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ABSTRACT: Metabolite identification is a pivotal step in drug
discovery and development, enabling the comprehensive analysis
of drug-derived compounds within biological systems. However,
the complexity of liquid chromatography—mass spectrometry data
often results in numerous false positives, complicating the
identification of true metabolites. This study introduces a
machine-learning-based approach to improve the accuracy of v l

false positive detection in metabolite identification workflows. By | M Tree 1 Treen
incorporating expert knowledge, we develop a feature set for il % —

metabolite-related chromatographic peaks that characterizes true D4 v Tt

and false positives with high accuracy, integrating data from mass A

spectra’ Chromatographic signals’ and kjnetic proﬁles_ We validate False positive recommendation + Reason Machine learning model (GBDT)

this method via gradient boosting decision tree classifiers on both

publicly available and proprietary “real-world” data sets, including small molecules and new modalities. Our findings demonstrate
that machine learning-assisted techniques significantly reduce false positive identifications, thereby increasing the efficiency and
accuracy of metabolite identification processes.
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Bl INTRODUCTION

Metabolite identification (MetID) is a critical part of drug
discovery and development, providing insights into metabolic
liabilities and pathways of drug candidates and aiding the

manually approve or reject them based on criteria including
cross-peak parameters, fragments shared with parent com-
pounds, or trends across multiple samples (e.g., incubation
time series).
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identification of lead compounds for safe and effective
medicines. Accurate metabolite profiling is essential not only
for understanding metabolic challenges and pharmacokinetic
and pharmacodynamic properties but also for meeting
regulatory standards.

Liquid chromatography—mass spectrometry (LC-MS) is the
predominant analytical technique for MetID in the pharma-
ceutical industry, valued for its speed, stability, sensitivity, and
automation potential. It detects a wide range of metabolites in
complex samples, producing large data sets visualized as
chromatogram peaks. However, not all peaks represent true
metabolites; false positives can arise from contamination,
noise, processing errors, or even variations in LC-MS setups
such as chromatography conditions, ionization methods, or
mass analyzers.

Automatic software tools efficiently identify major metabo-
lite peaks based on chromatographic and spectral features,'
typically when signal intensity is sufficient. Lower-abundance
metabolites may be discarded if quality thresholds are applied,
risking missed detections, since MS signal intensity does not
always correlate with concentration. Consequently, experts
often configure software to reveal broad candidate peaks and
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Manual review is time-consuming and prone to error,
introducing variability and limiting scalability as the LC-MS
data volume grows with high-throughput screening.

To address these limitations, we developed a machine
learning framework for automatic detection and reduction of
false positives in MetID. Combining advanced classification
models with domain-specific feature engineering, our approach
improves the reliability of software-generated annotations,
while reducing manual review needs. This relies on stand-
ardized and consistent MetID data, achievable via platforms
like Oniro,” though the method is platform-agnostic.

Labels for training and evaluation derive from manual expert
review, informed by chromatographic, mass spectrometry, and

metabolic knowledge. While not infallible or a perfect gold
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Figure 1. Steps involved in the development of a false positive detection model.

standard, this aligns with current drug discovery practice,
where expert annotation remains the validation standard.

Our models use features similar to those considered by
experts to approximate their decision-making. Crucially,
models are trained only on expert-annotated data and do not
autonomously generate labels. Thus, they are designed to assist
and accelerate expert evaluation by prioritizing likely
candidates and reducing manual effort, not to replace it.

We evaluated our framework on multiple drug discovery
MetID data sets, including small molecules and macro-
molecules, some generated via Oniro by a MetID expert group.

Results show improved metabolite identification accuracy
and the potential to make metabolite profiling more efficient,
reliable, and scalable, supporting automation trends in drug
discovery workflows.”* The following sections detail our
methodology, key results, and application to real-world data
sets and discuss future impacts.

B RELATED WORK

Metabolomics aims for comprehensive detection and quanti-
tation of endogenous small molecules, using peak-quality
assessment to distinguish the true signal from noise across
thousands of features. In contrast, MetID, a targeted
subdomain of drug discovery, focuses on precise confirmation
of drug-derived metabolites, often relying on expert-driven
workflows that incorporate chromatographic and reaction-
specific cues.

Earlier metabolomics studies addressed peak quality through
machine learning and heuristics. Yu et al.” extracted over 100
features from ion chromatograms, using m/z database
matching as a proxy for true peaks, achieving scalability at
the expense of indirect labeling. Gloaguen et al.’ and Chetnik
et al.” used expert-labeled peaks to train classifiers on
chromatographic shape features, while Ju et al.® applied
entropy- and correlation-based rules to filter noise.

Manual review of candidate metabolite peaks remains
common in MetID, a time-consuming, variable process
exacerbated by large LC-MS data sets from high-throughput
screening. This reliance on manual or semiautomated methods
slows discovery and creates bottlenecks.

To streamline these workflows, software tools automate key
steps from raw LC-MS processing to structural elucidation and
interpretation. Some are vendor-specific, optimized for data

from the same manufacturer, such as MetaboLynx (Waters)
and MetabolitePilot (SCIEX),” while vendor-neutral tools like
MassMetaSite'® support several instruments and formats,
enhancing flexibility.

Many tools assist metabolite identification via external
chemical databases,"" but this is limited for newly synthesized
drug candidates absent from public repositories. MassMetaSite
overcomes this by generating metabolite structures from the
parent compound using user-defined biotransformation
reactions, enabling the elucidation of structure for novel
compounds.

Existing MetID studies have improved data processing'” and
LC-MS parameter prediction,"” but to our knowledge, no prior
work has used machine learning to replicate expert curation
logic based on the same features experts apply when flagging
false positives.

Our approach differs from those in metabolomics by
expanding beyond chromatographic peak quality and incorpo-
rating drug metabolism-specific information: MS fragmenta-
tion patterns, kinetic behavior, and reaction context are key
elements in expert MetID review. Integrating these directly
targets false positives in MetID pipelines, improving
throughput, reproducibility, and standardization and support-
ing more robust decision-making in drug discovery.

B METHODS

To enable our approach, we first created an explainable
machine learning classifier capable of identifying false positives
in the MetID data. The methodology, depicted in Figure 1,
involved several key steps. We compiled five MetID data sets,
processed them using specialized metabolite identification
software'’ with settings that maximize the number of potential
metabolite-related chromatographic peaks, and manually
labeled the resulting data. For each identified peak, we
developed a comprehensive description based on the available
information. These descriptions, along with the labels, were
used to train Gradient Boosting Decision Trees (GBDT)"*
models. To interpret the model’s predictions, we employed
explainability techniques based on SHapley Additive exPlan-
ations (SHAP)" values, which provide a unified measure of
feature importance by quantifying each feature’s contribution
to a model’s prediction.
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Table 1. Summary Statistics of the Datasets Used in This Study

Peak count Discard rate
Data set Experiments Min Median Max Total Min Median Max
SIT 86 3 26 75 2485 5.71% 70.59% 100.00%
MIT 27 9 41 160 1461 22.22% 76.19% 95.12%
Peptides 123 S 30 283 5573 0.00% 90.79% 100.00%
B DATA e Isotopic Pattern: The alignment between ob-
To assess the effectiveness of our proposed approach across served @d theoretical isotopic patterns for the
various MetID workflows, data were initially evaluated using metab'ol.lte peak. _For example, a small molecu}e
publicly available data sets for both peptides and small containing chlorln_e sho_uld have a 3:1 ratio
molecules. The peptide data are divided into five distinct data between the monoisotopic p eak and the +1 Da
sets, each characterized by different incubation conditions. peak an‘d a 3:2 ratio for the +2 l?a p eak. A poor
These data sets included a total of 123 LC—-MS/MS mat.ch in_these p atterns. may indicate a false
explerin;ents, en;ompassing 47f linear and cyclic peptides with E;:{;Z;‘yf?; x:stsli\giziléesézizzr:r:;ngz :::e;
molecular weights ranging from 708 to 4184 Da. Data
acquisition for gthree ofgtheg data sets was conducted using a the observed and theoretical patterns, normalized
Thermo Orbitrap instrument in data-dependent acquisition to the range [0, 1]. } ]
(DDA) mode, whereas the remaining two data sets were ° i/c[rso::rte}?é gi]ai’zofielrlotrilorclotlilrrrllte(i‘gr:}gl: rgelt;vtoll\l/[tg
acquired using a Waters Q-TOF instrument in data- _ :
independent acgquisition (DIA) mode. These compiled data area relat1v.e. to the parent compound can suggest
are collectively referred to as the peptide data set. The small a false. positive. ] )
molecule data were compiled from two distinct data sets. The ® Negative 'Controll Area Ratlo: The ratio between
first data set, referred to as the single incubation time data set MS areas in the incubation sample and the blank.
(SIT), comprised 86 LC—MS/MS experiments. These experi- The signals present in both are considered
ments used an AB Sciex TripleTOF 5600+ Mass Spectrometer nonspecific. Ideally, a specific signal unique to
in DDA mode on human liver microsomes incubated for 60 t}.le sample is /fNOt In the Blank” (NIB). If the
min, with substrates ranging in molecular weight from 144 to signal appears in bOth. the .sample and the.blank
733 Da. The second data set, referred to as the multiple (In Blank, IB), but with high area values in the
incubation time data set (MIT), consisted of 27 LC—MS/MS latt_er, it may indicate background noise or system
experiments. These experiments employed a combination of artifacts.
Thermo Orbitrap and Agilent 6550 iFunnel Q-TOF instru- * Fragmentation Pattern: The consistency of the
ments in both DDA and DIA modes on human hepatocytes metabolite’s fragmentation pattern with that of the
and human liver microsomes, with incubation times ranging parent compound, accounting for expected
from O to 140 min. The substrates in the MIT data set ranged modifications. Missing fragments or excessive
in molecular weight from 261 to 670 Da. noise can suggest a false positive.
The raw data were visualized using the WebMetabase o Chromatographic peak shape: The ideal chromato-
module in the Oniro software suite, which relies on graphic peak shape is characterized by a symmetrical
) . . o .
MassMetaSite'® to process the data. For more details on narrow peak with a Gaussian shape. ‘Talhn.g or fronting
how the software works, see.?'%'” Detailed information on the can occur for sev?ral reasons, including  column
data preprocessing steps is provided in the Supporting ?rjc;;cl::ed;n%algé I;lsstieé‘l,c;ratlon, but irregular shapes can
Information S1 and S2 for the SIT and MIT data sets, and e " " . . .
in'® for the peptide data set. Summary statistics of the data sets ® Kinetics: The relationship be.tween 1ncubz.1t10n time e?nd
are presented in Table 1, revealing some variability in the MSt ;rﬁ for t‘henmet;l?%l'ltte peak. ilrlst—l:g}encte}'atlor;
s i ke i et o o Spns el bl s gt et
1 )
differences were observed between the data sts. lites often show a sigmoidal shape. Deviation from these
patterns can signal an unexpected reaction mechanism
B LABELING or a false positive.
The criteria employed by the experts for MetID included but e Reaction Mechanism: The expected reactions based on
were not limited to the following: the experimental conditions. For example, glucuronides
® Mass Spectra: Mass spectral analysis involves evaluating \OA;thG Sli rrf;(:x?]l;igvaetresrrsl?c(izﬁrrllfst ﬁii{);ﬁteixpreer&?;?;;
se\{ere}I- key parameters to as-sess'the quality and multiple, improbable reactions for formation may be
reliability of metabolite identification, such as the coincidental matches based on mass shifts
following For the traini t, twi ienced 1' t )
. . or the training set, two experienced analysts manua
o m/z Difference: The deviation between the labeled false positi\gles in the dat:iets. One anal}zlst focused 01}17
observec.1 and calculated m/z values for. .the peptides, whereas the other reviewed small molecules. They
metabolite pea.k,' expressed as parts per n?lll}on evaluated each metabolite peak using all available data to
(ppm) _or milliDaltons (mDa). A deviation determine whether it was a true or false positive. The selected
exceedlng 2 thresho.lc.l (e.g, > 10 ppm) suggests metabolites for each experiment are shown in Supporting
a potential false positive. Information S3 and S4 for the SIT and MIT data sets,
C https://doi.org/10.1021/acs.analchem.5c02745
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Table 2. Description of All Features Used in the Model

Feature set

Mass spectra

Chromatographic
peak shape

Feature name

Peak count
Assignment count

Assignment ratio

Intensity sum

Assigned intensity
sum

Assigned intensity
ratio

Max assigned
intensity

Peaks above
thresholds

Assignments
above
thresholds

Assignment ratio
above
thresholds

Metabolite
intensity

Metabolite
position

Isotopic similarity

m/z difference
(ppm)

Negative control
ratio

Variance

Skewness

Kurtosis

Description
Total number of peaks detected in the
spectrum

Number of assigned peaks in the
spectrum

Assignment count/peak count

Sum of all relative intensities of peaks
in the spectrum

Sum of relative intensities for assigned
peaks in the spectrum

Assigned intensity sum/Intensity sum

Highest relative intensity among the
assigned peaks

Number of peaks with intensities
above specified thresholds

Assigned peaks with intensities above
specified thresholds

Assignments above thresholds/Peak
count above thresholds

Intensity of the peak corresponding to
the metabolite

m/z of the metabolite divided by
highest m/z in the spectrum

Similarity between observed and
calculated isotopic distribution

Relative difference between calculated
and measured m/z

MS area in the sample/MS area in the
blank

Centered moment of order 2,
representing variance

Centered moment of order 3,
indicating asymmetry

Centered moment of order 4,
indicating peakedness

Feature name

EMG fit

Feature set

Smoothness
Total variation
Kinetics Nonzero count
Starting height
Peak count
Valley count
Is increasing
Is decreasing
Is strictly

increasing

Is strictly
decreasing
Total variation
Mean height
Mechanism Is phase I
Is phase II

Adduct

Compatible
mechanisms

Description

Goodness of fit to exponentially
modified Gaussian (R*)

Pearson’s correlation between curve
and 1-point-shifted curve

Sum of the absolute height differences
between consecutive points

Number of nonzero values in the
kinetics

The height of the curve at the first
incubation time point

Total number of peaks in the kinetic
profile

Total number of valleys in the kinetic
profile

Boolean indicating if the curve is
nondecreasing overall

Boolean indicating if the curve is
nonincreasing overall

Boolean indicating if the curve is
strictly increasing

Boolean indicating if the curve is
strictly decreasing

Sum of the absolute height differences
between consecutive points

Average height of the curve across all
time points

Whether the metabolite came from
phase I metabolism

Whether the metabolite came from
phase II metabolism

One-hot encoded: [M + H]+, [M +
Nal+, [M+K]+, [M+NH4]+ or
other

Multilabel binary indicator of
compatible reactions by mass shift

oDiscarded =Kept.

o

(a) SIT dataset

(b) MIT dataset

(c) Peptides dataset

Figure 2. UMAP projection of the feature set showing separation between true positives and false positives in the three data sets. (a) SIT data set,
(b) MIT data set, (c) Peptides data set.

respectively, and in'® for the peptide data set. Summary
statistics for the manual labeling process (Table 1) show a high
discard rate across all three data sets, with a median exceeding
70%. Notably, the peptide data set reached a median discard
rate of 90.79%. This high discard rate reflects the purpose of
the analysis, as the user settings can be adjusted to either
prioritize the identification of major metabolites or capture all
potential metabolites by detecting the maximum number of

peaks with minimal filtering. The latter approach was the
intended strategy in this case. The differences in the discard
rates between small molecules and peptides may also arise
from variations in experimental conditions.

B FEATURE ENGINEERING

A key contribution of this work is the development of a
comprehensive feature set that effectively characterizes

https://doi.org/10.1021/acs.analchem.5c02745
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Table 3. Cross-Validation Performance Metrics for the Three Datasets

Data set Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std
SIT 84.36% 89.44% 88.82% 88.25% 90.58% 88.29% 2.11%
MIT 89.16% 95.85% 96.61% 94.36% 94.65% 94.13% 2.61%
Peptide 90.17% 92.44% 92.63% 93.24% 92.58% 92.21% 1.06%
H Raw counts M By true class M By predicted class ROC Curve
/| 118 31 3 S 1
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Figure 3. Test set performance metrics for different data sets. Left: Confusion matrices for the test sets of the SIT, MIT, and peptide data sets,
showing results without normalization, normalized by true label, and normalized by predicted label. Right: ROC curves for the test sets of the SIT,
MIT, and peptide data sets, with a reference line for a random classifier. AUC values are shown in the legend with the discarded class taken as

positive.

metabolite peaks, enabling the distinction between true and
false positives. This feature set captures critical information
from mass spectra, chromatographic peaks, kinetic data, and
reaction mechanisms. The engineered features are specifically
tailored to represent the quality and reliability of the data,
playing a crucial role in enhancing the performance of the
trained models. For each software-identified metabolite peak,
features were derived from four sources: mass spectra,
chromatographic peaks, kinetic data, and reaction mechanisms.
The complete list of features is presented in Table 2. More
details about how these features are computed are presented in
Supporting Information SS. The result of this process is a
feature vector for each metabolite peak, with 87 components
corresponding to mass spectra, 6 components corresponding
to chromatographic peaks, 10 components corresponding to
kinetics, and 32 components corresponding to reaction
mechanisms, totaling 135 features. Whenever multiple
conditions were present in the data, multiple mass spectra
and chromatogram peaks were available for each peak. To
account for this in a way such that the number of conditions
does not change the size of the final feature set, we computed
the mean, standard deviation, minimum, and maximum of each
feature across all conditions. This resulted in a feature set with
4 times the number of features derived from the mass spectra
and chromatographic peaks described above, yielding a total of
414 features.

Uniform Manifold Approximation and Projection
(UMAP)" is an unsupervised dimensionality reduction
technique widely used for data visualization. Figure 2 presents
a UMAP projection of the feature set into two dimensions for
each data set, where noticeable separation between the two
classes is observed despite UMAP not leveraging labels during
projection. This highlights the feature set’s high capability in

distinguishing false positive identifications, suggesting that
models trained on this feature set are likely to achieve high
classification accuracy.

B MODELING METHODS

Gradient Boosted Decision Trees (GBDTs)'* were chosen as
the method for the machine learning model. GBDTs are a
powerful and flexible machine learning technique that has been
shown to perform well in a wide range of applications and are
considered the state-of-the-art method for tabular data.”® They
offer several advantages for our current application, including
robustness to highly correlated features, invariance to
monotonic transformations of the input features, ease of
hyperparameter tuning, the ability to handle missing data, and
interpretability potential. The GBDT models were trained
using the LightGBM”' and XGBoost™” libraries. These libraries
are widely used for training GBDT models and offer high-
performance flexible implementations that can handle large
data sets efficiently. The main hyperparameters of these GBDT
models are the number of trees, the maximum number of
leaves per tree, the maximum depth of the trees, the learning
rate, and the regularization parameters. These hyperparameters
were tuned via the FLAML™ library, which is a fast and
lightweight automatic machine learning library that provides
state-of-the-art hyperparameter optimization algorithms. The
default hyperparameter ranges and sampling distributions
provided by FLAML were used for the hyperparameter tuning
process. Alternative models to GBDTs were also evaluated and
tuned using similar procedures, but GBDTs consistently
achieved superior performance; see Supporting Information
S6 for details.
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Figure 4. Examples of false positive predictions for metabolites M35—408, M43—2223, and M44—231S. Each subfigure shows a specific feature
(chromatographic peak, mass spectrum, or kinetics) that led the model to classify these as false positives, highlighting the interpretability of SHAP-

based feature analysis.

B EXPLAINING PREDICTIONS

To extract feature importance from the trained GBDT models,
we used SHapley Additive exPlanations (SHAP)."” SHAP
values, derived from Shapley values in cooperative game
theory, quantify each feature’s contribution to a model’s
prediction. The sign of the SHAP values in a classification
model indicates whether a feature contributes positively or
negatively to the prediction of a specific class. In our analysis, a
positive SHAP value for a feature means that the feature
influences the model to predict that the peak should be
discarded. We grouped features by their source, i.e., mass
spectra, chromatographic peaks, kinetic data, and reaction
mechanisms, to interpret the SHAP values. The combined
SHAP values for each group were then analyzed to determine
their relative importance in model predictions, considering
only features with positive SHAP values. The feature group
with the highest aggregated SHAP value was identified as the
most significant contributor to the model’s decision to discard
a given peak.

B RESULTS AND DISCUSSION

Each data set was split into training and test sets, containing
80% and 20% of the samples, respectively. Stratified sampling
was applied to maintain the distribution of the target variables
in both sets. To ensure rigorous model development, we
performed S-fold cross-validation within the training set for
hyperparameter tuning and validation. The test sets were
reserved exclusively for the final evaluation of the model
generalization. Performance during cross-validation was
assessed by using the balanced accuracy metric, defined as
the average recall across classes. The optimal hyperparameters
were selected based on the highest average balanced accuracy
score across folds, employing the FLAML*’ library with a
maximum of 100 trials. The balanced accuracy metrics across
different folds in the cross-validation process are presented in
Table 3.

Table 3 presents the cross-validation performance metrics
for the three data sets, reporting the mean and standard
deviation of balanced accuracy. All data sets demonstrate high
cross-validation performance, with mean balanced accuracies
exceeding 88%. Low standard deviations, peaking at 2.61% for
the MIT data set, suggest model stability and minimal

performance variability across folds. After the hyperparameters
were optimized, the models were retrained on the full training
sets and evaluated on the test sets. The test results are
summarized in Figure 3, which includes confusion matrices
and Receiver operating characteristic (ROC) curves for each
data set. The balanced accuracies on the test sets were 86.0%,
91.5%, and 91.7% for the SIT, MIT, and peptide data sets,
respectively. These values are slightly below the cross-
validation scores but remain well within acceptable ranges,
indicating strong generalizability to new data.

For the discarded class (false positives), the precision
exceeds 90%, reaching 90.0%, 93.3%, and 98.7% on the SIT,
MIT, and peptide data sets, respectively. This high precision
indicates that few expert-retained metabolites were discarded
by the model. The sensitivity for the discarded class is even
higher at 94%, 98%, and 97.7% for the SIT, MIT, and peptide
data sets, respectively, clearly demonstrating the model’s
exceptional efficacy in identifying false positives while ensuring
that valid metabolites are not mistakenly discarded. The ROC
curves corroborate these results as the true positive rate quickly
approaches 100% at low false positive rates. Overall, these
findings highlight the approach’s promise in reducing false
positive identifications in MetID. By flagging likely false
positives, the models assist experts in prioritizing complex
cases, enabling more efficient resource allocation.

B EXPLAINING PREDICTIONS: APPLICATION
EXAMPLE

We demonstrated our proposed approach for explaining
predictions with SHAP values using taspoglutide, a 30-amino
acid drug for type 2 diabetes, in a prospective experiment
involving incubation alongside protease dipeptidyl peptidase-4
(DPP4) at four time points. MetID was initially performed
manually by the experts according to the criteria described in
the Supporting Information Section 2.2. The results were then
compared with the predictions made by the peak selection
model. Both approaches identified 15 metabolites and 28 false
positives, showing excellent agreement. In Figure 4, we present
three examples of metabolites predicted as false positives by
the model, with the rationale for each exclusion noted as an
additional column in Oniro’s interface. The leftmost example
shows the kinetics of metabolite M35—408, where signals are
present at time zero of incubation, when no biotransformation
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is expected to occur. Based on these kinetics, the model
appropriately marked this metabolite as a false positive. The
center example shows the chromatographic peak shape of
metabolite M43—2223, where an irregular peak shape suggests
that the signal could stem from noise, interference, or
contamination. The model accurately flagged this metabolite
as a false positive based on peak shape. Finally, the right-most
example shows the mass spectrum of the metabolite M44—
2315, which lacks a primary molecular ion peak and has a low
ratio of assigned to total peaks, indicating a poor-quality
spectrum and justifying the model’s exclusion of this
metabolite.

B MODEL UPDATE
One key aspect to highlight is the model’s ability to be

updated, with its performance continuously improving as new
MetID data from ongoing experiments are analyzed and
curated within the Oniro platform. The model undergoes
automatic updates when the following conditions are met:

e A minimum of five new experiments were conducted.

e The number of new experiments constitutes at least 10%
of the current total number of experiments in the model.

These criteria ensure that updates occur only when a
sufficient amount of new data is available, striking a balance
between model responsiveness and stability. Frequent updates
with minimal data could lead to noise-driven fluctuations,
whereas infrequent updates might delay potential improve-
ments. Data from new experiments are split using an 80/20
training/test ratio, where the new training data are added to
the training set and the new test data are assigned to the test
set. This process ensures that the model is retrained with the
updated training data while maintaining the existing data in its
respective training and test sets. To illustrate how this update
mechanism functions in practice, we simulate the process using
the SIT data set. Initially, the model is built using data from
only five experiments. As new experiments are added, the
model is updated whenever both updated conditions are met.
Up to 55 experiments, and updates occur every time five new
experiments are introduced. However, beyond this point, the
10% threshold becomes the dominant factor, requiring a
greater number of new experiments before subsequent updates
can take place.

Figure S illustrates the evolution of precision, recall, and
ROC AUC on the test set for the SIT data set as model
updates are performed. Initially, when data are scarce, the
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Figure 5. Change in test set metrics across updates in the SIT data
set.

model’s ability to generalize to unseen data is limited, with
precision being particularly low, indicating a high rate of
incorrectly discarded metabolites by the model. With only a
small number of experiments, the model may capture only a
narrow range of patterns, leading to a suboptimal performance
and a greater risk of overfitting. However, as more experiments
are conducted and additional data become available, the model
consistently improves, demonstrating its ability to learn from
the accumulated data. Over time, this leads to enhanced
generalization, as reflected in better predictive metrics,
especially in the precision metric. This process highlights the
effectiveness of the update strategy in ensuring that the model
adapts dynamically while maintaining robustness.

B DATA SET-SPECIFIC GENERALIZATION

We investigated the impact of data set-specific experimental
conditions on model generalization using the MIT data set,
which includes two subsets with different kinetic sampling
protocols. The first subset (Protocol A, 13 experiments)
sampled at §, 15, 40, 80, and 140 min, while the second subset
(Protocol B, 14 experiments) sampled at 0, 2, 5, 10, 15, and 30
min. Notably, Protocol B includes a predose measurement at 0
min, which is absent in Protocol A.

We trained separate models on each subset following the
described procedures with 80/20 training/test splits and
evaluated them on both matching and mismatched test sets.
A combined model trained on the combined training data from
both protocols was also included for comparison.

As shown in Table 4, models achieved the highest
performance when trained and tested on the same protocol

Table 4. Balanced Accuracy (BA) of Models Trained on
Protocol-Specific Subsets of the MIT Dataset”

Training Protocol Global BA Local BA Cross-protocol BA
Protocol A 0.9402 0.9521 0.8824
Protocol B 0.9387 0.9458 0.8749

“Global BA refers to a model trained on the combined dataset (both
protocols). Local BA indicates the performance of a model trained
and tested on the same protocol. Cross-protocol BA reports the
performance of a model trained on the other protocol and tested on
the protocol it was not trained on.

(Local BA) but maintained respectable performance when
evaluated on the other protocol (Cross-protocol BA). These
results indicate that while data set-specific features influence
predictive accuracy, generalization across similar experimental
conditions remains viable.

More broadly, a model’s ability to generalize depends on the
compatibility of input features and labeling criteria. For
instance, if one data set lacks kinetic information altogether
(e.g., using only a single incubation time), transferability from
or to time-resolved data sets would be infeasible due to
structural mismatches in the feature space. Similarly, if data
sets are constructed using different expert criteria to define
what constitutes a false positive, the resulting decision
boundaries may be incompatible. However, in the present
case, both protocols provide sufficient temporal structure and
were labeled using consistent criteria, which enables mean-
ingful generalization across them and supports the broader

applicability of the proposed approach.

https://doi.org/10.1021/acs.analchem.5c02745
Anal. Chem. XXXX, XXX, XXX-XXX


https://pubs.acs.org/doi/10.1021/acs.analchem.5c02745?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.5c02745?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.5c02745?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.5c02745?fig=fig5&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.5c02745?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Analytical Chemistry

pubs.acs.org/ac

Table S. Test Performance Metrics for Data Sets 1 and Dataset 2

Data set Support Balanced Accuracy Precision
Data set 1 2157 86.66 98.71
Data set 2 107 64.79 72.37

Recall ROC AUC FN FP TN TP
97.17 96.08 58 26 83 1990
82.09 76.62 12 21 19 SS

Table 6. Test Performance Metrics for Dataset 1 and Dataset 2 before and after Model Updates

Balanced accuracy Precision Recall ROC-AUC
Data set Original Updated Original Updated Original Updated Original Updated
Data set 1 86.66 90.06 98.71 99.18 97.17 97.63 96.80 97.93
Data set 2 64.79 66.60 72.37 76.23 82.09 94.90 76.62 80.03

B CASE STUDY: VALIDATION ON
PHARMACEUTICAL DATA

To assess the real-world applicability of the proposed false
positive detection method, we applied it to two distinct data
sets from a leading pharmaceutical company. This evaluation
was made possible by the standardization of the data within the
Oniro platform, highlighting the essential role of consistent
and well-curated data in enabling the effective application of
the developed approach.

These data sets were selected to reflect several use cases
from the early phase of the drug discovery process, including
both small molecules and peptides and data analyzed using
differing selection criteria and various false-positive rates. Data
set 1 includes small molecule MetID from data generated in an
automated hepatocyte incubation assay, which is highly
suitable for this model, because of the standardized HPLC
chromatography and HRMS conditions. The selection
criterion for the metabolites in this data set was the three
most abundant metabolites. The data set included 12§
experiments with 13,552 software-identified metabolites with
10,510 false positives (77.55%) identified manually. Data set 2
comprises macrocyclic peptide experiments obtained from a
standardized simulated intestinal fluid stability assay. Metab-
olite selection was guided by criteria favoring those with high
molecular weights or elevated relative abundances to support
the MetID assignment. Additionally, the overall charge of each
metabolite relative to that of its parent compound was
considered. A total of 1,225 software-identified metabolites
were assessed, with 690 confirmed as false positives (56.33%).

Using these data sets, models were trained based on the
described methodology, with an 80/20 training/test split. The
test set performance metrics for both data sets are summarized
in Table 5. Data set 1 shows a strong performance with high
balanced accuracy (86.66%), precision (98.71%), and recall
(97.17%). In contrast, Data set 2 demonstrates lower balanced
accuracy (64.79%) and precision (72.37%), possibly because of
the greater complexity of macrocyclic peptide data and the
more intricate selection criteria, which may present challenges
for accurate classification.

As previously discussed, the model has the capability to be
updated. This has been demonstrated in the models developed
for both data sets, where new data have been incorporated over
several months. The performance metrics are provided in
Table 6 for reference.

An increase in balanced accuracy (from 86.66% to 90.06% in
Data set 1 and from 64.79% to 66.60% in Data set 2) and
precision (from 98.71% to 99.18% in Data set 1 and from
72.37% to 76.23% in Data set 2) can be observed in the
updated models, which translates into improved overall
prediction performance and more reliable identification of

false positives. These improvements reflect the model’s ability
to adapt to new data, ensuring that it remains relevant and
robust in dynamic environments.

B CONCLUSIONS

This study presents a novel machine learning approach to
address the critical challenge of false positive identifications in
MetID studies. Using GBDT models, the methodology
demonstrated high precision and recall rates, exceeding 90%
in detecting false positives across various data sets, including
both small molecule and peptide data. The developed
algorithm is platform- and user-agnostic, enabling its
implementation on any system that supports the standardized
collection of MetID data, such as the Oniro platform used in
this study. Importantly, the model is designed as a decision-
support tool to assist, rather than replace, expert judgment, and
it does not apply hard thresholds or filtering criteria that might
discard potential true metabolites.

The key findings and contributions of this research include
the following:

e Comprehensive Feature Engineering: By developing an
extensive feature set that effectively characterizes
metabolite peaks, this study enhances the accuracy of
distinguishing between true and false positives. The
features derived from mass spectra, chromatographic
peaks, kinetic data, and reaction mechanisms collectively
contribute to the model’s high performance.

e High Model Performance: The GBDT models trained
on the constructed feature set exhibited robust perform-
ance across cross-validation and test sets, with balanced
accuracies consistently above 86%. This finding indicates
that the models have strong generalizability to unseen
data.

e Reduction in Manual Effort: The proposed machine
learning approach significantly reduces the reliance on
manual data interpretation, which is traditionally both
tedious and time-consuming. By prioritizing candidates
based on likelihood of being false positives, the efficiency
of MetID workflows can be improved without
compromising sensitivity.

e Explainability and Adoption: Employing SHAP values to
interpret the model’s predictions provides transparency
and aids in understanding the decision-making process
of the model. This explainability is crucial for the
adoption of the proposed approach in practical MetID
workflows.

e Versatility Across Data sets: The methodology was
validated using diverse data sets, including different
incubation conditions and acquisition methods, demon-
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strating its versatility and applicability to various MetID
scenarios.

While our approach helps reduce the burden of manual
review by ranking and contextualizing likely false positives, it
does not eliminate human oversight. The model is intended to
accelerate expert workflows, not replace them. By keeping
experts in control of the final decisions, the risk of discarding
true metabolites due to false negatives is mitigated. Looking
ahead, future work could focus on refining the feature set and
model architecture as well as developing hybrid strategies that
combine predictive modeling with uncertainty quantification.
These improvements may further enhance prioritization while
preserving the reliability and safety critical to drug metabolism
studies.
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