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 a b s t r a c t

It is well known that the critical points of planar polynomial Hamiltonian vector fields are either 
centers or points with an even number of hyperbolic sectors. We give a sharp upper bound of 
the number of centers that these systems can have in terms of the degrees of their components. 
We also prove that generically the critical points at infinity of their Poincaré compactification 
are either nodes or have indices −1, 0 or 1 and have at most two sectors: both hyperbolic, both 
elliptic or one of each type. These characteristics are no more true in the non generic situation. 
Although these results are known we revisit their proofs. The new proofs are shorter and based 
on a new approach.

1.  Introduction and main results

Let 𝑛,𝑚 be the space of the polynomial Hamiltonian planar vector fields 𝑋 = (− 𝜕𝐻
𝜕𝑦 ,

𝜕𝐻
𝜕𝑥 ) such that the degree of 

𝜕𝐻
𝜕𝑦  is 𝑛 and the 

degree of 𝜕𝐻𝜕𝑥  is 𝑚. Our first result is the following theorem:
Theorem A. Let 𝑋 ∈ 𝑛,𝑚 and let 𝐶 be the number of centers of 𝑋. Then

𝐶 ≤ 𝐸
( 𝑛𝑚 + 1

2

)

,

where 𝐸(𝑧) denotes the integer part of 𝑧. Moreover this bound is optimal.
This result is already proved in Cima et al. [4] when the above vector fields have finitely many critical points and extended without 

this hypothesis in He et al. [9,10]. In fact the authors [10] communicated to us their extension and comment us about some gaps in 
our original proof. Motivated by their comments we decided to revisit and clarify our original proof of this theorem.

In this work we firstly give a shorter, self contained and new proof of Theorem A. It is different to the proof presented by He 
et al. [9,10] and although it follows the guidelines of our first work [4], it is based in a novel idea: firstly prove the theorem in a generic 
subclass of 𝑛,𝑚 and afterwards obtain the general result by a perturbation argument. As we will see, a simple but important property of 
the family of planar Hamiltonian systems is the one that allows us to use these perturbation type arguments. This property is that the 
fact of having a center is a robust property within this family, in contrast of what usually happens with centers in most families of 
systems, see Lemma 5.

A key point in our first proof in Cima et al. [4] of this theorem was to study the critical points at infinity of the Poincaré compacti-
fication of generic Hamiltonian polynomial planar vector fields, see Cima et al. [4, Thm 2.2]. Although the statement of that theorem 
was correct our proof had a gap, that we revisit here, see Remark 7 for more details. Our results on the critical points at infinity of 
planar polynomial Hamiltonian systems are given in forthcoming Theorem B. We state it after some definitions.
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We want remark that the new proof of Theorem A is not based on Theorem B, see Remark 3 for more details.
Let us define which is the generic subclass of 𝑛,𝑚 ⊂ 𝑛,𝑚 that we will deal with. Given 𝑋 = (𝑃 ,𝑄) ∈ 𝑛,𝑚 we denote by 𝑃𝑛 and 𝑄𝑚

the homogeneous parts of maximum degree of 𝑃  and 𝑄 respectively. We say that 𝑋 = (𝑃 ,𝑄) ∈ 𝑛,𝑚 belongs to 𝑛,𝑚 if 𝑃𝑛 and 𝑄𝑚 do 
not share any factor (real or complex). It is clear that 𝑛,𝑚 is open in 𝑛,𝑚 and we will show that it is also dense in 𝑛,𝑚 in Lemma 4.

Notice that if 𝑋 = (𝑃 ,𝑄) ∈ 𝑛,𝑚 has infinitely many critical points, then 𝑃 ,𝑄 share some common factor. This fact implies that 𝑃𝑛
and 𝑄𝑚 share also some factor. Therefore if 𝑋 ∈ 𝑛,𝑚 then from Bezout’s Theorem it has at most 𝑛𝑚 critical points.

Recall that a characteristic orbit at a critical point 𝑝 is an orbit tending to 𝑝 in positive time (respectively in negative time) with 
a well defined slope. It is well known that an isolated critical point 𝑝 of a planar analytical vector field 𝑋 either does not have 
characteristic orbits or it is a finite union of hyperbolic, elliptic, and parabolic sectors, see Dumortier et al. [7, Sec. 1.5]. Moreover, its 
index is 𝑖𝑋 (𝑝) = 1 + (e − h)∕2, where e and h denote its number of elliptic and hyperbolic sectors, respectively. As we will see, along 
the paper we will use several properties of the index of critical points, see for instance the books [2,7] for an account of them. It 
is also known that isolated critical points that do not have characteristic orbits are necessarily monodromic, that is, locally admit a 
Poincaré return map.

It is also well known that when a system is Hamiltonian, it can not have limit cycles, and the critical points can not be focus and 
they have neither elliptic sectors, nor parabolic ones. In a few words, the reason is that since the flow of Hamiltonian systems preserves 
area, attracting or repelling behaviors are forbidden in bounded domains. Hence, an isolated critical point 𝑝 of a Hamiltonian system 
𝑋 is either a center (𝑖𝑋 (𝑝) = 1) or it has an even number 2𝑘 ≥ 2 of hyperbolic sectors (𝑖𝑋 (𝑝) = 1 − 𝑘).

The first step in our proof of Theorem A will be based on controlling the total sum of the indices of the critical points of 𝑋 when 
𝑋 ∈ 𝑛,𝑚, see Lemma 2. Afterwards, we will show that this total sum also controls the non generic situation.

Recall also that, via the stereographic projection and a rescalling of the time, a polynomial planar vector field 𝑋 = (𝑃 ,𝑄) always 
admits an extension to the 2-dimensional sphere denoted by 𝑝(𝑋) and named the Poincaré compactification of 𝑋, see Cima and 
Llibre[5], Dumortier et al. [7], Sotomayor[13]. The vector field 𝑝(𝑋) allows us to study the behaviour of 𝑋 in a neigbourhood of 
infinity, i.e., a neigbourhood of the equator of the sphere. To study the analytical expression of 𝑝(𝑋), the 2-sphere is taken as a differen-
tiable manifold. The atlas that we consider is formed by the six coordinate neighbourhoods given by 𝑈𝑖 = {𝑥 ∈ 𝕊2 ⊂ ℝ3 ∶ 𝑥𝑖 > 0} and 
𝑉𝑖 = {𝑥 ∈ 𝕊2 ⊂ ℝ3 ∶ 𝑥𝑖 < 0} for 𝑖 = 1, 2, 3. Usually, in the charts 𝑈1, 𝑈2, 𝑈3, the coordinates are taken as (𝑦, 𝑧) =

(

𝑥2∕𝑥1, 𝑥3∕𝑥1
)

, (𝑥, 𝑧) =
(

𝑥2∕𝑥1, 𝑥3∕𝑥1
)

, (𝑥, 𝑦) =
(

𝑥2∕𝑥1, 𝑥3∕𝑥1
)

, respectively.
From the expressions of 𝑝(𝑋) in these local charts it is easy to deduce that the infinity is invariant by the flow of 𝑝(𝑋) and that 

𝑝(𝑋) has two copies of 𝑋 on the northern and southern hemisphere of 𝕊2. Also the orbits of 𝑝(𝑋) in 𝕊2 are always symmetric with 
respect to the origin of ℝ3. From this symmetry if 𝑞 ∈ 𝕊2 is an infinite critical point then −𝑞 is another one and the indices of 𝑝(𝑋) at 
both points coincide.

In the case that 𝑝(𝑋) has a finite number of critical points in 𝕊2, we can apply the Poincaré–Hopf’s Theorem which asserts that

2
∑

𝑓
𝑖𝑋 +

∑

∞
𝑖𝑝(𝑋) = 2,

where ∑𝑓 𝑖𝑋 denotes the sum of the indices of 𝑋 at the critical points of 𝑋 and ∑∞ 𝑖𝑝(𝑋) denotes the sum of the indices of 𝑝(𝑋) at the 
critical points in the equator of the sphere.

As we have already said, our second result investigates the local structure of the infinite critical points when the vector field 
belongs to the generic subclass. To state it we need a further definition. Let 𝑞 be an infinite critical point and let h be an hyperbolic 
sector associated to 𝑞. We say that h is degenerated if its two separatrices are contained in the equator of the Poincaré sphere.

Following Dumortier et al. [7, Sec. 1.5], we also recall some properties of the sectors associated to critical points. Given an isolated 
critical point with characteristic orbits, there exists a well-defined decomposition in sectors called a minimal sectorial decomposition. 
As its name indicates it is the decomposition with the minimal number of parabolic sectors (the number of elliptic and hyperbolic 
sectors is independent of the decomposition). In this decomposition the only parabolic sectors are either the global one (corresponding 
to a node), or the ones lying between two hyperbolic sectors. In fact, if you locally look at a neighborhood of a critical point with 
an elliptic sector, you can never know the global behavior of the trajectories near the boundaries of this sector. In the definition of 
minimal sectorial decomposition it is considered that they form part of the elliptic sector itself and they never give rise to parabolic 
sectors. Notice that the parabolic sectors that appear when people study global phase portraits, see for instance in Sun and Xiao[15], 
would not be counted as parabolic if the authors were used this minimal sectorial decomposition and looked only locally at the critical 
points.

In this paper, when we describe the sectors of a critical point, we always refer to its minimal sectorial decomposition.
From now on, we will assume without loss of generality that 𝑛 ≥ 𝑚.

Theorem B. Let 𝑋 ∈ 𝑛,𝑚. The following assertions hold

(i) If 𝑛 = 𝑚 then all infinite critical points of 𝑝(𝑋) are nodes.
(ii) If 𝑛 > 𝑚 then there are only a couple of infinite critical points of 𝑝(𝑋) that correspond to the direction 𝑦 = 0. Moreover if 𝑛 is even these 

critical points are both nodes. If 𝑛 is odd and 𝑚 even they have one degenerated hyperbolic sector and one elliptic sector separated by 
the equator of the sphere. In the remaining case, 𝑛 and 𝑚 odd, there are two possibilities, either the critical points have two degenerated 
hyperbolic sectors or they have two elliptic sectors, and also the equator of the sphere separates these two sectors.

A similar version of the above theorem has also been proved in He et al. [9,10].
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2.  Preliminary results

Next lemmas will be useful to prove Theorem A.
Lemma 1. Consider the planar differential system 𝑥̇ = 𝑎𝑦𝑛, 𝑦̇ = 𝑄𝑚(𝑥, 𝑦), where 𝑛 and 𝑚 are positive integers and 𝑄𝑚 is a homogeneous 
polynomial satisfying 𝑄𝑚(𝑥, 0) = 𝑏𝑥𝑚, with 𝑎𝑏 ≠ 0. Then (0, 0) is an isolated critical point and its index is 0 when 𝑛𝑚 is even and it is 
− sign(𝑎𝑏) when 𝑛𝑚 is odd.
Proof.  Clearly (0, 0) is an isolated singularity. Write 𝑋(𝑥, 𝑦) = (𝑎𝑦𝑛, 𝑄𝑚(𝑥, 𝑦)). Recall that its index 𝑖 = 𝑖𝑋 (0) can be computed as

𝑖 =
∑

𝑝∈ℝ2∩𝑋−1(𝜀)

sgn
(

det(𝐷𝑋)𝑝
)

,

where 𝜀 = (𝜀1, 𝜀2) is any small enough regular value of 𝑋, that is every solution of 𝑋(𝑝) = 𝜀 is simple. By Sard’s Theorem almost all 
values of 𝜀 are regular values.

When 𝑛 is even, by taking a regular value 𝜀, with 𝑎𝜀1 < 0, we get that ℝ2 ∩𝑋−1(𝜀) = ∅ and hence 𝑖 = 0.
When 𝑛 is odd and 𝜀 is a regular value, we have that

ℝ2 ∩𝑋−1(𝜀) = {(𝑥∗𝑗 , 𝑦
∗), 𝑖 = 1, 2,… , 𝑘},

where 𝑦∗ = (𝜀1∕𝑎)1∕𝑛, 𝑘 ≤ 𝑚 is a non negative integer with the same parity that 𝑚 and 𝑥∗1 < 𝑥∗2 < … < 𝑥∗𝑘 are the 𝑘 real roots of 
𝑄𝑚(𝑥, 𝑦∗) − 𝜀2 = 0, which all of them are simple. Easy computations give

det(𝐷𝑋)(𝑥∗𝑗 ,𝑦∗) = −𝑎𝑛(𝑦∗)𝑛−1
𝜕𝑄𝑚
𝜕𝑥

(𝑥∗𝑗 , 𝑦
∗).

Hence the values sgn ( det(𝐷𝑋)(𝑥∗𝑗 ,𝑦∗)
) are alternating their signs varying 𝑗. In particular, when 𝑚 is even, then 𝑘 is even, and their 

sum is 0, as we wanted to see. Otherwise, when 𝑚 is odd, the sum of the k values coincides with the first value, that is, 

𝑖 =
𝑘
∑

𝑗=1
sgn

(

det(𝐷𝑋)(𝑥∗𝑗 ,𝑦∗)
)

= sgn
(

det(𝐷𝑋)(𝑥∗1 ,𝑦∗)
)

= − sgn
(

𝑎𝑛(𝑦∗)𝑛−1
𝜕𝑄𝑚
𝜕𝑥

(𝑥∗1 , 𝑦
∗)
)

= − sgn(𝑎𝑏).

Hence the lemma follows. ∎
Lemma 2. Let 𝑋 = (− 𝜕𝐻

𝜕𝑦 ,
𝜕𝐻
𝜕𝑥 ) ∈ 𝑛,𝑚. Then 

∑

𝑓 𝑖𝑋 ≤ 1. More specifically,

∑

𝑓
𝑖𝑋 = 𝐹 (𝑛, 𝑚) ∶=

⎧

⎪

⎨

⎪

⎩

1 − 𝑘, when 𝑛 = 𝑚,
0, when 𝑛 > 𝑚,  and 𝑛𝑚  even,
±1, when 𝑛 > 𝑚,  and 𝑛𝑚  odd,

where 𝑘, with 0 ≤ 𝑘 ≤ 𝑛 + 1, is the number of real straight lines of 𝐻𝑛+1(𝑥, 𝑦) = 0 and 𝐻𝑛+1 is the homogeneous part of degree 𝑛 + 1 of 𝐻 .
Proof.  We start studying the case 𝑛 = 𝑚. Write 𝑃 = 𝑃0 + 𝑃1 +…+ 𝑃𝑛, 𝑄 = 𝑄0 +𝑄1 +…+𝑄𝑛, and 𝐻 = 𝐻0 +𝐻1 +…+𝐻𝑛+1. Then, 
for 0 ≤ 𝑗 ≤ 𝑛,

𝑃𝑗 (𝑥, 𝑦) = −
𝜕𝐻𝑗+1(𝑥, 𝑦)

𝜕𝑦
, 𝑄𝑗 (𝑥, 𝑦) =

𝜕𝐻𝑗+1(𝑥, 𝑦)
𝜕𝑥

.

Since 𝐻𝑛+1 is homogeneous of degree 𝑛 + 1, by using Euler’s identity,

−𝑦𝑃𝑛(𝑥, 𝑦) + 𝑥𝑄𝑛(𝑥, 𝑦) = 𝑥
𝜕𝐻𝑛+1(𝑥, 𝑦)

𝜕𝑥
+ 𝑦

𝜕𝐻𝑛+1(𝑥, 𝑦)
𝜕𝑦

= (𝑛 + 1)𝐻𝑛+1(𝑥, 𝑦).

Hence the number of critical points at infinity of 𝑝(𝑋) is the number of real straight lines of 𝐻𝑛+1(𝑥, 𝑦) = 0, that is 𝑘 ≤ 𝑛 + 1, see 
Dumortier et al. [7], Sotomayor[13]. Notice that in particular the genericity hypothesis implies that 𝐻𝑛+1(𝑥, 𝑦) ≢ 0 and moreover that 
all its roots are simple. To see the character of these singularities at infinity, take one of them, say 𝑞. Without loss of generality we 
can assume that 𝑞 lies in the local chart 𝑈1 and has local coordinates (𝑦, 𝑧) = (0, 0). The expression of 𝑝(𝑋) in the local chart 𝑈1 given 
in the introduction, and after scaling the independent variable 𝑡, is

𝑦̇ = [−𝑦𝑃𝑛(1, 𝑦) +𝑄𝑛(1, 𝑦)] + 𝑧[−𝑦𝑃𝑛−1(1, 𝑦) +𝑄𝑛−1(1, 𝑦)] +… + 𝑧𝑛[−𝑦𝑃0 +𝑄0],

𝑧̇ = −𝑧𝑃𝑛(1, 𝑦) − 𝑧2𝑃𝑛−1(1, 𝑦) −… − 𝑧𝑛+1𝑃0,

and the linear part of the vector field at (0, 0) has two eigenvalues with the same sign. So 𝑞 is a node and has index +1. Thus 
∑

∞ 𝑖𝑝(𝑋) = 2𝑘 ≥ 0 and from the Poincaré–Hopf’s Theorem we obtain 2∑𝑓 𝑖𝑋 + 2𝑘 = 2. Hence ∑𝑓 𝑖𝑋 = 𝐹 (𝑛, 𝑛) = 1 − 𝑘, as wanted to 
see.

If 𝑛 > 𝑚 the two components of the vector field (𝑃 ,𝑄) have the form 𝑃 (𝑥, 𝑦) = 𝑎𝑦𝑛 + 𝛼𝑛−1𝑦𝑛−1 +…+ 𝛼𝑚+1𝑦𝑚+1 + 𝑃 (𝑥, 𝑦) with 𝑃  of 
degree less or equal to 𝑚 and 𝑎 ≠ 0 and 𝑄 = 𝑄𝑚 + 𝑄̄ with 𝑄̄ of degree less than 𝑚. Since 𝑃𝑛 has only the factor 𝑦, from the generic 
assumption, 𝑄𝑚(𝑥, 0) = 𝑏𝑥𝑚 for some 𝑏 ≠ 0.

If we denote 𝑋̃ ∶= (𝑎𝑦𝑛, 𝑄𝑚(𝑥, 𝑦)), we claim that ∑𝑓 𝑖𝑋 = 𝑖𝑋̃ (0, 0). To see this we use the well-known fact that the index is invariant 
by a homotopy in the following sense. If 𝑌𝑠, 𝑠 ∈ [0, 1] is a continuous deformation between the vector fields 𝑌0 and 𝑌1 and  is a closed 
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ball with the property that for any 𝑠 ∈ [0, 1], 𝑌𝑠 never vanishes at the boundary of , then the sum of the indices at the critical points 
in  of 𝑌0 and 𝑌1 coincide, assuming that both vector fields have a finite number of critical points in . In our situation we consider

𝑋𝑠 =
(

𝑎𝑦𝑛 + 𝑠(𝛼𝑛−1𝑦𝑛−1 +…+ 𝛼𝑚+1𝑦
𝑚+1 + 𝑃 ), 𝑄𝑚 + 𝑠𝑄̄

)

.

To prove the claim we only need to show the existence of a closed ball  that contains in its interior all the critical points of 𝑋𝑠 for 
all 𝑠 ∈ [0, 1]. To see this we consider the change of variables

𝑥 = 𝑟𝑛 cos 𝜃, 𝑦 = 𝑟𝑚 sin 𝜃. (1)

These coordinates are sometimes called weighted polar coordinates. Direct computations show that 𝑋𝑠 writes as

𝑋𝑠(𝑥, 𝑦) =

(

(𝑎 sin𝑛 𝜃 + 𝑠 𝑐 cos𝑚 𝜃)𝑟𝑛𝑚 +
𝑛𝑚−1
∑

𝑖=0
𝑓𝑖(𝜃, 𝑠)𝑟𝑖, 𝑏 cos𝑚 𝜃𝑟𝑛𝑚 +

𝑛𝑚−1
∑

𝑖=0
𝑔𝑖(𝜃, 𝑠)𝑟𝑖

)

,

where 𝑐 is the coefficient of 𝑥𝑚 of 𝑃  and 𝑓𝑖 and 𝑔𝑖 are continuous functions defined in [0, 2𝜋] × [0, 1].
Thus if we denote by ‖ ⋅ ‖ the usual euclidean norm in ℝ2 we get

‖𝑋𝑠(𝑥, 𝑦)‖2 =
(

(𝑎 sin𝑛 𝜃 + 𝑠 𝑐 cos𝑚 𝜃)2 + 𝑏2 cos2𝑚 𝜃
)

𝑟2𝑚𝑛 +
2𝑛𝑚−1
∑

𝑖=0
ℎ𝑖(𝜃, 𝑠)𝑟𝑖,

where ℎ𝑖 are continuous functions defined in [0, 2𝜋] × [0, 1]. We note that the coefficient of 𝑟2𝑛𝑚 is always strictly positive because it is 
a sum of squares that do not vanishes simultaneously. Since this coefficient is a continuous function on the compact [0, 2𝜋] × [0, 1], it 
has a minimum value strictly positive. Then if 𝑟 is large enough we get ‖𝑋𝑠(𝑥, 𝑦)‖ ≠ 0 and hence we can consider a ball  with radius 
large enough in such a way all the critical points of 𝑋𝑠 are in its interior for all 𝑠 ∈ [0, 1]. Then the claim is proved.

Applying Lemma 1 we get ∑𝑓 𝑖𝑋 = 𝑖𝑋̃ (0, 0) = 𝐹 (𝑛, 𝑚) ∈ {−1, 0, 1}, as we want to prove. This ends the proof in this case. In short, 
for all 𝑛 ≥ 𝑚 we have proved

∑

𝑓
𝑖𝑋 = 𝐹 (𝑛, 𝑚) ≤ 1,

and the lemma follows. ∎
Remark 3. The proof of previous lemma that when 𝑋 ∈ 𝑛,𝑚 then 𝐹 (𝑛, 𝑛) = 1 − 𝑘 is based on the study of the critical points at infinity 
of 𝑝(𝑋), the Poincaré compactification of 𝑋. As we will see this is the only point of the proof of Theorem A where this compactification 
and the Poincaré–Hopf’s Theorem are used. We want to remark that it is not difficult to get other proofs without using these two 
results. For instance, an application of the tools introduced by Argémi [3], would provide an alternative proof.
Lemma 4. For any 𝑋 ∈ 𝑛,𝑚 there exists a continuous deformation 𝑋𝑠, 𝑠 ∈ [0, 𝛿] such that 𝑋0 = 𝑋 and 𝑋𝑠 ∈ 𝑛,𝑚 for each 𝑠 ∈ (0, 𝛿].

Proof.  To prove the existence of a such deformation in the case 𝑛 = 𝑚, we use the resultant of two 1-variable polynomials. This 
resultant is defined as the determinant of the Silvester’s matrix associated to them. It provides a polynomial expression depending 
on the coefficients of the two polynomials and it has the property that it is zero if and only if both polynomials have a common zero 
(real or complex). See for instance [11,13,14].

Assume first that 𝑛 = 𝑚. Fix 𝑋 = (𝑃 ,𝑄) ∈ 𝑛,𝑛 and consider 𝑋𝑠 = (𝑃 + 𝑠𝑦𝑛, 𝑄 + 𝑠𝑥𝑛). Clearly for each 𝑠, 𝑋𝑠 belongs to 𝑛,𝑛. Write 
𝑃𝑛 = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1𝑦 +…+ 𝑎𝑛𝑦𝑛 and 𝑄𝑛 = 𝑏0𝑥𝑛 + 𝑏1𝑥𝑛−1𝑦 +…+ 𝑏𝑛𝑦𝑛. To prove that there exits 𝛿 > 0 such that 𝑋𝑠 ∈ 𝑛,𝑛 for each 𝑠 ∈
(0, 𝛿] it suffices to prove that the homogeneous polynomials 𝑃𝑛(𝑥, 𝑦) + 𝑠𝑦𝑛 and 𝑄𝑛(𝑥, 𝑦) + 𝑠𝑥𝑛 do not have common factors.

For 𝑠 ≠ 0 small enough the coefficient of 𝑦𝑛 of 𝑃𝑛(𝑥, 𝑦) + 𝑠𝑦𝑛 is different from zero and so it does not contain the factor 𝑥. Therefore 
its factors correspond with the roots of the one variable polynomial of degree 𝑛, 𝑝𝑠(𝑧) = 𝑎0 + 𝑎1𝑧 +…+ (𝑎𝑛 + 𝑠)𝑧𝑛 where 𝑧 = 𝑦∕𝑥. In an 
analogous way the factors of 𝑄𝑛(𝑥, 𝑦) + 𝑠𝑥𝑛 correspond with the roots of the one variable polynomial 𝑞𝑠(𝑧) = (𝑏0 + 𝑠) + 𝑏1𝑧 +…+ 𝑏𝑛𝑧𝑛

taking into account that if 𝑞𝑠 has degree 𝑟 ≤ 𝑛 then 𝑄𝑛(𝑥, 𝑦) + 𝑠𝑥𝑛 has additionally 𝑥𝑛−𝑟 as one of its factor. In any case both polynomials 
share a common factor if and only if 𝑝𝑠 and 𝑞𝑠 have a common root. This fact does not hold if we prove that their resultant is not 
zero. Easy computations show that the determinant of the associated (𝑛 + 𝑟) × (𝑛 + 𝑟) Sylvester matrix is a monic polynomial in 𝑠 of 
degree 𝑛 + 𝑟. This shows that for 𝑠 small enough it is different from zero and ends the proof of the lemma in this case.

Consider now the case 𝑛 > 𝑚. Clearly we can assume that 𝑋 ∉ 𝑛,𝑚, because otherwise the result is trivial. Hence 𝑄𝑚(𝑥, 0) ≡ 0
because 𝑦 is a common factor of 𝑃𝑛 and 𝑄𝑚. For 𝑋 = (𝑃 ,𝑄) ∈ 𝑛,𝑚 ⧵ 𝑛,𝑚 we take 𝑋𝑠 = (𝑃 ,𝑄 + 𝑠𝑥𝑚) which also belongs to 𝑛,𝑚 for 
each 𝑠 ∈ ℝ. Moreover, for each 𝑠 ≠ 0 it also belongs to 𝑛,𝑚, because 𝑃𝑛(𝑥, 𝑦) = 𝑎𝑦𝑛, for some 𝑎 ≠ 0 and 𝑄𝑚(𝑥, 0) = 𝑠𝑥𝑚. ∎
Lemma 5. Let 𝑋 = 𝑋0 ∈ 𝑛,𝑚 and assume that 𝑞 ∈ ℝ2 is a center of 𝑋. Let 𝑋𝑠 ∈ 𝑛,𝑚, 𝑠 ∈ [0, 𝛿] a continuous perturbation of 𝑋0 in 𝑛,𝑚. 
Let also  be an open ball centered at 𝑞 that does not contain any other critical point of 𝑋. Then for any 𝜖 > 0 small enough, 𝑋𝜖 has (at least) 
one center in  .
Proof.  As we have already explained, the only critical points with positive index of planar Hamiltonian systems are centers and they 
have index +1. Also from the well-known stability properties of the index we already know that for 𝜖 small enough,

∑


𝑖𝑋𝜖

= 𝑖𝑋 (𝑞) = 1,

where ∑ 𝑖𝑋𝜖
 denotes the sum of the indices of the critical points of 𝑋𝜖 contained in  . This implies that for 𝜖 small enough there is 

some critical point of 𝑋𝜖 with positive index contained in  and the result follows. ∎

Nonlinear Analysis: Real World Applications 88 (2026) 104503 

4 



A. Cima et al.

3.  Proof of Theorems A and B

Proof of Theorem A.  First we prove the result for 𝑋 ∈ 𝑛,𝑚. In this situation 𝑋 has a finite number of critical points. Let 𝐶 be the 
number of centers of 𝑋 that coincides with the number of critical points with index +1. Let 𝑁 be the sum of the indices of all critical 
points with negative index. Then ∑𝑓 𝑖𝑋 = 𝐶 +𝑁 , and from Lemma 2 we get 𝐶 +𝑁 ≤ 1.

On the other hand, it is well known that the index 𝑖 of an isolated critical point of an analytic planar vector field with multiplicity 
𝜇, satisfies that |𝑖| ≤ 𝜇, see for instance [8]. Then, since the polynomial vector field 𝑋 has a finite number of zeros, from Bezout’s 
Theorem we have that ∑𝑓 |𝑖𝑋 | = 𝐶 −𝑁 ≤ 𝑛𝑚.

Adding the two inequalities obtained we get that 2𝐶 ≤ 𝑛𝑚 + 1, inequality that implies the desired result in this case.
Now consider the general case. Let 𝑋 ∈ 𝑛,𝑚 and suppose to arrive a contradiction that 𝐶 > 𝐸

(

𝑛𝑚+1
2

)

. From Lemma 4 we can 
consider a continuous deformation 𝑋𝑠, 𝑠 ∈ [0, 𝛿] such that 𝑋𝑠 ∈ 𝑛,𝑚 for any 𝑠 ∈ (0, 𝛿]. Therefore from Lemma 5 we get that the same 
inequality holds for the number of centers of 𝑋𝑠, when 𝑠 ≠ 0; a contradiction. This ends the proof of the inequality.

To show that the bound is the best possible we consider a vector field 𝑋 = (−𝑃 ,𝑄) where 𝑃 = 𝑃 (𝑦), 𝑄 = 𝑄(𝑥) are monic polynomials 
of degrees 𝑚 and 𝑛 respectively and having all its roots real and simple. Clearly 𝑋 is Hamiltonian, 𝑋 ∈ 𝑛,𝑚 and has 𝑛𝑚 finite critical 
points, which are either saddles or centers, located in a 𝑛 × 𝑚 grid. By the same argument used in the proof of the Lemma 1 it follows 
that they indices must be ±1 and they alternate in the grid like the colors in a chess board. So if 𝑛𝑚 is even we get 𝐶 = 𝑛𝑚

2 = 𝐸
(

𝑛𝑚+1
2

)

. 
If 𝑛 and 𝑚 are odd and 𝑛 = 𝑚 then, since the equation of the critical points at infinity is −𝑦𝑃𝑛 + 𝑥𝑄𝑛 = 𝑦𝑛+1 + 𝑥𝑛+1, we see that 
there are no infinite critical points. Therefore ∑𝑓 𝑖𝑋 = 1, and the number of centers exceeds the number of saddles by one. Hence 
𝐶 = 𝐸

(

𝑛𝑚+1
2

)

 also in this case. Lastly if 𝑛 and 𝑚 are odd and 𝑛 > 𝑚, from the proof of Lemma 2 it follows that ∑𝑓 𝑖𝑋 = 1, and we also 
obtain 𝐶 = 𝐸

(

𝑛𝑚+1
2

)

. This ends the proof of the theorem. ∎

Remark 6. Notice that in the first part of the proof of the above theorem we simply have used that 𝐶 +𝑁 =
∑

𝑓 𝑖𝑋 ≤ 1. The bound 
obtained in Theorem A can be improved in some particular situations when 𝑋 ∈ 𝑛,𝑚 if instead of this inequality we use the one given 
in Lemma 2, 𝐶 +𝑁 =

∑

𝑓 𝑖𝑋 ≤ 𝐹 (𝑛, 𝑚). For instance, when 𝑋 ∈ 𝑛,𝑛 and 𝐻𝑛+1(𝑥, 𝑦) = 0 has 𝑘 real invariant straight lines we obtain 
𝐶 ≤ 𝐸

(

𝑛2+1−𝑘
2

)

, result also proved in He et al. [9,10]. Similarly, if 𝑋 ∈ 𝑛,𝑚, then 𝑃𝑛(𝑥, 𝑦) = 𝑎𝑦𝑛, 𝑄𝑚(𝑥, 0) = 𝑏𝑥𝑚, with 𝑎𝑏 ≠ 0. When 
𝑎𝑏 > 0 we easily obtain that 𝐶 ≤ 𝐸

(

𝑛𝑚−1
2

)

. 

Proof of Theorem B.  As we have explained in the proof of the Lemma 2, statement (i) follows simply computing the differential of 
𝑝(𝑋) at the infinite critical points.

To prove statement (ii) with 𝑛 > 𝑚, consider 𝑋 = (− 𝜕𝐻
𝜕𝑦 ,

𝜕𝐻
𝜕𝑥 ) ∈ 𝑛,𝑚. Then

𝐻(𝑥, 𝑦) = 𝐴𝑦𝑛+1 +…+ 𝑎𝑚+2 𝑦
𝑚+2 +𝐻𝑚+1(𝑥, 𝑦) +𝐻𝑚(𝑥, 𝑦) +… +𝐻1(𝑥, 𝑦) +𝐻0

where the polynomials 𝐻𝑖 are homogeneous of degree 𝑖, 𝐻𝑚+1(𝑥, 0) = 𝐵𝑥𝑚+1 with 𝐵 ≠ 0, and also 𝐴 ≠ 0. The system has only a pair 
of degenerate critical points at infinity, the ones corresponding to the direction 𝑦 = 0. One of these points at infinity is in the local 
chart 𝑈1, and it writes as 𝑞 = (𝑦, 𝑧) = (0, 0). The other one is of the same type and is in the local chart 𝑉1. Returning to the first point, 
the level curves 𝐻(𝑥, 𝑦) = ℎ of the Hamiltonian in the chart 𝑈1 are

𝐴𝑦𝑛+1 + 𝑎𝑛 𝑦
𝑛𝑧 +…+ 𝑎𝑚+1 𝑦

𝑚+1 𝑧𝑛−𝑚−1 +
𝑚+1
∑

𝑖=0
𝐻𝑖(1, 𝑦)𝑧𝑛+1−𝑖 − ℎ𝑧𝑛+1 = 0.

Note that this expression contains the monomial 𝐵𝑧𝑛−𝑚 which is the homogeneous part of minimum degree of the curve. From this 
observation, if a level curve arrives to 𝑞 it must arrive tangent to 𝑧 = 0. Now we investigate which level curves arrive to the critical 
point 𝑞. To do this we blow up this direction considering the following change of variables given by weighted polar coordinates:

𝑦 = 𝑟𝑛−𝑚 cos 𝜃, 𝑧 = 𝑟𝑛+1 sin 𝜃. (2)

Easy computations show that our level curve writes as

(

𝐴 cos𝑛+1 𝜃 + 𝐵 sin𝑛−𝑚 𝜃
)

𝑟(𝑛+1)(𝑛−𝑚) +
𝑖=(𝑛+1)2
∑

𝑖=(𝑛+1)(𝑛−𝑚)+1
𝑓𝑖(𝜃)𝑟𝑖 = 0,

where 𝑓𝑖 are trigonometric polynomials. Then our curve factorizes as

𝑟 = 0 and (𝐴 cos𝑛+1 𝜃 + 𝐵 sin𝑛−𝑚 𝜃
)

+
(𝑛+1)(𝑚+1)

∑

𝑖=1
ℎ𝑖(𝜃)𝑟𝑖 = 0

where ℎ𝑖(𝜃) = 𝑓(𝑛+1)(𝑛−𝑚)+𝑖(𝜃). Therefore our level curve arrives to 𝑞 if and only if
sin𝑛−𝑚 𝜃
cos𝑛+1 𝜃

= −𝐴
𝐵
, (3)

and since all its solutions 𝜃 = 𝜃∗ are simple, by the implicit function theorem, for each of these solutions, there is a function 𝑟 = 𝑟(𝜃)
such that the corresponding points are on this level set and 𝑟(𝜃) tends to 0 when 𝜃 tends to 𝜃∗. We stress the fact that this equation 
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does not depend on ℎ. Therefore, either all level curves arrive to 𝑞, or there are no levels that arrive to 𝑞. The solution of this equation 
depends on the parities of 𝑛 and 𝑚. For instance, if 𝑛 is even then, by studying the graphs of the functions sin𝑛−𝑚 𝜃

cos𝑛+1 𝜃  for 𝑚 even or odd, we 
see that there are exactly two values, 𝜃1, 𝜃2 with 𝜃1 ∈ (0, 𝜋) and 𝜃2 ∈ (𝜋, 2𝜋) satisfying Eq. (3). Then each level curve has two branches 
arriving to 𝑞, one through 𝑧 > 0 and another one through 𝑧 < 0. Then 𝑞 is a node.

If 𝑛 is odd and 𝑚 is even then Eq. (3) has either, two solutions in (0, 𝜋) and none in (𝜋, 2𝜋), or vice-versa, depending on the sign 
of −𝐴∕𝐵. Assume the first possibility and let 𝜃1, 𝜃2 be these two solutions. Then we have that 𝜃1 ∈ (0, 𝜋∕2) and 𝜃2 ∈ (𝜋∕2, 𝜋), hence 
cos(𝜃1) > 0 and cos(𝜃2) < 0. Since 𝑦 = 𝑟𝑛−𝑚 cos(𝜃), the first orbit reaches 𝑞 through 𝑦 > 0 and the second through 𝑦 < 0, both lying in 
𝑧 > 0. And since there are not level curves that arrive to 𝑞 in 𝑧 < 0 it follows that in 𝑧 < 0 we have a degenerated hyperbolic sector. 
Moreover from Lemma 2 and Poincaré–Hopf’s Theorem we know that 𝑖𝑝(𝑋)(𝑞) = 0. Since it has one hyperbolic sector it must have at 
least one elliptic sector. However by the previous observation any elliptic sector must intersect the line 𝑦 = 0 and must arrive to (0, 0)
in the direction 𝑧 = 0. Clearly this implies the uniqueness of this elliptic sector.

If 𝑛 and 𝑚 are odd the Eq. (3) does not have any solution if 𝐴∕𝐵 > 0. So in this case, no level curves arrives to 𝑞 and hence it has 
two degenerated hyperbolic sectors, one in 𝑧 > 0 and the other in 𝑧 < 0. When 𝐴∕𝐵 < 0 the equation has four solutions, two in (0, 𝜋)
and two in (𝜋, 2𝜋). Also from the Lemma 2 and Poincaré–Hopf’s Theorem it follows that in this case 𝑖𝑝(𝑋)(𝑞) = 2. So 𝑞 must have at 
least two elliptic sectors. As in the previous case each pair of solutions in 𝑧 > 0 arrive to 𝑞 from the first and second quadrants, so any 
elliptic sector must intersect 𝑦 = 0 near (0, 0). This implies the uniqueness of the elliptic sector in 𝑧 > 0. The same situation occurs in 
𝑧 < 0. This ends the proof of the theorem. ∎
Remark 7. The results of Theorem B correspond with items (i) and (iii) of Cima et al. [4, Thm 2.2]. We want to comment that our 
proof of item (i) is the same, but the one dealing with the case 𝑛 > 𝑚 and corresponding to item (iii) is quite different. Indeed in the 
proof of item (iii) of Theorem 2.2 of Cima et al. [4] it is used the fact that vector fields belonging to 𝑛𝑚 do not have non-degenerate 
hyperbolic sectors, which is stated in the last assertion of item (ii) of that theorem. Unfortunately the proof of this last assertion had 
a gap, because we forgot to discard the case of the existence of non-degenerated hyperbolic sectors tangent to the line of infinity. 
Fortunately, as we have seen in our new proof, these sectors do not exist. In short, the statement of that theorem was right but the 
proof of item (ii) had a gap. This gap is corrected in the proof of item (ii) of Theorem B.

We end this section with some more facts about the shape of the critical points at infinity for vector fields 𝑋 in 𝑛,𝑚. The first 
one was proved in the first assertion of item (ii) of Cima et al. [4, Thm 2.2]. It ensures that if a critical point 𝑞 of 𝑝(𝑋) at infinity has 
some non-degenerated sector then its two separatrices are tangent to the same direction and in a neighborhood of 𝑞 this direction is 
not between them. The second one is that when the vector field 𝑋 ∉ 𝑛,𝑚 many other configurations can appear in the critical points 
at infinity. For instance in the papers [1,6] the authors show examples of 𝑋 ∉ 𝑛,𝑚 where some critical points at infinity exhibit 
non-degenerated hyperbolic sectors, with none of their separatrices contained in the equator of the Poincaré compatification.

The simplest one is given in Cima et al. [6, Ex. 3.22] and corresponds to the Hamiltonian

𝐻(𝑥, 𝑦) = 𝑥2

2
+ 𝑥2(𝑥2 + 1) 𝑦 + 1

2
(𝑥2 + 1)3 𝑦2.

Clearly its associated 𝑋 ∈ 7,7 ⧵ 7,7 because 𝑃7(𝑥, 𝑦) = −𝑥6𝑦 and 𝑄7 = 3𝑥5𝑦 share two factors. It has the critical points at infinity 
determined by the directions 𝑥 = 0, 𝑦 = 0 and while the critical points in the charts 𝑈2, 𝑉2 have two degenerated hyperbolic sectors, 
the ones in 𝑈1, 𝑉1 have two non-degenerated hyperbolic sectors. In [1] a couple of critical points at infinity with 4 non-degenerated 
hyperbolic do appear.

One of the reasons to be interested on the hyperbolic sectors at infinity of planar polynomial Hamiltonian systems goes back to 
the celebrated Jacobian conjecture in ℝ2. Recall that if affirms that a polynomial map (𝑃 ,𝑄) ∶ ℝ2 → ℝ2 such that

𝜕𝑃 (𝑥, 𝑦)
𝜕𝑥

𝜕𝑄(𝑥, 𝑦)
𝜕𝑦

−
𝜕𝑃 (𝑥, 𝑦)

𝜕𝑦
𝜕𝑄(𝑥, 𝑦)

𝜕𝑥
≡ 𝑐 ≠ 0

is bijective. The reason is that Sabatini proved in Sabatini [12] that when 𝑃 (0, 0) = 𝑄(0, 0) = 0 this conjecture holds if under its 
hypotheses it can be proved that the Hamiltonian system associated to

𝐻(𝑥, 𝑦) =
𝑃 2(𝑥, 𝑦) +𝑄2(𝑥, 𝑦)

2
has a global center at the origin. In particular, notice that to have this property, all the critical points at infinity should have only 
degenerated hyperbolic sectors. See again the works [1,6] and their references for more details about this question.
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