks to nutritional deficits. *Hormones and Behavior*, **47**(5), 606–619. <https://doi.org/10.1016/j.yhbeh.2005.01.005>

Klein, Á., Kulcsár, M., Krízsik, V., Mátics, R., Rudas, P., Török, J., & Huszenicza, G. (2006). Effects of environmental temperature on thyroid hormones in the barn owl (*Tyto alba*). *Acta Veterinaria Hungarica*, **54**(3), 321–331. <https://doi.org/10.1556/AVet.54.2006.3.3>

Leclercq, B., & Ménoni, E. (2018). *Le grand tétras*. Biotope Éditions.

Little, A. G., & Seebacher, F. (2024). Endocrine responses to environmental variation. *Philosophical Transactions of the Royal Society, B: Biological Sciences*, **379**(1898), 20220515. <https://doi.org/10.1098/rstb.2022.0515>

MacDougall-Shackleton, S. A., Bonier, F., Romero, L. M., & Moore, I. T. (2019). Glucocorticoids and “stress” are not synonymous. *Integrative Organismal Biology*, **1**(1), obz017. <https://doi.org/10.1093/iob/obz017>

Mallet-Rodrigues, F. (2012). Replacement and growth of primary feathers in captive rock pigeons, *Columba livia* (Aves: Columbidae). *Zoologia*, **29**(2), 121–125. <https://doi.org/10.1590/S1984-46702012000200004>

Marion, S., Davies, A., Demšar, U., Irvine, R. J., Stephens, P. A., & Long, J. (2020). A systematic review of methods for studying the impacts of outdoor recreation on terrestrial wildlife. *Global Ecology and Conservation*, **22**, e00917. <https://doi.org/10.1016/j.gecco.2020.e00917>

Martínez Padilla, J., & Estrada, A. (2021). Physiological stress in wild and captive Cantabrian capercaillies (*Tetrao urogallus cantabricus*): Temporal trends and methodological implications. *Ecosistemas*, **30**(1), 2161. <https://doi.org/10.7818/ECOS.2161>

McClung, M. R., Seddon, P. J., Massaro, M., & Setiawan, A. N. (2004). Nature-based tourism impacts on yellow-eyed penguins *Megadyptes antipodes*: Does unregulated visitor access affect fledgling weight and juvenile survival? *Biological Conservation*, **119**(2), 279–285. <https://doi.org/10.1016/j.biocon.2003.11.012>

McEwen, B. S., & Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. *Hormones and Behavior*, **43**(1), 2–15. [https://doi.org/10.1016/S0018-506X\(02\)00024-7](https://doi.org/10.1016/S0018-506X(02)00024-7)

McNabb, F. M. A., & King, D. B. (1993). Thyroid hormones effects on growth development and metabolism. In M. P. Schreibman, C. G. Scanes, & K. T. Pang (Eds.), *The endocrinology of growth development and metabolism in vertebrates*. Academic Press.

McNabb, F. M. A., Scanes, C. G., & Zeman, M. (1998). The endocrine system. In J. M. Starck & R. E. Ricklefs (Eds.), *Avian growth and development: Evolution within the*

altricial-precocial spectrum (pp. 174–202). Oxford University Press, Inc.

Monclús, L. (2018). *Feathers as a matrix to assess stress response in birds and biomonitor environmental pollutants: An integrative approach*. Autonomous University of Barcelona, School of Veterinary Medicine. PhD thesis.

Monclús, L., Tallo-Parra, O., Carbajal, A., & Lopez-Bejar, M. (2017). Validation of a protocol for corticosterone extraction from feathers of raptor species. *Proceedings of the 11th international conference on behavior, physiology and genetics of wildlife*.

Nelson, R. J. (2005). *An introduction to behavioral endocrinology* (3rd ed.). Sinauer Associates.

Nicolás Francisco, O., Afonso Jordana, I., García Ferré, D., Roig Simón, J., Ewbank, A. C., Margalida, A., Sacristán, I., Foulché, K., Ménoni, E., & Sacristán, C. (2022). Sedation of wild Pyrenean capercaillie (*Tetrao urogallus aquitanicus*) using intramuscular midazolam. *Animals*, **12**(14), 1773. <https://doi.org/10.3390/ani12141773>

Orr, J. A., Vinebrooke, R. D., Jackson, M. C., & Kroeker, K. J. (2020). Towards a unified study of multiple stressors: Divisions and common goals across research disciplines. *Proceedings of the Royal Society B: Biological Sciences*, **287**, 20200421. <https://doi.org/10.1098/rspb.2020.0421>

Palme, R. (2005). Measuring fecal steroids: Guidelines for practical application. *Annals of the New York Academy of Sciences*, **1046**, 75–80. <https://doi.org/10.1196/annals.1343.007>

Pérez, J. H., Meddle, S. L., Wingfield, J. C., & Ramenofsky, M. (2018). Effects of thyroid hormone manipulation on pre-nuptial molt, luteinizing hormone and testicular growth in male white-crowned sparrows (*Zonotrichia leucophrys gambelii*). *General and Comparative Endocrinology*, **255**, 12–18. <https://doi.org/10.1016/j.ygcen.2017.09.025>

Pinheiro, J., Bates, D., & DebRoy, S. (2015). *Nlme: Linear and nonlinear mixed effects models*. R package version 3.1–121. <http://CRAN.R-project.org/package=nlme>

Poirazidis, K., Bontzorlos, V., Xofis, P., Zakkak, S., Xirouchakis, S., Grigoriadou, E., Kechagioglou, S., Gasteratos, I., Alivizatos, H., & Panagiotopoulou, M. (2019). Bioclimatic and environmental suitability models for capercaillie (*Tetrao urogallus*) conservation: Identification of optimal and marginal areas in Rodopi Mountain-range National Park (Northern Greece). *Global Ecology and Conservation*, **17**, e00526. <https://doi.org/10.1016/j.gecco.2019.e00526>

QGIS.org. (2019). *QGIS geographic information system. Open source geospatial foundation project*. <http://qgis.org>

R Core Team. (2021). *A language and environment for statistical computing*. R Foundation for Statistical Computing. <https://www.R-project.org/>

Reinert, B. D., & Wilson, F. E. (1997). Effects of thyroxine (T4) or triiodothyronine (T3) replacement therapy on the programming of seasonal reproduction and postnuptial molt in thyroidectomized male American tree sparrows (*Spizella arborea*) exposed to long days. *The Journal of Experimental Zoology*, **279**, 367–376.

Romero, L. M., & Fairhurst, G. D. (2016). Measuring corticosterone in feathers: Strengths, limitations, and suggestions for the future. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*, **202**, 112–122. <https://doi.org/10.1016/j.cbpa.2016.05.002>

Rosen, D. A., & Kumagai, S. (2008). Hormone changes indicate that winter is a critical period for food shortages in Steller sea lions. *Journal of Comparative Physiology B*, **178**, 573–583.

Ruder, M. G., Noel, B. L., Bednarz, J. C., & Kevin Keel, M. (2012). Exertional myopathy in pileated woodpeckers (*Dryocopus pileatus*) subsequent to capture. *Journal of Wildlife Diseases*, **48**(2), 514–516. <https://doi.org/10.7589/0090-3558-48.2.514>

Ruuskanen, S., Hsu, B. Y., & Nord, A. (2021). Endocrinology of thermoregulation in birds in a changing climate. *Molecular and Cellular Endocrinology*, **519**, 111088. <https://doi.org/10.1016/j.mce.2020.111088>

Schew, W. A., & Ricklefs, R. E. (1998). Developmental plasticity. In J. M. Starck & R. E. Ricklefs (Eds.), *Avian growth and development* (pp. 288–304). Oxford University Press, Inc.

Seebacher, F., & Little, A. (2024). Thyroid hormone links environmental signals to DNA methylation. *Philosophical Transactions of the Royal Society, B: Biological Sciences*, **379**(1898), 20220506. <https://doi.org/10.1098/rstb.2022.0506>

Shahid, M. A., Ashraf, M. A., & Sharma, S. (2020). *Physiology, thyroid hormone*. StatPearls Publishing LLC. <https://www.ncbi.nlm.nih.gov/books/NBK500006/>

Shang, J., Zhang, L., Li, X., & Zhang, S. (2021). Endocrine response of early-hatching Asian short-toed lark nestlings exposed to cold temperature in a high-latitude grassland habitat. *Avian Research*, **12**(1), 55. <https://doi.org/10.1186/s40657-021-00291-4>

Sheriff, M. J., Krebs, C. J., & Boonstra, R. (2010). Assessing stress in animal populations: Do fecal and plasma glucocorticoids tell the same story? *General and Comparative Endocrinology*, **166**(3), 614–619. <https://doi.org/10.1016/j.ygcen.2009.12.017>

Silva, J. E. (2006). Thermogenic mechanisms and their hormonal regulation. *Physiological Reviews*, **86**, 435–464. <https://doi.org/10.1152/physrev.00009.2005>

Silva, V., Gai, L., Harkes, P., Tan, G., Ritsema, C. J., Alcon, F., Contreras, J., Abrantes, N., Campos, I., Baldi, I., Bureau, M., Christ, F., Mandrioli, D., Sgargi, D., Pasković, I., Polić Pasković, M., Glavan, M., Hofman, J., Huerta Lwanga, E., ... Geissen, V. (2023). Pesticide residues with hazard classifications relevant to non-target species including humans are omnipresent in the environment and farmer residences. *Environment International*, **181**, 108280. <https://doi.org/10.1016/j.envint.2023.108280>

Spanish Extinct Species List. (2023). *Pub. L. No. BOE 83, April 7th, 2023*. <https://www.boe.es/boe/dias/2023/04/07/pdfs/BOE-A-2023-8751.pdf>

Storch, I. (2000). Conservation status and threats to grouse worldwide: An overview. *Wildlife Biology*, **6**(4), 195–204. <https://doi.org/10.2981/wlb.2000.016>

Taff, C. C., Baldan, D., Mentesana, L., Ouyang, J. Q., Vitousek, M. N., & Hau, M. (2024). Endocrine flexibility can facilitate or constrain the ability to cope with global change. *Philosophical Transactions of the Royal Society, B: Biological Sciences*, **379**(1898), 20220502. <https://doi.org/10.1098/rstb.2022.0502>

Thiel, D., Jenni-Eiermann, S., & Jenni, L. (2008a). Effects of recreation activities on flushing behaviour, habitat use and stress physiology of Western capercaillie. *Journal of Wildlife Management*, **105**, 85–96.

Thiel, D., Jenni-Eiermann, S., & Jenni, L. (2008b). Effects of recreation activities on flushing behaviour, habitat use and stress physiology of Western capercaillie. *Ornithologische Beobachter*, **75**(105), 85–96.

Thiel, D., Jenni-Eiermann, S., & Palme, R. (2005). Measuring corticosterone metabolites in droppings of capercaillies (*Tetrao urogallus*). *Annals of the New York Academy of Sciences*, **1046**, 96–108. <https://doi.org/10.1196/annals.1343.009>

Thiel, D., Jenni-Eiermann, S., Braunisch, V., Palme, R., & Jenni, L. (2008). Ski tourism affects habitat use and evokes a physiological stress response in capercaillie *Tetrao urogallus*: A new methodological approach. *Journal of Applied Ecology*, **45**(3), 845–853. <https://doi.org/10.1111/j.1365-2664.2008.01465.x>

Thiel, D., Jenni-Eiermann, S., Palme, R., & Jenni, L. (2011). Winter tourism increases stress hormone levels in the capercaillie *Tetrao urogallus*. *Ibis*, **153**, 122–133.

Van der Geyten, S., Van Rompaey, E., Sanders, J. P., Visser, T. J., Kühn, E. R., & Darras, V. M. (1999). Regulation of thyroid hormone metabolism during fasting and refeeding in chicken. *General and Comparative Endocrinology*, **116**(2), 272–280. <https://doi.org/10.1006/gcen.1999.7368>

Wasser, S. K., Cristóbal-Azkarate, J., Booth, R. K., Hayward, L., Hunt, K., Ayres, K., Vynne, C., Gobush, K., Canales-Espinosa, D., & Rodríguez-Luna, E. (2010). Non-invasive measurement of thyroid hormone in feces of a diverse array of avian and mammalian species. *General and Comparative Endocrinology*, **168**(1), 1–7. <https://doi.org/10.1016/j.ygcn.2010.04.004>

Welcker, J., Chastel, O., Gabrielsen, G. W., Guillaumin, J., Kitaysky, A. S., Speakman, J. R., Tremblay, Y., & Bech, C. (2013). Thyroid hormones correlate with basal metabolic rate but not field metabolic rate in a wild bird species. *PLoS One*, **8**(2), e6229. <https://doi.org/10.1371/journal.pone.0056229>

Will, A. P., Suzuki, Y., Elliott, K. H., Hatch, S. A., Watanuki, Y., & Kitaysky, A. S. (2014). Feather corticosterone reveals developmental stress in seabirds. *Journal of Experimental Biology*, **217**(13), 2371–2376. <https://doi.org/10.1242/jeb.098533>

Wolf, P., Rabehl, N., & Kamphues, J. (2003). Investigations on feathering, feather growth and potential influences of nutrient supply on feathers' regrowth in small pet birds (canaries, budgerigars and lovebirds). *Journal of Animal Physiology and Animal Nutrition*, **87**(3–4), 134–141.

Yoccoz, N. G., Delestrade, A., & Loison, A. (2011). Impact of climatic change on jalpine ecosustems: Inference and prediction. *Machine Design*, **83**(3), 42–44. <https://doi.org/10.4000/rga.1293>

Zwahlen, J., Gairin, E., Vianello, S., Mercader, M., Roux, N., & Laudet, V. (2024). The ecological function of thyroid hormones. *Philosophical Transactions of the Royal Society, B: Biological Sciences*, **379**(1898), 20220511. <https://doi.org/10.1098/rstb.2022.0511>

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1. Forest of origin (forest name, municipality, county, or department, region, and country) and sampling years of the samples included in the study.

Table S2. ELISA kit assay validations for the corticosterone and triiodothyronine (T3) analyses; the results show the precision (intra- and inter-assay coefficients of variation [CV]), specificity (dilution test), and accuracy (spike-and-recovery test) of the assays.

Table S3. Generalized least squares (GLS) non-simplified model (M1) exploring the correlations between corticosterone levels and the selected variables explained in section 2.5 (in a dataset called “all_data”). The test value (Value) and the standard error (SE), *t*-value, and *P*-value are indicated.

Table S4. Generalized least squares (GLS) non-simplified model (M1) exploring the correlations between T3 levels (pg T3/mg feather) levels and the selected variables explained in section 2.5 (in a dataset called “all_data”). The test value (Value) and the standard error (SE), *t*-value and *P*-value are given.

Figure S1. A female Pyrenean Capercaille molted covert feather being prepared for mechanical mincing using a ball-mill (left); feather dust being weighted on a precision scale (right).

Figure S2. Textbox showing the Strava heatmap extraction data process. A Strava heatmap generated as a raster image using Qgis (French sampling points in white, and Spanish sampling points in blue).

Figure S3. A scatterplot showing corticosterone values (pg/mg feather) in relation to feather weight (mg, Fig. S3a) and length (mm, Fig. S3b). No correlation was detected between either the corticosterone level and feather weight, or length. In both plots, male values are shown in red and female values are in black.