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Abstract

In the present paper we characterize the removable sets for solutions of the fractional heat
equation satisfying some parabolic BMO or Lip, normalization conditions. We do this by
introducing associated fractional caloric capacities, that we show to be comparable to a certain
parabolic Hausdorff content.
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1 Introduction

In this paper we characterize removable sets for solutions of the fractional heat equation
under certain parabolic BMO or Lip, normalization conditions. Our main motivation stems
from the results obained in [14] and [13]. The study conducted by Mateu, Prat and Tolsa in
[14] explores removable singularities for regular (1, 1/2)—Lipschitz solutions of the classical
heat equation, associated with the operator

O :=(—Ay) + 9, where (x,7) e R" xR.

Here (—A,) is the usual Laplacian, computed with respect to the spatial variables. In [13],
the authors extend the study to the fractional heat equation, defined via the s-heat operator

O° == (—Ay) 4+ 9, s € (0,1].

Fors = 1, we recover the classical heat equation, while for s < 1, the operator (—A,)*, com-
monly referred to as s-fractional Laplacian or s-Laplacian, requires an alternative definition.
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It is typically introduced through its Fourier transform:

(“A) fE D =[5 F & D,
or via the singular integral representation

(—A)* F(x, 1) = Cps PV fen—-f0.0,

R |x =yl
/ Ja+y.0)=2fx, )+ fx =y, 1)
=Cp 5 dy.
Rr |y|n+ s

These representations are equivalent and highlight that (—A)* is no longer a local operator
and that as s — 1, one recovers the expression of (—A, ). The reader may consult [4, §3] or
[19] for details on the properties of (—A,)*.

To study removable sets in this context, we introduce the s-parabolic distance between
two points X := (x,1), y := (y, 7) in R+, defined as

[X = lp, =disty (X,V) := max{|x —yl|, It —‘L'|%}, for 0 <s <1.

This leads naturally to the notions of s-parabolic cubes and s-parabolic balls. We convey
that B(x, r) will be the s-parabolic ball centered at X with radius r, where the spatial coor-
dinates are contained in a Euclidean ball B; of radius r, while the temporal coordinate lies
in a real interval I of length (27)%%. On the other hand, an s-parabolic cube Q of side length
£ is a set of the form

I x - X Iy X Iy,

where I, ..., I, are intervals of length ¢, while ,,1| is another interval of length 025, We
write £(Q) = L.

Let us recall that a function f is said to be (1, 1/2)-Lipschitz regular if, as precised in
[14], it is such that

1/2
1V fll oo sty < 00, 18,72 flla,py < o0 (1

Here || -]+, p, stands for the usual BMO(R"*1) norm but computed with respect to 1-parabolic
cubes. As shown by Hofmann and Lewis [10, Lemma 1], [11, Thm. 7.4], such functions satisfy

|f(x7t) - f(x,u)|

|t —ull/2

1/2
I £ llLipy e == Sup SV fllgoqsny + 18,7 Fllpy-

xeR”
t,uelR, t#u
Thus a (1, 1/2)—Lipschitz function is Lipschitz in the spatial variables and 1/2-Lipschitz in
time. This explains the term (1, 1/2)—Lipschitz caloric capacity introduced in [14], defined
for a compact set E C R"*! as

Fe(E) = sup{|{®f, 1)},

the supremum taken over all (1, 1/2)—Lipschitz regular functions f satisfying the heat
equation on R"*! \ E and with the norms in (1) smaller or equal than one.
A key result in [14] establishes the equivalence between the removability of the compact
set E for (1, 1/2)—Lipschitz solutions of the heat equation and the fact that I'g (E)) vanishes.
In this paper, we aim at characterizing different variants of the previous Lipschitz caloric
capacity, replacing the previous estimates with parabolic BMO or Lip, conditions for Vy f

and 8,1/ 2 f. More generally, we analyze removable sets for solutions of the s-fractional heat
1
equation with s-parabolic gradient (V,, 3, ) satisfying either an s-parabolic BMO or Lip,,

@ Springer



On fractional parabolic BMO... Page3of56 21

condition. The reader who is not familiar with the notion of removability may conceive
removable sets as those which “do not matter” when solving the ®°-equation, 0 < s < 1.
This has to be understood in the sense that any solution defined on their complement that
satisfies the above (1, %)-gradient estimates, can be extended to verify the ®*-equation
throughout the entire domain, including the set itself.

Our main result characterizes removability in terms of two different capacities: one requir-
ing the (1, %)—gradient of solutions of the ®%-equation satisfy s-parabolic BMO estimates,
and another one requiring s-parabolic Lip, bounds. These capacities, denoted by I'gs » and
l'os o respectively, are related to certain s-parabolic Hausdorff contents Hg,, ,, , which are
defined as in the Euclidean case (see [15], for instance), just replacing the Euclidean distance
by the parabolic distance introduced above. Our main result reads as follows:

Theorem Lets € (1/2,1], 2 € (0, 1) and E C R+ compact set. Then,
Pos «(E) ~ps HI) (E),

ifa <25 — 1, Teora(E) Npsa HET(E).

Moreover, the nullity of these capacities is equivalent to the removability of the corresponding
compact set for solutions satisfying (1, %)—gmdient estimates in either s-parabolic BMO or
Lip,, assuming o < 2s — 1 in the latter case.

We further study the same type of question for a generalization of the capacities presented
by Mateu and Prat in [13, §4 & §7]. That is, we will ask for a characterization of removable
sets for solutions of the ®*-equation satisfying conditions of the form

(=) fII < oo, 187" fl < 00, s € (0. 1]and o € [0, ).

Symbols |- || can refer both to s-parabolic BMO norms or both to s-parabolic Lip, seminorms,
giving rise to the capacities yg; , and yg; , respectively. We prove the following:

Theorem Foranys € (0,1], 0 €[0,s),x € (0,1)and E C R+ compact set,
Vs w(E) Rns.o a7 (E),
ifo <25 =20, ¥ o (E) R s.o0 Had 30T (E).

The nullity of these capacities is equivalent to the removability of the corresponding compact
set for solutions satisfying (o, o /s)-Laplacian estimates in either s-parabolic BMO or Lip,,
assuming o < 2s — 20 in the latter case.

The previous study has been motivated by the one carried out for the BMO variant of analytic
capacity by Kaufman [12] and Verdera [22] (for a brief overview the reader may consult [2,
§13.5.1]); and that for the Lip, variant of the same capacity in the direction presented by
Mel’nikov [16] or O’Farrell [17]. We remark that the results presented here also generalize
those of [9, §5 & §6].

A brief overview of the paper is as follows. Sects. 2 and 3 are devoted to kernel estimates
and growth estimates for the so-called admissible functions. Since some of the proofs in Sect.
2 are rather long and intricate, we defer them to a separate section at the end of the paper,
namely Sect. 6. In Sect. 4, we establish several important properties of potentials defined
with respect to positive Borel measures satisfying certain growth conditions. Finally, Sect.
5 introduces the various capacities under consideration and characterizes them in terms of
appropriate s-parabolic Hausdorff contents.
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About the notation: Constants appearing in the sequel may depend on the dimension of
the ambient space and the parameter s, and their value may change at different occurrences.
They will frequently be denoted by the letters ¢ or C. The notation A < B means that there
exists C, so that A < CB. Moreover, A & B is equivalentto A < B < A, while A >~ B
will mean A = CB. If the reader finds expressions of the form Sg or ~g, for example, this
indicates that the implicit constants depend on 7, s and B.

Since Laplacian operators (fractional or not) will frequently appear in our discussion and
will be always taken with respect to spatial variables, we will adopt the notation:

(=A)* = (—Ay)*, s € (0,1], and we convey (—A)? := Id.

We will also write || - [|eo := || - [|jcc(ga+1). Finally, we stress that an important parameter
which will play a fundamental role in Sect. 2 is

2¢ := min{l, 2s}.

2 Basic notation and kernel estimates

We begin by noticing that the s-parabolic distance betweenx := (x,t), y := (y, T) in R+
defined in the introduction as

IX — Flp, = disty, (%, ¥) == max {|x — y|, |t — 7|5}, for0<s<1,

is, in fact, equivalent to
disty, (%, 5) ~ (Jx — y|* + |t — rll/‘y)]/z.
The s-parabolic dilation of factor A > 0, written §;, is given by
8.(x, 1) = (x, A%1).

To ease notation, since we will always work with s-parabolic distances, we will write L0 to
denote 6, (Q), the s-parabolic cube concentric with Q of side length A¢(Q).

As the reader may suspect, the notion of s-parabolic BMO space, BMO,, , refers to the
space of usual BMO functions (strictly, equivalence classes of functions where constants
are identified as 0) obtained by replacing Euclidean cubes by s-parabolic ones. Similarly, a
function f : R"*! — Ris said to be s-parabolic Lip, forsome 0 < a < 1, shortly Lip,, , .

if
|f(x) — F(D)I
”f”Lipa,pS = Sup ———— 5 1.
X, yeRr+! lx — Y|ps

For each s € (0, 1], the fundamental solution Py (x, ) to the ®%-equation, i.e. that associated
with the operator
O = (—A) + 1,

. . . . 2 2s . .
is the inverse spatial Fourier transform of e~#7 11 for t > 0, and it equals 0 if 7 < 0. For
the special case s = 1, we retrieve the classical heat kernel, given by:

W) = PI(®) = cat 3 (Ixli™2),  if 1 >0,

where ¢, 1(p) := e/ 4, independent of n. Although the expression of Py is not explicit in
general, Blumenthal and Getoor [3, Theorem 2.1] established that for s < 1,

— _n L
Py(X) =cnst 2‘“¢n,x(|x|l 2“')Xt>07 ()
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Here, ¢, s is a smooth function, radially decreasing and satisfying, for0 < s < 1,

On.s(p) ~ (] + p2)
being an exact equality if s = 1/2 [21]. Therefore,

—(n+2s)/2

3)

Py (X) ~ B |n+23 Xt>0-

The function ¢, is tightly related to the Fourier transform of e ~#7 2l Indeed, taking the
spatial Fourier transform in both sides of identity (2), we get

_Ar2 2s _n _1
e~ IEl =Cpsl ¥ [¢n,s(| |t 2‘)]A($)
Recall that for & > 0, the dilation f) := f(Xx) satisfies ﬁ(&) =1" f(k‘lé). Then,

R < gy (1 )(E), thatimplies e ER = g, (17 )6).

The above relations will allow us to obtain explicit bounds for the derivatives of ¢, ;. Let
us present our first lemma. Although it can be deduced straightforwardly from [7, Theorem
1.1], we shall give a detailed proof for the sake of clarity and completeness.

Lemma2.1 Lets € (0, 1] and B € (0, 1). We define the following function in R":

YB) (x) i= (= APy (Ix]).
Then,

1. ¢y (p) = —p uy2.5(p).
|w(ﬁ)(x)| < (1 4 |x|2)7(”+2/3)/2.

3Vl () = —x ) ).

Proof We begin by proving [ for s < 1 (the case s = 1 is trivial). To do so, we will use the
explicit integral representation for the inverse Fourier transform of a radial function in [6,
§B.5] or [20, §IV.I]. Applying it to the Fourier transform e ER we get

o0 2.2s
s (I2]) = 27|~/ / e 2 s rrlzl)dr,  forany z € R\ {0},
0

where Ji is the classical Bessel function of order k [1, §9]. Since we are interested in the
derivatives of ¢, s as a radial real variable function, let us rewrite the previous expression in
terms of p € (0, 0co) so that it reads as

— o _A2,28
(f),,,s(,0)=271',01 "/2/0 e 4 r”/2Jn/2_1(2ﬂr,o)dr. 4)

Therefore, to estimate the derivatives of ¢, ; we need to determine first if we can differentiate
under the integral sign. To that end, we use the following recurrence relation for classical
Bessel functions [1, §9.1.27],

k
Ji(x) = ;Jk(x) — Jip1 ().

This recurrence formula together with (4) remain valid for the case k = —1/2, conveying
that J_12(x) = ,/ ~ cos x. In our case these imply

n _
3pJujp—1Q2mrp) = (5 - 1>p Y jpm1Qrrp) — 2r JuppRrp).
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If we differentiated under the integral sign in (4), we would get integrands of the form
TR LpaQurp), P g Qarp).

Notice that both are bounded by integrable functions in the domain of integration, locally
for each p > 0 (by the boundedness of the functions J; for n > 1, and by that of cos x if
n = 1). Hence, we can indeed differentiate under the integral sign to compute ¢;, ,, obtaining
the desired result:

n _ o . 2.2s
bp.s(0) = 277[<1 - 5)/0 "/2/0 A 2 a1 2 p)dr

1-n/2 % xS a2
+ p!™/%, f e 2 g0 1 Qrp)dr
0

ny _up * —47[2 2s /2
=2r|({1- )P Jnja—1(rp)dr
0

o0
pl_”/2<g — 1>,o_l</ e_4”2rzsr”/21n/2—1(27”,0)dr)
0
_ R
_ 277,0p1 (n-ﬁ-2)/2‘/0 e 4cr I’(n+2)/2.](n+2)/2,1(}’,O)dl‘]

= 271 $us2,5 (0).

Next we prove statement 2. Observe that for s € (0, 1] and ,8 € (0, 1), we have w(ﬂ )(S) =
|&12Be=47" " which is an integrable function, and thus \/fn Y is bounded (in fact, since the

product of 1/1('3 ) by any polynomial is also integrable, we infer that 1//03 ) is smooth). By the
integral representation formula for inverse Fourier transforms of radial functions,

o0
Y8 (x) = 2 x|/ / eI ) Qrrlxdr, x € RPA {0} (5)
0
Now, we apply [18, Lemma 1] to deduce the desired decaying property W(ﬁ )(x)|
O(Jx|™"=2F), for |x| large. Hence, since P
+28)/2
[l (1 S (14 1x2) "2,
We are left to control the norm of le,(f s), provided the latter is well-defined. We claim

that this is the case, since we can differentiate under the integral sign in (5). Indeed, by the
recurrence relation satisfied by the derivatives of J; we get

is bounded, we deduce the desired bound

n 1
IVadnja1(rix)| = ’(2 ) ] Jnj21Q@rrix|) = 2mrJypQmrlx))|.
So the resulting integrands to study are terms of the form
T By Q)] e R o ),

both bounded by the integrable functions Cie~""" r"/2+28 and Core~"" r"/2+28+1 for some
constants C1, C» depending on n, s and 8, and locally for each x € R” with |x| > 0. Hence,
we can differentiate under the integral sign in (5) and obtain
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o0
(ﬁ) — 4% n/2+28
) (x) = 271[( >|x|n/2+1 [ et s

n X o0 42,25
* (2 1>W/ e~Hmr rn/2+2ﬁ1n/2_1(2nr|x|)dr
0

X oo 422 (n+2)/2+428
a ﬂ|x|7/2 o ¢ r Jwn+2)2-1Q2mr|x|)dr

= —2mx Y, ().

m}

Using the above lemma together with (3) we can estimate the derivatives of ¢, ; and 1/1(’3 )
In particular, the following relations hold:

—p . N —14 @2n — 1)p?
(1 + p2)n+2s+2)/2° b5 (P) > (1 + p2)+2s+4)/2° ©)

Ifs < 1. @) (o) ~

|x|

(/3) <p
VY, (O S (1 + |x|2)(nH28+2)/2"

)

2.1 Estimates for V,P; and APP;

We shall now present some growth estimates for the kernels Ps. Our first result provides
bounds for V. Ps, s € (0, 1). These estimates are analogous to those of [14, Lemma 5.4]
which cover the case s = 1. In the forthcoming results, the parameter 2¢ := min{1, 2s} will
play an important role.

Theorem 2.2 The following estimates hold for any x # 0 and s € (0, 1):
|xt] - |7 - |x]

- < <
—n+2s+2° |APS(X)| |8tVXPS(x)|N — n4+2s+2°
|X|ps |x|/’s

< -
[ViPs(X)] S ~ |f|"+2s+2 ’
Ps

The last bound is only valid for points with t # 0. Also, if X' is such that |X —X'| p, < |X|,,/2,
|VxPs(f) - VXPS(XIN

Proof To simplify the arguments below, we specify the dependence of P; with respect to n.
Let us write Ps ,41 to refer to the fundamental solution of the ®°-equation in R"*! and use
the following abuse of notation: given x = (x1, ..., X,, 1) € R"*! write

P n13(X) := Py py3(x1,...,%,,0,0,1),
Ps,n+5(f) = PS.II+5(x17 ooy Xpy 0,0,0,0, [)~

This way, we directly apply relations (2) and (6) to obtain for each ¢ > 0,

_ntl |xz|
Ve Py ()| = 15 |, (1x ]2~ )| ~ X Py,n43(X)| ~ ||”+72Y+2

The bounds for APy 11 and 9;V, P ,11 can be obtained from the previous result and (2).
Indeed,
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21  Page8of 56 J.Hernandez et al.

o L as i
[APs p1(X)] = Py pg3(X) + [x]7 Py ngs(X) S W,
_ x| _ 2 — |x]
10,V Ponit D S (Pnta@® + 6P Ponss®) S — s
t |x|l’l+2S+2
Ps
For the final estimate, we recover the notation Py := P 1. Let X = (x/,¢) € R with
[x — 7|ps < |x]p,/2 and use the definition of dist,, to obtain
- —/ / |x|l’s
[Xlp, <2[X"|p, and |x'| > |x|— - 3

Put X = (x’, t) and write
Vi Py(X) — Vi Ps(X)| < Vi Py(X) — Vi Ps(X)| + Vi Py(X) — Vi Ps(X)].

We observe that the first term in the above inequality satisfies the desired bound,

- 2 = 1-2¢ = _ =2
e = x| _ X =¥ (X =%y, Ein
lx —x'| sup |AP(E. D] : - < — T
PN T o2 = et l2 s

Eelx,x’] |X|’;;l\, |x|';,s d |x|px |x|';s ¢

Regarding the second term, assume without loss of generality r > ¢'. If t’ > 0, use [x'|,, >
|x1p, /2 so that we also have

|t_t/| sup |8thPs(x/,T)| S

- =12 = = 25-2¢ - =2
[t — 1| |x—x|ps(|x—x|ps> <|x—x|ps
relnr] X1}

J+2s+l — |E|Z:rl+2§ |Y|P.\- ~ |f|r;;jl+2§ s
Ift < Othen |V, Py(X) — V, Ps(x’)| = 0, and the estimate becomes trivial. Then, we are left
to study the case r > 0 and ¢’ < 0. These two conditions imply that the p-ball

x| p,
B(x) := {ye R |x = ylp, < | ;p“ } >x
intersects the hyperplane {t = 0}. Since the radius of B(x) also depends on X, the previous
property imposes the following condition over X,

2 2
x ... x
tl/s < M’ that is Z% < m’
V3
which is attained if the point (x, 0) belongs to d B(x). Therefore |X|,, := max {|x|, 1% } =
|x|, so by (8) we get |x’| > |x|/2, and this in turn implies

3x|

1xlp - o _
—= <Xy, S X=X |p, + Xlp, < 5 = 31x]. Q)

Using this last inequality we can finally conclude:

|VxPs65\) - VXPS(Y/)l = |VxPs(x/, ) — VxPs(x/, 0)] S || sup |atvxPs(x/y 7)|

7€(0,1]
/ - =
|| <l L P E 8
n+142¢

~ v/ n+2s+1 ~ = n+2s+1 — = n+2s+1 ~ —
e e o 1
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Theorem 2.3 Lets € (0, 1] and B, y € [0, 1). Then, for any x # 0 we have,

1. (=AY P <p

i
LAV (AP _ 1 APy <a XL
2. (=AY (=D Py(X)| Spy SR 3. V(=AY Pe(X)| $p eI
Ps Ps

Moreover, for any X # (x, 0),

4. 19 (D PO Sp —izprms -
|x

Ps
Finally, if ¥’ € R""is such that |x —%'| , < |X|p,/2,
— -2
X —X1p,

|f|r;)+2ﬂ+2; :
s

5. (=M P®) — (—A)P P Sp

Proof We shall also assume 8 > 0, since the case 8 = 0 is already covered in [13, Lemma
2.2]. For the sake of notation, in this proof we will write ¢ := ¢, ; and ¥ := w,(,i), and we
alsoset Kg := (—A)P P;. Let us begin by applying the integral representation of K p together

with relation (2) to obtain for r > 0,

Kg(x,1) := (=N P(x, 1) ~p p.v./ Pyx. 1) = A0 t)dy

Rr x —y|rt2P

(lxli~ %) _¢(|y|z—z%)dy

:t*% V.
P R |x — y|n+28
1
n+28 xX|tT) — z n+28 1
=t > puwv. ol ) — Ddz:F g (xt7 ).

R |xt‘% _ z|n+28

Using the estimate proved in Lemma 2.1 for ¥ we deduce the desired bound:

T 1 1
(1 + |x|2t_1/s)(n+2ﬂ)/2 - (l‘l/‘y + |x|2)(n+2ﬂ)/2 |f|111)j>2/3

|Kp(x, )| <p

We shall continue by studying estimate 2 in a similar way. Indeed,

Kpg(x,t) — Kg(y, 1)

_ Y ~
(=AY Kg(x,t) = p.v. /R X — 2y dy
1 1
n+2p Xt %) — 12
~p i p.v. 4 )=y )d
By
1
n+2642 Xt %) — Z n4+2642
R e il bl 1 (=AY (xt 7).

R” |xt‘% — |2y
Set W := (—A)”y(-) and notice that
T(E) = g7 || e 81 = |5 2P0y g dn i

Thus, since W is integrable, W is the radial bounded function in R” given by

o] o
Y(z) = anzllf"/z/ e /24 2p+2y Jujp—1@2nriz))dr,
0

@ Springer



21  Page 10 of 56 J.Hernandez et al.

By [18, Lemma 1] W decays as
|W(2)| = O(]z|""2=%),  for |z| large.

Therefore PN
(W) Spoy (14 [22) "2,

So analogously to the proof of /, we deduce the desired result:

_ n+2B+2y

2s 1
(l + |x|2t71/‘v)(n+2ﬂ+2y)/2 |f|r;);|-2/3+2y '

(=) Kp(x, )] Sp.y

Regarding estimate 3, notice that

Vx<z_%w(xt_%))’ =t

Therefore, applying the bound obtained for Vi in (7) we deduce

_ n+2p+1
2s |

VK (x, )] =4 Vi (xt~ %)),

1
_ n+2p+1 |x|t™ 2 |x]

|ViKgx, )| Spt™ > ~ )

(1 + |x|2t71/x)(n+2ﬁ+l)/2 |f|’;j_2ﬁ+2

‘We move on to estimate 4, that is, the one concerning 9, K g (x) at points of the formx # (x, 0).
Observe that the previous derivative is well defined if # > 0, since the expression of Kz can
be written as

n+

= (= AP (|x] )

Y % an2® 242 L
g |x| n/ W/ e~/ ﬂJn/z,l(an|x|t 25 )dr |,
A Jo

Kp(x,1) =t~

so differentiating under the integral sign, it is clear that temporal derivatives of any order exist
in R™1\ {r = 0}. We claim now that the operators 9; and (—A)# commute when applied to
P;. To prove this, let us first observe that for each #y > 0 fixed we have

(20 (2 P)]" €. 10) = 16773, Pr(e. 10) = 16 /R e, P, 1)dx.

If we can bound 9; Ps by an integrable function on R” in a neighborhood of 7y, we will be
able to locally differentiate outside the integral sign for each 79. If 0 < s < 1, thisis a
consequence of [21, Equation 2.6] and (3). Indeed,

1

; [ }
ni2s —1/s\(n+2s5)/2 |"
o5 L ey 1)

1
18, Py (x, 10)| S £|PS(X,IO)| =<

On the other hand, if s = 1 by definition we have

£ YR NP
|BZW(X,t())|S (14—? tll/THe 0)
0

In both cases we obtain a bounded function of x that decreases like |x| ™2 at infinity (for the

case s = 1, see [14, Lemma 2.1]) and thus it is integrable on R". Therefore, differentiating
outside the integral sign we have

[(=2)P (3, P)]" & 10) = [(=D)PP] . 10).  Vio > 0.
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So we are left to check whether we can enter 9, inside the previous Fourier transform, that
is, whether the following holds

W= P 10) = [,(— D) )" (€. 10).

Again, the latter is just a matter of being able to bound 19, (—A)P Py| = |9, Kg| locally for
each 7p > 0 by an integrable function, so that we can differentiate under the integral defining
the Fourier transform. We know that

3 [t‘";xzﬁ w(xt‘%)]

_1
+ Ca(to) x|V (xty )]

_1
10, K (x, 0)| = < Ci(o) ¥ (xty ™)

=ty ’

For the first summand, using that |{| is bounded and decays as |x|7"~2#, we deduce the
desired integrability condition. For the second summand we can argue exactly in the same
manner, using that | V| is bounded and decays as |x|™"~2#~!. Hence, we conclude that 9
and (—A)# commute.

The previous commutativity relation and [13, Eq. 2.5] yield the following for ¢ > 0,

WKp(x,0) = d[(—2)PP](x, 1) = (=) (8, Py)(x, 1)
= (=8 [ = AR = =AY Kp(x, 0,
where we have commuted the operators (—A)* and (—=A)P, that can be easily checked via
their Fourier transform. Then, applying 2 with y = s we are done.

Finally, regarding estimate 5, we can follow the same proof to that presented for the last
estimate in Theorem 2.2, using estimates 3 and 4 from above. O

2.2 Estimates for 6? P

In this subsection we obtain similar estimates now for the kernel B,ﬁ P, with 8 € (0, 1). Since
the proofs of such estimates are rather long and intricate, we shall present them in a separate
section, namely Sect.6. Recall that the S-temporal derivative of f : R"! — R is defined,

provided it exists, as
8 [ [ = fx, 1)
of fx. 1) '_/R—|r—z|‘+ﬂ dr.

The study below considers the cases s < 1 and s = 1 separately. In the following theorems,
which generalize results of [13, Lemma 2.2] and [14, Lemma 2.1], we get dimensional
restrictions that in the end will not matter for our purposes.

Theorem 2.4 Forany B,s € (0, 1) andx = (x,t) # (0, 1), the following hold:

Pp@)<g ———
I n>1, 3 P@|<s PTG

1 _ 1
—, 18P P®) Spa

2. If n=1and 1—
If n and B > 25 ~B, |x|1_23+a|f|%v(1+ﬁ)fa

, Yae(2s—1,4s).

Moreover, for every n,

B — 1
4. 19,0 Ps(x)ls_,ﬁ (4B for t#£0.

3.1Vl P Sp x| x|
X7 1X ] ps

_ogat—=2s(1+8)°
|x|” 2s5+1 |x|px
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Finally, if X' € R"" is such that |x — ¥'| , < |x|/2,

5,107 P — P P Sp

|x |n+2§'72s |Y|%§(l+ﬂ)
We carry out the same study for the case s = 1, obtaining the following estimates:

Theorem 2.5 Forany B € (0, 1) and x = (x,t) # (0, 1), the following hold:

ﬁ —_
1. For n>2, 10, WO Sp ———5735
|x|”—2|x|,,T B
2. For n=2 |/ W Spa ———3a575 Vo€ (0,2+28],
[x]¥1X] 5,
3. For n=1 |3ﬁW(Y)| S #
. =1, t ~B | 128"

Xlpy

Moreover, for every n,

4. IVl W@ 510/ W@ <

—2428"
x| x| 5+

B | —2+28°
x| F

Finally, if ¥’ € R""is such that |x —%'| 5, < |x|/2, then

- =

|x —X |p1

Bw (= — aBw 3\ <
6. |9, W) — 9, WEI <p R
p1

3 Growth estimates for admissible functions

We will say that a positive Borel measure 4 in R”*! has upper s-parabolic growth of degree
p (with constant C) or simply s-parabolic p-growth if there is some constant C(n, s) > 0
such that for any s-parabolic ball B(x, r),

n(Bx,r) < Cr’.

It is clear that this property is invariant if formulated using cubes instead of balls. We will
be interested in a generalized version of such growth that can be defined not only for mea-
sures, but also for general distributions. To introduce such notion we present the concept of
admissible function:

Definition 3.1 Let s € (0, 1). Given ¢ € C®(R"*!), we will say that it is an admissible
function for an s-parabolic cube Q if supp(¢) C Q and

Iplloo <1, IVidlloo <€Q7", 110l <€), Al < £Q)>

Remark 3.1 If ¢ is a C? function supported on Q s-parabolic cube with |¢|lc < 1,
IVidlloo < £(0)~ ! and [|Ad|loc < £(Q)~2, then it also satisfies

(=AY ¢l S Q).

Indeed, begin by observing that translations in R” commute with V,. and (—A)*. From it, it
is clear that we may assume Q to be centered at the origin. Assuming this, let us fix r € R
and compute
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(=AY’ Pp(x,1) == cns /Ié” = T;f:—zts) te o, t)

B PG+, =290 D) P —yn)
= Cns h |y|n+23

/ Px +y,l)—2¢(x,t)+¢(x—y,l)dy — L 4D
R™M20Q

‘y|n+2s

Regarding I, integration in polar coordinates yields

d
] < 4ca, / Y suo™.
rm\20 |y

For I, we apply twice the mean value theorem so that

e (Vid(x +n1y, 1), y) + (Vi (x —m2y, 1), ¥)|
1l = Cn,s 0 |y|n+25—]

A}l —2s
S/;QWdYSE(Q) -

Definition 3.2 We will say that a distribution 7" has s-parabolic n-growth if there exists some
constant C = C(n,s) > 0 such that, given any s-parabolic cube Q and any function ¢
admissible for Q, we have

(T, ¢)| < CLQ)".

In the end, the results below will help us estimate the growth of distributions of the form ¢ T,
for some particular choices of 7' and a fixed admissible function ¢, associated with a fixed
s-parabolic cube.

In any case, let us clarify that in the following Theorems 3.1, 3.2, 3.3 and 3.4, we will
fix s € (0,1] and Q and R will be s-parabolic cubes in R"*! with O N R # @. We will
write Q := Q1 x Ip C R" x R and analogously for R. Moreover, ¢ and ¢ will denote C 1
functions with supp(¢) C Q, supp(¢) C R and such that ||¢|lcc < 1 and ||¢]lco < 1.

Theorem3.1 Let € (0, 1), @ € (0, 1) and f : R*™! — R. Assume |8;¢]lo0 < £(Q)™%
and [|9:¢lloo < L(R)™. Then, if £(R) < £(Q),

1. If f € BMO,,,
Hf. 80 (0@) 0 117P) ] Sp Il f Il py €R)FHU=P),

2. If f € Lip, , and a < 2sp,
1(F 308 #1117V Spoa 1 i, ECR)" TP

Proof Set g := 3;(p¢) % |t|~# and begin by proving that g is integrable. Firstly, we observe
that

/ 0 (@) (x, u)du = 0.
IQﬂ[R

Then, if conr denotes the center of I N Ig, foreach t ¢ 2(Ip N Ig) we get

0 () (x, u) 1 1
8, r>|—‘/ APl = [ el = - 7 |du
IoNIg M| IoNIg |t —I/t| |t _CQﬁRl
E(IQQIR)
~ ot —conrltP )

I3z(¢¢)(x u)|du
Ion
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<5 L(Ig N IR)
Pt —conrl' TP

L(Ig N IR)

_— 10
[t —conrl!+F (10

( ! + ! )KI NIp) <
wor tuwy )UenNIB S

Thatis, |g| decays as |£]~1=# for large values of 7. Hence, since supp(g) C (Q1NR;) xR,
this implies g € L' (R"*!). Then, for any constant ¢ € R we have

I(f,g>|=‘/(f—6)g‘ sf |f—c||g|+/ \f —cllgl = I + b,
2R Rr+1\2R

where we have used that g has null integral (it can be easily checked taking the Fourier
transform, for example). To study I;, observe that for r € 41 we get

S5¢(Ig) du - ( 1

lg(x, )] < ||3t(§0¢)||oo/ L(R)2 + 00)%

— <p )wm“ﬂ SUR) TSP,
—seqrp) ul?

since £(R) < £(Q). Therefore,

I S !
R oy

If f € BMO,,, pick ¢ := f>g, the average of f over 2R, so that
L Sp bR 2P fll -
If fe Lipa,px, pick ¢ := f(xr), where X is the center of 2R, so that
I Spa LR PR g

and we are done with ;. To study I, define the s-parabolic annuli A; := 2/ R\ 2/~ R for
Jj > 2. Then, since supp(g) C (Q1 N Ry) x R applying 10 we have

oo

1 & 1
IL= / [f(X) —cllgx)|dx < - - / | f(X)—c|dx.
; AjNsupp(g) P uryP ;225(1%)/ AjNsupp(g)
(11)
If f € BMO,,, pick again ¢ := f>r and observe
 — 1
h< , (f @ fy |df+/ o —fmdf),
p Z(R)ZAﬁ ;22s(1+ﬁ)1 A;Nsupp(g) 2R A jNsupp(g) 2R

Regarding the first integral, apply Holder’s inequality (with exponent g, to be fixed later) and
John-Nirenberg’s, so that

q S
/ [ f ()= fripldx < </ [f(x) — fzml"d¥> [supp(g) N2/ R| ¢
AiNsupp(g) AjNsupp(g)

n+2s
q

. . 1 .on
<1 f e py @IERY) 0 [22T0(RY™2]7 = || flla, p, 2"« T (R) 2.

For the second integral we apply [5, Ch.VI, Lemma I.1]todeduce | f5j g — for| S jll fll4, p, <
J»s0

f | foig — FRIAT < j Isupp(g) N 27 R = jI| £llx p, 227 €(R)"™25.
AjNsupp(g)
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Therefore, choosing g > ﬁ ’

11l py 1 J(E425) | in2s) nt2s n+2s(1-B)
b Sp 0(R)25P z; 225(+h)j (27T j2)eR) S s, p €CR) :
j:

If on the other hand f € Lip,, ,, , pick ¢ := f(xg) so that H6lder’s inequality in (11) yields

Il fllip, » 213( ) E(R)n+2s(1—,3)+a
o, ps j Ly
B S g Z ST SPP©) N2/ RI Spa 1 i, 2; EIET Ey R
=
being this last sum convergent because o < 2s 8, so we are done. O

Theorem3.2 Let o € (0,1) and f : R — R. Assume |Viglloo < £(Q)~! and

IVidlloo < L(R)™L. Then, if £(R) < £(Q), foreachi =1,...,n we have

1. If f € BMO,,,
[(f, Ox; (pP))| Sp ||f||*,pse(R)"+2S_l,

2. If f € Lipy p,,
[(f, 35 ()| Spe ”f”Lipa_pl\_Z(R)n+2sil+a.

Proof First, observe that for any real constant ¢, we have the identity

(f, ax,‘ () =(f —c, axi (p9)),

Therefore,

(f, 0x, (@#)) = (f — ¢, 0y, (p@)) < fQ | £ ) = c|| oy, (pop) () |dx
1/2 5 1/2
\f(x) — | dx) /Q |0y, (9) ()| df)
12
< IIleloolldJlloo + ||¢IIOOIIVX¢IIOO]dx)
ONR
0N

1
RIM2(1Q7 7% +|RI77% )

12 1/2
— |QOR| n+2s_1>
< / £ — c|'dx < o :
1/2 n+2s n2s
/ |f(x) —C| dx (|Qnm2m+m>% FUR)" 42 _1>
1/2

< ( / |f®—c|2df) (R,
R

Now, if f € BMO,, , choose ¢ := fg and apply an s-parabolic version of John-Nirenberg’s
inequality (that admits an analogous proof) to deduce estimate /. On the other hand, if
f € Lip, ,, , choose ¢ := f(Xg) to obtain estimate 2. O

Theorem3.3 Let B € (0,1), @ € (0,1) and f : R™!1 5 R. Assume that ¢ and ¢ are C?

with |[Vegllos < Q)7 1A@lloe < £(Q) 72 and || Vxdlloo < €(R)7L, [Adlloc < L(R)2.
Then, if £(R) < £(Q),
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1. If f € BMO,,,
(F =P @B Sp ILf e, LR
2. If f € Lip, p, and o < 2P,

(fs (=P (o) Spa I £ llLip, ,, CRY" T2
Proof Observe that for any real constant c,

e ()P o) = [(f — c. (—AY ()]
< / @) — el | (— )P (pg) )| d
2R, X(IQQIR)

+/ |£G0) = cl| (=8P (p) @) |dx =: I} + L.
(R”\ZR])X([Q(‘IIR)

Regarding 1, observe that for any x € RrH! by Remark 3.1 we have [(=A)B () (@) N
2(R)~2f . Therefore,

Ls —f |f @) — cldx.
PR Jor,xiignin

Let X be the center of 2Ry x (Ig N Ig). Choosing ¢ := frr or ¢ := f(Xp) for f € BMO,,
or f € Lip, , respectively, we obtain the desired estimates.
Let us turn to I,. We first notice that, taking the Fourier transform, the operator (—=A)P

can be rewritten as
1
(—=A)F () =p Zaxj (W) s Ox; (),
j=1

where the notation =, is used to stress that the convolution is taken with respect the first
n spatial variables. With this, if xo € R" denotes the center of Q1 N Ry, for any X €
(R"\2Ry) x (Ig N Ig) we get

g, TEDE 0 e
_ " Xj xO,j — xj
‘JZ:; /Qm 0,09z, t)<| s |xO_X|n+2ﬂ)dz
S UR)  wey
<p ;mnv et R S )

by the mean value theorem. So, defining the cylinders C; := 2Ry x (Ig N 1Ig) for j > 1,
relation (12) implies

" 1
L Sp - / |f(f) - CIdf,
£(R)28 ; 27 (n+2p) Cin\C;

If f € BMO,,, we choose ¢ := f>r and proceed as in Theorem 3.1,
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1 1
L3 ' (/ F® = foi df—{_/
B ((R)?P z:: 2 (n+2p) Cit1\C; | 21R| Cjti

| for — fsz|df)

\Cj

s 1
< "E{)l);’; ZW% [(2 CR) T IC 11 \ 1T + JICj 1\ € ']

~ 1l

+2 J(n+ )+/ . 425 A jn+2
~UR Zznwzﬁ)[amn 2 + RN 2|

2
q/
S S Ny LRYH2OD (1 + Z nT)
12

Fixing ¢ > s/ so that this last sum is convergent, proves the result.
On the other hand, if f € Lip, , letc := f(xo) and also proceed as in Theorem 3.1 to
deduce

£ lLip, ,, o= (27€(R))® ; Sl
E o, ps X A . +2(s—p)+a
2 S ~gryh Zl S G\ Cil S 1 luip, ,, £(R) Zl o
= ]:
that is a convergent sum since o < 2 by hypothesis. O

Recall that given f : Rt — R and B € (0, n), we define its n-dimensional B-Riesz
transform (whenever it makes sense) as

pfC1) = * f( 1),

1
|x|=F
for each ¢, where the convolution is thought in a principal value sense. Let us observe that
for a test function f, for example, the operators 7' g and d,;, commute.

Theorem3.4 Letf € (0,1), a € (0, 1—pB) and f : R — R. Assume |Vi¢|loo < £(Q)~!
and ||Vi@lleo < 2(R)™L. Then, if ¢(R) < £(Q), foreachi =1,...,n we have

1. If f € BMO,,,
I(F+ (TN p 11l ECRY" 4L,

2. If f € Lipy p,.
(f 06 (TR @D Spoa I Lip,, CCR)"TH TP,
Proof Notice that for any ¢ € R,
1(f 0 [T (ed)N) = (f — ¢, 0, [Tf(eh)])]

= £ G — el 9 [ T30 || dF
2Ry X(]QﬁIR)

+f |f &) = cl|og [Z5 (9p)1 @) |dX =: 1 + L.
(R"M\2R1)x(IgNIR)

Regarding I;, we have for some conjugate exponents ¢, ¢’ to be fixed later on,

e 1
= (f 'f@“"q/df)q (f / \IEIBx,-w«z»)](x,r>|qud,)"
2R Ignig J2R,
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1 1
< (/ 1f@® —cﬂ’df) v ([ 1Z4 10, (w¢)(-,t)]|\3dt)q4
2R IgNIg

we shall apply [6, Theorem 6.1.3] and obtain

n

n—pg’

L, 1

<p (/ |f () —cl4 df)" (f ||ax,-<<p¢>(-,t)uqidz)’
2R IQﬂIR n+qp

, % n+qﬁ+2s_]
S (/ [fG) —cl? df) UR) 14 .
2R

If we assume f € BMO,,, we choose ¢ := f>g and apply a s-parabolic version of John-
Nirenberg’s inequality to deduce

Choosing g >

1

n42s n+qpt2s _ _
IS Il p bR 7 LR 0 = || fllap (R)FZHAT,

If we assume f* € Lip,, ,, , we choose ¢ := f(Xr), being X the center of R, and obtain

1 g 1 Mgy pe CCR) T T 0RY T = [ F s (RY B+,

To study I», we proceed as in Theorem 3.3. For any X € (R" \ 2Ry) x (Ig N Ig), if xg € R"
denotes the center of Q1 N Ry, by the mean value theorem we get

|Z”[8xi (<qu)](x)| = Ox; (pd) (2, f);,,,dZ
B — B
Q1NR, |z — x|

1 1
= Oy; s — d
‘/QmR, ) t)(|Z—x|"—ﬁ |x0—x|”‘/3> <

L(R)"
n
B Z Ixo — |n Bl Vi (@) lloo L(R)" < W-

This way, putting C; := 2/ Ry x (I N Ig) for j > 1, as in Theorem 3.3,

1 — 1
L <p — — / | f(®) — c|dx.
L(R)—B+! ; 2J(n—=p+1) Cin\C;
The case f € BMO,, is dealt with analogously as in Theorem 3.3, obtaining

00
) 1 -
I Sﬁ ”f”*,psg(R)n+2s+ﬂ lzm[zﬂﬂ+4) _l_le/niI7
j=1

2s

so choosing ¢ > 1=
sum to converge. The case f € Llpa, p, can be dealt with as follows

I/ llLip » . 27(R)™ ¢(R) T2 HB+a—]
o, ps < LRy
I Spa CLR)~F+T &= 2j=p+D ICjr1 \ Cjl S I fIILip, 2; YUy
Jj= =
and this sum is convergent by the hypothesis @ < 1 — . O
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4 Potentials of positive measures with growth restrictions

The main goal of this section is to deduce some important BMO,, and Lip, , estimates

of potentials of the form 8}3 Py x 1, where p is a finite positive Borel measure with some
upper s-parabolic growth. We begin by proving a generalization of [14, Lemma 4.2] and [13,
Lemma 7.2].

Lemma4.1 Lets € (0, 1], n € (0, 1) and i be a positive measure in R vphich has upper
s-parabolic growth of degree n + 2sn. Then

| P M”Lz’pw Sﬂ} L.

Proof LetX := (x,1),% := (x, T) be fixed pointsin R"*! with # 7,and setXo := (X+%)/2.
Writing y := (y, u) and By := B(Xo, |X —X|,,) = B(Xo, It — r|%), we split

| P s ju(X) — Py % (X))

5/ P — yot — 1) — Py(x — y. T — w)|dp(3)

]R”“\2Bo

+/ Py — ot — ) — Polx — yo T — )ldu(3) =: Iy + Db,
2By

Defining the s-parabolic annuli A; := 2/+1By \ 27 By for j > 1 and arguing as in the last
estimate of Theorem 2.2 we get

M(2j+1BO)
L s / —— - duM Slt—7l ) ————
J; n+23 ; (2]|t . t|2715)n+2s
1
S |t - t|n Z 22S(l*ﬂ) :7] |t - T|ns

Jj=1

that is the desired estimate. Regarding /5, observe that

I < Ps % (x2B, ) (%) + Py % (X2, 1) (X).

Notice now that

Py s (x2B, 1) (X) S /

Sy lt ="
—— — =< n ’
2By |x_)’|;l;? ~

du(y) - / du(y)
|

— 1 3 y|n
¥l <Slt—z|25 X — VI,

where we have split the latter domain of integration into (decreasing) s-parabolic annuli.
Since this also holds replacing X by X, we also have I < |t — t|" and we are done. O

The above result allows us to prove that, given a positive measure as in the above statement,
we can ensure that the potential 8,5 Py x p already belongs to BMO,,,.

Lemma4.2 Lets € (0, 1], B € (0, 1). Let p be a finite positive Borel measure in R+ ywith
upper s-parabolic growth of degree n + 2s . Then,

[ Pyxl, ,, <p 1.
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Proof Fix xo € R**! and r > 0. Consider the s-parabolic ball B := B(Xg, r) = By x Iy C
R™ x R and a constant ¢p to be determined later. We want to show that ¢z can be chosen so
that

|B|f|aﬁp * u() — cpldy Sp 1.

To that end, begin by considering the following sets, which define a partition of R"*+!:
Ry :=5B, Ry :=R"1\ (5B x R), R3 := (5By x R) \ 5B,

as well as their corresponding characteristic functions xi, x2 and x3. Bearing in mind the
estimates proved in Theorems 2.4 and 2.5 for 8,’3 P and the fact that p is finite, it is clear
that the quantity |8tﬁ Ps % (x210)(Xp)] is also finite. Moreover, notice that |8,’3 P;| is bounded
by s-parabolically homogeneous functions of degree —n — 25 for any dimension. In fact,
we deduce the following estimates: given any €, « > 0, we obtain if n > 2,

Bp =y < 1 . B
|97 Ps(¥)| Sp T |23(1+ﬂ) T if &<2s(1-48).
Forn =2,
1
. < . B
ifs <1, |8 Py(X)| <p P |2s(1+ﬂ) ; |2—5|[|F+2€:Yﬂ’ if ¢ <2s(1—p),

1
2+2 - 1+p-%
x| 52— = e

ifs=1, 13/ W@ <pa 28 < <2,
And forn =1,
1 1
x|l 2s+a|x|25(1+ﬂ) a ~ |x|]72"+°‘|t|1+ﬁ7%
1

<
= 1+28—¢ *

Flpe P ey

its <1, [0/ Ps®)| Spa if 258 < a <2,

its =1, 0’ w®|<p if26—1<e<1.

In light of the above inequalities, and using that 8 < 1, it is clear that 8,'3 Py defines a £ +1-
locally integrable function in R”*! once endowed with the s-parabolic distance. Hence, there
exists some £, € B (that we may think as close as we need to X) such that |8t’3 Pyx(x3p)(€)]
is finite. Bearing all these observations in mind, we choose cp to be

e 1= 0P Py % (xaw) o) + 8P Py % (x3) Bo).-

Therefore, we are interested in bounding by a constant the following quantity:
1 B _ _ 1 8 o
or [ 108 Psox u(y) —cpldy = — |3, Py () (3)1dy
|B| Jp |B|
IBI / 10 Py () () — 8] P (xap0) (o) |dF

o / PPy % (i) ) — 0P Py G E)ldy =: 1 + I + Is.

For 11, simply notice that

1
I s—/ (/ I3tﬁPs(Y—E)Idi>du(Z).
IBl Jsg \ JB

@ Springer



On fractional parabolic BMO... Page210of56 21

Using any of the bounds above for 8,’3 Py, depending on n and s, integration in polar coordinates
yields

I <p wfll’zs(l_ﬂ)u(SB) <p L.

Regarding I, write
1<i APy -2 -8’ Pxo — Ddu(@) |dy
2 |0; Ps(y —2) ; Ps(xo —2)|du(z) |dy
| B R

If we name X := X¢ — z and X’ := y — Z, we have in particular

lxo —z| _ |x]

2 2
where the second inequality holds because 7 € R;. Therefore, by the last estimate of Theo-
rems 2.4 and 2.5, writing 2¢ := min{1, 25} we get

- — 2
1 ly _x0|p _ —
L <p 7/ (/ > du(z) |dy
|B| Jp Ry |xo — Z|"+2§_25|f0 _ aii(l"‘ﬁ)

5 r2; / du(z)
R

e N

— _ _
|)C_x|pI :|)50_y|px <r

IR
|p:

Let us split R; into proper disjoint pieces. Take the cylinders given by C;j := 5/ByxR, j e
Z, j = 1, as well as the annular cylinders C; i =Cjt1\Cj j J = 1. The partition of R, we
are interested in is given by the disjoint union of all the sets C; j» J = 1, which clearly cover

R>. Therefore
du(z)
I <gr¥* : 13
27 Z/ lxo — z|"2¢=25 |50 — |§S(1+ﬁ) (13)

At the same time, for each j > 1, we shall consider a proper partmon of C Denote
Ay = 5K B\ 5% B for every positive integer k and define C, k= C N Ak, k > 1. Let us
make some observations about the sets C; i k- First, notice that by deﬁnltlon foreach j > 1,

Cix=[(3""1By\ 5/ By) x R] N (571 B\ 5°B).
Hence, using that
[(577'By\5/Bo) x R|n (S*T'B\5*B) =@, for k<,
we have that, in fact, c j can be covered by C j.k for k > j, that is
0
U Jk =

k=1 k=j

C8

Secondly, in order to estimate ,u(a j.k), observe that for any k > j, by definition, the set c ik
can be written explicitly as follows:

Cix=[(5*"Bo\ 5 Bo) x R] N (51 B\ 5°B)
=[(5/"'Bo \ 5/ Bo) x R]
A {[(5k+130 \ SkBo) % 52s(k+1)10] U [SkBo % (st(k+1)10 \ 52"]0)]}.

@ Springer



21  Page 22 of 56 J.Hernéndez et al.

Continue by observing that if k = j, the intersection with the second element of the union is
empty, so R _ _ .
Cjj= (SJ-HBO \ 57 BQ) X 52s(1+1)1();

while if kK > j one has the contrary, that is, the intersection with the first element is empty,
and therefore, since 5/ By \ 5/ By C 5 By,

Cix = (5" Bo\ 5/ By) x [52* D1y \ 5% 1p].

Observe that C; ; < 5/*! B, which implies w(C;.j) < w37+ B) < (5/+1r)"+25F On the
other hand, for k > j, notice that the set C .k can be covered by disjoint temporal translates
of C; j,j» and the number needed to do it is propomonal to the ratio between their respective
time lengths, that is
2(52s(k+]) _ 52&k) 523k
525G+ = 5%
Therefore, since this last ratio is also valid for the case k = j, for every k > j we have

2sk 2sk

5
—u( j_/) ~B 525

~ i+1 \n+2sp
,U,(Cj,k) - 52?] (5‘/+ r) .

All in all, we finally obtain

0 - ~
dn(@) u(Cj i)
< 2t / C J
287 J; ]; 6[ ¢ 1o — z|"+2{723 %o — |2s(]+ﬂ) Z Z (Sjr)n+2;‘ 2S(5kr)2y(l+ﬂ)

> 1

o0
1 1 1
S Z Z 5/ —25B) 52k > 525Bk Z 5/2¢=2sP) S Z 525k (1 + 5<2¢—2Sﬂ>k> s 1
j=lk=j k=1 Jj=1 k=1
Finally, let us study /3. Notice that the estimate we want to check is deduced if we prove

100 Py s O () — 9 Py x G o)l Sp 1

that at the same time, can be obtained if we show that for any X, y € B we have

107 Py % (x3) (%) — 0 Py G )] Sp 1. (14)

It is clear that it suffices to check the latter estimate in two particular cases: when X and y
share their time coordinate, and when they share their spatial coordinate.
Case 1: x = (x,t) and y = (y, t) points of B.Let us begin by observing that

18 Py % G310 @) — 3 Py % Q) )
_ ‘f Py x (3u)(x, T) — Ps x (x3) (%, t)
- k3 _t|1+ﬂ
_/ Ps * GG, 1) = Pex () (. 1) -
|t —t|1+P
</ [Py * (x3p)(x, T) — Py * (x31)(x, t)I
T Je—r=en |t —t|1+F

+/ |Ps % Q). ©) = Peox (e, DI -
lo—t]=(@r)?

|t — |48

+/ [Py * (x3pu)(x, T) — Py (xap)(x, 1) — Py * (x3p)(y, T) + Py * (x3) (Y, t)l
lt—t]>(2r)2 [T —t|!+P

=1L+ b+
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First, we estimate /1. Argue as in the proof of the last estimate of Theorem 2.2 to obtain

du(z) It — 7|
| Py s (xap)(x, T) — Py % (3p) (x, )| < |7 — 1] = B (P
—

Ry |x
where the last inequality can be obtained by splitting the domain of integration into s-parabolic
annuli and using the s-parabolic growth condition of degree n 4 258 of . Thus,

1 dr r28)(1=F)
“Sﬂf/ S S =1
r s(1-p) [T—t]<(2r)2s |'L' — l‘|ﬁ r s(1-p)

The arguments to obtain I <g 1 are exactly the same (just write y instead of x in the lines
above). Concerning the term I3, we split it as follows

[Py * (xap)(x, T) — Ps * (x3u)(y, T)]
I3 < (s dr
[t—t]>(2r)% |t —t]

P 1) — P !
+/ L )|dr =: I31 + 3.
|[T—t]>(2r)%

|t —t|1+P
First, let us deal with integral I3,. Since (x, ), (v,t) € B,

[Py (x3m)(x, 1) = Py (x3p) (v, ] =[x = ] IVx Ps % (X310 lloo, B-
Notice that for any 7 € B, by Theorem 2.2 and the fact that s < 1, we have
_ lz — wl _ dp(w) .
IV Ps # (xam) (@ S / ——mdu@) Sr —— s S
Ry |z —wl, R+N\SB |2 — Wl

Therefore, since |x — y| <r,

I g rz‘”g/

|T—t]>(2r)%

dr 1
< 25— —
e — 7148 ~P T 2B L. (5)

Regarding 31, observe that for each 7 the points (x, ) and (y, r) belong to a temporal
translate of B that does not intersect B, since |t — t| > (2r) and ¢ € Iy. We call it B;.
Hence, bearing in mind the first estimate of [14, Lemma 2.1] we deduce

| Py * (x31)(x, T) — Py * (x3u) (v, 7)|

s sz [Ps((x, 7) —w) — Py((y, ©) —w)|du(w)

+f |Py((x, T) = ) — Py((y, ) — ) du (D)
[(5ByxR)\5B]N(2B;)¢

</ du(w) +/ du(w)
~ g, (o) —wlh o Jap, (v, T) — Wl

+x =yl Vi Py((X, 7) — w)|dpu(w)
[(5BoxR)\SBIN(2B: )¢

X — w| .
5/3 rZS'B + r/ ~ —n+2 dl'L(w)
[(5BoxR\5BIN2B.)¢ |(X, T) — w}p]

du(w
[(5BoxR\SBIN2B)" |(X, T) — W],

iy
<r¥f 4,2 / e s (16)
Rr+\2B, |(X, T) — W],
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where for both integrals in (16) we have split the domain of integration into (decreasing)
s-parabolic annuli; while in the remaining term, X belongs to the segment joining x and y
and we have split the domain of integration into s-parabolic annuli centered at (xg, t + s).
Hence, similarly to (15) we get 131 Sg 1 and we are done with Case 1.

Case 2: x = (x,t) and y = (x, u) points of B. Write

108 Py (3 ) — 8P Py % Gz )]

_ l/ Ps x (3. 1) — Py x Q). 1) 4 _/ P+ (3w (x. 1) — Py * Q). ) -
B |t — ¢+ |t — u|l+8

_ / [Py % (x3u)(x, T) — Py x (x3u)(x, t)ldr
= Jie—r1=@n> |t —t|1+h
/ [Py (x3u)(x, T) — Py *x (x3u)(x, u)]
+ dr
l[T—1]=(2r)?

|t —u|l+P
+/ P % (x3p)(x, T) — Py * (x3) (X, 1)
[r—t|>(2r)2s |t — 1|1 +A

P () (x, 7) — Py x (x3p) (x, u)
It — u\1+/3

dr=:1{+ 1) + I5.

The expressions corresponding to I, I; can be tackled in the same way as I1, I>. Hence,
1] <p 1and I} <g 1. Finally, for I3, adding and subtracting Py  (x3u)(x, 1)/|t — u|' TP,

L 5/
|[T—t|>(2r)%

1
+/ T u|1+ﬂ|Ps*(xw)(x,t)—Ps*(xm)(x,u)ldf-
T—t[>(2r)=* -

1 1
|t —t|1FF |1 —u|l+P

| Py s (x3p)(x, T) — Ps % (x3pu) (x, 1)|dT

Since |t — t| > (2r)%° we can apply the mean value theorem to deduce

1 1
|t — |1+ v —ull+P

[t — u| 2
~P |t —t|2+8 ~ | — 1|2+

In addition, since p has upper s-parabolic growth of degree n + 25, by Lemma 4.1, with
n := B, the time function Ps * (x3/)(x, -) is Lip-B. Therefore,

2s

r 1
I< / 7|r—t|ﬂdr+/ —ufdr < 1.
3P ) e 1T — 1PFP fe—t|>@r> [T —ull+P 4

Therefore estimate (14) is satisfied and we are done with /3 and also with the proof. ]

In the same spirit, if we ask the positive measure for an extra o growth, the potential
8,3 Py p will satisfy a Lip,, , property. Recall that 2¢ := min{1, 2s}.

Lemma4.3 Lets € (0,1], B € (0,1) and a € (0, 2¢) such that 2sp + o < 2. Let |t be a
positive measure in R"t1 which has upper s-parabolic growth of degree n +2sp + a. Then,

107 Py # illzipy.p Spoa 1.
Proof Fix any X,y € R"*!, X # ¥. We have to check if the following holds

180 Py % 1 @) — 9 Py 5 w9 Spoo 1T =TI,
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Begin by choosing the following partition of R”*!
Ri:={z : x=Vlp, <lx—zl/5}U{z : [y =Xlp, <y —2l/5},
Ry =R\ R ={7: [x=7lp, > lx—zl/5)n{z : [y =Xp, > Iy —2l/5}.
and their corresponding characteristic functions x1, x2. From the latter we have

102 Py % w(®) — 8P Py % ()|

X —y1%,
1 B o— = B — — _
<— 19/ Pyx ~2) — 8 P~ DA @)
X = VI, Jm—1p <lx—zl/5
1

S — 0/ P& —2) — 9/ (7 — DIdp@
o
X =31%, S5-I, <ly—z1/5

1 _ _
+ thﬁps * O ®@) — 3 Py * ComM|=hx+hy+hL. (17
Ps

Regarding I 5, name £ := X — 7z, & :=y — 7 and observe that, in particular, one has
-zl _ Il

2 2"
Applying the last estimate either of Theorem 2.4 or Theorem 2.5, we deduce

= =/ — —
1§ =& 1p, =X =Jlp, <

1 du(z
hxSp ——a= /7 _ 5 l;(,) —2s(1+B)
1% = Tl 2 Jwglpy <tr—ziys [x — 2+ 22 x — 213
Let us split the domain of integration into proper disjoint pieces. For X = (x, t), we denote
By := B(X, |Xx = Ylp,) = Bi(x, [x = Vlp,) x Jx,

where Bj(x,|X — ¥|p,) is an Euclidean ball in R" and J5 is a real interval centered at ¢
with length 2|x — ﬂ%‘i. As in Lemma 4.2, take cylinders C; 5 := 5/B| (%, |x — Ylp) xR
for j > 1, as well as the annular cylinders @,; = Cjp1x\Cjx, for j > 1. We express
{z: |Ix = Ylp, < I|x —z|/5} as the disjoint union of the sets ’C\j,;, so that

du(z)

e e .

* B ¢ D N )
|x—y| s x_z|n+2§ 2S|X_Z|p5

The above integral can be studied as that appearing in (13), in the study of the term I, of
Lemma 4.2 (centering now the cylinders in X and interchanging the roles of r and [x — ] ,).
Doing so, and taking into account the n + 258 + o growth of , one obtains

1 (5]+ |x _ y| )n+2v,3+ot 52sk

- <
Iz SBa % — |a 2¢ JZ”; (5]x — Yy )n+2§ 25 (5k|x — Y, )25(1+f3) 52s)
5] (n+2sp+a) 52sk

Z 5Jj(n+25=25)52s(1+p)k 52s)
>

5}(2sﬂ+a—2{)
525k
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2 & 1
= Z} 52spk X} 52t —2sp—a)
]:

»
Il

A

Z 52sBk (1 + 5(2;,%5,&),{) Sﬁ,a 1, ifa< 2;‘.
k=1

The study of /; 5 is analogous, interchanging the roles of X and y. Finally we deal with I>.
We claim that the following estimate holds

10F Py Qo) @) = 0f Py % G )| Spa 1X =TI,

The general case will follows from the following two cases: whether X and y share their time
coordinate, or if they share their spatial coordinate. Indeed, write X = (x, ),y = (y, t) and
set X := (x, 7) so that
187 Py % (i) (@ — 8 Py + G ()|
< [0/ Py % G @ — 8 Py x G @] + 8 Py + (o) @ — 8 Py + G )|
Spo X=X +IF=F1% =1t — 7|+ x —y|* <2x -

[;7\" and we are done.

Case 1: X = (x,1) and 3 = (x, u). Write u2 := xo and estimate |3 Py * 112 (X) — 97 Py «
u2(y)| as follows

Py x po(x, t) — Py * ua(x, t)d [ Psxpalx, 1) — Pyox pa(x, u)dT
|t — ¢|1+5 |t —u|'+h
P % x,T) — Py % X, t
5/ | K MZ( ) IJ:/S /LZ( )|dT
|t —1|<22 [x—¥I2, It — 1]

+/ IPs*uz(x,f)—Ps*uz(x,u)ldt
|t —t] <23 [F—F 3 |t — ull*F

+ /
lT—1]>2%3=y|38

_ Poxpa(x, 1) — Py s pua(x, u)
|t — ullth

Py % o (x, t) — Py * uo(x, 1)
|t — |1 +h

dt =1L+ 5L+ I5.

By a direct application of Lemma 4.1 we are able to obtain, straightforwardly,

dr -
It S / ——— So X =)}, and
Tt <22 F-FI3 |7 — 1

dr
Ip) Sﬁ,a /
lT—1] <22 ¥ =¥1%

T — ull_%
For I3, adding and subtracting the term P * ua(x,t)/|t — u|]+‘g we get

I; < /
|t —1]>2%5 X313

1
+/ 7l+ﬁ|Ps * (a(x, 1) — Py uo(x, u)|dr.
[o—t|>2% -y 1T —ul

Sa |f - ?las .

1 1
|T —f|1+ﬁ - |T —M|1+B |PJ */’LZ(XST)_PS *MZ(XJ”dT
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Since |t — t| > 2%|x — §|ff we can apply the mean value theorem to deduce

s

1 1 It — ul x -
It _t|1+/3 |.[_u|l+/3 ~B |t —t|2+’3 ~ T _t|2+;3'

Therefore, by Lemma 4.1 with 1 := 8 + 7=, we finally have

E T PA)
L <pa =5l |t —t/ft5dr
T s gy [T — PP

1 o
+7 p— —
+/ WV—MV{} xdt Spa |x_)’|(;;x-
[o—t1]>22 k32 1T — ul

Therefore 3] Py  uo (%) — 8f Py % o3| < Iy + b + 15 Spo [T — 1%, and this ends the
study of Case 1.
Case 2: x = (x,t) and y = (y, t). To tackle this case, let us first rewrite the set R, as

Ry =[5Bi(x,[F = 71,) x R| N [5B1 (v, [F = F1p,) x R] = (SB1. x R) N (SB1., x R),
Continue rewriting R; as follows
Ry = {5BxU[5B1. x B\ 5B} 0 {58y U[5B1, x B\ 5B5]
= (5B N 5By) U {519Y N[(5B1, x R)\ 53;]}
U [SByﬂ [(5B1. x R)\ 5Bf]]
(5B x R\ 5B N [(5B1, x R) \ 5By
=: R21 URy» U Ry»3 U Ry4.

Observe that in Case 2 the real intervals Jx and Jy coincide. We name them J. Therefore,
Ry :=5BxN[(5B1y x R)\ 5By| = 5B1x x J)N[5B1,, x R\ /)] =2,
Ry3:=5ByN[(5B1,y x R)\ 5By] = (5B, x J)N[5B1x x (R\ J)] = &,

meaning that, in fact, Ry = Ry; U Ry4. Observe also that R4 can be rewritten as

Rys:=[(5B1x x R)\ 5B¢| N[(5B1,y x R) \ 5By]
= (5B1x N5B1y) x R\ J).

Therefore, if x21 and x4 are the characteristic functions of Rp; and R»4, we have, naming
M21 = xo1p and (og 1= X244,

1 _ _
b < mwtﬂﬂ #1121 (®) — 0 Py % 121 (3)|
Ds

1 _ _
+ mbzﬁl’s * uoa (@) — 9 Py # 14| =: b1 + ha.
Ps

Hence, fixing j € {1, 4}, begin by establishing the following estimate
108 Py % 12 (8) — 8 Py pa; )]

Ps s ppj(x, ) — Ps *uzj(x,t)dr B Psxpupj(y, ) — Ps *uzj(y,t)dr
|r—t|1+/3 |r—t|1+ﬁ
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</ |PS‘*M2](xvf)_P€*l’l’2j(-xsl)|dt

T <22 7313 |t —t|1+P

+/ |Ps*HZj(yaT)—Ps*,U«Zj(y’t”dr
|7—1] <22 [x—F|3 |t —t|1+8

+/ |Ps o poj(x, T) — Py ppj(x, 1) — Py poj(y, T) + Ps % uoj(y, [)ld‘r
|t —1]>22 [T=F[2; v —1|1+h

=:C;+Cy +Cs.

Lemma 4.1 with n = g yields C; Sg o [x — ¥, and C2 Spaa 1X =I5, . so we focus on C3.
Split it as follows

Cs f/ | Py *//Q/(xaf) ls *HZ/()’: t)|d‘t
T —t]> 225 [F—F 2 |t —1|!+F
Psspoj(x,t) — Py uoj(y, 1)
+/ [Py * 12 ljﬁ,u,y |dr=:C31+C32~
[T—t]>22 T2 [t —1]

First, let us deal with integral C3,. On the one hand, if j = 1, observe that for any 7 € 2By,
since 2By C Ry; C 5By, we can contain Rpj into s-parabolic annuli centered at 7 and
(exponentially decreasing) radii proportional to |[x — y|,,. Hence, by [13, Lemma 2.2] and
the upper s-parabolic growth of degree n + 258 + o of u, we deduce
_ du(w) _
[Ps % n21(@)] S / — S X — ylf,‘iﬂ“’.
5B:sBy 12— W},
If j = 4, observe that | Py * po4(x, ) — Py poj (v, )| < [x — [V Ps * 24l 00,285 SO
for any 7 € 2Bx, by Theorem 2.2 we obtain

< |z —w| _
|V Ps % u24 (@] S ——dn@)
(5BeNSBy)x (R\J) [Z — W]
_ du(w) — _2sB+a—1 .
,Slx—ylpS/ ﬁiﬂ,a |x—y|p§ﬂ “=% since 25+ o < 2.
R IN(G5B, wN5B) 5) 12 — W),

For the last inequality we can split, for example, the domain of integration into s-parabolic
annuli centered at 7 with (exponentially increasing) radii proportional to 2|x — |, . Then,
- dr o
Car S 7 -5 [ SRS a9)

— 251 5—y(2s |T — 1
r—t|>22 733 |

Regarding C3, the points (x, ) and (y, t) belong to a temporal translate of 2 Bz N 2 By that
does not intersect 2Bz N 2By, since |t — | > 2%9|% — ?li‘z. We call it 2BY N 2BL. For each
Jj € {1,4} and 7 (and bearing in mind Theorem 2.2) we deduce ’

| Poxpnj(x, ) — Py uoj(y, 1)l

5/ |Ps((x, 7) —w) — Py((y, 7) — w)|du(w)
2BIM2BY

+/ Py((r, 1) — D) — Py((y, ) — ) |du ()
Roj\(2BEN2BY)

< / du(w) + / dp(w) (19)
2

287 |(x, T) — W, Bz (v, ©) —wl},
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+lx —yl [Vy Py ((X, 7) — w)|dp(w)
jo\(2BX1ﬂ23}i,)
du(w)

- S —
Sp [F = FIBFH 4 7 -7 f .

— (20)
R+1\(2BEN2BY) [(X, T) — wlp,

where for both integrals of (19) we have split the domain of integration into (exponentially
decreasing) s-parabolic annuli; while in the remaining term X belongs to the segment joining
x and y. Observe also that in the last inequality we have used that the spatial distance between
any two points of Ry \ (2Bf N ZByT,) and Ry4 \ (2BZ N2B7) is bounded by a multiple of
|x — y| and thus of [x — ] ,,. Observe now that, if £ := (x + y)/2, we have

2BIN2B: = B((x, 14 1),2[F = 3p,) N B((y, 1 + 1), 21T — 7,,)
> B((&,t+71), ¥ = p,) = BT,

meaning that
¢ R™'\ (2BE N2BL) C R"'\ BT

Return to (20) and estimate the remaining integral by another one with the same integrand,
but over the enlarged domain R*+! \ BT. Afterwards, split the latter into s-parabolic annuli
centered at (¥, v) and (exponentially increasing) radii proportional to [x — ¥|,, /2 and use
that 258 + o < 2 so that

o X — 12, o
|Py s poj(x, 1) = Py poj (3, O Spaa [X = VP + ———— ~ [ - 1P
|x_y|p5

Hence, similarly to (18) we deduce C31 Sgo X — Y&, which means I < I+ I4 Sgo 1
and we are done with Case 2. This last estimate finally implies

187 Py % (2@ = 3 Py % o) )| Spa 1T =TI

which means I» Sg o 1. So applying it to (17) we conclude that

10F Py s (@) — 3 Py s ()

T — vl
Ix — 1%,

<hx+hy+Dh Spal

and the desired s-parabolic Lip,, condition follows. O

5 The s-parabolic BMO and Lip caloric capacities

We are finally ready to introduce the s-parabolic BMO and Lip, variants of the caloric
capacities presented in [13, 14]. This section generalizes the concept to include a broader
set of variants. The principal result will be that, in any case, such capacities will turn out
to be comparable to a certain s-parabolic Hausdorff content. Moreover, we will be able to
characterize removable sets for BMO, and Lip,, , solutions of the ®*-equation in terms of
the nullity of the respective capacities. In order to do so, we will need a fundamental lemma
that we present before introducing the different capacities. The result below will characterize
distributions supported on a compact set with finite d-dimensional Hausdorff measure that
satisfy some growth property only for s-parabolic cubes small enough.
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Lemma5.1 Letd > 0 and E C R"! be a compact set with H‘Ii,S(E) < 0. Let T be a
distribution supported on E with the property that there exists 0 < £y < oo such that for
any R C R s-parabolic cube with £(R) < £,

(T, $)| S LR, Y admissible for R.
Then, T is a signed measure satisfying

(T ) S HE (B lloor VI € COR™).

Proof We follow the proof of [14, Lemma 6.2]. Let ¢ € C° (R* 1y and 0 < & < €g/4. Let
Q;, i € I be a collection of s-parabolic cubes with F C | J Q; with £(Q;) < € and

ielg
> u@i! < CHY (E) +e.
ielg

Now cover each Q; by abounded number (depending on the dimension) of dyadic s-parabolic
cubes Rl.l, ..., R" with K(Ri] ) < £(Q;)/8 and apply an s-parabolic version of Harvey-
Polking’s lemma (that admits an analogous proof, see [8, Lemma 3.1]) to obtain a collection of
non-negative functions {¢; };c;, with supp(¢;) C 20Q;, cp; admissible for 2Q; and satisfying
Yier, ¥ =1onU;, Qi D E. Now we write

NT. ) < Y T, givh)l.
iel,
Proceeding as in [14, Lemma 6.2] it can be shown that

e iy
T W o + LD IVa W oo + QP 13 lloo + ECHZ AV oo

is an admissible function for 2Q; (up to a dimensional constant), with £(2Q;) < £o/2.
Therefore, by the growth assumptions on 7,

(T ¥ S Zﬁ(Qi)d(llllflloo + LDV + L2119 oo + L) 1AV [l oo)

iel,
S HE (E) + &) (1¥lloo + el Vi Il + &1, lloo + & A lloo).

and making ¢ tend to 0, we deduce the result. ]

5.1 The capacity lNgs, .

The first capacity we introduce is the BMO,, variant of the caloric capacity first defined in
[14] for the usual heat equation.

Definition 5.1 Given s € (1/2,1] and E C R+ compact set, define its BMO, -caloric
capacity as
Fes «(E) :=sup (T, 1),

where the supremum is taken among all distributions 7" with supp(7’) C E and satisfying

1
Vi P % T s p, < 1, 187 Py * Tlls, p, < 1. 21

Such distributions will be called admissible for T'gs +«(E).
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Let us also introduce what we will understand as removable sets in this context:

Definition 5.2 A compact set E C Rt is said to be removable for s-caloric functions with
BMO,,-(1, %)—derivatives if for any open subset 2 C R"*!, any function f : R"*! — R
with 1

Vi flls,py < 00, 19 flls.p, < 00,

satisfying the ®*-equation in Q \ E, also satisfies the previous equation in the whole 2.

First, we shall prove that if 7 satisfies (21), then T has upper s-parabolic growth of degree
n + 1. In fact, we shall prove a stronger result:

Theorem 5.2 Lets € (1/2, 1] and T be a distribution in R with

s
IV Ps o Tlly,p, <1, 187 Py # Tlls,p, < 1.

Let Q be a fixed s-parabolic cube and ¢ an admissible function for Q. Then, if R is any s-
parabolic cube with £(R) < £(Q) and ¢ is admissible for R, we have |{¢T, )| < LR,

Proof Let T, Q and ¢ be as above. Let R be an s-parabolic cube with £(R) < £(Q) and
R N QO # @ (if not, the result is trivial) and ¢ admissible function for R. Since P; is the
fundamental solution of the ®*-equation,

HoT. @)l = (O Py x T, )| < [((=A) Py x T, )| + [(Ps x T, 0 (¢9))| =: I + L.
Regarding I, observe that defining 8 := 1 — % € (0, 1/2] we get
0 (pg) = c o, (a1 (pg) 5 11177),

for some constant c. The latter can be checked via the Fourier transform with respect to the
t variable. Therefore, applying Theorem 3.1 we get

1- - -
Ly cl(d, P P T, 0i(9) 0 [117F)] S LRHOP = o(ry™*.
To study /; we distinguish whetherif s = 1 or s < 1. If s = 1, Theorem 3.2 yields
It = (AW % T g¢)| = (VW = T, Vi(pp))| < L(R)".

Recall that the operator (—A)* can be rewritten as

, - 1
(=AY () ~ Z Oy <W> *, Oy, (),
i=1

where *, indicates that the convolution is taken with respect the first n spatial variables.
Therefore, by Theorem 3.4, since s € (1/2, 1), we have

n
1
I < Z <3x,- P« T, 0y, (W) *p (<ﬂ¢)>’

i=1
= |0 P+ T, 05, [Z3 o, (0)])| S LR)™H,
i=1

and we are done. O
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Remark 5.1 Let us observe that in the particular case in which T is compactly supported, we
may simply convey that Q := R"*! and ¢ = 1 so that we deduce

(T, )| S LR,

for any R s-parabolic cube and ¢ admissible function for R. Therefore, bearing in mind
Lemma 5.1, if E ¢ R"H isa compact set with H'I’,S“(E) = 0 and T is a distribution
supported on E and satisfying the BMO,, estimates of Theorem 5.2, choosing £ := oo we
getT =0.

Theorem 5.3 Foranys € (1/2,1] and E C R*! compact set,
Tos «(E) ~ HA) (E).

Proof Let us first prove
Pos «(E) < HA) (E). (22)

Proceed by fixing ¢ > 0 and {A}x a collection of sets in R+ that cover E such that

o0

> diam, (A" < HIE (E) +e.

k=1
Now, for each k let QO an open s-parabolic cube centered at some point ar € Ay with
side length £(Qy) = diam, (Ag), so that E C |J, Q. Apply the compactness of E and
[8, Lemma 3.1] to consider {¢’k}/1<v:1 a collection of smooth functions satisfying, for each
k0 < g < 1, supp(e) C 20k Dl ok = 1in (U, Qx and also || Vagrlloo <
L0 18kl < £(2 Q1) "% Hence, by Theorem 5.2, if T is any distribution admissible
for Fes «(E),

N

D AT )

k=1

N N
S @O =) diam,, (A" < HAF) (E) + &
k=1 k=1

(T, 1) =

Since this holds for any 7" and ¢ > 0 can be arbitrarily small, (22) follows.

For the lower bound we will apply (an s-parabolic version of) Frostman’s lemma [15,
Theorem 8.8], which can be proved using an s-parabolic dyadic lattice, as it is presented in
the proof of [14, Lemma 5.1]. Assume then Hg’j: lps (E) > 0 and consider a non trivial positive
Borel regular measure i supported on E with u(E) > cng:]ps (E) and u(B(x, r)) < r"t!
for all x € R**! r > 0. If we prove that

1
IV Py *M”*,ps S and ||81EPS*M||*,pX

~

<1,

~

we will be done, since this will imply Tes «(E) 2 (u, 1) = pn(E) 2 ng,i,s. But by
1
Lemma 4.2 we already have [0, Py * (||, »s S 1,80 we are only left with the BMO,,, norm

~

of V, Ps % p. Thus, let us fix an s-parabolic ball B(xo, r) and consider the characteristic
function x,p associated to 2B. Denote also xapc = 1 — x2p. In this setting, we pick

cp = Vi Py *x (x2pcit)(X0).

Using Theorem 2.2 it easily follows that this last expression is well-defined. Let us now
estimate ||Vy Py * ||« p, »
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1 _ _
ﬁ/WxPs*u(y)—cBmy
B

1
<L </ |vxPs@—z>|du<2))d§
|B| Jg \ J2B

1 _ _ 0\
+7/ (/ IVxPs(y—z)—VxPs(XO—z)Idu(z)>dy =1+ .
|Bl Jp \ Jre+1\28

To deal with I; we first notice that by Theorem 2.2 and Tonelli’s theorem we have

R R——
1 15 14y Jaulz

| B B[y —zlp!
Writing B = By x Ip C R" xR, ¥y = (y,1),Z = (z,u) and choosing 0 < ¢ < 2s — 1,
integration in polar coordinates yields

1 dy dr L etz
LS — </ f g> du@) S r=) nw(2B) S 1.
Bl Jop \JBy |y —zI"¢ Ji |;_u|1z+s |B|( )

Regarding I, we name X := X( — zZ and X’ := y — Z, and observe that |X — 7|ps < |xlp, /2.
Hence, we apply the fourth estimate in Theorem 2.2 with 2¢ = 1 since s > 1/2, and obtain

1 [y — Xolp _\ - du(z)
LS — (/ ——5du@) |dy <r I —
|B| R"+1\2B |Z_f0|n+2 R*+1\2B |Z _xO|”+2
e QI+l 0

2 du@  _ ¢ 1
=r Z/Z n+2NrZ (2Jr)n+2 ;27

i J+1B\2J B |7 — Xol)p, =

and we are done. O

Theorem 5.4 Lets € (1/2, 1]. A compact set E C R"*! is removable for s-caloric functions
with BMO (1, 3-)-derivatives if and only if Tos 1 (E) = 0.

Proof Fix E C R"*! compact set and begin by assuming that is removable. Now pick T
admissible for I'gs 4 (E) and observe that defining f := Py * T, we have ||V, f |4 p, < 00,

1
197 flls,p, < o0 and ®°f = 0 on R"T1 \ E. So by hypothesis ®° f = 0 in R""! and
therefore T = 0. Since T was an arbitrary admissible distribution for I'gs . (E), we deduce
that Fes «(E) = 0.

Letus now assume I'gs «(E) = 0and prove the removability of E. Notice that by Theorem
5.3 we get HAH, (E) = 0 and thus, by [15, Lemma 4.6], we have H/ "1 (E) = 0. With this

in mind, fix € any open set and f : R**!' — R any function w1th Vi fll,p, < 00,
||8t%f||*,px < ooand ©®f = 0on Q\ E. We will assume ®°f # 0 in © and reach
a contradiction. The case 2 N E = @ is trivial, so we assume 2 N E # &. Define the
distribution o f
T := q )
IV F s + 197 L,

1
which is such that ||V, Py T||4 p, < 1, 187 P % T|l4,p, < land supp(T) C E U Q°. Since
T # 0in 2, there exists Q s-parabolic cube with4Q C Q2 so that T # 0 in Q. Observe that
0 N E # . Then, by definition, there is ¢ test function supported on Q with (T, ¢) > 0.
Consider
%
[@lloo + €D Vi@lloo + LD @ lloo + (D) A@lloc”

7=
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so that @ is admissible for Q. Apply Theorem 5.2 to deduce that ¢ T has upper s-parabolic
growth of degree n + 1 for cubes R with £(R) < £(Q). Apply Lemma 5.1 to ¢T with the
compact set Q N E, o := £(Q) and d :=n + 1. Then,

(@T.¥)| =0, V¥ eCOR™D,

since ’H’;,jl (Q N E) = 0. This would imply T = 0, which is impossible, since (¢, T) > 0.
Therefore ®° f = 0 in €2, and by the arbitrariness of 2 and f we are done. m}

5.2 The capacity lNgs o«

We shall now present an s-parabolic Lip, variant of the caloric capacity presented above.

Definition 5.3 Givens € (1/2, 1], € (0, 1)and E C Ro+! compact set, define its Lipa’ps—
caloric capacity as
Cos o (E) :=sup (T, 1),

where the supremum is taken among all distributions 7 with supp(7’) C E and satisfying

1
10x; Ps * TllLip,.p, <1, Vi=1,...,n, 10 Py * T”Lipa,ps <1

Such distributions will be called admissible for T'gs o (E).

Definition 5.4 A compact set E C R"*! is said to be removable for s-caloric functions with
Lip,, p,-(1, zls)-derivatives if for any open subset 2 C R"T!, any function f : Rt — R
with 1
”vxf”Lipayps < 00, ”8[§f”Lipmm < 00,
satisfying the ®°-equation in Q \ E, also satisfies the previous equation in the whole 2.
As in the s-parabolic BMO case, if T is a compactly supported distribution satisfying

the required normalization conditions, 7' will present upper s-parabolic growth of degree
n + 1+ «. In fact, the following result holds:

Theorem 5.5 Lets € (1/2,1], « € (0,25 — 1) and T be a distribution in R with

1
105, Py* Tllipyp < 1. Vi=1,...on. 87 PoxTlzip,, < 1.

Let Q be a fixed s-parabolic cube and ¢ admissible for Q. Then, if R is any s-parabolic cube
with £(R) < €(Q) and ¢ is admissible for R, we have |{¢pT, ¢)| <q LRy Tt

Proof Let T, Q and ¢ be as above. Let us also consider R s-parabolic cube with £(R) < £(Q)
and R N Q # @ and ¢ admissible function for R. We proceed as in the proof of Theorem
5.2 to obtain

HoT. d)| < (=AY Py« T, @) + (P x T, 0 (p9))| =: I + .

Regarding I, we now define define g := 1 — % and observe that 2s8 = 25 — 1 > «, so
applying Theorem 3.1 we get I, <, £(R)"T!*%. The study of I; is also analogous to that
done in Theorem 5.2. The case s = 1 follows in exactly the same way by Theorem 3.2, and
if s € (1/2, 1) we also have

n
IS |00 Po# T, 0 (T3, (09)])].
i=1

So by Theorem 3.4 and condition o < 2s — 1 we deduce the desired result. O
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Theorem 5.6 Foranys € (1/2,1], « € (0,2s — 1) and E C R™ compact set,

Toso(E) ~y HIZ T (E).

00, s

Proof For the upper bound we proceed analogously as we have done in the proof of Theorem
5.3, using now the growth restriction given by Theorem 5.5. So we focus on the lower bound,
which will also rely on Frostman’s lemma. Assume then ng’ 1pj°‘ (E) > 0 and consider

a non trivial positive Borel measure p supported on E with w(E) > cHgof },j"‘(E) and
w(B(®, r)) < r"t+e forall ¥ € R**!, r > 0. It is enough to check

1
”8)([ Py *I/L”Lipwpx ,Soz 1, Vi=1,...,n and ||8123 Py */‘«”Lipa,ps ,Sa L.

Notice that the right inequality follows directly from Lemma 4.3 with g := 2v , SO we just
focus on controlling the s-parabolic Lip, seminorm of the spatial derivatives of Py * p. Fix
i =1,...,n and choose any X, y € R"*! with ¥ # ¥. Consider the following partition
Ry:={Z : X =¥lp = I¥=Zp,/2}U{z 1 [V =Xlp, < [¥ —ZIp,/2}.
Ry:=R"™\R = {2+ [T =Vlp > F—2p/2} N {z 1 [T =Flp, > 7~ p/2}.

with their corresponding characteristic functions yp, x» respectively. This way, we have

[0y, Py % w(x) — Oy, P x ()]
[x —¥1%,

1 _
s — 00, Py = ) = 0, P (5 — DI
X =15, Jm—1,, <®—21,, /2
I o I
| 180y Py — ) — B, Po(3 — DI @)
X =315 J 5Ty <1521, 2
1
W/ [0y, Py(x —2) — 0y, Py (Y — 2D)|du() =: [T + I + I5.
s 2

Regarding I, apply the fourth estimate of Theorem 2.2 to obtain

1 |x ylp\ —
Il < ﬁ/ ﬁd (Z)
Yoy JF=51ps <=2y, /2 1¥ — 2l

Split the previous domain of integration into the s-parabolic annuli

Aj =2 B (%, X = Ip,) \ 2 B(X, X = Flp,), for j=1,

and use that u has upper parabolic growth of degree n + 1 + « to deduce
du(2)
h I
— 7|p, = —ja—1 Z )C _ Z|n+2
1 (2,/+1 R _ ﬂps )n+1+a

< -
TR s @ =Yt

|
Szmgal
J:
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The study of I, is analogous interchanging the roles of X and y. Finally, for /3, we apply the
first estimate of Theorem 2.2 so that

I < 1 / du(z)
|x_y|pj Ry |X_Z|n+1

1 du(z
Sy
|x_y|ps R |)’_Z|
1 du(2)
n+l

T X =I5 JESip =521, 2 1X — 2,

1 du(z)
+ ﬁ/ 7,,_,_1
¥ =15, Ji5—%lpy>5-2lp /2 17 = Zlps

=: I3 + I3.

Concerning I31, split the domain of integration into the (decreasing) s-parabolic annuli

Aj =27 B(E X —Ylp) \ 27/ B(x, X =Jp,), for j=-1

Thus, in this case we have

du(@)
I31N ¥ yla Z/ P

]|x_Z|

1 Z (2—] |f— y|px)11+1+ot

<
< — ST A —
X =30, & @R =Sl

<C>O l<
~Zﬁwa1

On the other hand, for /37 we apply the same reasoning but using the partition given by
A =27TBy(. [y =XIp)\ 27 B, (5. [F — ®lp,).  for j =1,
yielding also I3, < 1. Combining the estimates obtained for 1, I and I3 we deduce

[0y, Ps % (b (X) — Oy, Py % u(3)] <

X -l el
X y Ps

and since the (different) points X and y were arbitrarily chosen, we deduce the desired s-
parabolic Lip, condition. O

Theorem 5.7 Lets € (1/2, 1] and o € (0,2s — 1). A compact set E C R"*! s removable
Jor s-caloric functions with Lip,, ,, -(1, %)-derivatives if and only if T'gs 4 (E) = 0.

Proof The proof is completely analogous to that of Theorem 5.4, now using Theorems 5.5
and 5.6, as well as Lemma 5.1 withd :=n+ 1 + «. ]

5.3 The capacity ygs .

Now, we shall present the BMO,, variant of the capacities presented in [13, §4 & §7]. To
be precise, in the aforementioned reference, Mateu and Prat work with the normalization
conditions

1—L
I(=AY 2P % Tlo < 1. 118, PPy Ty, < 1.
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allowing s € [1/2, 1). In our case we will deal with its s-parabolic BMO variant and we
define it more generally as follows:

Definition 5.5 Given s € (0,1], ¢ € [0,s) and E c R"*! compact set, define its A% -
BMO,,, -caloric capacity as
Y& +(E) :=sup (T, 1)],

where the supremum is taken among all distributions 7" with supp(7’) C E and satisfying
=AY P Tlp, <1, 17 Py# Tl p, < 1.

Such distributions will be called admissible for ]/(Ss’ L(E).

Definition 5.6 Lets € (0, []ando € [0, 5). A compactset E C R+ is said to be removable
for s-caloric functions withBMO, -(o, o/s)-Laplacian if for any open subset 2 C RFL
any function f : R"*! — R with

I(=A) fllape <00, 1187 Fllsp, < 00

satisfying the ®*-equation in © \ E, also satisfies the previous equation in the whole 2. If
o =0, we will also say that E is removable for BMO,, s-caloric functions.

Firstly, we shall prove that if 7 is a compactly supported distribution satisfying the
expected normalization conditions, then T has upper s-parabolic growth of degree n+2s—20.
In fact, we prove a stronger result:

Theorem 5.8 Lets € (0, 1], o € [0, s) and T be a distribution in R* with
I=A) Py # Tllp, < 1. 197 Pk T, < 1.

Let Q be a fixed s-parabolic cube and ¢ an admissible function for Q. Then, if R is any s-
parabolic cube with £(R) < £(Q) and ¢ is admissible for R, we have |{(¢T , )| <¢ L(R)"2,

Proof Let T, Q and ¢ be as above, as well as R s-parabolic cube with £(R) < £(Q) and
RN Q # @, and ¢ admissible function for R. We already know, in light of the proof of
Theorem 5.2,

KeT, @) < {(=A)' Py x T, @p)| + [(Ps x T, 3 (pp))| =: I + I».
For I, simply apply Theorem 3.3 with 8 := s — o so that
I = {(=8)7 Py x T, (=A)° " (99))| So L(R)"7

Regarding I, if o > 0, observe that defining g := 1 —o/s € (0, 1) we get

0 (00) =0 0" (30pd) 50 1117F),

so by Theorem 3.1 we are done. If o = 0, we simply have
L =|(Ps T — (Pyx T)R, 3 (¢9))| < / [Py % T(X) — (P T)R||3 (9¢) () |dx
ONR

<R f [P % T(X) — (P * T)g|dx < £(R) "2 C(R)" || Py T|lsp, < E(R)".
R

[}
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Theorem 5.9 Foranys € (0,1], o € [0, s) and E C R"*! compact set,
V& £ (E) ~g HAZ (E).

0, Ps

Proof Again, for the upper bound we proceed analogously as in the proof of Theorem 5.3,
using now Theorem 5.8. For the lower bound, we apply Frostman’s lemma. Assume then

ng ?;\7 (E) > 0 and consider a non trivial positive Borel measure p supported on E with

W(E) > CH’;S:%;; (E) and u(B(X,r)) < r"+2 forallx € R"*!, r > 0. We have to prove

<1, P« Tl p <1,

[(—A)? Py T”*,m

If o > 0, by Lemma 4.2 with 8 := o /s we already have ||8,U/XPS * [Ulls,p, So 1. So we
are left to control the BMO,, norm of (—A)? Ps % u for o € [0, s). Thus, let us fix an
s-parabolic ball B(xg, ) and consider the characteristic function x,p associated to 2B. Set
also x2pe = 1 — x2p. In this setting, we pick

cp = (—A)? Py % (x28c 1) (X0).

Using Theorem 2.3 it easily follows that this last expression is well-defined. We estimate
[(=A)? Ps % ji]l4, p, using the previous constant:

1 . _ _
ﬁ/};?K_A) Py x u(y) — cpldy

1
< 7/ (/ I(—A)”P.Y(Y—Z)Idu(f)>d§
IB| JB \ J2B
1
v | (/ (=AY Py(5 —2) — (—A) Py(To —z>|du(z>)dy — I+
|Bl Jp \ Jrr+1\28

To deal with 77, notice that by Theorem 2.3, choosing 0 < ¢ < 2(s — o) and arguing as in
Theorem 5.3 we have

1 dy ) 25
L <o — B — < B S 1
"~ 1B] up </1; Iy -zl W@ S |B|( 3" = )M( )

by the n + 20 growth of 1. Regarding I, notice that naming X := Xy —zand X' :=y — Z,
we have |X —X'|, < |X|p,/2 so we can apply the fifth estimate of Theorem 2.3, that implies

- 2
1 [y —Xolp e o du(z)
LS —/(/ — e @ dysw“/ —— 3ot o b
o 18| /p R1H1\2B Iz — x0|n+20+2§ Re+1\2B Iz — |n+20+2§ o

again by the by the n 4+ 20 growth of u. O

Theorem 5.10 Let s € (0, 1] and o € [0, s5). A compact set E C R s removable for
s-caloric functions with BMO,, -(o, o /s)-Laplacian if and only lj‘ygj’*(E) =0.

Proof The proof is analogous to that of Theorem 5.4, applying Theorems 5.8, 5.9 and Lemma
5.1 withd :=n + 20. O

5.4 The capacity ygs a

We define now a capacity with an s-parabolic Lip, normalization condition.
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Definition 5.7 Given o € (0, 1), s € (0,1], ¢ € [0, s) and E C R"*! compact set, define
its A?-Lip,, p,~caloric capacity as

yg",a(E) ‘= Ssup |<Tv 1) |a
where the supremum is taken among all distributions T with supp(7') C E and satisfying

(=AY Py Tlliip, pe <1, 197 Py Tliip, py < 1.

Such distributions will be called admissible for J/gs’ o(E).

Definition 5.8 Let« € (0,1),s € (0, 1]and o € [0, 5). A compact set E C R+ is said to
be removable for s-caloric functions with Lip,, po(0.0/ s)-Laplacian if for any open subset
Q ¢ R**! any function f : R**! — R with

/s
(=AY Flitipy.pe <00, 107" Flitip, . ps < 00,

satisfying the ®*-equation in 2 \ E, also satisfies the previous equation in the whole €. If
o =0, we will also say that E is removable for Lip, ,, s-caloric functions.

If T is a compactly supported distribution satisfying the above properties, then 7' presents
upper s-parabolic growth of degree n 4+ 20 + «. As in §5.2, the following result will only be
valid for a certain range of values of «, dependent on s and o.

Theorem 5.11 Let s € (0,1], 0 € [0,5) and a € (0,1) with o < 2s — 20. Let T be a
distribution in R with
I(=A) Py % Tllzipype < 1. 1877 Pos Tliiipy.p, < 1.

Let Q be a fixed s-parabolic cube and ¢ an admissible function for Q. Then, if R is any

s-parabolic cube with ¢£(R) < €(Q) and ¢ is admissible for R, we have |{¢T, ¢)| <
K(R)n+2a+a.

Proof Let T, Q and ¢ be as above, as well as R s-parabolic cube with £(R) < £(Q) and
RN Q # @, and ¢ admissible function for R. Again,

KeT, ) < [((=A)’ Py x T, @p)| + [(Ps x T, 8 (p$))| =: 11 + L.
For I, simply apply Theorem 3.3 with 8 := s — o so that
It = (D)7 Pox T, (=AY 77 (99))] So.a LR34

Regarding I, if o > 0, we define 8 := 1 — o/s € (0, 1) and apply Theorem 3.1. If ¢ = 0,
let X g be the center of R so that

L =|(Py+T — P+ T(Xg). 0 (p))| < e(R)*ZS/ [T — Tpl% ¥ < LR
R
[m}
Theorem5.12 Let s € (0,1], 0 € [0,s) and @ € (0, 1) with o < 2s — 20. Then, for

E C R"™! compact set,
Y5 o (E) Rga HALTH(E).

00, Ps
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Proof For the upper bound we argue again as in Theorem 5.3, using now Theorem 5.11.
For the lower bound, assume ’Hgg: ?,‘j*"" (E) > 0 and apply Frostman’s lemma to consider

a non trivial positive Borel measure p supported on E with w(E) > cHg’i ?,‘:"'“ (E) and
w(B(,r)) < r"t20% forall x € R*™!, r > 0. It suffices to verify

(=AY Py Tlitip,pe <1, 107" Py s Tllnip, pe < 1.

o/s

If o > 0, by Lemma 4.3 with 8 := o /s we already have |0, " Py * | Lip, . p, <o.a 1.Sowe
are left to estimate [[(=A)? Py * pllLip,.p, for o € [0, 5), and we do it as in Theorem 5.6.
Choose any X, y € R**! with X # ¥ and consider the following partition of R"*!,

Ry:={2 ¢ X=Tlp < ¥ —2p/2}U{Z + [V =Flp, =7 —Zp/2},
Ry=R"™\ R = {7+ [T =Vlp > F=2p/2} [T+ [T =Flp, > 7~ 7p./2}.
with their corresponding characteristic functions yi, x2 respectively. This way, we have

[(=A)7 Py s ju(X) — (=A)7 Py * ju(y)|

& =305,
1 _ _ _
SW[ ARG D~ (A PG - DO
T Plps YIX=Ylps =X =2l pg
1 _ _ _
Wfl AN RE D~ A AG - DIRE)
- Ps y—x| I’SSy—Z Ps

1
+ ﬁ/ [(=A) Py(x —2) — (—A)UPS(y—ZNdpL(Z) =L+ DL+
|x _)’| s YR

Regarding I, the fifth estimate of Lemma 2.3 yields
-
1 [x — )’|p —
I S f/ — 55 du(2).
|X - yl%s |Y_ﬂp5 §|Y_Z‘p; /2 |f - 2|’;:20+2{

Split the previous domain of integration into s-parabolic annuli centered at x with exponen-
tially increasing radii proportional to [x — ] ,,, and deduce as in Theorem 5.6 that /1 So.o 1,
using now that p has n 4+ 20 4+ « growth. For I, we argue as in /; just interchanging the
roles of X and y. Finally, for /3, the first estimate of Lemma 2.3 yields

h< 1 du(z) 1 du(z)
3—|f_*|a 7_7n+20+|f_*|a = _ z|ht20
Yps SRy IX —Zlp; Yps IRy |V — Zlpg

< < / @ / du@) )
X =319\ 531, > 7zl /2 1T — 25 [F—Flps > [F—Zlps /2 |7 — T2

Both of the above integrals can be dealt with by splitting the domain of integration into
exponentially decreasing annuli, centered at X and y respectively, and using that u has
growth of degree strictly bigger than n + 20. Thus, we obtain I3 <, 1 and we are done O

Theorem 5.13 Lets € (0,1], 0 € [0,5) and @ € (0, 1) with o < 2s — 20. A compact set
E c R" is removable for s-caloric functions with Lipy p,-(0, o /s)-Laplacian if and only
if 7S o (E) = 0.

Proof The proof is analogous to that of Theorem 5.4, applying Theorems 5.11, 5.12 and
Lemma 5.1 withd :=n + 20 + «. O
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6 Proofs of Theorems 2.4 and 2.5

Let us recall the statement of Theorem 2.4 and provide its proot:

Theorem 2.4 Forany B,s € (0, 1) andx = (x,t) # (0, 1), the following hold:
Pp@)<g ———
Lodf n>1. |9 PsX)| Sp I

1

P 125 Ao Vo€ (25 — 1, 45).

1 B —
2. 0f n=Tland p>1—-—, |5y k@IS
A

Moreover, for every n,

3. v P < 4. |80 Py Sp

1
’ ——a.q Jor t#0.
P [x|n—2s+1 |§|§§(1+ﬁ) |x|"|f|f,‘i(1+’3) f #*

Finally, if ¥’ € R""is such that |x —¥'|, < |x1/2,

¥ — %13
22512 204B)

|1 H2E =25 %

5. 107 P —0f PG <p

Proof To prove I, we use [13, Equation 2.9] and deduce the existence of a function F; such

that for ¢t > 0,
1 t
Py(x,1) = WR(W)’ (23)

and such that "

FFuy~ ——.
s (] +ul/s)(n+23)/2

(24)

We extend continuously Fs(u) := 0 for u < 0, so that (23) is verified for any value of 7. The
existence of Fj is clear, since for ¢+ > 0 the function P can be written as

pen= () ()
X, 1) = —|\ —%; — )
' e N2 L e

n 1
and defining for u > 0, Fy(u) := u™ 2 ¢, g (u‘ﬁ), we are done. Notice that F is a bounded
continuous function, null for negative values of #, smooth in the domain # > 0 and vanishing
at 0o. Moreover, using the bounds obtained for ¢’ and ¢” we obtain the following estimates
foru > 0,

1
(1 + ulls)

|F{w)| < |F{ )] < (25)

(14 ul/s) 292 u

Let us argue that, in fact, | F,'(u)| is also a bounded function. Notice that, by definition,

F( - )‘ =[x "] (v, 1))

|x|2s

2P ) = — (" &
s T) = lx|tas =S\ |x |28
and using that P is the fundamental solution of the ®°-equation and that t > 0, we have

2 Py(x,7T) =3[ — (=A) Py(x, D)].

@ Springer



21  Page 42 of 56 J.Hernéndez et al.

By the commutativity of d; and (—A)*, we deduce

. , ! 1
L R O [ N O S T
Ps

Therefore,

/" _

( T )‘ x|t 1 - 1
s 2s ~ —n+ds n+ds ~ (n+4s)/2°
|x] E% max{l, (‘L’/|x|25)1/(23)} [1 +(r/|x|25)l/s:|

that implies the following (improved) bound for F',

1
F/u) < —————— <1, u>0. (26)
s (1 +M1/s)(n+4s)/2

We continue by observing that by a change of variables the following holds,

B 1 B . 1 8 t )
0 Ps(x,1) = " 0, Fy TS ) = Wa Fs W . 27)

We shall prove the following inequality,

|0F Fy(uw)| <p min{l, (28)

1
|u|1+/3 ’

where for u = 0 is just asking for |8‘6 F; (O)| to be bounded. To verify (28) we distinguish
whether if u = 0, u < Ooru > 0. For u = 0 observe that by definition and relation (24),

|68 F, (0)] 5/ dezf‘” Fw)
R 0

|0 — w|1+A wlt+h

1 w
Sh 1+8 (n+2v)/2dw
0 WP (T4 wl/s)T
B /1 dw N /Oo dw
0 wﬁ(l + wl/S)(11+23)/2 1 wﬁ(l + wl/x)(n+23)/2

1 o) —1
dw dw n
~ — < a-p! — <s1,
/0 — +/1 peeser U R <2s +ﬂ> S5

so case u = 0 is done. Let us assume u < 0, so that

| Fs(w)] /oo 1 w
P F, < | ————_dw< dw.
| S(u)|_/RIIM|+w|”’3 Ul Gl (14 wl/s) 2P :

On the one hand notice that the since |u| + w > w, the previous expression is bounded by a
constant depending on n, s and g (by the same arguments given for the case u = 0). On the
other hand, observe that

1 [ 1
0 )| S — / 1 e duw
P Jo (w/lul + DI (1 gy 1ys) 329

1 /1 1 w d
= w
|u|]+ﬁ 0 (w/|u|+1)1+ﬂ (1+w1/3)(n+25‘)/2
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+ / ” ! v d L
w | =: .
@/l DI (1 1)) 0272 BT
Regarding I, since the denominators are bigger than 1, we directly have
1
115/ wdw < 1. (29)
0

Turning to I, we similarly obtain

00 00
I 5/ %dw Sf dl:) —w nt!
1 (1 + w]/s)(ﬂ+ s)/ 1w

where notice that — % +1 < Obecausen > 1ands < 1. Therefore, we also have |8ﬂ Fs(u) | <

o0

=1, (30)

1

lu|~1=# and we conclude that for u < 0,

1
ﬁ .

|8 Fs(u)| N mm{l, rl”ﬁ }
Let us finally assume u > 0. Begin by writing

F, — F, F, — F,

199 F, )| 5/ de +/ Lﬁfj)ldw
wi<uz  w—u|l+P up2<iwl<2u |lw—ul
F. — F,
+/ | Fs(w) l.v(u)|dw — L+ D+
|w|>2u lw — ul +h

We study each of the previous integrals separately. Concerning the first, notice that in its
domain of integration u/2 < |w — u| < 3u/2,i.e. |w — u| ~ u. We split it as follows

O F)| “2 | F(w) — Fy(u)]
I = LA, | / g S dw = 1 1.
! /_u/z|w—u|1+ﬁ YEy T STt

Observe that /11 can be estimated by

I < “ /O dw u =P
US o073 o~ )
(1 +M1/S)(n+2s)/2 w2 lul1*P B (1 +ul/s)(n+2s)/2

The expression of the right, viewed as a continuous function of u, tends to zero as u — 0
and decays as |u|’ﬁ’% as u — oo. Hence, it is bounded by a constant (depending on n, s
and B) and so I Sg 1. On the other hand, to prove that /11 Sg || 18 it suffices to check
that the following expression is bounded by a constant,

u?

(n+2s)/2

-~ uF,®).
(1+ul/s) '

Again, it is clear it that tends to zero as u — 0, but observe that it behaves as |u|’Tnx+l as

u — 0o, which vanishes only if n > 2s, thatis, only ifn > 1, since s < 1. But this is satisfied
by hypothesis. Therefore we deduce 711 Sg min{l, lu|~'=#}. Regarding I, proceed in a
similar manner to obtain

< 1 u2 w ul=#
Iy S / dw + .
BB 0 (1+w1/s)(n+2s)/2 (1+u1/3)(n+2x)/2
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The second summand has already been studied in /;;. Regarding the first, notice that

u/2 w 1 w 00 w
—— —dw < / —_— dw +/ - dw
\/0\ (1 +w1/s)(n+2$)/2 0 (1 + w]/s)(i’l+23)/2 1 (1 +w1/s)(n+2x)/2

where we have applied the same arguments as in (29) and (30). On the other hand, by applying
the following inequality for w > O,

(1 4 w/5) (2972 o)1=

that can be checked by a direct computation, we deduce

u/2 u/2
0 (1 + wl/s) n+2s)/ 0

Therefore we conclude

1 1 , 1 , 1
112 S[-} mmln[l,u +ﬂ}+mln{l,m} =2mln{l,m},

that implies the desired estimate for /;.
Moving on to I, we split it as follows

“u2 | Fy(u)l 2 Fy(w) — Fy(u)]
L= / 5T dw +/ = S dw = by + 1.
—2u |w_u|l+ﬂ u/2 |w—u|1+ﬁ

The study of I; is exactly the same as the one presented for /11, so we focus on /2. Apply
the mean value theorem to obtain
2u dw

by swp |[FW| | ———5<s sup [Flu'’
velu/2,2ul w2 lw—ul velu/2,2ul

Therefore, if we are able to bound |F]| by uP~1 and u=2 we will be done. But recalling
relation (25), this is equivalent to proving that the following functions are bounded by a
constant:

ub=1 u?

(1 +u1/s)(n+2s)/2’ (1 +u1/s)(n+2x)/27

€1V}

that has already been done in /11. Therefore, we are only left to study /3,

—2u 00
| Fy(u)| / |Fy(w) — Fy(u)|
I3 = ——d —— ~ dw =:1T I3.
. /_oo o T e W TR

To deal with I3; we first notice that in the domain of integration |w — u| ~ |w/|, implying

/ u /2" dw - ul=# - . {] 1 }
31~ N >4 min s T (-
(] " ul/s)(n+23)/2 oo |w[TFP B (l n ul/s)(n+2s)/2 B PRy

We study I3; by splitting it as

1325/"0 | Fy (w)] dw+/°° | Fy ()]
2 2

u |w_”t|]+[g u |w_u|l+ﬂ )
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The second summand is tackled in exactly the same way as I31, so we focus on the first one.
Using that |w — u| ~ |w| = u, we have

| Fs(w 1 o w
/ ot 1)J|rﬁdw5 l+ﬁ/ TEET Y
2u |w_u| u 2u (1+w1/5)n $

! /1 q +/°° dw]_ 1
w aw 5
G 1w ] T ulth

by the same arguments used in (29) and (30). On the other hand, we also have

00 oo 1 00
[C B [ I T S
e lw—ul'tP 2w wth (14 w!/s)H2072 o wf 1wk

We already know that the second integral is bounded by a constant for n > 1, while the first
one is also bounded, since 0 < B < 1. So we conclude that /30 Sg min{1, lu|~'=#} and we
obtain the desired bound for /3 and thus for |3 F;(u)| if u > 0.

All in all, returning to (27), we finally have

25(14+8)
B —_ |58 )< v [
19; Py(x, )| = |x|n+2sﬁ FS(|X|2s)‘ ~B |x|n+2sﬁ min ) 1, |t|1+ﬂ
1 1 1 1
= T2 min{ (48’ | B0+h } = 25(14B)°
|x] x| i x| =28 |X|

that is estimate / in the statement of the lemma.
In order to prove 2, we follow the same scheme. Indeed, the desired estimate follows once

we prove

1

B < i .
|0 Fy(u)| <p.« min {1, WE

}, for 2s — 1 < a < 4s.

If one followed the same arguments used to prove /, in the regime u < 0 one already

encounters a first bound for which dimension n = 1 is troublesome, namely when trying to
. N @ . .

obtain |88 Fy ()] < |u| 1=A+3: . However, in our current setting we observe that

/"o 1 w
dw
0 (W [uDHP (1 4gp1/s) 22

< 1 /'OO 1 1 w d
~ o o o w
P75 Jo @/l + DI w  JuD (14 wls)

1 1 « ® dw 1
< w! =% dwt Spa — = since2s—1 < o < 4s,
u A5 o 1w T ) A

w 2s

so the desired bound for |3# Fy (u)| follows. For the case u > 0 we also proceed analogously.
Let us comment those steps where the hypotheses on « and 8 come into play. In /1, using
the same notation as for the case n > 1, we obtain the estimates

- ulfﬂ - 1 u/2 w
111 NSB TTTT o, and 112 = / - dw,
B (1+ul/s)(n+23)/2 B ulth | (1+w]/s)(n+25)/2
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expression that we already know to be bounded by a constant. To prove that I17 Sg o
lu| =P+ observe that the function

o
w1

(n+2s)/2

——— ~u TR R
(14 ul/s) '

. . _nta .

tends to zero as u — 0, since o < 4s. Moreover, it behaves as |u|™ 2s lasu — 00, which
o

also tends to 0 because o < 2s — 1. Thus, I11 Sgo min{l, |u|*1*5+ﬁ}. On the other hand,

since the following holds

’

(1 + wl/s)(n+2s)/2 - wi %

we obtain

1 uf2 w 1 “/2 dy 1
dw < = —.
u1+ﬂ/0 (1+w1/s)(n+25)/2 M1+ﬂ/0 wl—% ~Bo uHB—%

Therefore, 112 $pg.o min{l, |u|_1_’3+2% }, hence I satisfies the same estimate. The study of
I is completely analogous to that of n > 1. Therefore we are only left to study /3. The
arguments can be carried out analogously up to the point of estimating

/Oo | Fs (w)] d
— aw.
2u |w_'/[|l-H3

Using that |w — u| ~ |w| = u, we have

| Fo(w 1 o0 w! =%
/ A l)-|H3dw S 5z / W
2u |lw — ul u T35 2u (1+w1/3')n §

1 /1 £y +/°° dw 7 _ 1
T1ap_ o w < dw T ate | SPe T g o
T utPx Lo 1w IRV

since 2s — 1 < a < 4s. Therefore, I35 g min{l, Iul_l_/”%'}, and with this we get the
desired bound for /3 and the completion of the proof for the case n = 1.
Moving on to estimate 3, we begin by defining for u > 0 the real variable function

Gy (u) := u™"5 g, (u™%),

so that in light of relation (2) we have

X t
VXPS(.X,I) ~ |x|n+2G5<W>, for t > O,X 7+—O.

By (6) it is clear that
u

|Gs(u)| =~ (l + ul/s)(n+2s+2)/2'

(32)

Hence, as done for Fy, we can extend continuously the definition of G by zero for negative
values of u. Notice also that the previous estimate implies that G is bounded on R.

Our next claim is that the operators V, and 8}8 commute when applied to Ps. To prove
this, it suffices to check that the following integral is locally well-defined for every x and ¢,

/ Vi Ps(x,1) — Vi Py(x, w)|d
w.
R

It — w|l+/3
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Split the domain of integration as

/ [V Ps (x, 1) = Vi Py (x, w)] / [ViPs(x,1) = Vi Ps(x, w)
w +
[t—w|<1 [t—w|>1

dw
It — w|+F |t — w|+F

The second integral is clearly well-defined, since V, Ps(x, t) ~ x/|x |"+2G s(t/|x |25 ) and we
know that Gy is bounded. Thus, directly applying the triangle inequality in the numerator
and using that 8 > 0, we deduce that, indeed, the second integral is finite. For the first one,
we need some more work. We shall distinguish four possibilities:

Case 1: t < —1. For such values of ¢ the integral becomes null, since V, Ps(x, t) and
V. P(x, w) are zero.

Case 2: t € (—1, 0]. Observe that in this setting the integral can be rewritten as

/1_" [V Ps(x, w)| /1_" |V Ps(x, w) — VxPs(x,O)ld
- = w
0 lw —t|1+F 0 lw —t|1+F
1 1=l IGQ(T/IXIZ‘Y)Idw
~ |x|n+2s+1 0 |w|ﬁ ?

for some 7 € (0, w). By definition, there are constants Cy, C; so that for u > 0
1 1
Gg (u) = u—(n+2s+1)/(2s)¢;lys (u_f) +C u—(n-&-23+2)/(2s)¢;’/!s (M_T\‘),
so using the estimates for ¢, and ¢, ; in (6) we deduce

1

/ ~
IG5l ~ (1 +u1/x)(n+25+2)/2’

(33)

which is a bounded function. Therefore

1—¢] / 2s
1 / G5 /X < 1
0

|25+ lwl? W s <%

for every x # 0.
Case 3: t € (0, 1]. The integral we were initially studying can be written as

/0 |VxPs(X,l)|d /Hl |V Ps(x,1) — Vi Pg(x, w)|dw
-1 |t —w|+P 0 [t — w|!+P

The second integral can be tackled in exactly the same way as the integral in Case 2. Regarding
the first one, estimate it as follows

/0 VP, ) = Ve PO, O o /0 Gy /Il
- [ —w| '+ T e w) A
L0 1G]
< s dw < oo,
~ |x|n+25+l /;_1 |w|,3

where we have used || < |t — w| + |w]| and also that | — w| = (¢ + |w|) > |w]. The last
inequality follows by the same arguments used in Case 2.
Case 4: t > 1. For this final case, the integral can be estimated as

VP D= Vi P w)| ] G/ ]
48 dw s — o 5 dw Sp g <
-1 lt—w] |x| -1 lr—w] |x|
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Thus, we have obtained the desired commutativity between 8,’3 and V,, which yields

B _ap __~ p _ * B !
Vied, Ps(x,1) = 0; [V Py](x, 1) = W[at GS(W)]O) = Wa Gs (W)

Now it is a matter of showing that the following inequality holds

10 G (u)| <p min {1, (34)

1
lu| 6 f7
The proof of (34) is essentially identical to the one given for (28), using the bounds for G

and G, ((32) and (33) respectively) instead of those for Fy and F;. The faster decay of G,
and its derivative implies that one does not find any obstacles in (30). In fact, the integral that

. .. _ntl . .
appears in the current analysis is f loo w™ 25 dw, which also converges for n = 1. So using
the previous estimate we deduce, for any n > 0,

25(148)
I PR S PP
0, GS<|x|2S>‘ SB A min 4 1, TEE

1 . { 1 1 } 1
= min , = ,
|x|r—2s+1 | [25(1+8) / 20+5) |x|"*2s+1|f|i‘z(l+ﬂ)

IV, 0 Po(x, )| =

|x|n+2sﬂ+1

which proves the statement 3 in our lemma.
We continue by estimating 9, 8,’3 Pg(x,t) for x # 0 and ¢ # 0. Using (27) we rewrite it as

B -\ 1 B 4
8;8, Px(x) = W(’? FS(W .

and we claim that the following inequality holds for u # 0,

_ 1
|0P Fl(uw)| <p mm{l,m}.

Let us also recall that we had the following estimates for u > 0,

F0)] < F )] < < !

s ~ (1+u1/s)(n+25)/2’ s ~ (1+u1/s)(n+4s)/2 = u(l _i_u]/x)(wzs)/z'
Observe that, on the one hand,

Fj(u) — Fj(w)]
B | s s
0P Fy(u)| S/R—Iu—wl”ﬁ dw
dw dw
<sup |F](v)| ———— + 2sup | F{(v)] —= 3p 1,
veR ’ lu—w|<1 lu — w|ﬂ veR * lu—w|>1 lu — w|1+ﬁ P

by the boundedness of F; and F;’, and the fact that 8 € (0, 1). Therefore we are left to verify
|0P Fl(u)| Sp lul='7P. If u < 0, since F is supported on (0, 00) and |u — w| > |u] for
w > 0, we have

00 / 1 o) /
B | Fg(w)] < dw [ Fg(w)]
|9 Fs(u)|5/0 7|u—w|1+ﬂdwN A 7|M_w|l+ﬂ+ 1 7|u_wll+ﬁdw

< 1+/°° dw _ 1 1+/°° dw <
R S T e A T N A
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and we are done. If on the other hand u > 0, we estimate |3 F/| in a similar way as |97 F|
in the proof of point / of this lemma. Namely, we write

F _F F _F
|3’3Fs’(u)| 5/ | Fy(w) 1s(bt)|dw_|_/ | Fy(w) 1S(Lt)|dw
wi<uz  w —ul'FP wp<iwl<u  w—ull+h

F! — F/
+/ Ew) = Bl o 4 1y + 1,
|w|>2u |w _“|l+ﬂ

Regarding I, notice that in the domain of integration we have |w — u| ~ u, so

0 F’ u/2 F u/2 F’
115/ | Fy ()] dw+/ | Fy(u)] dw—l—/ |l
0 0

—u2 [w = u|1tP lw — u|"+F |w — u|!#

The first two integrals can be directly bounded by

u 1
F, < .
|1+ﬂ| (”)|/ = | |1+,3 <(1 +ul/5)(n+2s)/2) = Ju| 4P
For the third,

“W2 o F(w)] 1 1 %
S < ’ ,
/(; |w_u|1+5dwN |u|1+ﬂ</0 IFs(w)ldw—i-/; IFS(w)|dw>

. 1 1+/°° dw - 1
™ |u|+P 1 own )Y ul A

and we are done with /;. Moving on to I, we split it as follows
42|l 2\ Fl(w) — F](w)|
I = / — =~ _dw +/ S ST dw =: I + I»n.
—2u |w_u|l+/S u/2 |w—u|1+ﬁ

The study of I»; can be carried analogously to that of 1, since in that domain of integration
one has |w — u| > 3|ul|/2, so we focus on I»;. Applying the mean value theorem and the
bound for | F}'| of (25) as well as relation (24) we get

2u
by swp |F'O [ —— < sup  |[F/0)u'™’
velu/2,2ul w2 lw—ul velu/2,2ul
1-B
< u
S u(l 4 /50202

~ Fyuu™'"F <u 175,

So we are left to study /3. Since in its domain of integration we have |w — u| = w, we get

—2u ’ o0 / /
I 5/ IFS(M)Ider/' IFs(w)|+|Fs(u)Idw
—00 2u

lw[+F lw[+F

3  dw uP R
~ A+ ullsyot2972 |, jw| TR Sp (1 + ul/s)n¥2)/2 = u ’

that allows us to finally conclude

1
B . o
o F] g min 1o Lo
So using the previous estimate get, for x # 0 and ¢ # 0,

1
|x|n+2‘v(1+ﬂ)

P |x|2S(1+/3)
[0:9; Ps(x, 1)| = }

B 1 1 .
at Fs<|x|2s>’ 51/3 |x|n+23(1+ﬂ) min {1’ |t|1+/3
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1 . { 1 1 } 1
= — min T = .
[x | |x|2-Y(1+/3) |t|72 (;:rﬂ) |x|”|f|%§(l+ﬂ)

Finally, the proof of estimate 5 is analogous to that of 5 in Theorem 2.3. Indeed, let X' =
(x',t') € R"™! such that |[¥ — X'|,, < |x|/2, which is a stronger assumption than that of
Theorem 2.3. In fact, it can be checked by a direct computation that this already implies
[X1p, <2[x'|p, and |x| < 2|x’|. Write again X = (x/, ¢) and consider

19 P — 0 PG| < 19 P®) — 0 P + [0 Py — 9 Py,

By estimate 2, the first term in the above inequality now satisfies

’
X —X
|x —.X/| SUP |Vx8tBPY($7 t)l rS,B | —2|Y(1+ﬁ)
£elx,x'] |x|n_2s+l|x|ﬁs
X =X,

- _ —2s(1+B)
|x|n 2S+]|x|ps
— -2
|.X — X ps
_og=2s(148)°
|x|n+2{ 23|x|ps

A

where we have used that 1 — 2¢ > 0 and that condition |Xx — X| ps < |x|/2 implies that the
line segment joining X with X’ is at a distance of the time axis comparable to |x|. Regarding
the second term, assume ¢ > ¢'. If 7 and ¢’ share sign we apply estimate 3 to directly deduce
/ ¥ —/2s — —72¢
8 , [t — 1] |X—x|ps |x — X',
It — '] sup |8,0; Ps(x', )| Sp < )
: ~ —2s5(14+8) —2s(14+B) ~ _ng—=2s(1+B)
relr.r] e T e P 22

If on the other hand ¢+ > 0 and ¢’ < 0, we use relation (9), valid also in this case, together
with |x’| > |x|/2 to finally obtain

10 Py@) — 9 Py
<197 P 1) — 3 P(x, 0) + 107 Py(x', 0) — 9 P, 1))

<tosup |8, Pox. T + 17| sup [3,0] Py(x',T)
7€(0,1) Te(t’,0)
’ o - =2
< f+|21| < |t 2f| < lx —Xx |I; '
|x/|n|x/| s(14+8) |x|nlf|pi(l+ﬂ) |x|"+2§_25|f|pi(l+ﬂ)

Now we move on the case s = 1. Let us recall the statement of Theorem 2.5:

Theorem 2.5 Foranyx = (x,t) # (0,1) and B € (0, 1), the following hold:

By —
. For n> 2, |3, W(x)| Sﬂ Y
=2 x5
2. For n=2, |3,ﬁW(f)| SBa T a—2t2p—a’ Va € (0,2 + 28],
lx]*1xTp,
— Bw ) <
3. For n=1, [0 W) Sp |f|l+2ﬂ.

P1
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Moreover; for every n,

4. VP W <p 5. 1008w <p

Finally, ifx' € R"*!is such that |x — X', < |x|/2, then
6. W — of Wyl <5 L Tln
el
First, we prove the following auxiliary lemma:
Lemma 6.1 Let f1, f2, f3 : R — R be defined as
—1/t o1/ o=/
f1@) = a7z Xi>0: fat) = 72T Xi>0: f3@) = a3 Xi>0:
Then, if B € (0, 1), the following estimates hold
if n>2, 107 f1(6)| Sp min {1, ¢]717F),
if n=2and B > % 107 f1(1)] Spoo min {1, 1|71 7FH2) ) Va € (0,2 + 2],
if n=1, 1/ i)l Sp 1.
In addition, for every n,
107 f20)1 Spmin {11017 19f f@0)1 S min {1,107,

For t = 0 the previous estimates have to be understood simply as a bound by a constant
depending on n and B.

Proof We deal first with the estimate concerning 8tﬁ J1 for n > 2. We distinguish whether if
t=0,r <0ort > 0.If t =0 we are done because,

|f1 (u) f1 )] o el n+2p

where I" denotes the usual gamma function.
Let us continue by assuming ¢ < 0. By definition,

5 i) /O" eI/
a; fi(t ——du.
| ()'—/| Y= )

Observe that on the one hand, since |u + |t|| > u,

5 00 e~ 1/u
[0; f1(®)] 5/0 mdu NYRE

On the other hand, since n > 2,

, | 00 ~1/u 1 e~ 1/u o
af fi(o)) < du < d ’
10, f1()] < |t|1+F /(; w2 (u/|t] + 1)1+8 U= |1+ /(; un/2 us [¢|1+P

Therefore, |3ﬂf1 ()| Sp min {1 1]~ ﬁ} and we are done.
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If t > 0, we split the integral as follows
— (¢ —f
o hol= [ Lﬁﬁ”'dwf i) = /10,
i<tz lw =11 t2<lui<2 | —1]

+/ [ f1(u) — f1(2)]
Ju]>2t

i —1]1P du =: 1) + I + Is.

In I} we have /2 < |u — t| < 3t/2. Therefore,

i [ ROy [P0l [0 s

T 148 u
—ij2 |u—t|1FP lu — t|1+8 ~ 1nt2p)/2 PrEY:

du.
By the definition of fi, the last term can be bound by
1 1/2 o=1/u 1 1/2 p=1/t 1 1/2 p=1/u e/
(148 /o w2 du + (148 /0 /2 du =~ (1+B /0 L2 du + [2B)/2° (35)
We split the remaining integral as follows
1/2 o=1/u 1 ,—1/u 1/2 p=1/u
/0 T du :/é iz du +/1 T du
1 ,—2 /2 -
s e u my 1 1 e 2
<e 2:/0 Wdu—i—e /1 un/zduge 2l+t"/ﬁ’

. . . 1 1 L
where in the first inequality we have used e/t < ¢~ % ¢~ %, whichis true for0 < u <t /2;
—2/t

1
and in the second the general inequality e < e” 2. In addition, observe that in the last
step we have used that n # 2 in order to compute the corresponding integral. Thus, returning
to (35), we obtain

1 1
e 2 e 2

< -4
LIS (1+B + tn+2p)/2"
Notice that for > 0
e <3min{1,1""F), 7% < Cmin (P2 022}, (36)

where C depends only on n and 8, and the second estimate only holds forn > 1 (ifn = 1,
e_% < Crnt2B)/2 gl holds). Therefore, we finally get

min {1 t“ﬁ} min {t(”“ﬁ)/z t(”’2)/2}
< . ’ ~min{l, —
1S (4B +(112B)/2 - UPIE N

Let us turn to /5. Write

I .:/"/2 Ao, +/2’ hw—hol, e /2’ L = HOl
I el O T T N L A
(37)

where in the first integral we have used that 3¢/2 < |u — t| < 3t. For the second integral
observe that

—1/§
AW = A < swp 1@l =], where f{(&)z(l—%%‘)ﬁ)@w.

Eels,t
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Since /2 < & < 2t, we have

1 1 |
/ e e e 2
NI (1 + I)W Xr>0 = (1 + I)W Xi>1+ (1 +t)tn/T+2 X0<r<1
< 97% ef%
S At Xi>1+ 22 X0<t<1-

Combining the last two estimates we can bound the remaining integral of (37) by

e e~ u 2t du < e e
PYEES] Xi>1+ /22 X0<i<1 /t/z =11 B PEESTYA Xt>1+ PCESESTY;) X0<r<1-
Thus,

1 1
Qe 2 e

<
b Sp ;o2 T arpe

If we now apply estimates
¢~% < C;min [(@+28)/2 (=D)/2) e~ % < Cymin (0242072 n2)
for some constants C, C, depending on n and 8, we conclude

_min 1202 0D i (0242872, /2 '
b 3p [1+2p)/2 + (4 2+2B)/2 = min l’tl+ﬂ :

Finally, for I3, since |u|/2 < |u — t| < 3|u|/2, we have

13::/72[Mdu+/00If'(u)_fl(l)l L /“Ifl(u)—fl(t)l
: 5 5

w—1]l+P — |8 T P it —1|1+P

du

o | t t

o1/t 00,1/ o =1/t o1/t 00,1/
= Carpn +/;t w1 +2128)/2 du +/2t 172, 1+B du ~p (2P /2 +/2t L (112+28)/2 du

- ) 1 oo e—l/u
Xp min 1’,1+ﬁ + . u(n+2+2ﬁ)/2du'

For the remaining integral observe that on the one hand

00 e—l/u n+2/3
/h md“fr( 3 )5%

while on the other hand, since u > 2t,

o9 efl/u 1 oo efl/u 1 oo efl/u 1
/ du S / du < / du S =77
L, un TP +8 [, w2 B J, w2 (18

where the last inequality holds since n > 2. Therefore, combining the previous estimates we
conclude that forn > 2, |8,ﬂf1 ()| Sp min {1, t_l_ﬂ}.
Before approaching the case n = 2, let us comment that the case n = 1 also follows from

the above arguments. We also notice that the bounds for |8,’3 f2| and |3t’5 f3]| are obtained by
exactly the same computations.
So we are left to verify the following estimate

10F f1(0] Spoo min {1, [t P2} Va € (0,3], n=2,

that can be also obtained following the same scheme of proof.
]
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Proof of Theorem 2.5 We write Kg(x) := 8,'3 W (x). Regarding estimate /, by the same rea-
soning presented at the beginning of the proof of [14, Lemma 2.1] we get

_ 1
Ko = (pp ’f‘<| |2)

Hence, if n > 2, by Lemma 6.1 we get

[Kg(X)| Sp ;min{ |x|2+2ﬁ} = ! min{ ! ! } !
~ |x|n+2ﬁ |t |1+ﬂ |x|”_2 |x|2+2ﬂ’ |t|l+ﬂ |x|n— 2|x|2+2ﬂ
For estimates 2 and 3 we follow the same procedure.
We move on to estimate 4. First, observe that the expression V, K is well-defined and that
the operators V, and Btﬂ commute when applied to W.
We also observe that there is a constant C such that

2+1
V. W(x,t) = CL e—|x\2/(4z) =C * ﬁ e e—|x|2/(4t)
* O (4t)”/2+1 Xt>0 = |x|”+2 4t Xt>0,

SO wWe can write
VoW =c—— (2
x, 1) =C—=o= ol —5 )
: 2 2 [x 2
with f> defined in Lemma 6.1. Since V, and 8? commute,

vxK(xvt): | |)'i+2 |:f2<| |2)](t)

The previous fractional derivative can be written as follows

sl (4 [ HGu/IxP) - H@/xD) ] ( )
o [f2(|x|2>}(1)_ R lu —t[1+8 du= |x|2# £ x|

yielding the final equality

4
VK@ =C—n P p( ).
|x|n+2+2ﬁ |x|2

Applying Lemma 6.1 we finally deduce 3:

Vi K@) <p

) |x|2+2}3 1
mm{l, } ETE

|x|n+l+2ﬂ |t|1+ﬁ

=,

Concerning inequality 4, since the operators Btﬂ and d; commute, we directly have

_ oW(x,u)—oW(x,t)

du,
and this integral makes sense.
As done for V, W, we can also rewrite d; W as follows,

e~ IxI?/¢n ) P ICD)
pry rs e vy e

2+1 2+2
_[.c (xP\ L G 2\ o X/
lxnt2 \ 4t lx| 2\ 4¢

aW(x,t)=C
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Ci 4t C, 4t
= — _— + — ],
|x|"+2f2<|x|2) |x|"+2f3<|x|2)

where f3 is defined in Lemma 6.1. By exactly the same change of variables as the one
performed when studying V, K, we reach the identity

N C (M
KOO = e 2\ g ) T et B\ )

By Lemma 6.1, we get inequality 4:

19K ()] Sp =5

|x|2+2ﬂ 1
min {1 }
pi

|x|n+2+2ﬁ ’ |t|1+'3

x| X1

Finally, regarding 5, we follow exactly the same proof as that of estimate 4 in Theorem 2.4.
[m}
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