f828f58cf57cd85ddaf09c7b0c5e47ab nonana_a2026m4v88p104503.pdf bbfd2d066b37213cbf4afc6a10191231e74b977e nonana_a2026m4v88p104503.pdf ab3af9bd429a8095de4d799864b8ce14fc6ace2453586aa225c412d5c54ab925 nonana_a2026m4v88p104503.pdf Title: On the critical points of planar polynomial Hamiltonian systems Subject: Nonlinear Analysis: Real World Applications, 88 (2026) 104503. doi:10.1016/j.nonrwa.2025.104503 Keywords: Hamiltonian polynomial systems,Poincaré compactification,Index of a point,Center Author: Anna Cima Creator: Elsevier Producer: Acrobat Distiller 8.1.0 (Windows) CreationDate: Sat Sep 20 20:14:00 2025 CEST ModDate: Sun Sep 21 23:04:38 2025 CEST Custom Metadata: yes Metadata Stream: yes Tagged: yes UserProperties: no Suspects: no Form: none JavaScript: no Pages: 7 Encrypted: no Page size: 544.252 x 742.677 pts Page rot: 0 File size: 3707992 bytes Optimized: yes PDF version: 1.7 name type encoding emb sub uni object ID ------------------------------------ ----------------- ---------------- --- --- --- --------- AAALOD+CharisSIL CID TrueType Identity-H yes yes yes 388 0 VITMRL+STIXMath-Italic Type 1 Builtin yes yes yes 396 0 PNAHBC+CharisSIL Type 1 Custom yes yes yes 400 0 NKVWWZ+CharisSIL CID TrueType Identity-H yes yes yes 405 0 YNVQLV+STIXMath-Regular Type 1 Builtin yes yes yes 411 0 XVZVYO+LMRoman10-Regular CID Type 0C Identity-H yes yes yes 415 0 PNAHBC+CharisSIL Type 1 Custom yes yes yes 421 0 DGUQIU+CharisSIL-Bold Type 1 Custom yes yes yes 424 0 RPRUYC+CharisSIL-Italic Type 1 Custom yes yes yes 427 0 WEFOBM+UniversLTStd Type 1 Custom yes yes yes 430 0 GXPTOR+STIXMathExtensions-Regular Type 1 Builtin yes yes yes 435 0 GTLYPK+STIXMathCalligraphy-Regular Type 1 Builtin yes yes yes 439 0 KEIPTY+STIXMathBlackboard-Regular Type 1 Builtin yes yes yes 23 0 AAAAXZ+CharisSIL-Italic CID TrueType Identity-H yes yes yes 27 0 AAAAAD+CharisSIL CID TrueType Identity-H yes yes yes 33 0 SFTIBJ+CharisSIL-Italic CID TrueType Identity-H yes yes yes 40 0 PXFDGF+STIXMathFraktur-Regular Type 1 Builtin yes yes yes 46 0 TKLJNA+STIXMathScript-Regular Type 1 Builtin yes yes yes 7 0 VHVHWL+STIXMathSans-Regular Type 1 Builtin yes yes yes 15 0 Jhove (Rel. 1.28.0, 2023-05-18) Date: 2025-10-17 04:04:53 CEST RepresentationInformation: nonana_a2026m4v88p104503.pdf ReportingModule: PDF-hul, Rel. 1.12.4 (2023-03-16) LastModified: 2025-10-16 09:50:24 CEST Size: 3707992 Format: PDF Version: 1.7 Status: Well-Formed and valid SignatureMatches: PDF-hul MIMEtype: application/pdf Profile: Linearized PDF, Tagged PDF PDFMetadata: Objects: 2918 FreeObjects: 1 IncrementalUpdates: 1 DocumentCatalog: ViewerPreferences: HideToolbar: false HideMenubar: false HideWindowUI: false FitWindow: false CenterWindow: false DisplayDocTitle: true NonFullScreenPageMode: UseNone Direction: L2R ViewArea: CropBox ViewClip: CropBox PrintArea: CropBox PageClip: CropBox PageLayout: SinglePage PageMode: UseOutlines Language: en-US Outlines: Item: Title: On the critical points of planar polynomial Hamiltonian systems Children: Item: Title: 1 Introduction and main results Item: Title: 2 Preliminary results Item: Title: 3 Proof of [Theorems]A and B Info: Title: On the critical points of planar polynomial Hamiltonian systems Author: Anna Cima Subject: Nonlinear Analysis: Real World Applications, 88 (2026) 104503. doi:10.1016/j.nonrwa.2025.104503 Keywords: Hamiltonian polynomial systems,Poincaré compactification,Index of a point,Center Creator: Elsevier Producer: Acrobat Distiller 8.1.0 (Windows) CreationDate: Sat Sep 20 20:14:00 CEST 2025 ModDate: Sun Sep 21 23:04:38 CEST 2025 ID: 0x922863658bedcb72ad319561af5e6303, 0x140117a54a265879c6ba80afdc4f47b8 Filters: FilterPipeline: FlateDecode Fonts: Type0: Font: BaseFont: AAAAAD+CharisSIL Encoding: Identity-H ToUnicode: true Font: BaseFont: AAALOD+CharisSIL Encoding: Identity-H ToUnicode: true Font: BaseFont: NKVWWZ+CharisSIL Encoding: Identity-H ToUnicode: true Font: BaseFont: SFTIBJ+CharisSIL-Italic Encoding: Identity-H ToUnicode: true Font: BaseFont: AAAAXZ+CharisSIL-Italic Encoding: Identity-H ToUnicode: true Font: BaseFont: XVZVYO+LMRoman10-Regular Encoding: Identity-H ToUnicode: true Type1: Font: BaseFont: PNAHBC+CharisSIL FontSubset: true FirstChar: 97 LastChar: 116 FontDescriptor: FontName: PNAHBC+CharisSIL Flags: Symbolic FontBBox: -1419, -1092, 6144, 2600 FontFile: true EncodingDictionary: Differences: true ToUnicode: true Font: BaseFont: TKLJNA+STIXMathScript-Regular FontSubset: true FirstChar: 12 LastChar: 12 FontDescriptor: FontName: TKLJNA+STIXMathScript-Regular Flags: Symbolic FontBBox: 0, -324, 1229, 830 FontFile: true ToUnicode: true Font: BaseFont: DGUQIU+CharisSIL-Bold FontSubset: true FirstChar: 46 LastChar: 121 FontDescriptor: FontName: DGUQIU+CharisSIL-Bold Flags: Symbolic FontBBox: -1475, -1092, 6144, 2600 FontFile: true EncodingDictionary: Differences: true ToUnicode: true Font: BaseFont: RPRUYC+CharisSIL-Italic FontSubset: true FirstChar: 13 LastChar: 242 FontDescriptor: FontName: RPRUYC+CharisSIL-Italic Flags: Symbolic FontBBox: -1467, -1092, 6262, 2600 FontFile: true EncodingDictionary: Differences: true ToUnicode: true Font: BaseFont: VITMRL+STIXMath-Italic FontSubset: true FirstChar: 11 LastChar: 207 FontDescriptor: FontName: VITMRL+STIXMath-Italic Flags: Symbolic FontBBox: -124, -478, 2328, 819 FontFile: true ToUnicode: true Font: BaseFont: WEFOBM+UniversLTStd FontSubset: true FirstChar: 46 LastChar: 119 FontDescriptor: FontName: WEFOBM+UniversLTStd Flags: Symbolic FontBBox: -168, -250, 992, 947 FontFile: true EncodingDictionary: Differences: true ToUnicode: true Font: BaseFont: PXFDGF+STIXMathFraktur-Regular FontSubset: true FirstChar: 228 LastChar: 228 FontDescriptor: FontName: PXFDGF+STIXMathFraktur-Regular Flags: Symbolic FontBBox: 0, -300, 1519, 1003 FontFile: true ToUnicode: true Font: BaseFont: VHVHWL+STIXMathSans-Regular FontSubset: true FirstChar: 153 LastChar: 153 FontDescriptor: FontName: VHVHWL+STIXMathSans-Regular Flags: Symbolic FontBBox: -124, -232, 1151, 819 FontFile: true ToUnicode: true Font: BaseFont: PNAHBC+CharisSIL FontSubset: true FirstChar: 12 LastChar: 241 FontDescriptor: FontName: PNAHBC+CharisSIL Flags: Symbolic FontBBox: -1419, -1092, 6144, 2600 FontFile: true EncodingDictionary: Differences: true ToUnicode: true Font: BaseFont: GXPTOR+STIXMathExtensions-Regular FontSubset: true FirstChar: 0 LastChar: 241 FontDescriptor: FontName: GXPTOR+STIXMathExtensions-Regular Flags: Symbolic FontBBox: 15, -3009, 1503, 959 FontFile: true ToUnicode: true Font: BaseFont: GTLYPK+STIXMathCalligraphy-Regular FontSubset: true FirstChar: 66 LastChar: 147 FontDescriptor: FontName: GTLYPK+STIXMathCalligraphy-Regular Flags: Symbolic FontBBox: -53, -455, 1965, 2157 FontFile: true ToUnicode: true Font: BaseFont: KEIPTY+STIXMathBlackboard-Regular FontSubset: true FirstChar: 82 LastChar: 83 FontDescriptor: FontName: KEIPTY+STIXMathBlackboard-Regular Flags: Symbolic FontBBox: -15, -424, 1388, 930 FontFile: true ToUnicode: true Font: BaseFont: YNVQLV+STIXMath-Regular FontSubset: true FirstChar: 42 LastChar: 231 FontDescriptor: FontName: YNVQLV+STIXMath-Regular Flags: Symbolic FontBBox: -970, -341, 1096, 1023 FontFile: true ToUnicode: true CIDFontType0: Font: BaseFont: XVZVYO+LMRoman10-Regular CIDSystemInfo: Registry: Adobe Registry: Identity Supplement: 0 FontDescriptor: FontName: XVZVYO+LMRoman10-Regular Flags: Symbolic FontBBox: -430, -290, 1417, 1127 FontFile3: true CIDFontType2: Font: BaseFont: AAAAAD+CharisSIL CIDSystemInfo: Registry: Adobe Registry: Identity Supplement: 0 FontDescriptor: FontName: AAAAAD+CharisSIL Flags: Symbolic FontBBox: -692, -533, 1623, 1318 FontFile2: true Font: BaseFont: AAALOD+CharisSIL CIDSystemInfo: Registry: Adobe Registry: Identity Supplement: 0 FontDescriptor: FontName: AAALOD+CharisSIL Flags: Symbolic FontBBox: -692, -533, 1623, 1318 FontFile2: true Font: BaseFont: NKVWWZ+CharisSIL CIDSystemInfo: Registry: Adobe Registry: Identity Supplement: 0 FontDescriptor: FontName: NKVWWZ+CharisSIL Flags: Serif, Symbolic FontBBox: -692, -533, 1623, 1319 FontFile2: true Font: BaseFont: SFTIBJ+CharisSIL-Italic CIDSystemInfo: Registry: Adobe Registry: Identity Supplement: 0 FontDescriptor: FontName: SFTIBJ+CharisSIL-Italic Flags: Serif, Symbolic, Italic FontBBox: -716, -533, 1627, 1318 FontFile2: true Font: BaseFont: AAAAXZ+CharisSIL-Italic CIDSystemInfo: Registry: Adobe Registry: Identity Supplement: 0 FontDescriptor: FontName: AAAAXZ+CharisSIL-Italic Flags: Symbolic, Italic FontBBox: -716, -533, 1626, 1317 FontFile2: true XMP: http://creativecommons.org/licenses/by/4.0/ application/pdf 10.1016/j.nonrwa.2025.104503 Elsevier Ltd Nonlinear Analysis: Real World Applications, 88 (2026) 104503. doi:10.1016/j.nonrwa.2025.104503 Hamiltonian polynomial systems Poincaré compactification Index of a point Center On the critical points of planar polynomial Hamiltonian systems Anna Cima Armengol Gasull Francesc Mañosas VoR 21st September 2025 Acrobat Distiller 8.1.0 (Windows) Hamiltonian polynomial systems,Poincaré compactification,Index of a point,Center 21st September 2025 10.1016/j.nonrwa.2025.104503 noindex journal © 2025 The Author(s). Published by Elsevier Ltd. 2026-04-01 1 April 2026 10.1016/j.nonrwa.2025.104503 1468-1218 104503 Nonlinear Analysis: Real World Applications 104503 https://doi.org/10.1016/j.nonrwa.2025.104503 88 https://www.elsevier.com/tdm/tdmrep-policy.json 1 2025-09-20T18:14 Elsevier 2025-09-21T21:04:38 2025-09-21T21:04:38 uuid:1b499bed-4ce8-4c0c-b682-0d58baae1cbe uuid:b6ed5266-03cb-4855-90c0-636283357f42 True Pages: Page: Label: 1 Annotations: Annotation: Subtype: Link Contents: https://www.elsevier.com/locate/nonrwa Rect: 296, 672, 345, 680 Annotation: Subtype: Link Contents: https://www.elsevier.com/locate/nonrwa Rect: 247, 615, 374, 624 Annotation: Subtype: Link Contents: Go to destination cor1 Rect: 174, 551, 180, 557 ActionDest: 379 Annotation: Subtype: Link Contents: Go to destination cite.bib0004 Rect: 200, 268, 207, 275 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0009 Rect: 137, 257, 143, 265 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0010 Rect: 143, 257, 154, 265 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0010 Rect: 231, 257, 242, 265 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination theorem.1 Rect: 305, 235, 347, 244 ActionDest: 379 Annotation: Subtype: Link Contents: Go to destination cite.bib0009 Rect: 60, 226, 66, 233 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0010 Rect: 66, 226, 77, 233 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0004 Rect: 278, 226, 285, 233 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination lemma.4 Rect: 83, 182, 117, 191 ActionDest: 5 Annotation: Subtype: Link Contents: Go to destination cite.bib0004 Rect: 203, 173, 210, 181 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0004 Rect: 319, 163, 325, 170 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination remark.3 Rect: 244, 151, 280, 161 ActionDest: 13 Annotation: Subtype: Link Contents: Go to destination theorem.2 Rect: 271, 140, 311, 150 ActionDest: 1 Annotation: Subtype: Link Contents: mailto:anna.cima@uab.cat Rect: 103, 105, 168, 115 Annotation: Subtype: Link Contents: mailto:armengol.gasull@uab.cat Rect: 203, 105, 285, 115 Annotation: Subtype: Link Contents: mailto:francesc.manosas@uab.cat Rect: 324, 105, 411, 115 Annotation: Subtype: Link Contents: https://doi.org/10.1016/j.nonrwa.2025.104503 Rect: 38, 88, 193, 97 Annotation: Subtype: Link Rect: 206, 699, 336, 711 Annotation: Subtype: Link Rect: 41, 49, 187, 61 Page: Label: 2 Annotations: Annotation: Subtype: Link Contents: Go to destination theorem.1 Rect: 188, 677, 229, 687 ActionDest: 379 Annotation: Subtype: Link Contents: Go to destination theorem.2 Rect: 285, 677, 326, 687 ActionDest: 1 Annotation: Subtype: Link Contents: Go to destination remark.1 Rect: 341, 677, 378, 687 ActionDest: 5 Annotation: Subtype: Link Contents: Go to destination lemma.3 Rect: 469, 645, 504, 656 ActionDest: 5 Annotation: Subtype: Link Contents: Go to destination cite.bib0007 Rect: 414, 595, 420, 603 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0002 Rect: 394, 575, 400, 582 ActionDest: 13 Annotation: Subtype: Link Contents: Go to destination cite.bib0007 Rect: 400, 574, 407, 582 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination theorem.1 Rect: 152, 500, 193, 509 ActionDest: 379 Annotation: Subtype: Link Contents: Go to destination lemma.2 Rect: 86, 488, 121, 499 ActionDest: 3 Annotation: Subtype: Link Contents: Go to destination cite.bib0005 Rect: 63, 459, 69, 467 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0007 Rect: 137, 459, 144, 467 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0014 Rect: 193, 459, 204, 467 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0007 Rect: 147, 269, 153, 277 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0013 Rect: 489, 196, 500, 203 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0009 Rect: 310, 51, 316, 58 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0010 Rect: 316, 51, 327, 58 ActionDest: 19 Page: Label: 3 Annotations: Annotation: Subtype: Link Contents: Go to destination theorem.1 Rect: 179, 657, 221, 666 ActionDest: 379 Annotation: Subtype: Link Contents: Go to destination cite.bib0007 Rect: 98, 201, 104, 209 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0014 Rect: 152, 201, 163, 209 ActionDest: 19 Page: Label: 4 Annotations: Annotation: Subtype: Link Contents: Go to destination lemma.1 Rect: 84, 450, 119, 462 ActionDest: 3 Annotation: Subtype: Link Contents: Go to destination theorem.1 Rect: 366, 378, 407, 388 ActionDest: 379 Annotation: Subtype: Link Contents: Go to destination cite.bib0003 Rect: 292, 359, 298, 366 ActionDest: 13 Annotation: Subtype: Link Contents: Go to destination cite.bib0011 Rect: 165, 297, 176, 304 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0014 Rect: 176, 296, 187, 304 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0015 Rect: 187, 296, 198, 304 ActionDest: 19 Page: Label: 5 Annotations: Annotation: Subtype: Link Contents: Go to destination theorem.1 Rect: 82, 679, 129, 687 ActionDest: 379 Annotation: Subtype: Link Contents: Go to destination theorem.2 Rect: 146, 679, 153, 687 ActionDest: 1 Annotation: Subtype: Link Contents: Go to destination theorem.1 Rect: 107, 650, 114, 661 ActionDest: 379 Annotation: Subtype: Link Contents: Go to destination lemma.2 Rect: 249, 629, 284, 640 ActionDest: 3 Annotation: Subtype: Link Contents: Go to destination cite.bib0008 Rect: 184, 611, 190, 619 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination lemma.3 Rect: 443, 573, 478, 589 ActionDest: 5 Annotation: Subtype: Link Contents: Go to destination lemma.4 Rect: 396, 563, 430, 574 ActionDest: 5 Annotation: Subtype: Link Contents: Go to destination lemma.1 Rect: 437, 522, 471, 532 ActionDest: 3 Annotation: Subtype: Link Contents: Go to destination lemma.2 Rect: 337, 469, 372, 486 ActionDest: 3 Annotation: Subtype: Link Contents: Go to destination theorem.1 Rect: 80, 428, 120, 438 ActionDest: 379 Annotation: Subtype: Link Contents: Go to destination lemma.2 Rect: 47, 417, 82, 428 ActionDest: 3 Annotation: Subtype: Link Contents: Go to destination cite.bib0009 Rect: 208, 406, 215, 414 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0010 Rect: 215, 406, 226, 414 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination theorem.2 Rect: 106, 371, 113, 381 ActionDest: 1 Annotation: Subtype: Link Contents: Go to destination lemma.2 Rect: 264, 371, 298, 381 ActionDest: 3 Page: Label: 6 Annotations: Annotation: Subtype: Link Contents: Go to destination equation.3 Rect: 337, 656, 362, 666 ActionDest: 11 Annotation: Subtype: Link Contents: Go to destination equation.3 Rect: 157, 636, 184, 645 ActionDest: 11 Annotation: Subtype: Link Contents: Go to destination lemma.2 Rect: 93, 592, 128, 603 ActionDest: 3 Annotation: Subtype: Link Contents: Go to destination equation.3 Rect: 130, 562, 156, 572 ActionDest: 11 Annotation: Subtype: Link Contents: Go to destination lemma.2 Rect: 157, 540, 192, 551 ActionDest: 3 Annotation: Subtype: Link Contents: Go to destination theorem.2 Rect: 133, 494, 173, 504 ActionDest: 1 Annotation: Subtype: Link Contents: Go to destination cite.bib0004 Rect: 350, 496, 356, 503 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0004 Rect: 210, 475, 216, 483 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination theorem.2 Rect: 308, 432, 349, 441 ActionDest: 1 Annotation: Subtype: Link Contents: Go to destination cite.bib0004 Rect: 261, 407, 267, 415 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0001 Rect: 180, 376, 186, 383 ActionDest: 13 Annotation: Subtype: Link Contents: Go to destination cite.bib0006 Rect: 186, 376, 193, 383 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0006 Rect: 193, 355, 200, 362 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0001 Rect: 280, 296, 286, 304 ActionDest: 13 Annotation: Subtype: Link Contents: Go to destination cite.bib0012 Rect: 256, 227, 267, 234 ActionDest: 19 Annotation: Subtype: Link Contents: Go to destination cite.bib0001 Rect: 228, 169, 235, 176 ActionDest: 13 Annotation: Subtype: Link Contents: Go to destination cite.bib0006 Rect: 235, 168, 241, 176 ActionDest: 19 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0001 Rect: 54, 66, 500, 74 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0002 Rect: 54, 58, 477, 66 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0003 Rect: 54, 50, 409, 58 Page: Label: 7 Annotations: Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0004 Rect: 54, 678, 395, 686 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0005 Rect: 54, 670, 333, 678 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0006 Rect: 54, 662, 431, 670 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0007 Rect: 54, 654, 426, 662 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0008 Rect: 54, 646, 369, 654 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0009 Rect: 54, 630, 444, 638 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0010 Rect: 54, 622, 368, 630 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0011 Rect: 54, 614, 446, 622 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0012 Rect: 54, 606, 426, 614 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0013 Rect: 54, 598, 506, 606 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0013 Rect: 55, 591, 256, 597 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0014 Rect: 54, 582, 506, 590 Annotation: Subtype: Link Contents: http://refhub.elsevier.com/S1468-1218(25)00186-5/sbref0014 Rect: 55, 576, 79, 581 Checksum: 0312c010 Type: CRC32 Checksum: f828f58cf57cd85ddaf09c7b0c5e47ab Type: MD5 Checksum: bbfd2d066b37213cbf4afc6a10191231e74b977e Type: SHA-1 Checksum: ab3af9bd429a8095de4d799864b8ce14fc6ace2453586aa225c412d5c54ab925 Type: SHA-256