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Abstract
In the present paper we characterize the removable sets for solutions of the fractional heat
equation satisfying some parabolic BMO or Lipα normalization conditions. We do this by
introducing associated fractional caloric capacities, thatwe show to be comparable to a certain
parabolic Hausdorff content.

Keywords Fractional heat equation · Singular integrals · Removable singularities ·
Capacities

Mathematics Subject Classification Primary 42B20; Secondary 28A12

1 Introduction

In this paper we characterize removable sets for solutions of the fractional heat equation
under certain parabolic BMO or Lipα normalization conditions. Our main motivation stems
from the results obained in [14] and [13]. The study conducted by Mateu, Prat and Tolsa in
[14] explores removable singularities for regular (1, 1/2)−Lipschitz solutions of the classical
heat equation, associated with the operator

� := (−�x ) + ∂t , where (x, t) ∈ R
n × R.

Here (−�x ) is the usual Laplacian, computed with respect to the spatial variables. In [13],
the authors extend the study to the fractional heat equation, defined via the s-heat operator

�s := (−�x )
s + ∂t , s ∈ (0, 1].

For s = 1, we recover the classical heat equation, while for s < 1, the operator (−�x )
s , com-

monly referred to as s-fractional Laplacian or s-Laplacian, requires an alternative definition.
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It is typically introduced through its Fourier transform:

̂(−�x )s f (ξ, t) = |ξ |2s ̂f (ξ, t),

or via the singular integral representation

(−�x )
s f (x, t) = cn,s p.v.

∫

Rn

f (x, t) − f (y, t)

|x − y|n+2s dy

= c′
n,s

∫

Rn

f (x + y, t) − 2 f (x, t) + f (x − y, t)

|y|n+2s dy.

These representations are equivalent and highlight that (−�x )
s is no longer a local operator

and that as s → 1, one recovers the expression of (−�x ). The reader may consult [4, §3] or
[19] for details on the properties of (−�x )

s .
To study removable sets in this context, we introduce the s-parabolic distance between

two points x := (x, t), y := (y, τ ) in R
n+1, defined as

|x − y|ps = distps (x, y) := max
{|x − y|, |t − τ | 1

2s
}

, for 0 < s ≤ 1.

This leads naturally to the notions of s-parabolic cubes and s-parabolic balls. We convey
that B(x, r) will be the s-parabolic ball centered at x with radius r , where the spatial coor-
dinates are contained in a Euclidean ball B1 of radius r , while the temporal coordinate lies
in a real interval I of length (2r)2s . On the other hand, an s-parabolic cube Q of side length
� is a set of the form

I1 × · · · × In × In+1,

where I1, . . . , In are intervals of length �, while In+1 is another interval of length �2s . We
write �(Q) = �.

Let us recall that a function f is said to be (1, 1/2)-Lipschitz regular if, as precised in
[14], it is such that

‖∇x f ‖L∞(Rn+1) < ∞, ‖∂1/2t f ‖∗,p1 < ∞. (1)

Here ‖·‖∗,p1 stands for the usual BMO(Rn+1) norm but computedwith respect to 1-parabolic
cubes.As shownbyHofmann andLewis [10, Lemma1], [11, Thm. 7.4], such functions satisfy

‖ f ‖Lip1/2,t := sup
x∈Rn

t,u∈R,t 
=u

| f (x, t) − f (x, u)|
|t − u|1/2 � ‖∇x f ‖L∞(Rn+1) + ‖∂1/2t f ‖∗,p1 .

Thus a (1, 1/2)−Lipschitz function is Lipschitz in the spatial variables and 1/2-Lipschitz in
time. This explains the term (1, 1/2)−Lipschitz caloric capacity introduced in [14], defined
for a compact set E ⊂ R

n+1 as

	�(E) = sup{|〈� f , 1〉|},
the supremum taken over all (1, 1/2)−Lipschitz regular functions f satisfying the heat
equation on R

n+1 \ E and with the norms in (1) smaller or equal than one.
A key result in [14] establishes the equivalence between the removability of the compact

set E for (1, 1/2)−Lipschitz solutions of the heat equation and the fact that 	�(E) vanishes.
In this paper, we aim at characterizing different variants of the previous Lipschitz caloric

capacity, replacing the previous estimates with parabolic BMO or Lipα conditions for ∇x f

and ∂
1/2
t f . More generally, we analyze removable sets for solutions of the s-fractional heat

equation with s-parabolic gradient (∇x , ∂
1
2s
t ) satisfying either an s-parabolic BMO or Lipα
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condition. The reader who is not familiar with the notion of removability may conceive
removable sets as those which “do not matter” when solving the �s-equation, 0 < s ≤ 1.
This has to be understood in the sense that any solution defined on their complement that
satisfies the above (1, 1

2s )-gradient estimates, can be extended to verify the �s-equation
throughout the entire domain, including the set itself.

Our main result characterizes removability in terms of two different capacities: one requir-
ing the (1, 1

2s )-gradient of solutions of the �s-equation satisfy s-parabolic BMO estimates,
and another one requiring s-parabolic Lipα bounds. These capacities, denoted by 	�s ,∗ and
	�s ,α respectively, are related to certain s-parabolic Hausdorff contents Hm∞,ps , which are
defined as in the Euclidean case (see [15], for instance), just replacing the Euclidean distance
by the parabolic distance introduced above. Our main result reads as follows:

Theorem Let s ∈ (1/2, 1], α ∈ (0, 1) and E ⊂ R
n+1 compact set. Then,

	�s ,∗(E) ≈n,s Hn+1∞,ps (E),

if α < 2s − 1, 	�s ,α(E) ≈n,s,α Hn+1+α∞,ps (E).

Moreover, the nullity of these capacities is equivalent to the removability of the corresponding
compact set for solutions satisfying (1, 1

2s )-gradient estimates in either s-parabolic BMO or
Lipα , assuming α < 2s − 1 in the latter case.

We further study the same type of question for a generalization of the capacities presented
by Mateu and Prat in [13, §4 & §7]. That is, we will ask for a characterization of removable
sets for solutions of the �s-equation satisfying conditions of the form

‖(−�)σ f ‖ < ∞, ‖∂σ/s
t f ‖ < ∞, s ∈ (0, 1] and σ ∈ [0, s).

Symbols ‖·‖ can refer both to s-parabolicBMOnorms or both to s-parabolic Lipα seminorms,
giving rise to the capacities γ σ

�s ,∗ and γ σ
�s ,α respectively. We prove the following:

Theorem For any s ∈ (0, 1], σ ∈ [0, s), α ∈ (0, 1) and E ⊂ R
n+1 compact set,

γ σ
�s ,∗(E) ≈n,s,σ Hn+2σ∞,ps (E),

if α < 2s − 2σ, γ σ
�s ,α(E) ≈n,s,σ,α Hn+2σ+α∞,ps (E).

The nullity of these capacities is equivalent to the removability of the corresponding compact
set for solutions satisfying (σ, σ/s)-Laplacian estimates in either s-parabolic BMO or Lipα ,
assuming α < 2s − 2σ in the latter case.

The previous study has been motivated by the one carried out for the BMO variant of analytic
capacity by Kaufman [12] and Verdera [22] (for a brief overview the reader may consult [2,
§13.5.1]); and that for the Lipα variant of the same capacity in the direction presented by
Mel’nikov [16] or O’Farrell [17]. We remark that the results presented here also generalize
those of [9, §5 & §6].

A brief overview of the paper is as follows. Sects. 2 and 3 are devoted to kernel estimates
and growth estimates for the so-called admissible functions. Since some of the proofs in Sect.
2 are rather long and intricate, we defer them to a separate section at the end of the paper,
namely Sect. 6. In Sect. 4, we establish several important properties of potentials defined
with respect to positive Borel measures satisfying certain growth conditions. Finally, Sect.
5 introduces the various capacities under consideration and characterizes them in terms of
appropriate s-parabolic Hausdorff contents.
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About the notation: Constants appearing in the sequel may depend on the dimension of
the ambient space and the parameter s, and their value may change at different occurrences.
They will frequently be denoted by the letters c or C . The notation A � B means that there
exists C , so that A ≤ CB. Moreover, A ≈ B is equivalent to A � B � A, while A � B
will mean A = CB. If the reader finds expressions of the form �β or ≈β , for example, this
indicates that the implicit constants depend on n, s and β.

Since Laplacian operators (fractional or not) will frequently appear in our discussion and
will be always taken with respect to spatial variables, we will adopt the notation:

(−�)s := (−�x )
s, s ∈ (0, 1], and we convey (−�)0 := Id.

We will also write ‖ · ‖∞ := ‖ · ‖L∞(Rn+1). Finally, we stress that an important parameter
which will play a fundamental role in Sect. 2 is

2ζ := min{1, 2s}.

2 Basic notation and kernel estimates

We begin by noticing that the s-parabolic distance between x := (x, t), y := (y, τ ) inR
n+1,

defined in the introduction as

|x − y|ps = distps (x, y) := max
{|x − y|, |t − τ | 1

2s
}

, for 0 < s ≤ 1,

is, in fact, equivalent to

distps (x, y) ≈ (|x − y|2 + |t − τ |1/s)1/2.
The s-parabolic dilation of factor λ > 0, written δλ, is given by

δλ(x, t) = (

λx, λ2s t
)

.

To ease notation, since we will always work with s-parabolic distances, we will write λQ to
denote δλ(Q), the s-parabolic cube concentric with Q of side length λ�(Q).

As the reader may suspect, the notion of s-parabolic BMO space, BMOps , refers to the
space of usual BMO functions (strictly, equivalence classes of functions where constants
are identified as 0) obtained by replacing Euclidean cubes by s-parabolic ones. Similarly, a
function f : R

n+1 → R is said to be s-parabolic Lipα for some 0 < α < 1, shortly Lipα,ps ,
if

‖ f ‖Lipα,ps := sup
x,y∈Rn+1

| f (x) − f (y)|
|x − y|αps

� 1.

For each s ∈ (0, 1], the fundamental solution Ps(x, t) to the �s-equation, i.e. that associated
with the operator

�s := (−�)s + ∂t ,

is the inverse spatial Fourier transform of e−4π2t |ξ |2s for t > 0, and it equals 0 if t ≤ 0. For
the special case s = 1, we retrieve the classical heat kernel, given by:

W (x) := P1(x) = cnt
− n

2 φn,1(|x |t− 1
2 ), if t > 0,

where φn,1(ρ) := e−ρ2/4, independent of n. Although the expression of Ps is not explicit in
general, Blumenthal and Getoor [3, Theorem 2.1] established that for s < 1,

Ps(x) = cn,s t
− n

2s φn,s
(|x |t− 1

2s
)

χt>0, (2)
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Here, φn,s is a smooth function, radially decreasing and satisfying, for 0 < s < 1,

φn,s(ρ) ≈ (

1 + ρ2)−(n+2s)/2
, (3)

being an exact equality if s = 1/2 [21]. Therefore,

Ps(x) ≈ t

|x |n+2s
ps

χt>0.

The function φn,s is tightly related to the Fourier transform of e−4π2|ξ |2s . Indeed, taking the
spatial Fourier transform in both sides of identity (2), we get

e−4π2t |ξ |2s = cn,s t
− n

2s
[

φn,s
(| · | t− 1

2s
)]∧

(ξ).

Recall that for λ > 0, the dilation fλ := f (λx) satisfies ̂fλ(ξ) = λ−n
̂f (λ−1ξ). Then,

e−4π2t |ξ |2s = cn,s
̂φn,s

(| · |)(

ξ t
1
2s

)

, that implies e−4π2|ξ |2s � ̂φn,s
(| · |)(ξ).

The above relations will allow us to obtain explicit bounds for the derivatives of φn,s . Let
us present our first lemma. Although it can be deduced straightforwardly from [7, Theorem
1.1], we shall give a detailed proof for the sake of clarity and completeness.

Lemma 2.1 Let s ∈ (0, 1] and β ∈ (0, 1). We define the following function in R
n:

ψ(β)
n,s (x) := (−�)βφn,s

(|x |).
Then,

1. φ′
n,s(ρ) � −ρ φn+2,s(ρ).

2. |ψ(β)
n,s (x)| �β

(

1 + |x |2)−(n+2β)/2
.

3. ∇ψ
(β)
n,s (x) � −x ψ

(β)
n+2,s(x).

Proof We begin by proving 1 for s < 1 (the case s = 1 is trivial). To do so, we will use the
explicit integral representation for the inverse Fourier transform of a radial function in [6,
§B.5] or [20, §IV.I]. Applying it to the Fourier transform e−4π2|ξ |2s we get

φn,s(|z|) = 2π |z|1−n/2
∫ ∞

0
e−4π2r2s rn/2 Jn/2−1(2πr |z|)dr , for any z ∈ R

n \ {0},
where Jk is the classical Bessel function of order k [1, §9]. Since we are interested in the
derivatives of φn,s as a radial real variable function, let us rewrite the previous expression in
terms of ρ ∈ (0,∞) so that it reads as

φn,s(ρ) = 2πρ1−n/2
∫ ∞

0
e−4π2r2s rn/2 Jn/2−1(2πrρ)dr . (4)

Therefore, to estimate the derivatives of φn,s we need to determine first if we can differentiate
under the integral sign. To that end, we use the following recurrence relation for classical
Bessel functions [1, §9.1.27],

J ′
k(x) = k

x
Jk(x) − Jk+1(x).

This recurrence formula together with (4) remain valid for the case k = −1/2, conveying

that J−1/2(x) =
√

2
πx cos x . In our case these imply

∂ρ Jn/2−1(2πrρ) =
(

n

2
− 1

)

ρ−1 Jn/2−1(2πrρ) − 2πr Jn/2(2πrρ).
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If we differentiated under the integral sign in (4), we would get integrands of the form

e−r2s rn/2 Jn/2−1(2πrρ), e−r2s rn/2+1 Jn/2(2πrρ).

Notice that both are bounded by integrable functions in the domain of integration, locally
for each ρ > 0 (by the boundedness of the functions Jk for n > 1, and by that of cos x if
n = 1). Hence, we can indeed differentiate under the integral sign to compute φ′

n,s , obtaining
the desired result:

φ′
n,s(ρ) = 2π

[(

1 − n

2

)

ρ−n/2
∫ ∞

0
e−4π2r2s rn/2 Jn/2−1(2πrρ)dr

+ ρ1−n/2∂ρ

( ∫ ∞

0
e−4π2r2s rn/2 Jn/2−1(2πrρ)dr

)]

= 2π

[(

1 − n

2

)

ρ−n/2
∫ ∞

0
e−4π2r2s rn/2 Jn/2−1(rρ)dr

ρ1−n/2
(

n

2
− 1

)

ρ−1
( ∫ ∞

0
e−4π2r2s rn/2 Jn/2−1(2πrρ)dr

)

− 2πρ ρ1−(n+2)/2
∫ ∞

0
e−4π2r2s r (n+2)/2 J(n+2)/2−1(rρ)dr

]

= −2πρ φn+2,s(ρ).

Next we prove statement 2. Observe that for s ∈ (0, 1] and β ∈ (0, 1), we have
̂
ψ

(β)
n,s (ξ) =

|ξ |2βe−4π2|ξ |2s , which is an integrable function, and thus ψ
(β)
n,s is bounded (in fact, since the

product of
̂
ψ

(β)
n,s by any polynomial is also integrable, we infer that ψ(β)

n,s is smooth). By the
integral representation formula for inverse Fourier transforms of radial functions,

ψ(β)
n,s (x) = 2π |x |1−n/2

∫ ∞

0
e−4π2r2s rn/2+2β Jn/2−1(2πr |x |)dr , x ∈ R

n \ {0}. (5)

Now, we apply [18, Lemma 1] to deduce the desired decaying property |ψ(β)
n,s (x)| =

O
(|x |−n−2β

)

, for |x | large. Hence, since ψ
(β)
n,s is bounded, we deduce the desired bound

|ψ(β)
n,s (x)| �β

(

1 + |x |2)−(n+2β)/2.

We are left to control the norm of ∇ψ
(β)
n,s , provided the latter is well-defined. We claim

that this is the case, since we can differentiate under the integral sign in (5). Indeed, by the
recurrence relation satisfied by the derivatives of Jk we get

|∇x Jn/2−1(r |x |)| =
∣

∣

∣

∣

(

n

2
− 1

)

1

|x | Jn/2−1(2πr |x |) − 2πr Jn/2(2πr |x |)
∣

∣

∣

∣

.

So the resulting integrands to study are terms of the form

e−4π2r2s rn/2+2β |Jn/2−1(2πr |x |)|, e−4π2r2s rn/2+2β+1|Jn/2(2πr |x |)|,
both bounded by the integrable functions C1e−r2s rn/2+2β and C2e−r2s rn/2+2β+1 for some
constants C1,C2 depending on n, s and β, and locally for each x ∈ R

n with |x | > 0. Hence,
we can differentiate under the integral sign in (5) and obtain
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∇ψ(β)
n,s (x) = 2π

[(

1 − n

2

)

x

|x |n/2+1

∫ ∞

0
e−4π2r2s rn/2+2β Jn/2−1(2πr |x |)dr

+
(

n

2
− 1

)

x

|x |n/2+1

∫ ∞

0
e−4π2r2s rn/2+2β Jn/2−1(2πr |x |)dr

− 2π
x

|x |n/2

∫ ∞

0
e−4π2r2s r (n+2)/2+2β J(n+2)/2−1(2πr |x |)dr

]

= −2πx ψ
(β)
n+2,s(x).

��

Using the above lemma together with (3) we can estimate the derivatives of φn,s and ψ
(β)
n,s .

In particular, the following relations hold:

If s < 1, φ′
n,s(ρ) ≈ −ρ

(1 + ρ2)(n+2s+2)/2
, φ′′

n,s(ρ) ≈ −1 + (2π − 1)ρ2

(1 + ρ2)(n+2s+4)/2
, (6)

|∇ψ(β)
n,s (x)| �β

|x |
(1 + |x |2)(n+2β+2)/2

. (7)

2.1 Estimates for∇xPs and1ˇPs

We shall now present some growth estimates for the kernels Ps . Our first result provides
bounds for ∇x Ps , s ∈ (0, 1). These estimates are analogous to those of [14, Lemma 5.4]
which cover the case s = 1. In the forthcoming results, the parameter 2ζ := min{1, 2s} will
play an important role.

Theorem 2.2 The following estimates hold for any x 
= 0 and s ∈ (0, 1):

|∇x Ps(x)| � |xt |
|x |n+2s+2

ps

, |�Ps(x)| � |t |
|x |n+2s+2

ps

, |∂t∇x Ps(x)| � |x |
|x |n+2s+2

ps

.

The last bound is only valid for points with t 
= 0. Also, if x ′ is such that |x− x ′|ps ≤ |x |ps /2,

|∇x Ps(x) − ∇x Ps(x
′)| � |x − x ′|2ζps

|x |n+1+2ζ
ps

.

Proof To simplify the arguments below, we specify the dependence of Ps with respect to n.
Let us write Ps,n+1 to refer to the fundamental solution of the �s-equation in R

n+1 and use
the following abuse of notation: given x = (x1, . . . , xn, t) ∈ R

n+1, write

Ps,n+3(x) := Ps,n+3(x1, . . . , xn, 0, 0, t),

Ps,n+5(x) := Ps,n+5(x1, . . . , xn, 0, 0, 0, 0, t).

This way, we directly apply relations (2) and (6) to obtain for each t > 0,

|∇x Ps(x)| � t−
n+1
2s |φ′

n,s(|x |t−
1
2s )| � |x Ps,n+3(x)| ≈ |xt |

|x |n+2s+2
ps

.

The bounds for �Ps,n+1 and ∂t∇x Ps,n+1 can be obtained from the previous result and (2).
Indeed,

123
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|�Ps,n+1(x)| � Ps,n+3(x) + |x |2Ps,n+5(x) � |t |
|x |n+2s+2

ps

,

|∂t∇x Ps,n+1(x)| � |x |
t

(

Ps,n+3(x) + |x |2Ps,n+5(x)
)

� |x |
|x |n+2s+2

ps

.

For the final estimate, we recover the notation Ps := Ps,n+1. Let x ′ = (x ′, t ′) ∈ R
n+1 with

|x − x ′|ps ≤ |x |ps /2 and use the definition of distps to obtain

|x |ps ≤ 2|x ′|ps and |x ′| ≥ |x | − |x |ps
2

. (8)

Put x̂ = (x ′, t) and write

|∇x Ps(x) − ∇x Ps(x
′)| ≤ |∇x Ps(x) − ∇x Ps (̂x)| + |∇x Ps (̂x) − ∇x Ps(x

′)|.
We observe that the first term in the above inequality satisfies the desired bound,

|x − x ′| sup
ξ∈[x,x ′]

|�Ps(ξ, t)| � |x − x ′|
|x |n+2

ps

≤ |x − x ′|2ζps
|x |n+1+2ζ

ps

( |x − x ′|ps
|x |ps

)1−2ζ

≤ |x − x ′|2ζps
|x |n+1+2ζ

ps

.

Regarding the second term, assume without loss of generality t > t ′. If t ′ > 0, use |x ′|ps ≥
|x |ps /2 so that we also have

|t − t ′| sup
τ∈[t,t ′]

|∂t∇x Ps(x
′, τ )| � |t − t ′|

|x |n+2s+1
ps

≤ |x − x ′|2ζps
|x |n+1+2ζ

ps

( |x − x ′|ps
|x |ps

)2s−2ζ

� |x − x ′|2ζps
|x |n+1+2ζ

ps

,

If t < 0 then |∇x Ps (̂x) − ∇x Ps(x ′)| = 0, and the estimate becomes trivial. Then, we are left
to study the case t > 0 and t ′ < 0. These two conditions imply that the ps-ball

B(x) :=
{

y ∈ R
n+1 : |x − y|ps ≤ |x |ps

2

}

� x ′

intersects the hyperplane {t = 0}. Since the radius of B(x) also depends on x , the previous
property imposes the following condition over x ,

t1/s ≤ x21 + · · · + x2n
3

, that is t
1
2s ≤ |x |√

3
,

which is attained if the point (x, 0) belongs to ∂B(x). Therefore |x |ps := max
{|x |, t 1

2s
} =

|x |, so by (8) we get |x ′| ≥ |x |/2, and this in turn implies

|x |ps
2

≤ |x ′|ps ≤ |x − x ′|ps + |x |ps ≤ 3|x |
2

≤ 3|x ′|. (9)

Using this last inequality we can finally conclude:

|∇x Ps (̂x) − ∇x Ps(x
′)| = |∇x Ps(x

′, t) − ∇x Ps(x
′, 0)| � |t | sup

τ∈(0,t]
|∂t∇x Ps(x

′, τ )|

� |t |
|x ′|n+2s+1 � |t |

|x |n+2s+1
ps

≤ |t − t ′|
|x |n+2s+1

ps

� |x − x ′|2ζps
|x |n+1+2ζ

ps

.

��
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Theorem 2.3 Let s ∈ (0, 1] and β, γ ∈ [0, 1). Then, for any x 
= 0 we have,

1 . |(−�)β Ps(x)| �β

1

|x |n+2β
ps

,

2 . |(−�)γ (−�)β Ps(x)| �β,γ

1

|x |n+2β+2γ
ps

, 3 . |∇x (−�)β Ps(x)| �β

|x |
|x |n+2β+2

ps

.

Moreover, for any x 
= (x, 0),

4 . |∂t (−�)β Ps(x)| �β

1

|x |n+2β+2s
ps

.

Finally, if x ′ ∈ R
n+1 is such that |x − x ′|ps ≤ |x |ps /2,

5 . |(−�)β Ps(x) − (−�)β Ps(x
′)| �β

|x − x ′|2ζps
|x |n+2β+2ζ

ps

.

Proof We shall also assume β > 0, since the case β = 0 is already covered in [13, Lemma
2.2]. For the sake of notation, in this proof we will write φ := φn,s and ψ := ψ

(β)
n,s , and we

also set Kβ := (−�)β Ps . Let us begin by applying the integral representation of Kβ together
with relation (2) to obtain for t > 0,

Kβ(x, t) := (−�)β Ps(x, t) �β p.v.
∫

Rn

Ps(x, t) − Ps(y, t)

|x − y|n+2β dy

= t−
n
2s p.v.

∫

Rn

φ
(|x |t− 1

2s
) − φ

(|y|t− 1
2s

)

|x − y|n+2β dy

= t−
n+2β
2s p.v.

∫

Rn

φ
(|x |t− 1

2s
) − φ(|z|)

|xt− 1
2s − z|n+2β

dz = t−
n+2β
2s ψ

(

xt−
1
2s

)

.

Using the estimate proved in Lemma 2.1 for ψ we deduce the desired bound:

∣

∣Kβ(x, t)
∣

∣ �β

t−
n+2β
2s

(

1 + |x |2t−1/s
)(n+2β)/2

= 1
(

t1/s + |x |2)(n+2β)/2
≈ 1

|x |n+2β
ps

.

We shall continue by studying estimate 2 in a similar way. Indeed,

(−�)γ Kβ(x, t) �γ p.v.
∫

Rn

Kβ(x, t) − Kβ(y, t)

|x − y|n+2γ dy

�β t−
n+2β
2s p.v.

∫

Rn

ψ
(

xt− 1
2s

) − ψ
(

yt− 1
2s

)

|x − y|n+2γ dy

= t−
n+2β+2γ

2s p.v.
∫

Rn

ψ
(

xt− 1
2s

) − ψ(z)

|xt− 1
2s − z|n+2γ

dz = t−
n+2β+2γ

2s (−�)γ ψ
(

xt−
1
2s

)

.

Set � := (−�)γ ψ( · ) and notice that
̂�(ξ) = |ξ |2γ |ξ |2βe−4π2|ξ |2s = |ξ |2β+2γ e−4π2|ξ |2s .

Thus, since ̂� is integrable, � is the radial bounded function in R
n given by

�(z) = 2π |z|1−n/2
∫ ∞

0
e−4π2r2s rn/2+2β+2γ Jn/2−1(2πr |z|)dr ,
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By [18, Lemma 1] � decays as

|�(z)| = O
(|z|−n−2β−2γ )

, for |z| large.

Therefore
|�(z)| �β,γ

(

1 + |z|2)−(n+2β+2γ )/2
.

So analogously to the proof of 1, we deduce the desired result:

∣

∣(−�)γ Kβ(x, t)
∣

∣ �β,γ

t−
n+2β+2γ

2s

(

1 + |x |2t−1/s
)(n+2β+2γ )/2

≈ 1

|x |n+2β+2γ
ps

.

Regarding estimate 3, notice that

|∇x Kβ(x, t)| �β

∣

∣

∣∇x

(

t−
n+2β
2s ψ

(

xt−
1
2s

)

)∣

∣

∣ = t−
n+2β+1

2s
∣

∣∇ψ
(

xt−
1
2s

)∣

∣.

Therefore, applying the bound obtained for ∇ψ in (7) we deduce

∣

∣∇x Kβ(x, t)
∣

∣ �β t−
n+2β+1

2s
|x |t− 1

2s

(

1 + |x |2t−1/s
)(n+2β+1)/2

≈ |x |
|x |n+2β+2

ps

.

Wemove on to estimate 4, that is, the one concerning ∂t Kβ(x) at points of the form x 
= (x, 0).
Observe that the previous derivative is well defined if t > 0, since the expression of Kβ can
be written as

Kβ(x, t
) � t−

n+2β
2s (−�)βφ

(|x |t− 1
2s

)

�β |x |1−n/2
(

1

t
n+4β+2

4s

∫ ∞

0
e−4π2r2s rn/2+2β Jn/2−1(2πr |x |t− 1

2s )dr

)

,

so differentiating under the integral sign, it is clear that temporal derivatives of any order exist
in R

n+1 \ {t = 0}. We claim now that the operators ∂t and (−�)β commute when applied to
Ps . To prove this, let us first observe that for each t0 > 0 fixed we have

[

(−�)β
(

∂t Ps
)]∧

(ξ, t0) = |ξ |2β ∂̂t Ps(ξ, t0) = |ξ |2β
∫

Rn
e−2π i〈x,ξ〉∂t Ps(x, t0)dx .

If we can bound ∂t Ps by an integrable function on R
n in a neighborhood of t0, we will be

able to locally differentiate outside the integral sign for each t0. If 0 < s < 1, this is a
consequence of [21, Equation 2.6] and (3). Indeed,

|∂t Ps(x, t0)| � 1

t0
|Ps(x, t0)| � 1

t
n+2s
2s

0

[

1
(

1 + |x |2t−1/s
0

)(n+2s)/2

]

.

On the other hand, if s = 1 by definition we have

|∂tW (x, t0)| �
(

1 + |x |2
t0

)

1

tn/2+1
0

e−|x |2/(4t0).

In both cases we obtain a bounded function of x that decreases like |x |−n−2 at infinity (for the
case s = 1, see [14, Lemma 2.1]) and thus it is integrable on R

n . Therefore, differentiating
outside the integral sign we have

[

(−�)β
(

∂t Ps
)]∧

(ξ, t0) = ∂t
[

(−�)β Ps
]∧

(ξ, t0), ∀t0 > 0.
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So we are left to check whether we can enter ∂t inside the previous Fourier transform, that
is, whether the following holds

∂t
[

(−�)β Ps
]∧

(ξ, t0) = [

∂t (−�)β Ps
]∧

(ξ, t0).

Again, the latter is just a matter of being able to bound |∂t (−�)β Ps | = |∂t Kβ | locally for
each t0 > 0 by an integrable function, so that we can differentiate under the integral defining
the Fourier transform. We know that

|∂t Kβ(x, t0)| =
∣

∣

∣∂t

[

t−
n+2β
2s ψ

(

xt−
1
2s

)

]

t=t0

∣

∣

∣ �β C1(t0)
∣

∣ψ
(

xt
− 1

2s
0

)∣

∣ + C2(t0)|x |
∣

∣∇ψ
(

xt
− 1

2s
0

)∣

∣.

For the first summand, using that |ψ | is bounded and decays as |x |−n−2β , we deduce the
desired integrability condition. For the second summand we can argue exactly in the same
manner, using that |∇ψ | is bounded and decays as |x |−n−2β−1. Hence, we conclude that ∂t
and (−�)β commute.

The previous commutativity relation and [13, Eq. 2.5] yield the following for t > 0,

∂t Kβ(x, t) = ∂t
[

(−�)β Ps
]

(x, t) = (−�)β
(

∂t Ps
)

(x, t)

= (−�)β
[

− (−�)s Ps
]

(x, t) = −(−�)s Kβ(x, t),

where we have commuted the operators (−�)s and (−�)β , that can be easily checked via
their Fourier transform. Then, applying 2 with γ = s we are done.

Finally, regarding estimate 5, we can follow the same proof to that presented for the last
estimate in Theorem 2.2, using estimates 3 and 4 from above. ��

2.2 Estimates for@ˇ
t Ps

In this subsection we obtain similar estimates now for the kernel ∂β
t Ps , with β ∈ (0, 1). Since

the proofs of such estimates are rather long and intricate, we shall present them in a separate
section, namely Sect.6. Recall that the β-temporal derivative of f : R

n+1 → R is defined,
provided it exists, as

∂
β
t f (x, t) :=

∫

R

f (x, τ ) − f (x, t)

|τ − t |1+β
dτ.

The study below considers the cases s < 1 and s = 1 separately. In the following theorems,
which generalize results of [13, Lemma 2.2] and [14, Lemma 2.1], we get dimensional
restrictions that in the end will not matter for our purposes.

Theorem 2.4 For any β, s ∈ (0, 1) and x = (x, t) 
= (0, t), the following hold:

1 . If n > 1, |∂β
t Ps(x)| �β

1

|x |n−2s |x |2s(1+β)
ps

,

2 . If n = 1 and β > 1 − 1

2s
, |∂β

t Ps(x)| �β,α

1

|x |1−2s+α|x |2s(1+β)−α
ps

, ∀α∈(2s−1, 4s).

Moreover, for every n,

3 . |∇x∂
β
t Ps(x)| �β

1

|x |n−2s+1|x |2s(1+β)
ps

, 4 . |∂t∂β
t Ps(x)| �β

1

|x |n |x |2s(1+β)
ps

, for t 
=0.
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Finally, if x ′ ∈ R
n+1 is such that |x − x ′|ps ≤ |x |/2,

5 . |∂β
t Ps(x) − ∂

β
t Ps(x

′)| �β

|x − x ′|2ζps
|x |n+2ζ−2s |x |2s(1+β)

ps

.

We carry out the same study for the case s = 1, obtaining the following estimates:

Theorem 2.5 For any β ∈ (0, 1) and x = (x, t) 
= (0, t), the following hold:

1 . For n > 2, |∂β
t W (x)| �β

1

|x |n−2|x |2+2β
p1

,

2 . For n = 2, |∂β
t W (x)| �β,α

1

|x |α|x |2+2β−α
p1

, ∀α ∈ (0, 2 + 2β],

3 . For n = 1, |∂β
t W (x)| �β

1

|x |1+2β
p1

.

Moreover, for every n,

4 . |∇x∂
β
t W (x)| �β

1

|x |n−1|x |2+2β
p1

, 5 . |∂t∂β
t W (x)| �β

1

|x |n |x |2+2β
p1

.

Finally, if x ′ ∈ R
n+1 is such that |x − x ′|p1 ≤ |x |/2, then

6 . |∂β
t W (x) − ∂

β
t W (x ′)| �β

|x − x ′|p1
|x |n−1|x |2+2β

p1

.

3 Growth estimates for admissible functions

We will say that a positive Borel measure μ in R
n+1 has upper s-parabolic growth of degree

ρ (with constant C) or simply s-parabolic ρ-growth if there is some constant C(n, s) > 0
such that for any s-parabolic ball B(x, r),

μ
(

B(x, r)
) ≤ Crρ.

It is clear that this property is invariant if formulated using cubes instead of balls. We will
be interested in a generalized version of such growth that can be defined not only for mea-
sures, but also for general distributions. To introduce such notion we present the concept of
admissible function:

Definition 3.1 Let s ∈ (0, 1). Given φ ∈ C∞(Rn+1), we will say that it is an admissible
function for an s-parabolic cube Q if supp(φ) ⊂ Q and

‖φ‖∞ ≤ 1, ‖∇xφ‖∞ ≤ �(Q)−1, ‖∂tφ‖∞ ≤ �(Q)−2s, ‖�φ‖∞ ≤ �(Q)−2.

Remark 3.1 If φ is a C2 function supported on Q s-parabolic cube with ‖φ‖∞ ≤ 1,
‖∇xφ‖∞ ≤ �(Q)−1 and ‖�φ‖∞ ≤ �(Q)−2, then it also satisfies

‖(−�)sφ‖∞ � �(Q)−2s .

Indeed, begin by observing that translations in R
n commute with ∇x and (−�)s . From it, it

is clear that we may assume Q to be centered at the origin. Assuming this, let us fix t ∈ R

and compute
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(−�)sφ(x, t) := cn,s

∫

Rn

φ(x + y, t) − 2φ(x, t) + φ(x − y, t)

|y|n+2s dy

= cn,s

∫

2Q

φ(x + y, t) − 2φ(x, t) + φ(x − y, t)

|y|n+2s dy

cn,s

∫

Rn\2Q
φ(x + y, t) − 2φ(x, t) + φ(x − y, t)

|y|n+2s dy =: I1 + I2.

Regarding I2, integration in polar coordinates yields

|I2| ≤ 4cn,s

∫

Rn\2Q
dy

|y|n+2s � �(Q)−2s .

For I1, we apply twice the mean value theorem so that

|I1| ≤ cn,s

∫

2Q

|〈∇xφ(x + η1y, t), y〉 + 〈∇xφ(x − η2y, t), y〉|
|y|n+2s−1

�
∫

2Q

‖�φ‖∞
|y|n+2s−2 dy � �(Q)−2s .

Definition 3.2 Wewill say that a distribution T has s-parabolic n-growth if there exists some
constant C = C(n, s) > 0 such that, given any s-parabolic cube Q and any function φ

admissible for Q, we have
|〈T , φ〉| ≤ C�(Q)n .

In the end, the results below will help us estimate the growth of distributions of the form ϕT ,
for some particular choices of T and a fixed admissible function ϕ, associated with a fixed
s-parabolic cube.

In any case, let us clarify that in the following Theorems 3.1, 3.2, 3.3 and 3.4, we will
fix s ∈ (0, 1] and Q and R will be s-parabolic cubes in R

n+1 with Q ∩ R 
= ∅. We will
write Q := Q1 × IQ ⊂ R

n × R and analogously for R. Moreover, ϕ and φ will denote C1

functions with supp(ϕ) ⊂ Q, supp(φ) ⊂ R and such that ‖ϕ‖∞ ≤ 1 and ‖φ‖∞ ≤ 1.

Theorem 3.1 Let β ∈ (0, 1), α ∈ (0, 1) and f : R
n+1 → R. Assume ‖∂tϕ‖∞ ≤ �(Q)−2s

and ‖∂tφ‖∞ ≤ �(R)−2s . Then, if �(R) ≤ �(Q),

1. If f ∈ BMOps ,
|〈 f , ∂t (ϕφ) ∗t |t |−β〉| �β ‖ f ‖∗,ps �(R)n+2s(1−β).

2. If f ∈ Lipα,ps and α < 2sβ,

|〈 f , ∂t (ϕφ) ∗t |t |−β〉| �β,α ‖ f ‖Lipα,ps
�(R)n+2s(1−β)+α.

Proof Set g := ∂t (ϕφ) ∗t |t |−β and begin by proving that g is integrable. Firstly, we observe
that

∫

IQ∩IR
∂t (ϕφ)(x, u)du = 0.

Then, if cQ∩R denotes the center of IQ ∩ IR , for each t /∈ 2(IQ ∩ IR) we get

|g(x, t)| =
∣

∣

∣

∣

∫

IQ∩IR

∂t (ϕφ)(x, u)

|t − u|β du

∣

∣

∣

∣

≤
∫

IQ∩IR
|∂t (ϕφ)(x, u)|

∣

∣

∣

∣

1

|t − u|β − 1

|t − cQ∩R |β
∣

∣

∣

∣

du

� �(IQ ∩ IR)

|t − cQ∩R |1+β

∫

IQ∩IR
|∂t (ϕφ)(x, u)|du
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�β

�(IQ ∩ IR)

|t − cQ∩R |1+β

(

1

�(Q)2s
+ 1

�(R)2s

)

�(IQ ∩ IR) � �(IQ ∩ IR)

|t − cQ∩R |1+β
. (10)

That is, |g| decays as |t |−1−β for large values of t . Hence, since supp(g) ⊂ (Q1∩R1)×R,
this implies g ∈ L1(Rn+1). Then, for any constant c ∈ R we have

|〈 f , g〉| =
∣

∣

∣

∣

∫

( f − c)g

∣

∣

∣

∣

≤
∫

2R
| f − c||g| +

∫

Rn+1\2R
| f − c||g| =: I1 + I2,

where we have used that g has null integral (it can be easily checked taking the Fourier
transform, for example). To study I1, observe that for t ∈ 4IR we get

|g(x, t)| ≤ ‖∂t (ϕφ)‖∞
∫ 5�(IR)

−5�(IR)

du

|u|β �β

(

1

�(R)2s
+ 1

�(Q)2s

)

�(IR)1−β � �(R)−2sβ,

since �(R) ≤ �(Q). Therefore,

I1 �β

1

�(R)2sβ

∫

2R
| f − c|.

If f ∈ BMOps , pick c := f2R , the average of f over 2R, so that

I1 �β �(R)n+2s(1−β)‖ f ‖∗,ps .

If f ∈ Lipα,ps , pick c := f (x R), where x R is the center of 2R, so that

I1 �β,α �(R)n+2s(1−β)+α‖ f ‖Lipα,ps
,

and we are done with I1. To study I2, define the s-parabolic annuli A j := 2 j R \ 2 j−1R for
j ≥ 2. Then, since supp(g) ⊂ (Q1 ∩ R1) × R applying 10 we have

I2=
∞

∑

j=2

∫

A j∩supp(g)
| f (x) − c||g(x)|dx �β

1

�(R)2sβ

∞
∑

j=2

1

22s(1+β) j

∫

A j∩supp(g)
| f (x)−c|dx .

(11)

If f ∈ BMOps , pick again c := f2R and observe

I2 �β

1

�(R)2sβ

∞
∑

j=2

1

22s(1+β) j

( ∫

Ai∩supp(g)
| f (x)− f2 j R |dx+

∫

A j∩supp(g)
| f2 j R− f2R |dx

)

,

Regarding the first integral, apply Hölder’s inequality (with exponent q , to be fixed later) and
John-Nirenberg’s, so that

∫

Ai∩supp(g)
| f (x)− f2 j R |dx ≤

( ∫

A j∩supp(g)
| f (x) − f2 j R |qdx

) 1
q |supp(g) ∩ 2 j R| 1

q′

≤ ‖ f ‖∗,ps (2
j�(R))

n+2s
q

[

22s j�(R)n+2s]
1
q′ = ‖ f ‖∗,ps2

j( nq +2s)
�(R)n+2s .

For the second integralwe apply [5,Ch.VI, Lemma1.1] to deduce | f2 j R− f2R | � j‖ f ‖∗,ps ≤
j , so

∫

A j∩supp(g)
| f2 j R − f2R |dx � j |supp(g) ∩ 2 j R| = j‖ f ‖∗,ps 2

2s j�(R)n+2s .

123



On fractional parabolic BMO… Page 15 of 56    21 

Therefore, choosing q > n
2sβ ,

I2 �β

‖ f ‖∗,ps

�(R)2sβ

∞
∑

j=2

1

22s(1+β) j

(

2 j( nq +2s) + j22s j
)

�(R)n+2s � ‖ f ‖∗,ps �(R)n+2s(1−β).

If on the other hand f ∈ Lipα,ps , pick c := f (x R) so that Hölder’s inequality in (11) yields

I2 �β

‖ f ‖Lipα,ps

�(R)2sβ

∞
∑

j=2

(

2 j�(R)
)α

22s(1+β) j
|supp(g) ∩ 2 j R| �β,α ‖ f ‖Lipα,ps

∞
∑

j=2

�(R)n+2s(1−β)+α

2(2sβ−α) j
,

being this last sum convergent because α < 2sβ, so we are done. ��
Theorem 3.2 Let α ∈ (0, 1) and f : R

n+1 → R. Assume ‖∇xϕ‖∞ ≤ �(Q)−1 and
‖∇xφ‖∞ ≤ �(R)−1. Then, if �(R) ≤ �(Q), for each i = 1, . . . , n we have

1. If f ∈ BMOps ,
|〈 f , ∂xi (ϕφ)〉| �β ‖ f ‖∗,ps �(R)n+2s−1.

2. If f ∈ Lipα,ps ,

|〈 f , ∂xi (ϕφ)〉| �β,α ‖ f ‖Lipα,ps
�(R)n+2s−1+α.

Proof First, observe that for any real constant c, we have the identity

〈 f , ∂xi (ϕφ)〉 = 〈 f − c, ∂xi (ϕφ)〉,
Therefore,

〈 f , ∂xi (ϕφ)〉 = 〈 f − c, ∂xi (ϕφ)〉 ≤
∫

Q∩R

∣

∣ f (x) − c
∣

∣

∣

∣∂xi (ϕφ)(x)
∣

∣dx

≤
( ∫

R

∣

∣ f (x) − c
∣

∣

2dx

)1/2( ∫

Q∩R

∣

∣∂xi (ϕφ)(x)
∣

∣

2dx

)1/2

�
( ∫

R

∣

∣ f (x) − c
∣

∣

2dx

)1/2( ∫

Q∩R

[

‖∇xϕ‖2∞‖φ‖2∞ + ‖ϕ‖2∞‖∇xφ‖2∞
]

dx

)1/2

≤
( ∫

R

∣

∣ f (x) − c
∣

∣

2dx

)1/2

|Q ∩ R|1/2
(

|Q|− 1
n+2s + |R|− 1

n+2s

)

≤
( ∫

R

∣

∣ f (x) − c
∣

∣

2dx

)1/2( |Q ∩ R|1/2
�(Q)

+ �(R)
n+2s
2 −1

)

=
( ∫

R

∣

∣ f (x) − c
∣

∣

2dx

)1/2(

|Q ∩ R| n+2s−2
2(n+2s)

|Q ∩ R| 1
n+2s

�(Q)
+ �(R)

n+2s
2 −1

)

≤
( ∫

R

∣

∣ f (x) − c
∣

∣

2dx

)1/2

�(R)
n+2s
2 −1.

Now, if f ∈ BMOps , choose c := fR and apply an s-parabolic version of John-Nirenberg’s
inequality (that admits an analogous proof) to deduce estimate 1. On the other hand, if
f ∈ Lipα,ps , choose c := f (x R) to obtain estimate 2. ��

Theorem 3.3 Let β ∈ (0, 1), α ∈ (0, 1) and f : R
n+1 → R. Assume that ϕ and φ are C2

with ‖∇xϕ‖∞ ≤ �(Q)−1, ‖�ϕ‖∞ ≤ �(Q)−2 and ‖∇xφ‖∞ ≤ �(R)−1, ‖�φ‖∞ ≤ �(R)−2.
Then, if �(R) ≤ �(Q),
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1. If f ∈ BMOps ,
|〈 f , (−�)β(ϕφ)〉| �β ‖ f ‖∗,ps �(R)n+2(s−β).

2. If f ∈ Lipα,ps and α < 2β,

|〈 f , (−�)β(ϕφ)〉| �β,α ‖ f ‖Lipα,ps
�(R)n+2(s−β)+α.

Proof Observe that for any real constant c,

|〈 f , (−�)β(ϕφ)〉| = |〈 f − c, (−�)β(ϕφ)〉|
≤

∫

2R1×(IQ∩IR)

| f (x) − c|∣∣(−�)β(ϕφ)(x)
∣

∣dx

+
∫

(Rn\2R1)×(IQ∩IR)

| f (x) − c|∣∣(−�)β(ϕφ)(x)
∣

∣dx =: I1 + I2.

Regarding I1, observe that for any x ∈ R
n+1 by Remark 3.1 we have |(−�)β(ϕφ)(x)| �β

�(R)−2β . Therefore,

I1 �β

1

�(R)2β

∫

2R1×(IQ∩IR)

| f (x) − c|dx .

Let x0 be the center of 2R1 × (IQ ∩ IR). Choosing c := f2R or c := f (x0) for f ∈ BMOps
or f ∈ Lipα,ps respectively, we obtain the desired estimates.

Let us turn to I2. We first notice that, taking the Fourier transform, the operator (−�)β

can be rewritten as

(−�)β(·) �β

n
∑

j=1

∂x j

(

1

|x |n+2β−2

)

∗n ∂x j (·),

where the notation ∗n is used to stress that the convolution is taken with respect the first
n spatial variables. With this, if x0 ∈ R

n denotes the center of Q1 ∩ R1, for any x ∈
(Rn \ 2R1) × (IQ ∩ IR) we get

∣

∣(−�)β(ϕφ)(x)
∣

∣ �β

n
∑

j=1

∣

∣

∣

∣

∫

Q1∩R1

∂ j (ϕφ)(z, t)
z j − x j

|z − x |n+2β dz

∣

∣

∣

∣

=
n

∑

j=1

∣

∣

∣

∣

∫

Q1∩R1

∂ j (ϕφ)(z, t)

(

z j − x j
|z − x |n+2β − x0, j − x j

|x0 − x |n+2β

)

dz

∣

∣

∣

∣

�β

n
∑

j=1

�(R)

|x0 − x |n+2β ‖∇x (ϕφ)‖∞�(R)n � �(R)n

|x0 − x |n+2β , (12)

by the mean value theorem. So, defining the cylinders C j := 2 j R1 × (IQ ∩ IR) for j ≥ 1,
relation (12) implies

I2 �β

1

�(R)2β

∞
∑

j=1

1

2 j(n+2β)

∫

C j+1\C j

∣

∣ f (x) − c
∣

∣dx,

If f ∈ BMOps , we choose c := f2R and proceed as in Theorem 3.1,
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I2 �β

1

�(R)2β

∞
∑

j=1

1

2 j(n+2β)

( ∫

C j+1\C j

∣

∣ f (x) − f2 j R

∣

∣dx +
∫

C j+1\C j

∣

∣ f2R − f2 j R

∣

∣dx

)

� ‖ f ‖∗,ps

�(R)2β

∞
∑

j=1

1

2 j(n+2β)

[

(

2 j�(R)
) n+2s

q |C j+1 \ C j |
1
q′ + j |C j+1 \ C j |

]

� ‖ f ‖∗,ps

�(R)2β

∞
∑

j=1

1

2 j(n+2β)

[

�(R)n+2s2
j(n+ 2s

q )+ 2s
q′ + j�(R)n+2s 2 jn+2s

]

� ‖ f ‖∗,ps �(R)n+2(s−β)

(

1 +
∞

∑

j=1

2
2
q′

2 j(2β− 2s
q )

)

.

Fixing q > s/β so that this last sum is convergent, proves the result.
On the other hand, if f ∈ Lipα,ps let c := f (x0) and also proceed as in Theorem 3.1 to

deduce

I2 �β,α

‖ f ‖Lipα,ps

�(R)2β

∞
∑

j=1

(2 j�(R))α

2 j(n+2β)
|C j+1 \ C j | � ‖ f ‖Lipα,ps

�(R)n+2(s−β)+α
∞

∑

j=1

1

2(2β−α) j
,

that is a convergent sum since α < 2β by hypothesis. ��
Recall that given f : R

n+1 → R and β ∈ (0, n), we define its n-dimensional β-Riesz
transform (whenever it makes sense) as

In
β f (·, t) := 1

|x |n−β
∗ f (·, t),

for each t , where the convolution is thought in a principal value sense. Let us observe that
for a test function f , for example, the operators In

β and ∂xi commute.

Theorem 3.4 Letβ ∈ (0, 1),α ∈ (0, 1−β) and f : R
n+1 → R. Assume ‖∇xϕ‖∞ ≤ �(Q)−1

and ‖∇xφ‖∞ ≤ �(R)−1. Then, if �(R) ≤ �(Q), for each i = 1, . . . , n we have

1. If f ∈ BMOps ,
|〈 f , ∂xi [In

β(ϕφ)]〉| �β ‖ f ‖∗,ps �(R)n+2s+β−1.

2. If f ∈ Lipα,ps ,

|〈 f , ∂xi [In
β(ϕφ)]〉| �β,α ‖ f ‖Lipα,ps

�(R)n+2s+β+α−1.

Proof Notice that for any c ∈ R,

|〈 f , ∂xi [In
β(ϕφ)]〉| = |〈 f − c, ∂xi [In

β(ϕφ)]〉|
≤

∫

2R1×(IQ∩IR)

| f (x) − c|∣∣∂xi [In
β(ϕφ)](x)∣∣dx

+
∫

(Rn\2R1)×(IQ∩IR)

| f (x) − c|∣∣∂xi [In
β(ϕφ)](x)∣∣dx =: I1 + I2.

Regarding I1, we have for some conjugate exponents q, q ′ to be fixed later on,

I1 �
( ∫

2R
| f (x) − c|q′

dx

) 1
q′ ( ∫

IQ∩IR

∫

2R1

∣

∣Inβ [∂xi (ϕφ)](x, t)∣∣qdxdt
) 1
q
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�
( ∫

2R
| f (x) − c|q′

dx

) 1
q′ ( ∫

IQ∩IR
‖Inβ [∂xi (ϕφ)(·, t)]‖qqdt

) 1
q

.

Choosing q > n
n−β

, we shall apply [6, Theorem 6.1.3] and obtain

I1 �β

( ∫

2R
| f (x) − c|q ′

dx

) 1
q′ ( ∫

IQ∩IR
‖∂xi (ϕφ)(·, t)‖q qn

n+qβ

dt

) 1
q

�
( ∫

2R
| f (x) − c|q ′

dx

) 1
q′

�(R)
n+qβ+2s

q −1
.

If we assume f ∈ BMOps , we choose c := f2R and apply a s-parabolic version of John-
Nirenberg’s inequality to deduce

I1 �β ‖ f ‖∗,ps �(R)
n+2s
q′ �(R)

n+qβ+2s
q −1 = ‖ f ‖∗,ps �(R)n+2s+β−1.

If we assume f ∈ Lipα,ps , we choose c := f (x R), being x R the center of R, and obtain

I1 �β,α ‖ f ‖Lipα,ps �(R)
n+2s
q′ +α

�(R)
n+qβ+2s

q −1 = ‖ f ‖∗,ps �(R)n+2s+β+α−1.

To study I2, we proceed as in Theorem 3.3. For any x ∈ (Rn \ 2R1) × (IQ ∩ IR), if x0 ∈ R
n

denotes the center of Q1 ∩ R1, by the mean value theorem we get

∣

∣In
β [∂xi (ϕφ)](x)∣∣ =

∣

∣

∣

∣

∫

Q1∩R1

∂xi (ϕφ)(z, t)
1

|z − x |n−β
dz

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

Q1∩R1

∂xi (ϕφ)(z, t)

(

1

|z − x |n−β
− 1

|x0 − x |n−β

)

dz

∣

∣

∣

∣

�β

n
∑

j=1

�(R)

|x0 − x |n−β+1 ‖∇x (ϕφ)‖∞ �(R)n � �(R)n

|x0 − x |n−β+1 .

This way, putting C j := 2 j R1 × (IQ ∩ IR) for j ≥ 1, as in Theorem 3.3,

I2 �β

1

�(R)−β+1

∞
∑

j=1

1

2 j(n−β+1)

∫

C j+1\C j

∣

∣ f (x) − c
∣

∣dx .

The case f ∈ BMOps is dealt with analogously as in Theorem 3.3, obtaining

I2 �β ‖ f ‖∗,ps �(R)n+2s+β−1
∞

∑

j=1

1

2 j(n−β+1)

[

2 j(n+ 2s
q ) + j 2 jn

]

,

so choosing q > 2s
1−β

we are done. Observe that we also need β < 1 in order for the above
sum to converge. The case f ∈ Lipα,ps can be dealt with as follows

I2 �β,α

‖ f ‖Lipα,ps

�(R)−β+1

∞
∑

j=1

(2 j�(R))α

2 j(n−β+1)
|C j+1 \ C j | � ‖ f ‖Lipα,ps

∞
∑

j=1

�(R)n+2s+β+α−1

2(1−β−α) j
,

and this sum is convergent by the hypothesis α < 1 − β. ��
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4 Potentials of positive measures with growth restrictions

The main goal of this section is to deduce some important BMOps and Lipα,ps estimates

of potentials of the form ∂
β
t Ps ∗ μ, where μ is a finite positive Borel measure with some

upper s-parabolic growth. We begin by proving a generalization of [14, Lemma 4.2] and [13,
Lemma 7.2].

Lemma 4.1 Let s ∈ (0, 1], η ∈ (0, 1) and μ be a positive measure in R
n+1 which has upper

s-parabolic growth of degree n + 2sη. Then

‖Ps ∗ μ‖Lipη,t
�η 1.

Proof Let x := (x, t), x̂ := (x, τ )befixedpoints inR
n+1 with t 
= τ , and set x0 := (x+x̂)/2.

Writing y := (y, u) and B0 := B(x0, |x − x̂ |ps ) = B(x0, |t − τ | 1
2s ), we split

|Ps ∗ μ(x) − Ps ∗ μ(̂x)|
≤

∫

Rn+1\2B0
|Ps(x − y, t − u) − Ps(x − y, τ − u)|dμ(y)

+
∫

2B0
|Ps(x − y, t − u) − Ps(x − y, τ − u)|dμ(y) =: I1 + I2.

Defining the s-parabolic annuli A j := 2 j+1B0 \ 2 j B0 for j ≥ 1 and arguing as in the last
estimate of Theorem 2.2 we get

I1 �
∑

j≥1

∫

A j

|t − τ |
|x − y|n+2s

ps

dμ(y) � |t − τ |
∑

j≥1

μ
(

2 j+1B0
)

(

2 j |t − τ | 1
2s

)n+2s

� |t − τ |η
∑

j≥1

1

22s(1−η)
�η |t − τ |η,

that is the desired estimate. Regarding I2, observe that

I2 ≤ Ps ∗ (χ2B0μ)(x) + Ps ∗ (χ2B0μ)(̂x).

Notice now that

Ps ∗ (χ2B0μ)(x) �
∫

2B0

dμ(y)

|x − y|nps
≤

∫

|x−y|ps ≤5|t−τ | 1
2s

dμ(y)

|x − y|nps
�η |t − τ |η,

where we have split the latter domain of integration into (decreasing) s-parabolic annuli.
Since this also holds replacing x by x̂ , we also have I2 � |t − τ |η and we are done. ��

The above result allows us to prove that, given a positivemeasure as in the above statement,
we can ensure that the potential ∂β

t Ps ∗ μ already belongs to BMOps .

Lemma 4.2 Let s ∈ (0, 1], β ∈ (0, 1). Let μ be a finite positive Borel measure in R
n+1 with

upper s-parabolic growth of degree n + 2sβ. Then,

∥

∥∂
β
t Ps ∗ μ

∥

∥∗,ps
�β 1.
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Proof Fix x0 ∈ R
n+1 and r > 0. Consider the s-parabolic ball B := B(x0, r) = B0 × I0 ⊂

R
n × R and a constant cB to be determined later. We want to show that cB can be chosen so

that

1

|B|
∫

B
|∂β
t Ps ∗ μ(y) − cB |dy �β 1.

To that end, begin by considering the following sets, which define a partition of R
n+1:

R1 := 5B, R2 := R
n+1 \ (5B0 × R), R3 := (5B0 × R) \ 5B,

as well as their corresponding characteristic functions χ1, χ2 and χ3. Bearing in mind the
estimates proved in Theorems 2.4 and 2.5 for ∂

β
t Ps and the fact that μ is finite, it is clear

that the quantity |∂β
t Ps ∗ (χ2μ)(x0)| is also finite. Moreover, notice that |∂β

t Ps | is bounded
by s-parabolically homogeneous functions of degree −n − 2sβ for any dimension. In fact,
we deduce the following estimates: given any ε, α > 0, we obtain if n > 2,

|∂β
t Ps(x)| �β

1

|x |n−2s |x |2s(1+β)
ps

≤ 1

|x |n−ε|t | ε+2sβ
2s

, if ε < 2s(1 − β).

For n = 2,

if s < 1, |∂β
t Ps(x)| �β

1

|x |2−2s |x |2s(1+β)
ps

≤ 1

|x |2−ε|t | ε+2sβ
2s

, if ε < 2s(1 − β),

if s = 1, |∂β
t W (x)| �β,α

1

|x |α|x |2+2β−α
ps

≤ 1

|x |α|t |1+β− α
2
, if 2β < α < 2.

And for n = 1,

if s < 1, |∂β
t Ps (x)| �β,α

1

|x |1−2s+α |x |2s(1+β)−α
ps

≤ 1

|x |1−2s+α |t |1+β− α
2s

, if 2sβ < α < 2s,

if s = 1, |∂β
t W (x)| �β

1

|x |1+2β
ps

≤ 1

|x |ε |t | 1+2β−ε
2

, if 2β − 1 < ε < 1.

In light of the above inequalities, and using that β < 1, it is clear that ∂β
t Ps defines a Ln+1-

locally integrable function inR
n+1 once endowed with the s-parabolic distance. Hence, there

exists some ξ0 ∈ B (that wemay think as close as we need to x0) such that |∂β
t Ps ∗(χ3μ)(ξ0)|

is finite. Bearing all these observations in mind, we choose cB to be

cB := ∂
β
t Ps ∗ (χ2μ)(x0) + ∂

β
t Ps ∗ (χ3μ)(ξ0).

Therefore, we are interested in bounding by a constant the following quantity:

1

|B|
∫

B
|∂β
t Ps ∗ μ(y) − cB |dy ≤ 1

|B|
∫

B
|∂β
t Ps ∗ (χ1μ)(y)|dy

+ 1

|B|
∫

B
|∂β
t Ps ∗ (χ2μ)(y) − ∂

β
t Ps ∗ (χ2μ)(x0)|dy

+ 1

|B|
∫

B
|∂β
t Ps ∗ (χ3μ)(y) − ∂

β
t Ps ∗ (χ3μ)(ξ0)|dy =: I1 + I2 + I3.

For I1, simply notice that

I1 ≤ 1

|B|
∫

5B

( ∫

B
|∂β
t Ps(y − z)|dy

)

dμ(z).
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Using anyof the bounds above for ∂β
t Ps , dependingonn and s, integration in polar coordinates

yields

I1 �β

1

|B|r
2s(1−β)μ(5B) �β 1.

Regarding I2, write

I2 ≤ 1

|B|
∫

B

( ∫

R2

|∂β
t Ps(y − z) − ∂

β
t Ps(x0 − z)|dμ(z)

)

dy.

If we name x := x0 − z and x ′ := y − z, we have in particular

|x − x ′|ps = |x0 − y|ps ≤ r <
|x0 − z|

2
= |x |

2
,

where the second inequality holds because z ∈ R2. Therefore, by the last estimate of Theo-
rems 2.4 and 2.5, writing 2ζ := min{1, 2s} we get

I2 �β

1

|B|
∫

B

( ∫

R2

|y − x0|2ζps
|x0 − z|n+2ζ−2s |x0 − z|2s(1+β)

ps

dμ(z)

)

dy

� r2ζ
∫

R2

dμ(z)

|x0 − z|n+2ζ−2s |x0 − z|2s(1+β)
ps

.

Let us split R2 into proper disjoint pieces. Take the cylinders given by C j := 5 j B0 ×R, j ∈
Z, j ≥ 1, as well as the annular cylinders ̂C j := C j+1 \ C j , j ≥ 1. The partition of R2 we
are interested in is given by the disjoint union of all the sets ̂C j , j ≥ 1, which clearly cover
R2. Therefore

I2 �β r2ζ
∞

∑

j=1

∫

̂C j

dμ(z)

|x0 − z|n+2ζ−2s |x0 − z|2s(1+β)
ps

. (13)

At the same time, for each j ≥ 1, we shall consider a proper partition of ̂C j . Denote
Ak = 5k+1B \ 5k B for every positive integer k and define ̂C j,k := ̂C j ∩ Ak, k ≥ 1. Let us
make some observations about the sets ̂C j,k . First, notice that by definition, for each j ≥ 1,

̂C j,k = [

(5 j+1B0 \ 5 j B0) × R
] ∩ (

5k+1B \ 5k B)

.

Hence, using that
[

(5 j+1B0 \ 5 j B0) × R
] ∩ (

5k+1B \ 5k B) = ∅, for k < j,

we have that, in fact, ̂C j can be covered by ̂C j,k for k ≥ j , that is

̂C j =
∞
⋃

k=1

̂C j,k =
∞
⋃

k= j

̂C j,k .

Secondly, in order to estimate μ(̂C j,k), observe that for any k ≥ j , by definition, the set ̂C j,k

can be written explicitly as follows:

̂C j,k = [(

5 j+1B0 \ 5 j B0
) × R

] ∩ (

5k+1B \ 5k B)

= [(

5 j+1B0 \ 5 j B0
) × R

]

∩
{

[(

5k+1B0 \ 5k B0
) × 52s(k+1) I0

] ∪ [

5k B0 × (

52s(k+1) I0 \ 52k I0
)]

}

.
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Continue by observing that if k = j , the intersection with the second element of the union is
empty, so

̂C j, j = (

5 j+1B0 \ 5 j B0
) × 52s( j+1) I0;

while if k > j one has the contrary, that is, the intersection with the first element is empty,
and therefore, since 5 j+1B0 \ 5 j B0 ⊂ 5k B0,

̂C j,k = (

5 j+1B0 \ 5 j B0
) × [

52s(k+1) I0 \ 52sk I0
]

.

Observe that ̂C j, j ⊂ 5 j+1B, which implies μ(̂C j, j ) ≤ μ(5 j+1B) � (5 j+1r)n+2sβ . On the
other hand, for k > j , notice that the set ̂C j,k can be covered by disjoint temporal translates
of ̂C j, j , and the number needed to do it is proportional to the ratio between their respective
time lengths, that is

2
(

52s(k+1) − 52sk
)

52s( j+1)
� 52sk

52s j
.

Therefore, since this last ratio is also valid for the case k = j , for every k ≥ j we have

μ(̂C j,k) � 52sk

52s j
μ(̂C j, j ) �β

52sk

52s j
(

5 j+1r
)n+2sβ

.

All in all, we finally obtain

I2 �β r2ζ
∞

∑

j=1

∑

k≥ j

∫

̂C j,k

dμ(z)

|x0 − z|n+2ζ−2s |x0 − z|2s(1+β)
ps

� r2ζ
∞

∑

j=1

∑

k≥ j

μ(̂C j,k )

(5 j r)n+2ζ−2s (5kr)2s(1+β)

�β

∞
∑

j=1

∑

k≥ j

1

5 j(2ζ−2sβ)52sβk
=

∞
∑

k=1

1

52sβk

k
∑

j=1

1

5 j(2ζ−2sβ)
�

∞
∑

k=1

1

52sβk

(

1 + 1

5(2ζ−2sβ)k

)

�β 1.

Finally, let us study I3. Notice that the estimate we want to check is deduced if we prove

|∂β
t Ps ∗ (χ3μ)(y) − ∂

β
t Ps ∗ (χ3μ)(ξ0)| �β 1,

that at the same time, can be obtained if we show that for any x, y ∈ B we have

|∂β
t Ps ∗ (χ3μ)(x) − ∂

β
t Ps ∗ (χ3μ)(y)| �β 1. (14)

It is clear that it suffices to check the latter estimate in two particular cases: when x and y
share their time coordinate, and when they share their spatial coordinate.

Case 1: x = (x, t) and y = (y, t) points of B. Let us begin by observing that

|∂β
t Ps ∗ (χ3μ)(x) − ∂

β
t Ps ∗ (χ3μ)(y)|

=
∣

∣

∣

∣

∫

Ps ∗ (χ3μ)(x, τ ) − Ps ∗ (χ3μ)(x, t)

|τ − t |1+β
dτ

−
∫

Ps ∗ (χ3μ)(y, τ ) − Ps ∗ (χ3μ)(y, t)

|τ − t |1+β
dτ

∣

∣

∣

∣

≤
∫

|τ−t |≤(2r)2s

|Ps ∗ (χ3μ)(x, τ ) − Ps ∗ (χ3μ)(x, t)|
|τ − t |1+β

dτ

+
∫

|τ−t |≤(2r)2s

|Ps ∗ (χ3μ)(y, τ ) − Ps ∗ (χ3μ)(y, t)|
|τ − t |1+β

dτ

+
∫

|τ−t |>(2r)2s

|Ps ∗ (χ3μ)(x, τ ) − Ps ∗ (χ3μ)(x, t) − Ps ∗ (χ3μ)(y, τ ) + Ps ∗ (χ3μ)(y, t)|
|τ − t |1+β

dτ

=: I1 + I2 + I3.
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First, we estimate I1. Argue as in the proof of the last estimate of Theorem 2.2 to obtain

|Ps ∗ (χ3μ)(x, τ ) − Ps ∗ (χ3μ)(x, t)| ≤ |τ − t |
∫

R3

dμ(z)

|x − z|n+2s
ps

�β

|t − τ |
r2s(1−β)

,

where the last inequality canbeobtainedby splitting the domainof integration into s-parabolic
annuli and using the s-parabolic growth condition of degree n + 2sβ of μ. Thus,

I1 �β

1

r2s(1−β)

∫

|τ−t |≤(2r)2s

dτ

|τ − t |β �β

(r2s)(1−β)

r2s(1−β)
= 1.

The arguments to obtain I2 �β 1 are exactly the same (just write y instead of x in the lines
above). Concerning the term I3, we split it as follows

I3 ≤
∫

|τ−t |>(2r)2s

|Ps ∗ (χ3μ)(x, τ ) − Ps ∗ (χ3μ)(y, τ )|
|τ − t |1+β

dτ

+
∫

|τ−t |>(2r)2s

|Ps ∗ (χ3μ)(x, t) − Ps ∗ (χ3μ)(y, t)|
|τ − t |1+β

dτ =: I31 + I32.

First, let us deal with integral I32. Since (x, t), (y, t) ∈ B,

|Ps ∗ (χ3μ)(x, t) − Ps ∗ (χ3μ)(y, t)| ≤ |x − y| ‖∇x Ps ∗ (χ3μ)‖∞,B .

Notice that for any z ∈ B, by Theorem 2.2 and the fact that sβ < 1, we have

|∇x Ps ∗ (χ3μ)(z)| �
∫

R3

|z − w|
|z − w|n+2

ps

dμ(w) � r
∫

Rn+1\5B
dμ(w)

|z − w|n+2
ps

�β r2sβ−1.

Therefore, since |x − y| ≤ r ,

I32 �β r2sβ
∫

|τ−t |>(2r)2s

dτ

|τ − t |1+β
�β r2sβ

1

(r2s)β
= 1. (15)

Regarding I31, observe that for each τ the points (x, τ ) and (y, τ ) belong to a temporal
translate of B that does not intersect B, since |τ − t | > (2r)2s and t ∈ I0. We call it Bτ .
Hence, bearing in mind the first estimate of [14, Lemma 2.1] we deduce

|Ps ∗ (χ3μ)(x, τ ) − Ps ∗ (χ3μ)(y, τ )|
≤

∫

2Bτ

|Ps((x, τ ) − w) − Ps((y, τ ) − w)|dμ(w)

+
∫

[(5B0×R)\5B]∩(2Bτ )c
|Ps((x, τ ) − w) − Ps((y, τ ) − w)|dμ(w)

�
∫

2Bτ

dμ(w)

|(x, τ ) − w|nps
+

∫

2Bτ

dμ(w)

|(y, τ ) − w|nps
+ |x − y|

∫

[(5B0×R)\5B]∩(2Bτ )c
|∇x Ps((̃x, τ ) − w)|dμ(w)

�β r2sβ + r
∫

[(5B0×R)\5B]∩(2Bτ )c

|̃x − w|
|(̃x, τ ) − w|n+2

ps

dμ(w)

� r2sβ + r2
∫

[(5B0×R)\5B]∩(2Bτ )c

dμ(w)

|(̃x, τ ) − w|n+2
ps

≤ r2sβ + r2
∫

Rn+1\2Bτ

dμ(w)

|(̃x, τ ) − w|n+2
ps

�β r2sβ, (16)

123



   21 Page 24 of 56 J. Hernández et al.

where for both integrals in (16) we have split the domain of integration into (decreasing)
s-parabolic annuli; while in the remaining term, x̃ belongs to the segment joining x and y
and we have split the domain of integration into s-parabolic annuli centered at (x0, t + s).
Hence, similarly to (15) we get I31 �β 1 and we are done with Case 1.

Case 2: x = (x, t) and y = (x, u) points of B. Write

|∂β
t Ps ∗ (χ3μ)(x) − ∂

β
t Ps ∗ (χ3μ)(y)|

=
∣

∣

∣

∣

∫

Ps ∗ (χ3μ)(x, τ ) − Ps ∗ (χ3μ)(x, t)

|τ − t |1+β
dτ −

∫

Ps ∗ (χ3μ)(x, τ ) − Ps ∗ (χ3μ)(x, u)

|τ − u|1+β
dτ

∣

∣

∣

∣

≤
∫

|τ−t |≤(2r)2s

|Ps ∗ (χ3μ)(x, τ ) − Ps ∗ (χ3μ)(x, t)|
|τ − t |1+β

dτ

+
∫

|τ−t |≤(2r)2s

|Ps ∗ (χ3μ)(x, τ ) − Ps ∗ (χ3μ)(x, u)|
|τ − u|1+β

dτ

+
∫

|τ−t |>(2r)2s

∣

∣

∣

∣

Ps ∗ (χ3μ)(x, τ ) − Ps ∗ (χ3μ)(x, t)

|τ − t |1+β

− Ps ∗ (χ3μ)(x, τ ) − Ps ∗ (χ3μ)(x, u)

|τ − u|1+β

∣

∣

∣

∣

dτ =: I ′1 + I ′2 + I ′3.

The expressions corresponding to I ′
1, I

′
2 can be tackled in the same way as I1, I2. Hence,

I ′
1 �β 1 and I ′

2 �β 1. Finally, for I ′
3, adding and subtracting Ps ∗ (χ3μ)(x, t)/|τ − u|1+β ,

I ′
3 ≤

∫

|τ−t |>(2r)2s

∣

∣

∣

∣

1

|τ − t |1+β
− 1

|τ − u|1+β

∣

∣

∣

∣

|Ps ∗ (χ3μ)(x, τ ) − Ps ∗ (χ3μ)(x, t)|dτ

+
∫

|τ−t |>(2r)2s

1

|τ − u|1+β
|Ps ∗ (χ3μ)(x, t) − Ps ∗ (χ3μ)(x, u)|dτ.

Since |τ − t | > (2r)2s we can apply the mean value theorem to deduce
∣

∣

∣

∣

1

|τ − t |1+β
− 1

|τ − u|1+β

∣

∣

∣

∣

�β

|t − u|
|τ − t |2+β

� r2s

|τ − t |2+β
.

In addition, since μ has upper s-parabolic growth of degree n + 2sβ, by Lemma 4.1, with
η := β, the time function Ps ∗ (χ3μ)(x, ·) is Lip-β. Therefore,

I ′
3 �β

∫

|τ−t |>(2r)2s

r2s

|τ − t |2+β
|τ − t |βdτ +

∫

|τ−t |>(2r)2s

1

|τ − u|1+β
|t − u|βdτ �β 1.

Therefore estimate (14) is satisfied and we are done with I3 and also with the proof. ��
In the same spirit, if we ask the positive measure for an extra α growth, the potential

∂
β
t Ps ∗ μ will satisfy a Lipα,ps property. Recall that 2ζ := min{1, 2s}.
Lemma 4.3 Let s ∈ (0, 1], β ∈ (0, 1) and α ∈ (0, 2ζ ) such that 2sβ + α < 2. Let μ be a
positive measure in R

n+1 which has upper s-parabolic growth of degree n + 2sβ + α. Then,

‖∂β
t Ps ∗ μ‖Lipα,ps �β,α 1.

Proof Fix any x, y ∈ R
n+1, x 
= y. We have to check if the following holds

|∂β
t Ps ∗ μ(x) − ∂

β
t Ps ∗ μ(y)| �β,α |x − y|αps .
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Begin by choosing the following partition of R
n+1

R1 : = {

z : |x − y|ps ≤ |x − z|/5} ∪ {

z : |y − x |ps ≤ |y − z|/5}

,

R2 := R
n+1 \ R1 = {

z : |x − y|ps > |x − z|/5} ∩ {

z : |y − x |ps > |y − z|/5}

,

and their corresponding characteristic functions χ1, χ2. From the latter we have

|∂β
t Ps ∗ μ(x) − ∂

β
t Ps ∗ μ(y)|

|x − y|αps
≤ 1

|x − y|αps

∫

|x−y|ps ≤|x−z|/5
|∂β
t Ps(x − z) − ∂

β
t Ps(y − z)|dμ(z)

+ 1

|x − y|αps

∫

|y−x |ps ≤|y−z|/5
|∂β
t Ps(x − z) − ∂

β
t Ps(y − z)|dμ(z)

+ 1

|x − y|αps
∣

∣∂
β
t Ps ∗ (χ2μ)(x) − ∂

β
t Ps ∗ (χ2μ)(y)

∣

∣ =: I1,x + I1,y + I2. (17)

Regarding I1,x , name ξ := x − z, ξ
′ := y − z and observe that, in particular, one has

|ξ − ξ
′|ps = |x − y|ps <

|x − z|
2

= |ξ |
2

,

Applying the last estimate either of Theorem 2.4 or Theorem 2.5, we deduce

I1,x �β

1

|x − y|α−2ζ
ps

∫

|x−y|ps ≤|x−z|/5
dμ(z)

|x − z|n+2ζ−2s |x − z|2s(1+β)
ps

.

Let us split the domain of integration into proper disjoint pieces. For x = (x, t), we denote

Bx := B(x, |x − y|ps ) = B1(x, |x − y|ps ) × Jx ,

where B1(x, |x − y|ps ) is an Euclidean ball in R
n and Jx is a real interval centered at t

with length 2|x − y|2sps . As in Lemma 4.2, take cylinders C j,x := 5 j B1(x, |x − y|ps ) × R

for j ≥ 1, as well as the annular cylinders ̂C j,x := C j+1,x \ C j,x , for j ≥ 1. We express
{z : |x − y|ps ≤ |x − z|/5} as the disjoint union of the sets ̂C j,x , so that

I1,x �β

1

|x − y|α−2ζ
ps

∞
∑

j=1

∫

̂C j,x

dμ(z)

|x − z|n+2ζ−2s |x − z|2s(1+β)
ps

.

The above integral can be studied as that appearing in (13), in the study of the term I2 of
Lemma 4.2 (centering now the cylinders in x and interchanging the roles of r and |x − y|ps ).
Doing so, and taking into account the n + 2sβ + α growth of μ, one obtains

I1,x �β,α

1

|x − y|α−2ζ
ps

∞
∑

j=1

∑

k≥ j

(5 j+1|x − y|ps )n+2sβ+α

(5 j |x − y|ps )n+2ζ−2s(5k |x − y|ps )2s(1+β)

52sk

52s j

=
∞

∑

j=1

∑

k≥ j

5 j(n+2sβ+α)

5 j(n+2ζ−2s)52s(1+β)k

52sk

52s j

�
∞

∑

j=1

∑

k≥ j

5 j(2sβ+α−2ζ )

52sβk
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=
∞

∑

k=1

1

52sβk

k
∑

j=1

1

5 j(2ζ−2sβ−α)

�
∞

∑

k=1

1

52sβk

(

1 + 1

5(2ζ−2sβ−α)k

)

�β,α 1, if α < 2ζ.

The study of I1,y is analogous, interchanging the roles of x and y. Finally we deal with I2.
We claim that the following estimate holds

∣

∣∂
β
t Ps ∗ (χ2μ)(x) − ∂

β
t Ps ∗ (χ2μ)(y)

∣

∣ �β,α |x − y|αps .
The general case will follows from the following two cases: whether x and y share their time
coordinate, or if they share their spatial coordinate. Indeed, write x = (x, t), y = (y, τ ) and
set x̂ := (x, τ ) so that
∣

∣∂
β
t Ps ∗ (χ2μ)(x) − ∂

β
t Ps ∗ (χ2μ)(y)

∣

∣

≤ ∣

∣∂
β
t Ps ∗ (χ2μ)(x) − ∂

β
t Ps ∗ (χ2μ)(̂x)

∣

∣ + ∣

∣∂
β
t Ps ∗ (χ2μ)(̂x) − ∂

β
t Ps ∗ (χ2μ)(y)

∣

∣

�β,α |x − x̂ |αps + |̂x − y|αps = |t − τ |α/2 + |x − y|α ≤ 2|x − y|αps , and we are done.

Case 1: x = (x, t) and y = (x, u). Write μ2 := χ2μ and estimate |∂β
t Ps ∗ μ2(x) − ∂

β
t Ps ∗

μ2(y)| as follows
∣

∣

∣

∣

∫

Ps ∗ μ2(x, τ ) − Ps ∗ μ2(x, t)

|τ − t |1+β
dτ −

∫

Ps ∗ μ2(x, τ ) − Ps ∗ μ2(x, u)

|τ − u|1+β
dτ

∣

∣

∣

∣

≤
∫

|τ−t |≤22s |x−y|2sps

|Ps ∗ μ2(x, τ ) − Ps ∗ μ2(x, t)|
|τ − t |1+β

dτ

+
∫

|τ−t |≤22s |x−y|2sps

|Ps ∗ μ2(x, τ ) − Ps ∗ μ2(x, u)|
|τ − u|1+β

dτ

+
∫

|τ−t |>22s |x−y|2sps

∣

∣

∣

∣

Ps ∗ μ2(x, τ ) − Ps ∗ μ2(x, t)

|τ − t |1+β

− Ps ∗ μ2(x, τ ) − Ps ∗ μ2(x, u)

|τ − u|1+β

∣

∣

∣

∣

dτ =: I1 + I2 + I3.

By a direct application of Lemma 4.1 we are able to obtain, straightforwardly,

I1 �β,α

∫

|τ−t |≤22s |x−y|2sps

dτ

|τ − t |1− α
2s

�α |x − y|αps and

I2 �β,α

∫

|τ−t |≤22s |x−y|2sps

dτ

|τ − u|1− α
2s

�α |x − y|αps .

For I3, adding and subtracting the term Ps ∗ μ2(x, t)/|τ − u|1+β we get

I3 ≤
∫

|τ−t |>22s |x−y|2sps

∣

∣

∣

∣

1

|τ − t |1+β
− 1

|τ − u|1+β

∣

∣

∣

∣

|Ps ∗ μ2(x, τ ) − Ps ∗ μ2(x, t)|dτ

+
∫

|τ−t |>22s |x−y|2sps

1

|τ − u|1+β
|Ps ∗ μ2(x, t) − Ps ∗ μ2(x, u)|dτ.

123



On fractional parabolic BMO… Page 27 of 56    21 

Since |τ − t | > 22s |x − y|2sps we can apply the mean value theorem to deduce

∣

∣

∣

∣

1

|τ − t |1+β
− 1

|τ − u|1+β

∣

∣

∣

∣

�β

|t − u|
|τ − t |2+β

�
|x − y|2sps
|τ − t |2+β

.

Therefore, by Lemma 4.1 with η := β + α
2s , we finally have

I3 �β,α

∫

|τ−t |>22s |x−y|2sps

|x − y|2sps
|τ − t |2+β

|τ − t |β+ α
2s dτ

+
∫

|τ−t |>22s |x−y|2sps

1

|τ − u|1+β
|t − u|β+ α

2s dτ �β,α |x − y|αps .

Therefore |∂β
t Ps ∗ μ2(x) − ∂

β
t Ps ∗ μ2(y)| ≤ I1 + I2 + I3 �β,α |x − y|αps , and this ends the

study of Case 1.
Case 2: x = (x, t) and y = (y, t). To tackle this case, let us first rewrite the set R2 as

R2 =
[

5B1
(

x, |x − y|ps
) × R

]

∩
[

5B1
(

y, |y − x |ps
) × R

]

= (

5B1,x × R
) ∩ (

5B1,y × R
)

,

Continue rewriting R2 as follows

R2 =
{

5Bx ∪ [

(5B1,x × R) \ 5Bx
]

}

∩
{

5By ∪ [

(5B1,y × R) \ 5By
]

}

= (

5Bx ∩ 5By
) ∪

{

5Bx ∩ [

(5B1,y × R) \ 5By
]

}

∪
{

5By ∩ [

(5B1,x × R) \ 5Bx
]

}

∪
{

[

(5B1,x × R) \ 5Bx
] ∩ [

(5B1,y × R) \ 5By
]

}

=: R21 ∪ R22 ∪ R23 ∪ R24.

Observe that in Case 2 the real intervals Jx and Jy coincide. We name them J . Therefore,

R22 := 5Bx ∩ [

(5B1,y × R) \ 5By
] = (5B1,x × J ) ∩ [

5B1,y × (R \ J )
] = ∅,

R23 := 5By ∩ [

(5B1,y × R) \ 5By
] = (5B1,y × J ) ∩ [

5B1,x × (R \ J )
] = ∅,

meaning that, in fact, R2 = R21 ∪ R24. Observe also that R24 can be rewritten as

R24 : = [

(5B1,x × R) \ 5Bx
] ∩ [

(5B1,y × R) \ 5By
]

= (5B1,x ∩ 5B1,y) × (R \ J ).

Therefore, if χ21 and χ24 are the characteristic functions of R21 and R24, we have, naming
μ21 := χ21μ and μ24 := χ24μ,

I2 ≤ 1

|x − y|αps
∣

∣∂
β
t Ps ∗ μ21(x) − ∂

β
t Ps ∗ μ21(y)

∣

∣

+ 1

|x − y|αps
∣

∣∂
β
t Ps ∗ μ24(x) − ∂

β
t Ps ∗ μ24(y)

∣

∣ =: I21 + I24.

Hence, fixing j ∈ {1, 4}, begin by establishing the following estimate

|∂β
t Ps ∗ μ2 j (x) − ∂

β
t Ps ∗ μ2 j (y)|

=
∣

∣

∣

∣

∫

Ps ∗ μ2 j (x, τ ) − Ps ∗ μ2 j (x, t)

|τ − t |1+β
dτ −

∫

Ps ∗ μ2 j (y, τ ) − Ps ∗ μ2 j (y, t)

|τ − t |1+β
dτ

∣

∣

∣

∣
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≤
∫

|τ−t |≤22s |x−y|2sps

|Ps ∗ μ2 j (x, τ ) − Ps ∗ μ2 j (x, t)|
|τ − t |1+β

dτ

+
∫

|τ−t |≤22s |x−y|2sps

|Ps ∗ μ2 j (y, τ ) − Ps ∗ μ2 j (y, t)|
|τ − t |1+β

dτ

+
∫

|τ−t |>22s |x−y|2sps

|Ps ∗ μ2 j (x, τ ) − Ps ∗ μ2 j (x, t) − Ps ∗ μ2 j (y, τ ) + Ps ∗ μ2 j (y, t)|
|τ − t |1+β

dτ

=: C1 + C2 + C3.

Lemma 4.1 with η = β yields C1 �β,α |x − y|αps and C2 �β,α |x − y|αps , so we focus on C3.
Split it as follows

C3 ≤
∫

|τ−t |>22s |x−y|2sps

|Ps ∗ μ2 j (x, τ ) − Ps ∗ μ2 j (y, τ )|
|τ − t |1+β

dτ

+
∫

|τ−t |>22s |x−y|2sps

|Ps ∗ μ2 j (x, t) − Ps ∗ μ2 j (y, t)|
|τ − t |1+β

dτ =: C31 + C32.

First, let us deal with integral C32. On the one hand, if j = 1, observe that for any z ∈ 2Bx ,
since 2Bx ⊂ R21 ⊂ 5Bx , we can contain R21 into s-parabolic annuli centered at z and
(exponentially decreasing) radii proportional to |x − y|ps . Hence, by [13, Lemma 2.2] and
the upper s-parabolic growth of degree n + 2sβ + α of μ, we deduce

|Ps ∗ μ21(z)| �
∫

5Bx∩5By

dμ(w)

|z − w|nps
�β,α |x − y|2sβ+α

ps .

If j = 4, observe that |Ps ∗ μ24(x, t) − Ps ∗ μ2 j (y, t)| ≤ |x − y| ‖∇x Ps ∗ μ24‖∞,2Bx . So
for any z ∈ 2Bx , by Theorem 2.2 we obtain

|∇x Ps ∗ μ24(z)| �
∫

(5Bx∩5By)×(R\J )

|z − w|
|z − w|n+2

ps

dμ(w)

� |x − y|ps
∫

Rn+1\(5Bp,x∩5Bp,y)

dμ(w)

|z − w|n+2
ps

�β,α |x − y|2sβ+α−1
ps , since 2sβ + α < 2.

For the last inequality we can split, for example, the domain of integration into s-parabolic
annuli centered at z with (exponentially increasing) radii proportional to 2|x − y|ps . Then,

C32 �β,α |x − y|2sβ+α
ps

∫

|τ−t |>22s |x−y|2sps

dτ

|τ − t |1+β
�β |x − y|αps . (18)

Regarding C31, the points (x, τ ) and (y, τ ) belong to a temporal translate of 2Bx ∩ 2By that
does not intersect 2Bx ∩ 2By , since |τ − t | > 22s |x − y|2sps . We call it 2Bτ

x ∩ 2Bτ
y . For each

j ∈ {1, 4} and τ (and bearing in mind Theorem 2.2) we deduce

|Ps∗μ2 j (x, τ ) − Ps ∗ μ2 j (y, τ )|
≤

∫

2Bτ
x ∩2Bτ

y

|Ps((x, τ ) − w) − Ps((y, τ ) − w)|dμ(w)

+
∫

R2 j \(2Bτ
x ∩2Bτ

y )

|Ps((x, τ ) − w) − Ps((y, τ ) − w)|dμ(w)

�
∫

2Bτ
x

dμ(w)

|(x, τ ) − w|nps
+

∫

2Bτ
y

dμ(w)

|(y, τ ) − w|nps
(19)
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+ |x − y|
∫

R2 j \(2Bτ
x ∩2Bτ

y )

|∇x Ps((̃x, τ ) − w)|dμ(w)

�β,α |x − y|2sβ+α
ps + |x − y|2ps

∫

Rn+1\(2Bτ
x ∩2Bτ

y )

dμ(w)

|(̃x, τ ) − w|n+2
ps

, (20)

where for both integrals of (19) we have split the domain of integration into (exponentially
decreasing) s-parabolic annuli; while in the remaining term x̃ belongs to the segment joining
x and y. Observe also that in the last inequality we have used that the spatial distance between
any two points of R21 \ (2Bτ

x ∩ 2Bτ
y ) and R24 \ (2Bτ

x ∩ 2Bτ
y ) is bounded by a multiple of

|x − y| and thus of |x − y|ps . Observe now that, if ξ := (x + y)/2, we have

2Bτ
x ∩ 2Bτ

y = B
(

(x, t + τ), 2|x − y|ps
) ∩ B

(

(y, t + τ), 2|x − y|ps
)

⊃ B
(

(ξ, t + τ), |x − y|ps
) =: ̂Bτ ,

meaning that
R
n+1 \ (2Bτ

x ∩ 2Bτ
y ) ⊂ R

n+1 \ ̂Bτ .

Return to (20) and estimate the remaining integral by another one with the same integrand,
but over the enlarged domain R

n+1 \ ̂Bτ . Afterwards, split the latter into s-parabolic annuli
centered at (̃x, τ ) and (exponentially increasing) radii proportional to |x − y|ps /2 and use
that 2sβ + α < 2 so that

|Ps ∗ μ2 j (x, τ ) − Ps ∗ μ2 j (y, τ )| �β,α |x − y|2sβ+α
ps + |x − y|2ps

|x − y|2−2sβ−α
ps

� |x − y|2sβ+α
ps .

Hence, similarly to (18) we deduce C31 �β,α |x − y|αps , which means I2 ≤ I21 + I24 �β,α 1
and we are done with Case 2. This last estimate finally implies

∣

∣∂
β
t Ps ∗ (χ2μ)(x) − ∂

β
t Ps ∗ (χ2μ)(y)

∣

∣ �β,α |x − y|αps ,
which means I2 �β,α 1. So applying it to (17) we conclude that

|∂β
t Ps ∗ μ(x) − ∂

β
t Ps ∗ μ(y)|

|x − y|αps
≤ I1,x + I1,y + I2 �β,α 1,

and the desired s-parabolic Lipα condition follows. ��

5 The s-parabolic BMO and Lip˛ caloric capacities

We are finally ready to introduce the s-parabolic BMO and Lipα variants of the caloric
capacities presented in [13, 14]. This section generalizes the concept to include a broader
set of variants. The principal result will be that, in any case, such capacities will turn out
to be comparable to a certain s-parabolic Hausdorff content. Moreover, we will be able to
characterize removable sets for BMOps and Lipα,ps solutions of the �s-equation in terms of
the nullity of the respective capacities. In order to do so, we will need a fundamental lemma
that we present before introducing the different capacities. The result below will characterize
distributions supported on a compact set with finite d-dimensional Hausdorff measure that
satisfy some growth property only for s-parabolic cubes small enough.
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Lemma 5.1 Let d > 0 and E ⊂ R
n+1 be a compact set with Hd

ps (E) < ∞. Let T be a
distribution supported on E with the property that there exists 0 < �0 ≤ ∞ such that for
any R ⊂ R

n+1 s-parabolic cube with �(R) ≤ �0,

|〈T , φ〉| � �(R)d , ∀φ admissible for R.

Then, T is a signed measure satisfying

|〈T , ψ〉| � Hd
ps (E)‖ψ‖∞, ∀ψ ∈ C∞

c (Rn+1).

Proof We follow the proof of [14, Lemma 6.2]. Let ψ ∈ C∞
c (Rn+1) and 0 < ε ≤ �0/4. Let

Qi , i ∈ Iε be a collection of s-parabolic cubes with F ⊂ ⋃

i∈Iε Qi with �(Qi ) ≤ ε and
∑

i∈Iε
�(Qi )

d ≤ CHd
ps (E) + ε.

Nowcover each Qi by a bounded number (depending on the dimension) of dyadic s-parabolic
cubes R1

i , . . . , R
m
i with �(R j

i ) ≤ �(Qi )/8 and apply an s-parabolic version of Harvey-
Polking’s lemma (that admits an analogous proof, see [8, Lemma3.1]) to obtain a collection of
non-negative functions {ϕi }i∈Iε with supp(ϕi ) ⊂ 2Qi , cϕi admissible for 2Qi and satisfying
∑

i∈Iε ϕi ≡ 1 on
⋃

i∈Iε Qi ⊃ E . Now we write

|〈T , ψ〉| ≤
∑

i∈Iε
|〈T , ϕiψ〉|.

Proceeding as in [14, Lemma 6.2] it can be shown that

ηi := ϕiψ

‖ψ‖∞ + �(Qi )‖∇xψ‖∞ + �(Qi )2s‖∂tψ‖∞ + �(Qi )2‖�ψ‖∞
is an admissible function for 2Qi (up to a dimensional constant), with �(2Qi ) ≤ �0/2.
Therefore, by the growth assumptions on T ,

|〈T , ψ〉| �
∑

i∈Iε
�(Qi )

d(‖ψ‖∞ + �(Qi )‖∇xψ‖ + �(Qi )
2‖∂tψ‖∞ + �(Qi )

2‖�ψ‖∞
)

� (Hd
ps (E) + ε)

(‖ψ‖∞ + ε‖∇xψ‖ + ε2‖∂tψ‖∞ + ε2‖�ψ‖∞
)

,

and making ε tend to 0, we deduce the result. ��

5.1 The capacity 02s,∗

The first capacity we introduce is the BMOps variant of the caloric capacity first defined in
[14] for the usual heat equation.

Definition 5.1 Given s ∈ (1/2, 1] and E ⊂ R
n+1 compact set, define its BMOps -caloric

capacity as
	�s ,∗(E) := sup |〈T , 1〉|,

where the supremum is taken among all distributions T with supp(T ) ⊂ E and satisfying

‖∇x Ps ∗ T ‖∗,ps ≤ 1, ‖∂
1
2s
t Ps ∗ T ‖∗,ps ≤ 1. (21)

Such distributions will be called admissible for 	�s ,∗(E).
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Let us also introduce what we will understand as removable sets in this context:

Definition 5.2 A compact set E ⊂ R
n+1 is said to be removable for s-caloric functions with

BMOps -(1,
1
2s )-derivatives if for any open subset � ⊂ R

n+1, any function f : R
n+1 → R

with

‖∇x f ‖∗,ps < ∞, ‖∂
1
2s
t f ‖∗,ps < ∞,

satisfying the �s-equation in � \ E , also satisfies the previous equation in the whole �.

First, we shall prove that if T satisfies (21), then T has upper s-parabolic growth of degree
n + 1. In fact, we shall prove a stronger result:

Theorem 5.2 Let s ∈ (1/2, 1] and T be a distribution in R
n+1 with

‖∇x Ps ∗ T ‖∗,ps ≤ 1, ‖∂
1
2s
t Ps ∗ T ‖∗,ps ≤ 1.

Let Q be a fixed s-parabolic cube and ϕ an admissible function for Q. Then, if R is any s-
parabolic cube with �(R) ≤ �(Q) and φ is admissible for R, we have |〈ϕT , φ〉| � �(R)n+1.

Proof Let T , Q and ϕ be as above. Let R be an s-parabolic cube with �(R) ≤ �(Q) and
R ∩ Q 
= ∅ (if not, the result is trivial) and φ admissible function for R. Since Ps is the
fundamental solution of the �s-equation,

|〈ϕT , φ〉| = |〈�s Ps ∗ T , ϕφ〉| ≤ |〈(−�)s Ps ∗ T , ϕφ〉| + |〈Ps ∗ T , ∂t (ϕφ)〉| =: I1 + I2.

Regarding I2, observe that defining β := 1 − 1
2s ∈ (0, 1/2] we get

∂t (ϕφ) = c ∂
1−β
t

(

∂t (ϕφ) ∗t |t |−β
)

,

for some constant c. The latter can be checked via the Fourier transform with respect to the
t variable. Therefore, applying Theorem 3.1 we get

I2 � c|〈∂1−β
t Ps ∗ T , ∂t (ϕφ) ∗t |t |−β〉| � �(R)n+2s(1−β) = �(R)n+1.

To study I1 we distinguish whether if s = 1 or s < 1. If s = 1, Theorem 3.2 yields

I1 = |〈�W ∗ T , ϕφ〉| = |〈∇xW ∗ T ,∇x (ϕφ)〉| � �(R)n+1.

Recall that the operator (−�)s can be rewritten as

(−�)s(·) �
n

∑

i=1

∂xi

(

1

|x |n+2s−2

)

∗n ∂xi (·),

where ∗n indicates that the convolution is taken with respect the first n spatial variables.
Therefore, by Theorem 3.4, since s ∈ (1/2, 1), we have

I1 �
n

∑

i=1

∣

∣

∣

∣

〈

∂xi Ps ∗ T , ∂xi

(

1

|x |n+2s−2

)

∗n (ϕφ)

〉∣

∣

∣

∣

=
n

∑

i=1

∣

∣

〈

∂xi Ps ∗ T , ∂xi [In
2−2s(ϕφ)]〉∣∣ � �(R)n+1,

and we are done. ��
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Remark 5.1 Let us observe that in the particular case in which T is compactly supported, we
may simply convey that Q := R

n+1 and ϕ ≡ 1 so that we deduce

|〈T , φ〉| � �(R)n+1,

for any R s-parabolic cube and φ admissible function for R. Therefore, bearing in mind
Lemma 5.1, if E ⊂ R

n+1 is a compact set with Hn+1
ps (E) = 0 and T is a distribution

supported on E and satisfying the BMOps estimates of Theorem 5.2, choosing �0 := ∞ we
get T ≡ 0.

Theorem 5.3 For any s ∈ (1/2, 1] and E ⊂ R
n+1 compact set,

	�s ,∗(E) ≈ Hn+1∞,ps (E).

Proof Let us first prove
	�s ,∗(E) � Hn+1∞,ps (E). (22)

Proceed by fixing ε > 0 and {Ak}k a collection of sets in R
n+1 that cover E such that

∞
∑

k=1

diamps (Ak)
n+1 ≤ Hn+1∞,ps (E) + ε.

Now, for each k let Qk an open s-parabolic cube centered at some point ak ∈ Ak with
side length �(Qk) = diamps (Ak), so that E ⊂ ⋃

k Qk . Apply the compactness of E and
[8, Lemma 3.1] to consider {ϕk}Nk=1 a collection of smooth functions satisfying, for each

k: 0 ≤ ϕk ≤ 1, supp(ϕk) ⊂ 2Qk ,
∑N

k=1 ϕk = 1 in
⋃N

k=1 Qk and also ‖∇xϕk‖∞ ≤
�(2Qk)

−1, ‖∂tϕk‖ ≤ �(2Qk)
−2s . Hence, by Theorem 5.2, if T is any distribution admissible

for 	�s ,∗(E),

|〈T , 1〉| =
∣

∣

∣

∣

N
∑

k=1

〈T , ϕk〉
∣

∣

∣

∣

�
N

∑

k=1

�(2Qk)
n+1 �

N
∑

k=1

diamps (Ak)
n+1 ≤ Hn+1∞,ps (E) + ε.

Since this holds for any T and ε > 0 can be arbitrarily small, (22) follows.
For the lower bound we will apply (an s-parabolic version of) Frostman’s lemma [15,

Theorem 8.8], which can be proved using an s-parabolic dyadic lattice, as it is presented in
the proof of [14, Lemma 5.1]. Assume thenHn+1∞,ps (E) > 0 and consider a non trivial positive
Borel regular measure μ supported on E with μ(E) ≥ cHn+1∞,ps (E) and μ(B(x, r)) ≤ rn+1

for all x ∈ R
n+1, r > 0. If we prove that

‖∇x Ps ∗ μ‖∗,ps � 1 and ‖∂
1
2s
t Ps ∗ μ‖∗,ps � 1,

we will be done, since this will imply 	�s ,∗(E) � 〈μ, 1〉 = μ(E) � Hn+1∞,ps . But by

Lemma 4.2 we already have ‖∂
1
2s
t Ps ∗μ‖∗,ps � 1, so we are only left with the BMOps norm

of ∇x Ps ∗ μ. Thus, let us fix an s-parabolic ball B(x0, r) and consider the characteristic
function χ2B associated to 2B. Denote also χ2Bc = 1 − χ2B . In this setting, we pick

cB := ∇x Ps ∗ (χ2Bcμ)(x0).

Using Theorem 2.2 it easily follows that this last expression is well-defined. Let us now
estimate ‖∇x Ps ∗ μ‖∗,ps ,
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1

|B|
∫

B
|∇x Ps ∗ μ(y) − cB |dy

≤ 1

|B|
∫

B

( ∫

2B
|∇x Ps(y − z)|dμ(z)

)

dy

+ 1

|B|
∫

B

( ∫

Rn+1\2B
|∇x Ps(y − z) − ∇x Ps(x0 − z)|dμ(z)

)

dy =: I1 + I2.

To deal with I1 we first notice that by Theorem 2.2 and Tonelli’s theorem we have

I1 � 1

|B|
∫

2B

( ∫

B

1

|y − z|n+1
ps

dy

)

dμ(z).

Writing B = B0 × I0 ⊂ R
n × R, y = (y, t), z = (z, u) and choosing 0 < ε < 2s − 1,

integration in polar coordinates yields

I1 � 1

|B|
∫

2B

( ∫

B0

dy

|y − z|n−ε

∫

I0

dt

|t − u| 1+ε
2s

)

dμ(z) � 1

|B|
(

rε(r2s)1−
1+ε
2s

)

μ(2B) � 1.

Regarding I2, we name x := x0 − z and x ′ := y − z, and observe that |x − x ′|ps ≤ |x |ps /2.
Hence, we apply the fourth estimate in Theorem 2.2 with 2ζ = 1 since s > 1/2, and obtain

I2 � 1

|B|
∫

B

( ∫

Rn+1\2B
|y − x0|ps
|z − x0|n+2

ps

dμ(z)

)

dy ≤ r
∫

Rn+1\2B
dμ(z)

|z − x0|n+2
ps

= r2ζ
∞

∑

j=1

∫

2 j+1B\2 j B

dμ(z)

|z − x0|n+2
ps

� r
∞

∑

j=1

(2 j+1r)n+1

(2 j r)n+2 �
∞

∑

j=1

1

2 j
� 1,

and we are done. ��
Theorem 5.4 Let s ∈ (1/2, 1]. A compact set E ⊂ R

n+1 is removable for s-caloric functions
with BMOps -(1,

1
2s )-derivatives if and only if 	�s ,∗(E) = 0.

Proof Fix E ⊂ R
n+1 compact set and begin by assuming that is removable. Now pick T

admissible for 	�s ,∗(E) and observe that defining f := Ps ∗ T , we have ‖∇x f ‖∗,ps < ∞,

‖∂
1
2s
t f ‖∗,ps < ∞ and �s f = 0 on R

n+1 \ E . So by hypothesis �s f = 0 in R
n+1 and

therefore T ≡ 0. Since T was an arbitrary admissible distribution for 	�s ,∗(E), we deduce
that 	�s ,∗(E) = 0.

Let us now assume	�s ,∗(E) = 0 and prove the removability of E . Notice that byTheorem
5.3 we get Hn+1∞,ps (E) = 0 and thus, by [15, Lemma 4.6], we have Hn+1

ps (E) = 0. With this
in mind, fix � any open set and f : R

n+1 → R any function with ‖∇x f ‖∗,ps < ∞,

‖∂
1
2s
t f ‖∗,ps < ∞ and �s f = 0 on � \ E . We will assume �s f 
= 0 in � and reach

a contradiction. The case � ∩ E = ∅ is trivial, so we assume � ∩ E 
= ∅. Define the
distribution

T := �s f

‖∇x f ‖∗,ps + ‖∂
1
2s
t f ‖∗,ps

,

which is such that ‖∇x Ps ∗ T ‖∗,ps ≤ 1, ‖∂
1
2s
t Ps ∗ T ‖∗,ps ≤ 1 and supp(T ) ⊂ E ∪ �c. Since

T 
= 0 in �, there exists Q s-parabolic cube with 4Q ⊂ � so that T 
= 0 in Q. Observe that
Q ∩ E 
= ∅. Then, by definition, there is ϕ test function supported on Q with 〈T , ϕ〉 > 0.
Consider

ϕ̃ := ϕ

‖ϕ‖∞ + �(Q)‖∇xϕ‖∞ + �(Q)2s‖∂tϕ‖∞ + �(Q)2‖�ϕ‖∞
,
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so that ϕ̃ is admissible for Q. Apply Theorem 5.2 to deduce that ϕ̃T has upper s-parabolic
growth of degree n + 1 for cubes R with �(R) ≤ �(Q). Apply Lemma 5.1 to ϕ̃T with the
compact set Q ∩ E , �0 := �(Q) and d := n + 1. Then,

|〈ϕ̃T , ψ〉| = 0, ∀ψ ∈ C∞
c (Rn+1),

sinceHn+1
ps (Q ∩ E) = 0. This would imply ϕ̃T ≡ 0, which is impossible, since 〈ϕ, T 〉 > 0.

Therefore �s f = 0 in �, and by the arbitrariness of � and f we are done. ��

5.2 The capacity 02s,˛

We shall now present an s-parabolic Lipα variant of the caloric capacity presented above.

Definition 5.3 Given s ∈ (1/2, 1], α ∈ (0, 1) and E ⊂ R
n+1 compact set, define its Lipα,ps -

caloric capacity as
	�s ,α(E) := sup |〈T , 1〉|,

where the supremum is taken among all distributions T with supp(T ) ⊂ E and satisfying

‖∂xi Ps ∗ T ‖Lipα,ps ≤ 1, ∀i = 1, . . . , n, ‖∂
1
2s
t Ps ∗ T ‖Lipα,ps

≤ 1.

Such distributions will be called admissible for 	�s ,α(E).

Definition 5.4 A compact set E ⊂ R
n+1 is said to be removable for s-caloric functions with

Lipα,ps -(1,
1
2s )-derivatives if for any open subset � ⊂ R

n+1, any function f : R
n+1 → R

with

‖∇x f ‖Lipα,ps
< ∞, ‖∂

1
2s
t f ‖Lipα,ps

< ∞,

satisfying the �s-equation in � \ E , also satisfies the previous equation in the whole �.

As in the s-parabolic BMO case, if T is a compactly supported distribution satisfying
the required normalization conditions, T will present upper s-parabolic growth of degree
n + 1 + α. In fact, the following result holds:

Theorem 5.5 Let s ∈ (1/2, 1], α ∈ (0, 2s − 1) and T be a distribution in R
n+1 with

‖∂xi Ps ∗ T ‖Lipα,ps ≤ 1, ∀i = 1, . . . , n, ‖∂
1
2s
t Ps ∗ T ‖Lipα,ps

≤ 1.

Let Q be a fixed s-parabolic cube and ϕ admissible for Q. Then, if R is any s-parabolic cube
with �(R) ≤ �(Q) and φ is admissible for R, we have |〈ϕT , φ〉| �α �(R)n+1+α .

Proof Let T , Q and ϕ be as above. Let us also consider R s-parabolic cube with �(R) ≤ �(Q)

and R ∩ Q 
= ∅ and φ admissible function for R. We proceed as in the proof of Theorem
5.2 to obtain

|〈ϕT , φ〉| ≤ |〈(−�)s Ps ∗ T , ϕφ〉| + |〈Ps ∗ T , ∂t (ϕφ)〉| =: I1 + I2.

Regarding I2, we now define define β := 1 − 1
2s and observe that 2sβ = 2s − 1 > α, so

applying Theorem 3.1 we get I2 �α �(R)n+1+α . The study of I1 is also analogous to that
done in Theorem 5.2. The case s = 1 follows in exactly the same way by Theorem 3.2, and
if s ∈ (1/2, 1) we also have

I1 �
n

∑

i=1

∣

∣

〈

∂xi Ps ∗ T , ∂xi [In
2−2s(ϕφ)]〉∣∣.

So by Theorem 3.4 and condition α < 2s − 1 we deduce the desired result. ��
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Theorem 5.6 For any s ∈ (1/2, 1], α ∈ (0, 2s − 1) and E ⊂ R
n+1 compact set,

	�s ,α(E) ≈α Hn+1+α∞,ps (E).

Proof For the upper bound we proceed analogously as we have done in the proof of Theorem
5.3, using now the growth restriction given by Theorem 5.5. So we focus on the lower bound,
which will also rely on Frostman’s lemma. Assume then Hn+1+α∞,ps (E) > 0 and consider
a non trivial positive Borel measure μ supported on E with μ(E) ≥ cHn+1+α∞,ps (E) and
μ(B(x, r)) ≤ rn+1+α for all x ∈ R

n+1, r > 0. It is enough to check

‖∂xi Ps ∗ μ‖Lipα,ps �α 1, ∀i = 1, . . . , n and ‖∂
1
2s
t Ps ∗ μ‖Lipα,ps �α 1.

Notice that the right inequality follows directly from Lemma 4.3 with β := 1
2s , so we just

focus on controlling the s-parabolic Lipα seminorm of the spatial derivatives of Ps ∗ μ. Fix
i = 1, . . . , n and choose any x, y ∈ R

n+1 with x 
= y. Consider the following partition

R1 : = {

z : |x − y|ps ≤ |x − z|ps /2
} ∪ {

z : |y − x |ps ≤ |y − z|ps /2
}

,

R2 := R
n+1 \ R1 = {

z : |x − y|ps > |x − z|ps /2
} ∩ {

z : |y − x |ps > |y − z|ps /2
}

,

with their corresponding characteristic functions χ1, χ2 respectively. This way, we have

|∂xi Ps ∗ μ(x) − ∂xi Ps ∗ μ(y)|
|x − y|αps

≤ 1

|x − y|αps

∫

|x−y|ps ≤|x−z|ps /2
|∂xi Ps(x − z) − ∂xi Ps(y − z)|dμ(z)

+ 1

|x − y|αps

∫

|y−x |ps ≤|y−z|ps /2
|∂xi Ps(x − z) − ∂xi Ps(y − z)|dμ(z)

+ 1

|x − y|αps

∫

R2

|∂xi Ps(x − z) − ∂xi Ps(y − z)|dμ(z) =: I1 + I2 + I3.

Regarding I1, apply the fourth estimate of Theorem 2.2 to obtain

I1 � 1

|x − y|αps

∫

|x−y|ps ≤|x−z|ps /2
|x − y|ps
|x − z|n+2

ps

dμ(z).

Split the previous domain of integration into the s-parabolic annuli

A j := 2 j+1B
(

x, |x − y|ps
) \ 2 j B

(

x, |x − y|ps
)

, for j ≥ 1,

and use that μ has upper parabolic growth of degree n + 1 + α to deduce

I1 � 1

|x − y|α−1
ps

∞
∑

j=1

∫

A j

dμ(z)

|x − z|n+2
ps

� 1

|x − y|α−1
ps

∞
∑

j=1

(2 j+1|x − y|ps )n+1+α

(2 j |x − y|ps )n+2

�
∞

∑

j=1

1

2(1−α) j
�α 1.
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The study of I2 is analogous interchanging the roles of x and y. Finally, for I3, we apply the
first estimate of Theorem 2.2 so that

I3 � 1

|x − y|αps

∫

R2

dμ(z)

|x − z|n+1
ps

+ 1

|x − y|αps

∫

R2

dμ(z)

|y − z|n+1
ps

≤ 1

|x − y|αps

∫

|x−y|ps >|x−z|ps /2
dμ(z)

|x − z|n+1
ps

+ 1

|x − y|αps

∫

|y−x |ps >|y−z|ps /2
dμ(z)

|y − z|n+1
ps

=: I31 + I32.

Concerning I31, split the domain of integration into the (decreasing) s-parabolic annuli

˜A j := 2− j B
(

x, |x − y|ps
) \ 2− j−1B

(

x, |x − y|ps
)

, for j ≥ −1.

Thus, in this case we have

I31 � 1

|x − y|αps

∞
∑

j=−1

∫

˜A j

dμ(z)

|x − z|n+1
ps

� 1

|x − y|αps

∞
∑

j=−1

(2− j |x − y|ps )n+1+α

(2− j−1|x − y|ps )n+1

�
∞

∑

j=−1

1

2α j
�α 1.

On the other hand, for I32 we apply the same reasoning but using the partition given by

˜A′
j := 2− j Bp

(

y, |y − x |ps
) \ 2− j−1Bp

(

y, |y − x |ps
)

, for j ≥ −1,

yielding also I32 � 1. Combining the estimates obtained for I1, I2 and I3 we deduce

|∂xi Ps ∗ μ(x) − ∂xi Ps ∗ μ(y)|
|x − y|αps

�α 1,

and since the (different) points x and y were arbitrarily chosen, we deduce the desired s-
parabolic Lipα condition. ��
Theorem 5.7 Let s ∈ (1/2, 1] and α ∈ (0, 2s − 1). A compact set E ⊂ R

n+1 is removable
for s-caloric functions with Lipα,ps -(1,

1
2s )-derivatives if and only if 	�s ,α(E) = 0.

Proof The proof is completely analogous to that of Theorem 5.4, now using Theorems 5.5
and 5.6, as well as Lemma 5.1 with d := n + 1 + α. ��

5.3 The capacity ��
2s,∗

Now, we shall present the BMOps variant of the capacities presented in [13, §4 & §7]. To
be precise, in the aforementioned reference, Mateu and Prat work with the normalization
conditions

‖(−�)s−
1
2 Ps ∗ T ‖∞ ≤ 1, ‖∂1−

1
2s

t Ps ∗ T ‖∗,ps ≤ 1,
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allowing s ∈ [1/2, 1). In our case we will deal with its s-parabolic BMO variant and we
define it more generally as follows:

Definition 5.5 Given s ∈ (0, 1], σ ∈ [0, s) and E ⊂ R
n+1 compact set, define its �σ -

BMOps -caloric capacity as
γ σ
�s ,∗(E) := sup |〈T , 1〉|,

where the supremum is taken among all distributions T with supp(T ) ⊂ E and satisfying

‖(−�)σ Ps ∗ T ‖∗,ps ≤ 1, ‖∂σ/s
t Ps ∗ T ‖∗,ps ≤ 1.

Such distributions will be called admissible for γ σ
�s ,∗(E).

Definition 5.6 Let s ∈ (0, 1] and σ ∈ [0, s). A compact set E ⊂ R
n+1 is said to be removable

for s-caloric functions withBMOps -(σ, σ/s)-Laplacian if for any open subset � ⊂ R
n+1,

any function f : R
n+1 → R with

‖(−�)σ f ‖∗,ps < ∞, ‖∂σ/s
t f ‖∗,ps < ∞,

satisfying the �s-equation in � \ E , also satisfies the previous equation in the whole �. If
σ = 0, we will also say that E is removable for BMOps s-caloric functions.

Firstly, we shall prove that if T is a compactly supported distribution satisfying the
expected normalization conditions, then T has upper s-parabolic growth of degreen+2s−2σ .
In fact, we prove a stronger result:

Theorem 5.8 Let s ∈ (0, 1], σ ∈ [0, s) and T be a distribution in R
n+1 with

‖(−�)σ Ps ∗ T ‖∗,ps ≤ 1, ‖∂σ/s
t Ps ∗ T ‖∗,ps ≤ 1.

Let Q be a fixed s-parabolic cube and ϕ an admissible function for Q. Then, if R is any s-
parabolic cubewith�(R) ≤ �(Q)andφ is admissible for R,wehave |〈ϕT , φ〉| �σ �(R)n+2σ .

Proof Let T , Q and ϕ be as above, as well as R s-parabolic cube with �(R) ≤ �(Q) and
R ∩ Q 
= ∅, and φ admissible function for R. We already know, in light of the proof of
Theorem 5.2,

|〈ϕT , φ〉| ≤ |〈(−�)s Ps ∗ T , ϕφ〉| + |〈Ps ∗ T , ∂t (ϕφ)〉| =: I1 + I2.

For I1, simply apply Theorem 3.3 with β := s − σ so that

I1 = |〈(−�)σ Ps ∗ T , (−�)s−σ (ϕφ)〉| �σ �(R)n+2σ

Regarding I2, if σ > 0, observe that defining β := 1 − σ/s ∈ (0, 1) we get

∂t (ϕφ) �σ ∂
1−β
t

(

∂t (ϕφ) ∗t |t |−β
)

,

so by Theorem 3.1 we are done. If σ = 0, we simply have

I2 = |〈Ps ∗ T − (Ps ∗ T )R, ∂t (ϕφ)〉| ≤
∫

Q∩R

∣

∣Ps ∗ T (x) − (P ∗ T )R
∣

∣

∣

∣∂t (ϕφ)(x)
∣

∣dx

≤ �(R)−2s
∫

R

∣

∣P ∗ T (x) − (P ∗ T )R
∣

∣dx ≤ �(R)−2s�(R)n+2s‖Ps ∗ T ‖∗,ps ≤ �(R)n .

��
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Theorem 5.9 For any s ∈ (0, 1], σ ∈ [0, s) and E ⊂ R
n+1 compact set,

γ σ
�s ,∗(E) ≈σ Hn+2σ∞,ps (E).

Proof Again, for the upper bound we proceed analogously as in the proof of Theorem 5.3,
using now Theorem 5.8. For the lower bound, we apply Frostman’s lemma. Assume then
Hn+2σ∞,ps (E) > 0 and consider a non trivial positive Borel measure μ supported on E with
μ(E) ≥ cHn+2σ∞,ps (E) and μ(B(x, r)) ≤ rn+2σ for all x ∈ R

n+1, r > 0. We have to prove

‖(−�)σ Ps ∗ T ‖∗,ps ≤ 1, ‖∂σ/s
t Ps ∗ T ‖∗,ps ≤ 1,

If σ > 0, by Lemma 4.2 with β := σ/s we already have ‖∂σ/s
t Ps ∗ μ‖∗,ps �σ 1. So we

are left to control the BMOps norm of (−�)σ Ps ∗ μ for σ ∈ [0, s). Thus, let us fix an
s-parabolic ball B(x0, r) and consider the characteristic function χ2B associated to 2B. Set
also χ2Bc = 1 − χ2B . In this setting, we pick

cB := (−�)σ Ps ∗ (χ2Bcμ)(x0).

Using Theorem 2.3 it easily follows that this last expression is well-defined. We estimate
‖(−�)σ Ps ∗ μ‖∗,ps using the previous constant:

1

|B|
∫

B
|(−�)σ Ps ∗ μ(y) − cB |dy

≤ 1

|B|
∫

B

( ∫

2B
|(−�)σ Ps(y − z)|dμ(z)

)

dy

+ 1

|B|
∫

B

( ∫

Rn+1\2B
|(−�)σ Ps(y − z) − (−�)σ Ps(x0 − z)|dμ(z)

)

dy =: I1 + I2.

To deal with I1, notice that by Theorem 2.3, choosing 0 < ε < 2(s − σ) and arguing as in
Theorem 5.3 we have

I1 �σ

1

|B|
∫

2B

( ∫

B

dy

|y − z|n+2σ
ps

)

dμ(z) � 1

|B|
(

rε(r2s)1−
ε+2σ
2s

)

μ(2B) � 1

by the n + 2σ growth of μ. Regarding I2, notice that naming x := x0 − z and x ′ := y − z,
we have |x − x ′|ps ≤ |x |ps /2 so we can apply the fifth estimate of Theorem 2.3, that implies

I2 �σ
1

|B|
∫

B

( ∫

Rn+1\2B
|y − x0|2ζps

|z − x0|n+2σ+2ζ
ps

dμ(z)

)

dy ≤ r2ζ
∫

Rn+1\2B
dμ(z)

|z − x0|n+2σ+2ζ
ps

�σ 1,

again by the by the n + 2σ growth of μ. ��
Theorem 5.10 Let s ∈ (0, 1] and σ ∈ [0, s). A compact set E ⊂ R

n+1 is removable for
s-caloric functions with BMOps -(σ, σ/s)-Laplacian if and only if γ σ

�s ,∗(E) = 0.

Proof The proof is analogous to that of Theorem 5.4, applying Theorems 5.8, 5.9 and Lemma
5.1 with d := n + 2σ . ��

5.4 The capacity ��
2s,˛

We define now a capacity with an s-parabolic Lipα normalization condition.
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Definition 5.7 Given α ∈ (0, 1), s ∈ (0, 1], σ ∈ [0, s) and E ⊂ R
n+1 compact set, define

its �σ -Lipα,ps -caloric capacity as

γ σ
�s ,α(E) := sup |〈T , 1〉|,

where the supremum is taken among all distributions T with supp(T ) ⊂ E and satisfying

‖(−�)σ Ps ∗ T ‖Lipα,ps ≤ 1, ‖∂σ/s
t Ps ∗ T ‖Lipα,ps ≤ 1.

Such distributions will be called admissible for γ σ
�s ,α(E).

Definition 5.8 Let α ∈ (0, 1), s ∈ (0, 1] and σ ∈ [0, s). A compact set E ⊂ R
n+1 is said to

be removable for s-caloric functions with Lipα,ps -(σ, σ/s)-Laplacian if for any open subset
� ⊂ R

n+1, any function f : R
n+1 → R with

‖(−�)σ f ‖Lipα,ps < ∞, ‖∂σ/s
t f ‖Lipα,ps < ∞,

satisfying the �s-equation in � \ E , also satisfies the previous equation in the whole �. If
σ = 0, we will also say that E is removable for Lipα,ps s-caloric functions.

If T is a compactly supported distribution satisfying the above properties, then T presents
upper s-parabolic growth of degree n + 2σ + α. As in §5.2, the following result will only be
valid for a certain range of values of α, dependent on s and σ .

Theorem 5.11 Let s ∈ (0, 1], σ ∈ [0, s) and α ∈ (0, 1) with α < 2s − 2σ . Let T be a
distribution in R

n+1 with

‖(−�)σ Ps ∗ T ‖Lipα,ps ≤ 1, ‖∂σ/s
t Ps ∗ T ‖Lipα,ps ≤ 1.

Let Q be a fixed s-parabolic cube and ϕ an admissible function for Q. Then, if R is any
s-parabolic cube with �(R) ≤ �(Q) and φ is admissible for R, we have |〈ϕT , φ〉| �
�(R)n+2σ+α .

Proof Let T , Q and ϕ be as above, as well as R s-parabolic cube with �(R) ≤ �(Q) and
R ∩ Q 
= ∅, and φ admissible function for R. Again,

|〈ϕT , φ〉| ≤ |〈(−�)s Ps ∗ T , ϕφ〉| + |〈Ps ∗ T , ∂t (ϕφ)〉| =: I1 + I2.

For I1, simply apply Theorem 3.3 with β := s − σ so that

I1 = |〈(−�)σ Ps ∗ T , (−�)s−σ (ϕφ)〉| �σ,α �(R)n+2σ+α.

Regarding I2, if σ > 0, we define β := 1 − σ/s ∈ (0, 1) and apply Theorem 3.1. If σ = 0,
let x R be the center of R so that

I2 = |〈Ps ∗ T − Ps ∗ T (x R), ∂t (ϕφ)〉| ≤ �(R)−2s
∫

R
|x − x R |αpsdx � �(R)n+α.

��

Theorem 5.12 Let s ∈ (0, 1], σ ∈ [0, s) and α ∈ (0, 1) with α < 2s − 2σ . Then, for
E ⊂ R

n+1 compact set,
γ σ
�s ,α(E) ≈σ,α Hn+2σ+α∞,ps (E).
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Proof For the upper bound we argue again as in Theorem 5.3, using now Theorem 5.11.
For the lower bound, assume Hn+2σ+α∞,ps (E) > 0 and apply Frostman’s lemma to consider
a non trivial positive Borel measure μ supported on E with μ(E) ≥ cHn+2σ+α∞,ps (E) and
μ(B(x, r)) ≤ rn+2σ+α for all x ∈ R

n+1, r > 0. It suffices to verify

‖(−�)σ Ps ∗ T ‖Lipα,ps ≤ 1, ‖∂σ/s
t Ps ∗ T ‖Lipα,ps ≤ 1.

If σ > 0, by Lemma 4.3 with β := σ/s we already have ‖∂σ/s
t Ps ∗ μ‖Lipα,ps �σ,α 1. So we

are left to estimate ‖(−�)σ Ps ∗ μ‖Lipα,ps for σ ∈ [0, s), and we do it as in Theorem 5.6.
Choose any x, y ∈ R

n+1 with x 
= y and consider the following partition of R
n+1,

R1 : = {

z : |x − y|ps ≤ |x − z|ps /2
} ∪ {

z : |y − x |ps ≤ |y − z|ps /2
}

,

R2 := R
n+1 \ R1 = {

z : |x − y|ps > |x − z|ps /2
} ∩ {

z : |y − x |ps > |y − z|ps /2
}

,

with their corresponding characteristic functions χ1, χ2 respectively. This way, we have

|(−�)σ Ps ∗ μ(x) − (−�)σ Ps ∗ μ(y)|
|x − y|αps

≤ 1

|x − y|αps

∫

|x−y|ps ≤|x−z|ps /2
|(−�)σ Ps(x − z) − (−�)σ Ps(y − z)|dμ(z)

+ 1

|x − y|αps

∫

|y−x |ps ≤|y−z|ps /2
|(−�)σ Ps(x − z) − (−�)σ Ps(y − z)|dμ(z)

+ 1

|x − y|αps

∫

R2

|(−�)σ Ps(x − z) − (−�)σ Ps(y − z)|dμ(z) =: I1 + I2 + I3.

Regarding I1, the fifth estimate of Lemma 2.3 yields

I1 �σ

1

|x − y|αps

∫

|x−y|ps ≤|x−z|ps /2
|x − y|2ζps

|x − z|n+2σ+2ζ
ps

dμ(z).

Split the previous domain of integration into s-parabolic annuli centered at x with exponen-
tially increasing radii proportional to |x − y|ps , and deduce as in Theorem 5.6 that I1 �σ,α 1,
using now that μ has n + 2σ + α growth. For I2, we argue as in I1 just interchanging the
roles of x and y. Finally, for I3, the first estimate of Lemma 2.3 yields

I3 ≤ 1

|x − y|αps

∫

R2

dμ(z)

|x − z|n+2σ
ps

+ 1

|x − y|αps

∫

R2

dμ(z)

|y − z|n+2σ
ps

≤ 1

|x − y|αps

( ∫

|x−y|ps >|x−z|ps /2
dμ(z)

|x − z|n+2σ
ps

+
∫

|y−x |ps >|y−z|ps /2
dμ(z)

|y − z|n+2σ
ps

)

.

Both of the above integrals can be dealt with by splitting the domain of integration into
exponentially decreasing annuli, centered at x and y respectively, and using that μ has
growth of degree strictly bigger than n + 2σ . Thus, we obtain I3 �σ,α 1 and we are done ��
Theorem 5.13 Let s ∈ (0, 1], σ ∈ [0, s) and α ∈ (0, 1) with α < 2s − 2σ . A compact set
E ⊂ R

n+1 is removable for s-caloric functions with Lipα,ps -(σ, σ/s)-Laplacian if and only
if γ σ

�s ,α(E) = 0.

Proof The proof is analogous to that of Theorem 5.4, applying Theorems 5.11, 5.12 and
Lemma 5.1 with d := n + 2σ + α. ��
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6 Proofs of Theorems 2.4 and 2.5

Let us recall the statement of Theorem 2.4 and provide its proof:

Theorem 2.4 For any β, s ∈ (0, 1) and x = (x, t) 
= (0, t), the following hold:

1 . If n > 1, |∂β
t Ps(x)| �β

1

|x |n−2s |x |2s(1+β)
ps

,

2 . If n = 1 and β > 1 − 1

2s
, |∂β

t Ps(x)| �β,α

1

|x |1−2s+α|x |2s(1+β)−α
ps

, ∀α ∈ (2s − 1, 4s).

Moreover, for every n,

3 . |∇x∂
β
t Ps(x)| �β

1

|x |n−2s+1|x |2s(1+β)
ps

, 4 . |∂t∂β
t Ps(x)| �β

1

|x |n |x |2s(1+β)
ps

, for t 
= 0.

Finally, if x ′ ∈ R
n+1 is such that |x − x ′|ps ≤ |x |/2,

5 . |∂β
t Ps(x) − ∂

β
t Ps(x

′)| �β

|x − x ′|2ζps
|x |n+2ζ−2s |x |2s(1+β)

ps

.

Proof To prove 1, we use [13, Equation 2.9] and deduce the existence of a function Fs such
that for t > 0,

Ps(x, t) = 1

|x |n Fs
(

t

|x |2s
)

, (23)

and such that
Fs(u) ≈ u

(

1 + u1/s
)(n+2s)/2

. (24)

We extend continuously Fs(u) := 0 for u ≤ 0, so that (23) is verified for any value of t . The
existence of Fs is clear, since for t > 0 the function Ps can be written as

Ps(x, t) = 1

|x |n
(

t

|x |2s
)− n

2s

φn,s

[(

t

|x |2s
)− 1

2s
]

,

and defining for u > 0, Fs(u) := u− n
2s φn,s

(

u− 1
2s

)

, we are done. Notice that Fs is a bounded
continuous function, null for negative values of u, smooth in the domain u > 0 and vanishing
at ∞. Moreover, using the bounds obtained for φ′ and φ′′ we obtain the following estimates
for u > 0,

|F ′
s(u)| � 1

(

1 + u1/s
)(n+2s)/2

, |F ′′
s (u)| � 1

u
(

1 + u1/s
)(n+2s)/2

. (25)

Let us argue that, in fact, |F ′′
s (u)| is also a bounded function. Notice that, by definition,

∂2τ Ps(x, τ ) = 1

|x |n+4s F
′′
s

(

τ

|x |2s
)

⇔
∣

∣

∣

∣

F ′′
s

(

τ

|x |2s
)∣

∣

∣

∣

= |x |n+4s
∣

∣∂2τ Ps(x, τ )
∣

∣,

and using that Ps is the fundamental solution of the �s-equation and that τ > 0, we have

∂2τ Ps(x, τ ) = ∂τ

[ − (−�)s Ps(x, τ )
]

.
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By the commutativity of ∂τ and (−�)s , we deduce

∣

∣∂2τ Ps(x, τ )
∣

∣ = ∣

∣(−�)s
[

∂τ Ps(x, τ )
]∣

∣ = ∣

∣(−�)s
[ − (−�)s Ps(x, τ )

]∣

∣ � 1

|x |n+4s
ps

.

Therefore,
∣

∣

∣

∣

F ′′
s

(

τ

|x |2s
)∣

∣

∣

∣

� |x |n+4s

|x |n+4s
ps

= 1

max
{

1,
(

τ/|x |2s)1/(2s)
}n+4s � 1

[

1 + (

τ/|x |2s)1/s
](n+4s)/2

,

that implies the following (improved) bound for F ′′
s ,

|F ′′
s (u)| � 1

(

1 + u1/s
)(n+4s)/2

≤ 1, u > 0. (26)

We continue by observing that by a change of variables the following holds,

∂
β
t Ps(x, t) = 1

|x |n
[

∂
β
t Fs

( ·
|x |2s

)]

(t) = 1

|x |n+2sβ ∂βFs

(

t

|x |2s
)

. (27)

We shall prove the following inequality,

∣

∣∂βFs(u)
∣

∣ �β min

{

1,
1

|u|1+β

}

, (28)

where for u = 0 is just asking for
∣

∣∂βFs(0)
∣

∣ to be bounded. To verify (28) we distinguish
whether if u = 0, u < 0 or u > 0. For u = 0 observe that by definition and relation (24),

∣

∣∂βFs(0)
∣

∣ ≤
∫

R

|Fs(0) − Fs(w)|
|0 − w|1+β

dw =
∫ ∞

0

|Fs(w)|
w1+β

dw

�β

∫ ∞

0

1

w1+β

w
(

1 + w1/s
)(n+2s)/2

dw

=
∫ 1

0

dw

wβ
(

1 + w1/s
)(n+2s)/2

+
∫ ∞

1

dw

wβ
(

1 + w1/s
)(n+2s)/2

≈
∫ 1

0

dw

wβ
+

∫ ∞

1

dw

w
n
2s +1+β

� (1 − β)−1 +
(

n

2s
+ β

)−1

�β 1,

so case u = 0 is done. Let us assume u < 0, so that

∣

∣∂βFs(u)
∣

∣ ≤
∫

R

|Fs(w)|
||u| + w|1+β

dw �
∫ ∞

0

1

(|u| + w)1+β

w
(

1 + w1/s
)(n+2s)/2

dw.

On the one hand notice that the since |u| + w > w, the previous expression is bounded by a
constant depending on n, s and β (by the same arguments given for the case u = 0). On the
other hand, observe that

∣

∣∂βFs(u)
∣

∣ � 1

|u|1+β

∫ ∞

0

1

(w/|u| + 1)1+β

w
(

1 + w1/s
)(n+2s)/2

dw

= 1

|u|1+β

[ ∫ 1

0

1

(w/|u| + 1)1+β

w
(

1 + w1/s
)(n+2s)/2

dw
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+
∫ ∞

1

1

(w/|u| + 1)1+β

w
(

1 + w1/s
)(n+2s)/2

dw

]

=: 1

|u|1+β
(I1 + I2).

Regarding I1, since the denominators are bigger than 1, we directly have

I1 �
∫ 1

0
w dw ≤ 1. (29)

Turning to I2, we similarly obtain

I2 ≤
∫ ∞

1

w
(

1 + w1/s
)(n+2s)/2

dw ≤
∫ ∞

1

dw

w
n
2s

= w− n
2s +1

∣

∣

∣

∣

∞

1
= 1, (30)

where notice that− n
2s +1 < 0 becausen > 1 and s < 1. Therefore,we also have

∣

∣∂βFs(u)
∣

∣ �
|u|−1−β and we conclude that for u ≤ 0,

∣

∣∂βFs(u)
∣

∣ �β min

{

1,
1

|u|1+β

}

.

Let us finally assume u > 0. Begin by writing

∣

∣∂βFs(u)
∣

∣ ≤
∫

|w|≤u/2

|Fs(w) − Fs(u)|
|w − u|1+β

dw +
∫

u/2≤|w|≤2u

|Fs(w) − Fs(u)|
|w − u|1+β

dw

+
∫

|w|>2u

|Fs(w) − Fs(u)|
|w − u|1+β

dw =: I1 + I2 + I3.

We study each of the previous integrals separately. Concerning the first, notice that in its
domain of integration u/2 ≤ |w − u| ≤ 3u/2, i.e. |w − u| ≈ u. We split it as follows

I1 =
∫ 0

−u/2

|Fs(u)|
|w − u|1+β

dw +
∫ u/2

0

|Fs(w) − Fs(u)|
|w − u|1+β

dw =: I11 + I12.

Observe that I11 can be estimated by

I11 � u
(

1 + u1/s
)(n+2s)/2

∫ 0

−u/2

dw

|u|1+β
�β

u1−β

(

1 + u1/s
)(n+2s)/2

.

The expression of the right, viewed as a continuous function of u, tends to zero as u → 0
and decays as |u|−β− n

2s as u → ∞. Hence, it is bounded by a constant (depending on n, s
and β) and so I11 �β 1. On the other hand, to prove that I11 �β |u|−1−β it suffices to check
that the following expression is bounded by a constant,

u2
(

1 + u1/s
)(n+2s)/2

≈ uFs(u).

Again, it is clear it that tends to zero as u → 0, but observe that it behaves as |u|− n
2s +1 as

u → ∞, which vanishes only if n > 2s, that is, only if n > 1, since s < 1. But this is satisfied
by hypothesis. Therefore we deduce I11 �β min{1, |u|−1−β}. Regarding I12 proceed in a
similar manner to obtain

I12 �β

1

u1+β

∫ u/2

0

w
(

1 + w1/s
)(n+2s)/2

dw + u1−β

(

1 + u1/s
)(n+2s)/2

.
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The second summand has already been studied in I11. Regarding the first, notice that
∫ u/2

0

w
(

1 + w1/s
)(n+2s)/2

dw ≤
∫ 1

0

w
(

1 + w1/s
)(n+2s)/2

dw +
∫ ∞

1

w
(

1 + w1/s
)(n+2s)/2

dw

≤
∫ 1

0
w dw +

∫ ∞

1

dw

w
n
2s

� 1,

wherewe have applied the same arguments as in (29) and (30). On the other hand, by applying
the following inequality for w > 0,

(1 + w1/s)(n+2s)/2 > w1−β,

that can be checked by a direct computation, we deduce
∫ u/2

0

w
(

1 + w1/s
)(n+2s)/2

dw <

∫ u/2

0
wβdw �β u1+β.

Therefore we conclude

I12 �β

1

u1+β
min

{

1, u1+β
}

+ min

{

1,
1

u1+β

}

= 2min

{

1,
1

u1+β

}

,

that implies the desired estimate for I1.
Moving on to I2, we split it as follows

I2 =
∫ −u/2

−2u

|Fs(u)|
|w − u|1+β

dw +
∫ 2u

u/2

|Fs(w) − Fs(u)|
|w − u|1+β

dw =: I21 + I22.

The study of I21 is exactly the same as the one presented for I11, so we focus on I22. Apply
the mean value theorem to obtain

I22 ≤ sup
ν∈[u/2,2u]

|F ′
s(ν)|

∫ 2u

u/2

dw

|w − u|β �β sup
ν∈[u/2,2u]

|F ′
s(ν)| u1−β .

Therefore, if we are able to bound |F ′
s | by uβ−1 and u−2 we will be done. But recalling

relation (25), this is equivalent to proving that the following functions are bounded by a
constant:

uβ−1

(

1 + u1/s
)(n+2s)/2

,
u2

(

1 + u1/s
)(n+2s)/2

, (31)

that has already been done in I11. Therefore, we are only left to study I3,

I3 =
∫ −2u

−∞
|Fs(u)|

|w − u|1+β
dw +

∫ ∞

2u

|Fs(w) − Fs(u)|
|w − u|1+β

dw =: I31 + I32.

To deal with I31 we first notice that in the domain of integration |w − u| ≈ |w|, implying

I31 ≈ u
(

1 + u1/s
)(n+2s)/2

∫ −2u

−∞
dw

|w|1+β
�β

u1−β

(

1 + u1/s
)(n+2s)/2

�β min

{

1,
1

u1+β

}

.

We study I32 by splitting it as

I32 ≤
∫ ∞

2u

|Fs(w)|
|w − u|1+β

dw +
∫ ∞

2u

|Fs(u)|
|w − u|1+β

dw.
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The second summand is tackled in exactly the same way as I31, so we focus on the first one.
Using that |w − u| ≈ |w| � u, we have

∫ ∞

2u

|Fs(w)|
|w − u|1+β

dw � 1

u1+β

∫ ∞

2u

w
(

1 + w1/s
)(n+2s)/2

dw

≤ 1

u1+β

[ ∫ 1

0
w dw +

∫ ∞

1

dw

w
n
2s

]

� 1

u1+β
,

by the same arguments used in (29) and (30). On the other hand, we also have

∫ ∞

2u

|Fs(w)|
|w − u|1+β

dw �
∫ ∞

2u

1

w1+β

w
(

1 + w1/s
)(n+2s)/2

dw ≤
∫ 1

0

dw

wβ
+

∫ ∞

1

dw

w
n
2s

.

We already know that the second integral is bounded by a constant for n > 1, while the first
one is also bounded, since 0 < β < 1. So we conclude that I32 �β min{1, |u|−1−β} and we
obtain the desired bound for I3 and thus for |∂βFs(u)| if u > 0.

All in all, returning to (27), we finally have

|∂β
t Ps(x, t)| = 1

|x |n+2sβ

∣

∣

∣

∣

∂βFs

(

t

|x |2s
)∣

∣

∣

∣

�β

1

|x |n+2sβ min

{

1,
|x |2s(1+β)

|t |1+β

}

= 1

|x |n−2s min

{

1

|x |2s(1+β)
,

1

|t | 2s(1+β)
2s

}

= 1

|x |n−2s |x |2s(1+β)
ps

,

that is estimate 1 in the statement of the lemma.
In order to prove 2, we follow the same scheme. Indeed, the desired estimate follows once

we prove
∣

∣∂βFs(u)
∣

∣ �β,α min

{

1,
1

|u|1+β− α
2s

}

, for 2s − 1 < α < 4s.

If one followed the same arguments used to prove 1, in the regime u < 0 one already
encounters a first bound for which dimension n = 1 is troublesome, namely when trying to
obtain |∂βFs(u)| � |u|−1−β+ α

2s . However, in our current setting we observe that

∫ ∞

0

1

(w + |u|)1+β

w
(

1 + w1/s
)(n+2s)/2

dw

� 1

|u|1+β− α
2s

∫ ∞

0

1

(w/|u| + 1)1+β− α
2s

1

(w + |u|) α
2s

w
(

1 + w1/s
)(n+2s)/2

dw

� 1

|u|1+β− α
2s

( ∫ 1

0
w1− α

2s dw+
∫ ∞

1

dw

w
n+α
2s

)

�β,α

1

|u|1+β− α
2s

, since 2s−1 < α < 4s,

so the desired bound for |∂βFs(u)| follows. For the case u > 0 we also proceed analogously.
Let us comment those steps where the hypotheses on α and β come into play. In I1, using
the same notation as for the case n > 1, we obtain the estimates

I11 �β

u1−β

(

1 + u1/s
)(n+2s)/2

and I12 �β

1

u1+β

∫ u/2

0

w
(

1 + w1/s
)(n+2s)/2

dw,
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expression that we already know to be bounded by a constant. To prove that I11 �β,α

|u|−1−β+ α
2s observe that the function

u2− α
2s

(

1 + u1/s
)(n+2s)/2

≈ u1−
α
2s Fs(u)

tends to zero as u → 0, since α < 4s. Moreover, it behaves as |u|− n+α
2s +1 as u → ∞, which

also tends to 0 because α < 2s − 1. Thus, I11 �β,α min{1, |u|−1−β+ α
2s }. On the other hand,

since the following holds
(

1 + w1/s)(n+2s)/2
> w2− α

2s ,

we obtain

1

u1+β

∫ u/2

0

w
(

1 + w1/s
)(n+2s)/2

dw <
1

u1+β

∫ u/2

0

dw

w1− α
2s

�β,α

1

u1+β− α
2s

.

Therefore, I12 �β,α min{1, |u|−1−β+ α
2s }, hence I1 satisfies the same estimate. The study of

I2 is completely analogous to that of n > 1. Therefore we are only left to study I3. The
arguments can be carried out analogously up to the point of estimating

∫ ∞

2u

|Fs(w)|
|w − u|1+β

dw.

Using that |w − u| ≈ |w| � u, we have

∫ ∞

2u

|Fs(w)|
|w − u|1+β

dw � 1

u1+β− α
2s

∫ ∞

2u

w1− α
2s

(

1 + w1/s
)(n+2s)/2

dw

≤ 1

u1+β− α
2s

[ ∫ 1

0
w1− α

2s dw +
∫ ∞

1

dw

w
n+α
2s

]

�β,α

1

u1+β− α
2s

,

since 2s − 1 < α < 4s. Therefore, I32 �β,α min{1, |u|−1−β+ α
2s }, and with this we get the

desired bound for I3 and the completion of the proof for the case n = 1.
Moving on to estimate 3, we begin by defining for u > 0 the real variable function

Gs(u) := u− n+1
2s φ′

n

(

u− 1
2s

)

,

so that in light of relation (2) we have

∇x Ps(x, t) � x

|x |n+2Gs

(

t

|x |2s
)

, for t > 0, x 
= 0.

By (6) it is clear that

|Gs(u)| ≈ u
(

1 + u1/s
)(n+2s+2)/2

. (32)

Hence, as done for Fs , we can extend continuously the definition of Gs by zero for negative
values of u. Notice also that the previous estimate implies that Gs is bounded on R.

Our next claim is that the operators ∇x and ∂
β
t commute when applied to Ps . To prove

this, it suffices to check that the following integral is locally well-defined for every x and t ,
∫

R

|∇x Ps(x, t) − ∇x Ps(x, w)|
|t − w|1+β

dw.
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Split the domain of integration as
∫

|t−w|<1

|∇x Ps(x, t) − ∇x Ps(x, w)|
|t − w|1+β

dw +
∫

|t−w|≥1

|∇x Ps(x, t) − ∇x Ps(x, w)|
|t − w|1+β

dw.

The second integral is clearly well-defined, since∇x Ps(x, t) � x/|x |n+2Gs(t/|x |2s) and we
know that Gs is bounded. Thus, directly applying the triangle inequality in the numerator
and using that β > 0, we deduce that, indeed, the second integral is finite. For the first one,
we need some more work. We shall distinguish four possibilities:

Case 1: t ≤ −1. For such values of t the integral becomes null, since ∇x Ps(x, t) and
∇x P(x, w) are zero.

Case 2: t ∈ (−1, 0]. Observe that in this setting the integral can be rewritten as

∫ 1−|t |

0

|∇x Ps(x, w)|
|w − t |1+β

dw =
∫ 1−|t |

0

|∇x Ps(x, w) − ∇x Ps(x, 0)|
|w − t |1+β

dw

� 1

|x |n+2s+1

∫ 1−|t |

0

|G ′
s(τ/|x |2s)|

|w|β dw,

for some τ ∈ (0, w). By definition, there are constants C1,C2 so that for u > 0

G ′
s(u) = C1 u

−(n+2s+1)/(2s)φ′
n,s

(

u− 1
2s

) + C2 u
−(n+2s+2)/(2s)φ′′

n,s

(

u− 1
2s

)

,

so using the estimates for φ′
n and φ′′

n,s in (6) we deduce

|G ′
s(u)| ≈ 1

(

1 + u1/s
)(n+2s+2)/2

, (33)

which is a bounded function. Therefore

1

|x |n+2s+1

∫ 1−|t |

0

|G ′
s(τ/|x |2s)|

|w|β dw �β

1

|x |n+2s+1 < ∞,

for every x 
= 0.
Case 3: t ∈ (0, 1]. The integral we were initially studying can be written as

∫ 0

t−1

|∇x Ps(x, t)|
|t − w|1+β

dw +
∫ t+1

0

|∇x Ps(x, t) − ∇x Ps(x, w)|
|t − w|1+β

dw.

The second integral can be tackled in exactly the sameway as the integral inCase 2. Regarding
the first one, estimate it as follows

∫ 0

t−1

|∇x Ps(x, t) − ∇x Ps(x, 0)|
|t − w|1+β

dw ≤ 1

|x |n+2s+1

∫ 0

t−1

|G ′
s(τ/|x |2s)||t |
|t − w|1+β

dw

� 1

|x |n+2s+1

∫ 0

t−1

|G ′
s(τ/|x |2s)|

|w|β dw < ∞,

where we have used |t | ≤ |t − w| + |w| and also that |t − w| = (t + |w|) ≥ |w|. The last
inequality follows by the same arguments used in Case 2.

Case 4: t > 1. For this final case, the integral can be estimated as
∫ t+1

t−1

|∇x Ps(x, t)−∇x Ps(x, w)|
|t−w|1+β

dw � 1

|x |n+2s+1

∫ t+1

t−1

|G′
s(τ/|x |2s)|
|t−w|β dw �β

1

|x |n+2s+1 <∞.
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Thus, we have obtained the desired commutativity between ∂
β
t and ∇x , which yields

∇x∂
β
t Ps(x, t) = ∂

β
t

[∇x Ps
]

(x, t) = x

|x |n+2

[

∂
β
t Gs

( ·
|x |2s

)]

(t) = x

|x |n+2sβ+2 ∂βGs

(

t

|x |2s
)

.

Now it is a matter of showing that the following inequality holds

∣

∣∂βGs(u)
∣

∣ �β min

{

1,
1

|u|1+β

}

, (34)

The proof of (34) is essentially identical to the one given for (28), using the bounds for Gs

and G ′
s ((32) and (33) respectively) instead of those for Fs and F ′

s . The faster decay of Gs

and its derivative implies that one does not find any obstacles in (30). In fact, the integral that

appears in the current analysis is
∫ ∞
1 w− n+1

2s dw, which also converges for n = 1. So using
the previous estimate we deduce, for any n > 0,

|∇x∂
β
t Ps(x, t)| = 1

|x |n+2sβ+1

∣

∣

∣

∣

∂
β
t Gs

(

t

|x |2s
)∣

∣

∣

∣

�β

1

|x |n+2sβ+1 min

{

1,
|x |2s(1+β)

|t |1+β

}

= 1

|x |n−2s+1 min

{

1

|x |2s(1+β)
,

1

|t | 2s(1+β)
2s

}

= 1

|x |n−2s+1|x |2s(1+β)
ps

,

which proves the statement 3 in our lemma.
We continue by estimating ∂t∂

β
t Ps(x, t) for x 
= 0 and t 
= 0. Using (27) we rewrite it as

∂t∂
β
t Ps(x) = 1

|x |n+2s(1+β)
∂βF ′

s

(

t

|x |2s
)

,

and we claim that the following inequality holds for u 
= 0,

∣

∣∂βF ′
s(u)

∣

∣ �β min

{

1,
1

|u|1+β

}

.

Let us also recall that we had the following estimates for u > 0,

|F ′
s(u)| � 1

(

1 + u1/s
)(n+2s)/2

, |F ′′
s (u)| � 1

(

1 + u1/s
)(n+4s)/2

≤ 1

u
(

1 + u1/s
)(n+2s)/2

.

Observe that, on the one hand,

∣

∣∂βF ′
s(u)

∣

∣ ≤
∫

R

|F ′
s(u) − F ′

s(w)|
|u − w|1+β

dw

≤ sup
ν∈R

|F ′′
s (ν)|

∫

|u−w|<1

dw

|u − w|β + 2 sup
ν∈R

|F ′
s(ν)|

∫

|u−w|≥1

dw

|u − w|1+β
�β 1,

by the boundedness of F ′
s and F ′′

s , and the fact that β ∈ (0, 1). Therefore we are left to verify
∣

∣∂βF ′
s(u)

∣

∣ �β |u|−1−β . If u < 0, since F ′
s is supported on (0,∞) and |u − w| > |u| for

w ≥ 0, we have

∣

∣∂β F ′
s(u)

∣

∣ ≤
∫ ∞
0

|F ′
s(w)|

|u − w|1+β
dw �

∫ 1

0

dw

|u − w|1+β
+

∫ ∞
1

|F ′
s(w)|

|u − w|1+β
dw

� 1

|u|1+β

(

1 +
∫ ∞
1

dw
(

1 + w1/s
)(n+2s)/2

)

≤ 1

|u|1+β

(

1 +
∫ ∞
1

dw

w
n
2s +1

)

� 1

|u|1+β
,
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and we are done. If on the other hand u > 0, we estimate |∂βF ′
s | in a similar way as |∂βFs |

in the proof of point 1 of this lemma. Namely, we write

∣

∣∂βF ′
s(u)

∣

∣ ≤
∫

|w|≤u/2

|F ′
s(w) − F ′

s(u)|
|w − u|1+β

dw +
∫

u/2≤|w|≤2u

|F ′
s(w) − F ′

s(u)|
|w − u|1+β

dw

+
∫

|w|>2u

|F ′
s(w) − F ′

s(u)|
|w − u|1+β

dw =: I1 + I2 + I3.

Regarding I1, notice that in the domain of integration we have |w − u| ≈ u, so

I1 �
∫ 0

−u/2

|F ′
s(u)|

|w − u|1+β
dw +

∫ u/2

0

|F ′
s(u)|

|w − u|1+β
dw +

∫ u/2

0

|F ′
s(w)|

|w − u|1+β
dw.

The first two integrals can be directly bounded by

1

|u|1+β
|F ′

s(u)|
∫ u/2

0
dw ≤ 1

|u|1+β

(

u

(1 + u1/s)(n+2s)/2

)

≤ 1

|u|1+β
.

For the third,
∫ u/2

0

|F ′
s(w)|

|w − u|1+β
dw � 1

|u|1+β

( ∫ 1

0
|F ′

s(w)|dw +
∫ ∞

1
|F ′

s(w)|dw
)

� 1

|u|1+β

(

1 +
∫ ∞

1

dw

w
n
2s +1

)

� 1

|u|1+β
,

and we are done with I1. Moving on to I2, we split it as follows

I2 =
∫ −u/2

−2u

|F ′
s(u)|

|w − u|1+β
dw +

∫ 2u

u/2

|F ′
s(w) − F ′

s(u)|
|w − u|1+β

dw =: I21 + I22.

The study of I21 can be carried analogously to that of I1, since in that domain of integration
one has |w − u| ≥ 3|u|/2, so we focus on I22. Applying the mean value theorem and the
bound for |F ′′

s | of (25) as well as relation (24) we get

I22 ≤ sup
ν∈[u/2,2u]

|F ′′
s (ν)|

∫ 2u

u/2

dw

|w − u|β �β sup
ν∈[u/2,2u]

|F ′′
s (ν)| u1−β

� u1−β

u(1 + u1/s)(n+2s)/2
≈ Fs(u)u−1−β ≤ u−1−β .

So we are left to study I3. Since in its domain of integration we have |w − u| � w, we get

I3 �
∫ −2u

−∞
|F ′

s(u)|
|w|1+β

dw +
∫ ∞

2u

|F ′
s(w)| + |F ′

s(u)|
|w|1+β

dw

� 3

(1 + u1/s)(n+2s)/2

∫ ∞

2u

dw

|w|1+β
�β

u−β

(1 + u1/s)(n+2s)/2
≤ u−1−β,

that allows us to finally conclude

∣

∣∂βF ′
s(u)

∣

∣ �β min

{

1,
1

|u|1+β

}

, u 
= 0.

So using the previous estimate get, for x 
= 0 and t 
= 0,

|∂t∂β
t Ps(x, t)| = 1

|x |n+2s(1+β)

∣

∣

∣

∣

∂
β
t F

′
s

(

t

|x |2s
)∣

∣

∣

∣

�β

1

|x |n+2s(1+β)
min

{

1,
|x |2s(1+β)

|t |1+β

}
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= 1

|x |n min

{

1

|x |2s(1+β)
,

1

|t | 2s(1+β)
2s

}

= 1

|x |n |x |2s(1+β)
ps

.

Finally, the proof of estimate 5 is analogous to that of 5 in Theorem 2.3. Indeed, let x ′ =
(x ′, t ′) ∈ R

n+1 such that |x − x ′|ps ≤ |x |/2, which is a stronger assumption than that of
Theorem 2.3. In fact, it can be checked by a direct computation that this already implies
|x |ps ≤ 2|x ′|ps and |x | ≤ 2|x ′|. Write again x̂ = (x ′, t) and consider

|∂β
t Ps(x) − ∂

β
t Ps(x

′)| ≤ |∂β
t Ps(x) − ∂

β
t Ps (̂x)| + |∂β

t Ps (̂x) − ∂
β
t Ps(x

′)|.
By estimate 2, the first term in the above inequality now satisfies

|x − x ′| sup
ξ∈[x,x ′]

|∇x∂
β
t Ps(ξ, t)| �β

|x − x ′|
|x |n−2s+1|x |2s(1+β)

ps

≤ |x − x ′|ps
|x |n−2s+1|x |2s(1+β)

ps

� |x − x ′|2ζps
|x |n+2ζ−2s |x |2s(1+β)

ps

,

where we have used that 1 − 2ζ ≥ 0 and that condition |x − x ′|ps ≤ |x |/2 implies that the
line segment joining x with x ′ is at a distance of the time axis comparable to |x |. Regarding
the second term, assume t > t ′. If t and t ′ share sign we apply estimate 3 to directly deduce

|t − t ′| sup
τ∈[t,t ′]

|∂t∂β
t Ps(x

′, τ )| �β

|t − t ′|
|x |n |x |2s(1+β)

ps

≤ |x − x ′|2sps
|x |n |x |2s(1+β)

ps

� |x − x ′|2ζps
|x |n+2ζ−2s |x |2s(1+β)

ps

.

If on the other hand t > 0 and t ′ < 0, we use relation (9), valid also in this case, together
with |x ′| ≥ |x |/2 to finally obtain

|∂β
t Ps (̂x) − ∂

β
t Ps(x

′)|
≤ |∂β

t Ps(x
′, t) − ∂

β
t Ps(x

′, 0)| + |∂β
t Ps(x

′, 0) − ∂
β
t Ps(x

′, t ′)|
� t sup

τ∈(0,t)
|∂t∂β

t Ps(x
′, τ )| + |t ′| sup

τ∈(t ′,0)
|∂t∂β

t Ps(x
′, τ )|

�β

t + |t ′|
|x ′|n |x ′|2s(1+β)

� |t − t ′|
|x |n |x |2s(1+β)

ps

� |x − x ′|2ζps
|x |n+2ζ−2s |x |2s(1+β)

ps

.

��
Now we move on the case s = 1. Let us recall the statement of Theorem 2.5:

Theorem 2.5 For any x = (x, t) 
= (0, t) and β ∈ (0, 1), the following hold:

1 . For n > 2, |∂β
t W (x)| �β

1

|x |n−2|x |2+2β
p1

,

2 . For n = 2, |∂β
t W (x)| �β,α

1

|x |α|x |2+2β−α
p1

, ∀α ∈ (0, 2 + 2β],

3 . For n = 1, |∂β
t W (x)| �β

1

|x |1+2β
p1

.
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Moreover, for every n,

4 . |∇x∂
β
t W (x)| �β

1

|x |n−1|x |2+2β
p1

, 5 . |∂t∂β
t W (x)| �β

1

|x |n |x |2+2β
p1

.

Finally, if x ′ ∈ R
n+1 is such that |x − x ′|p1 ≤ |x |/2, then

6 . |∂β
t W (x) − ∂

β
t W (x ′)| �β

|x − x ′|p1
|x |n−1|x |2+2β

p1

.

First, we prove the following auxiliary lemma:

Lemma 6.1 Let f1, f2, f3 : R → R be defined as

f1(t) := e−1/t

tn/2 χt>0, f2(t) := e−1/t

tn/2+1 χt>0, f3(t) := e−1/t

tn/2+2 χt>0.

Then, if β ∈ (0, 1), the following estimates hold

if n > 2, |∂β
t f1(t)| �β min

{

1, |t |−1−β
}

,

if n = 2 and β >
1

2
, |∂β

t f1(t)| �β,α min
{

1, |t |−1−β+α/2}

, ∀α ∈ (0, 2 + 2β],
if n = 1, |∂β

t f1(t)| �β 1.

In addition, for every n,

|∂β
t f2(t)| �β min

{

1, |t |−1−β
}

, |∂β
t f3(t)| �β min

{

1, |t |−1−β
}

.

For t = 0 the previous estimates have to be understood simply as a bound by a constant
depending on n and β.

Proof We deal first with the estimate concerning ∂
β
t f1 for n > 2. We distinguish whether if

t = 0, t < 0 or t > 0. If t = 0 we are done because,

|∂β
t f1(0)| ≤

∫

R

| f1(u) − f1(0)|
|u − 0|1+β

du =
∫ ∞

0

e−1/u

u(n+2+2β)/2
du = 	

(

n + 2β

2

)

�β 1,

where 	 denotes the usual gamma function.
Let us continue by assuming t < 0. By definition,

|∂β
t f1(t)| ≤

∫

R

| f1(u)|
|u + |t ||1+β

du =
∫ ∞

0

e−1/u

un/2(u + |t |)1+β
du.

Observe that on the one hand, since |u + |t || ≥ u,

|∂β
t f1(t)| ≤

∫ ∞

0

e−1/u

u(n+2+2β)/2
du �β 1.

On the other hand, since n > 2,

|∂β
t f1(t)| ≤ 1

|t |1+β

∫ ∞

0

e−1/u

un/2(u/|t | + 1)1+β
du ≤ 1

|t |1+β

∫ ∞

0

e−1/u

un/2 du � 1

|t |1+β
,

Therefore, |∂β
t f1(t)| �β min

{

1, |t |−1−β
}

and we are done.
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If t > 0, we split the integral as follows

|∂β
t f1(t)| ≤

∫

|u|≤t/2

| f1(u) − f1(t)|
|u − t |1+β

du +
∫

t/2≤|u|≤2t

| f1(u) − f1(t)|
|u − t |1+β

du

+
∫

|u|≥2t

| f1(u) − f1(t)|
|u − t |1+β

du =: I1 + I2 + I3.

In I1 we have t/2 ≤ |u − t | ≤ 3t/2. Therefore,

I1 :=
∫ 0

−t/2

| f1(t)|
|u − t |1+β

du +
∫ t/2

0

| f1(u) − f1(t)|
|u − t |1+β

du � e−1/t

t (n+2β)/2
+

∫ t/2

0

| f1(u) − f1(t)|
t1+β

du.

By the definition of f1, the last term can be bound by

1

t1+β

∫ t/2

0

e−1/u

un/2 du + 1

t1+β

∫ t/2

0

e−1/t

tn/2 du � 1

t1+β

∫ t/2

0

e−1/u

un/2 du + e−1/t

t (n+2β)/2
. (35)

We split the remaining integral as follows

∫ t/2

0

e−1/u

un/2 du =
∫ 1

0

e−1/u

un/2 du +
∫ t/2

1

e−1/u

un/2 du

≤ e− 1
2t

∫ 1

0

e− 1
2u

un/2 du + e−2/t
∫ t/2

1

1

un/2 du � e− 1
2t + e− 1

2t

tn/2−1 ,

where in the first inequality we have used e−1/u ≤ e− 1
2u e− 1

2t , which is true for 0 ≤ u ≤ t/2;

and in the second the general inequality e−2/t ≤ e− 1
2t . In addition, observe that in the last

step we have used that n 
= 2 in order to compute the corresponding integral. Thus, returning
to (35), we obtain

I1 � e− 1
2t

t1+β
+ e− 1

2t

t (n+2β)/2
.

Notice that for t > 0

e− 1
2t ≤ 3min

{

1, t1+β
}

, e− 1
2t ≤ C min

{

t (n+2β)/2, t (n−2)/2}

, (36)

where C depends only on n and β, and the second estimate only holds for n > 1 (if n = 1,

e− 1
2t ≤ Ct (n+2β)/2 still holds). Therefore, we finally get

I1 �β

min
{

1, t1+β
}

t1+β
+ min

{

t (n+2β)/2, t (n−2)/2
}

t (n+2β)/2
� min

{

1,
1

t1+β

}

.

Let us turn to I2. Write

I2 :=
∫ −t/2

−2t

| f1(t)|
|u − t |1+β

du+
∫ 2t

t/2

| f1(u) − f1(t)|
|u − t |1+β

du � e−1/t

t (n+2β)/2
+

∫ 2t

t/2

| f1(u) − f1(t)|
|u − t |1+β

du,

(37)
where in the first integral we have used that 3t/2 ≤ |u − t | ≤ 3t . For the second integral
observe that

| f1(u) − f1(t)| ≤ sup
ξ∈[s,t]

| f ′
1(ξ)||u − t |, where f ′

1(ξ) =
(

1 − n

2
ξ

)

e−1/ξ

ξn/2+2 χξ>0.
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Since t/2 ≤ ξ ≤ 2t , we have

| f ′
1(ξ)| �

(

1 + t
) e− 1

2t

tn/2+2 χt>0 = (

1 + t
) e− 1

2t

tn/2+2 χt>1 + (

1 + t
) e− 1

2t

tn/2+2 χ0<t≤1

� e− 1
2t

tn/2+1 χt>1 + e− 1
2t

tn/2+2 χ0<t≤1.

Combining the last two estimates we can bound the remaining integral of (37) by

(

e− 1
2t

tn/2+1 χt>1 + 2e− 1
2t

tn/2+2 χ0<t≤1

) ∫ 2t

t/2

du

|u − t |β �β

e− 1
2t

t (n+2β)/2
χt>1 + e− 1

2t

t (n+2+2β)/2
χ0<t≤1.

Thus,

I2 �β

2e− 1
2t

t (n+2β)/2
+ e− 1

2t

t (n+2+2β)/2
.

If we now apply estimates

e− 1
2t ≤ C1 min

{

t (n+2β)/2, t (n−2)/2}

, e− 1
2t ≤ C2 min

{

t (n+2+2β)/2, tn/2}

,

for some constants C1,C2 depending on n and β, we conclude

I2 �β

min
{

t (n+2β)/2, t (n−2)/2
}

t (n+2β)/2
+ min

{

t (n+2+2β)/2, tn/2
}

t (n+2+2β)/2
� min

{

1,
1

t1+β

}

.

Finally, for I3, since |u|/2 ≤ |u − t | ≤ 3|u|/2, we have

I3 :=
∫ −2t

−∞
| f1(t)|

|u − t |1+β
du +

∫ ∞

2t

| f1(u) − f1(t)|
|u − t |1+β

du � e−1/t

t (n+2β)/2
+

∫ ∞

2t

| f1(u) − f1(t)|
|u − t |1+β

du

≤ e−1/t

t (n+2β)/2
+

∫ ∞

2t

e−1/u

u(n+2+2β)/2
du +

∫ ∞

2t

e−1/t

tn/2u1+β
du �β

e−1/t

t (n+2β)/2
+

∫ ∞

2t

e−1/u

u(n+2+2β)/2
du

�β min

{

1,
1

t1+β

}

+
∫ ∞

2t

e−1/u

u(n+2+2β)/2
du.

For the remaining integral observe that on the one hand
∫ ∞

2t

e−1/u

u(n+2+2β)/2
du ≤ 	

(

n + 2β

2

)

�β 1,

while on the other hand, since u > 2t ,
∫ ∞

2t

e−1/u

u(n+2+2β)/2
du � 1

t1+β

∫ ∞

2t

e−1/u

un/2 du ≤ 1

t1+β

∫ ∞

0

e−1/u

un/2 du � 1

t1+β
,

where the last inequality holds since n > 2. Therefore, combining the previous estimates we
conclude that for n > 2, |∂β

t f1(t)| �β min
{

1, t−1−β
}

.
Before approaching the case n = 2, let us comment that the case n = 1 also follows from

the above arguments. We also notice that the bounds for |∂β
t f2| and |∂β

t f3| are obtained by
exactly the same computations.

So we are left to verify the following estimate

|∂β
t f1(t)| �β,α min

{

1, |t |−1−β+α/2}

, ∀α ∈ (0, 3], n = 2,

that can be also obtained following the same scheme of proof.
��
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Proof of Theorem 2.5 We write Kβ(x) := ∂
β
t W (x). Regarding estimate 1, by the same rea-

soning presented at the beginning of the proof of [14, Lemma 2.1] we get

Kβ(x) � 1

|x |n+2β ∂
β
t f1

(

4t

|x |2
)

.

Hence, if n > 2, by Lemma 6.1 we get

|Kβ(x)| �β

1

|x |n+2β min

{

1,
|x |2+2β

|t |1+β

}

= 1

|x |n−2 min

{

1

|x |2+2β ,
1

|t |1+β

}

= 1

|x |n−2|x |2+2β
p1

.

For estimates 2 and 3 we follow the same procedure.
We move on to estimate 4. First, observe that the expression ∇x K is well-defined and that

the operators ∇x and ∂
β
t commute when applied to W .

We also observe that there is a constant C such that

∇xW (x, t) = C
x

(4t)n/2+1 e−|x |2/(4t) χt>0 = C
x

|x |n+2

( |x |2
4t

)n/2+1

e−|x |2/(4t) χt>0,

so we can write

∇xW (x, t) = C
x

|x |n+2 f2

(

4t

|x |2
)

,

with f2 defined in Lemma 6.1. Since ∇x and ∂
β
t commute,

∇x K (x, t) = C
x

|x |n+2 ∂
β
t

[

f2

(

4 ·
|x |2

)]

(t).

The previous fractional derivative can be written as follows

∂
β
t

[

f2

(

4 ·
|x |2

)]

(t) =
∫

R

f2(4u/|x |2) − f2(4t/|x |2)
|u − t |1+β

du � 1

|x |2β ∂
β
t f2

(

4t

|x |2
)

,

yielding the final equality

∇x K (x) = C
x

|x |n+2+2β ∂
β
t f2

(

4t

|x |2
)

.

Applying Lemma 6.1 we finally deduce 3:

|∇x K (x)| �β

1

|x |n+1+2β min

{

1,
|x |2+2β

|t |1+β

}

= 1

|x |n−1|x |2+2β
p1

.

Concerning inequality 4, since the operators ∂
β
t and ∂t commute, we directly have

∂t K (x) =
∫

R

∂tW (x, u) − ∂tW (x, t)

|u − t |1+β
du,

and this integral makes sense.
As done for ∇xW , we can also rewrite ∂tW as follows,

∂tW (x, t) = C1
e−|x |2/(4t)

tn/2+1 + C2|x |2 e−|x |2/(4t)

tn/2+2

=
[

C ′
1

|x |n+2

( |x |2
4t

)n/2+1

+ C ′
2

|x |n+2

( |x |2
4t

)n/2+2]

e−|x |2/(4t)
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= C ′
1

|x |n+2 f2

(

4t

|x |2
)

+ C ′
2

|x |n+2 f3

(

4t

|x |2
)

,

where f3 is defined in Lemma 6.1. By exactly the same change of variables as the one
performed when studying ∇x K , we reach the identity

∂t K (x) = C ′
1

|x |n+2+2β ∂
β
t f2

(

4t

|x |2
)

+ C ′
2

|x |n+2+2β ∂
β
t f3

(

4t

|x |2
)

.

By Lemma 6.1, we get inequality 4:

|∂t K (x)| �β

1

|x |n+2+2β min

{

1,
|x |2+2β

|t |1+β

}

= 1

|x |n |x |2+2β
p1

.

Finally, regarding 5, we follow exactly the same proof as that of estimate 4 in Theorem 2.4.
��
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