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Abstract
We show the existence of singular inner functions that are cyclic in some Besov-type
spaces of analytic functions over the unit disc. Our sufficient condition is stated only
in terms of the modulus of smoothness of the underlying measure. Such singular inner
functions are cyclic also in the space �

p
A of holomorphic functions with coefficients in

�p. This can only happen for measures that place no mass on any Beurling–Carleson
set.

Keywords Singular inner function · Sequence spaces · Cyclic vectors
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1 Introduction

Let h be a holomorphic function over the unit disc D. We say h is inner if |h(z)| ≤ 1
for every point z ∈ D and |h∗(eiθ )| = 1 for almost every point of T, where h∗ denotes
the function defined for almost every point of T by taking radial limits of h. Let μ be
a positive Borel measure on the unit circle T, singular with respect to the Lebesgue
measure. Thenwe can associate toμ an inner function Sμ that we call singular, defined
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on D by taking:

Sμ(z) := exp

{
−

∫ 2π

0

eiθ + z

eiθ − z
dμ(θ)

}
z ∈ D. (1.1)

Inner functions, and singular ones in particular, have played a crucial role in the
complex analysis of the last century, due to their relationship with the structure of the
Hardy space H2. This is the set of all functions holomorphic over D with a square
summable sequence of Maclaurin coefficients (with the natural Hilbert space norm).
Functions in H2 can be decomposed in an essentially unique manner as the product
of an inner function and an outer function, that is, a holomorphic function g with
no zeros in D, such that log |g∗(z)| has the mean value property on T. See [8] for
the basic theory regarding the H2 space. The seminal work of Beurling, [4], shows
that inner function are canonical generators of all proper invariant subspaces for the
shift operator in the Hardy space. In the present article, we discuss whether there
exist singular inner functions that are cyclic (for the shift operator) in other spaces of
analytic functions over the unit disc. Cyclic functions are those contained in no proper
invariant subspace, but in our context, we may say that a function f is cyclic in a space
X , if there exists a sequence of polynomials {pn}n∈N such that ‖pn f − 1‖X → 0.
In what follows, we will denote by [ f ]X the smallest closed subspace that contains
f ∈ X and that is invariant by multiplication by z. If the space X is clear from the
context, we will drop it in our notation and call such invariant subspace [ f ].

Our primary goal will be to describe those singular inner functions that are cyclic
in X in the case that X is any �

p
A space for p > 2. With this purpose, we define the

space

�
p
A :=

{
f ∈ Hol(D)

∣∣∣∣ ‖ f ‖p
p :=

∞∑
k=0

| f̂ (k)|p < ∞
}

,

where f̂ (k) denotes the Maclaurin coefficient of f of order k. The �
p
A spaces are

Banach spaces whenever p ≥ 1 (and quasi-Banach for p > 0). Notice that p = 2
yields the Hardy space H2. Moreover, for p ≤ 2 it is clear that there cannot be any
singular inner functions which are cyclic as far as Beurling’s theorem implies that
there are no cyclic inner functions in the Hardy space �2A other than constants.

Our description of cyclic singular inner vectors in �
p
A will take advantage of the

relation between coefficient spaces and Besov-type spaces. For all 0 < p < ∞, the
Besov space D p

p−1 is the space of all analytic functions over D whose norm

‖ f ‖D p
p−1

:= | f (0)| +
(∫

D

(1 − |z|)p−1| f ′(z)|p d A(z)

) 1
p

is finite. From [10, Th. 1.1, (ii) and Th. 1.2] and [16, Th. 7.1] we get

H p ⊂ D p
p−1 ⊂ �

p
A, p ≥ 2 (1.2)
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and

�
p
A ⊂ D p

p−1 ⊂ H p, 0 < p ≤ 2, (1.3)

where H p denotes the standard Hardy space of exponent p. Notice that, once again,
the case p = 2 corresponds to the Hardy space H2. Moreover, the second inclusion in
(1.3) implies that no singular inner function can be cyclic in D p

p−1, if 1 ≤ p ≤ 2. For

p = ∞ the space D p
p−1 coincides with the familiar Bloch space B, that is, the space

of those analytic functions over D such that

sup
z∈D

| f ′(z)|(1 − |z|) < ∞. (1.4)

Cyclic singular inner functions in the Bloch space were studied in [2] via regularity
conditions on their defining singular measure. Given a positive Borel measure ν on T,
its modulus of continuity is defined as

δν(t) := sup
|I |≤t

{ν(I )},

while its modulus of smoothness is

ων(t) := sup{|ν(I ) − ν(J )| | I , J adjacent intervals, |I | = |J | ≤ t}.

The main result of [2] shows the existence of a singular inner function Sμ that is
(weak∗) cyclic in B; in fact, any singular measure μ satisfying

δμ(t) ≤ 8t
(
2 + 96−1 log log

e

t

)
, ωμ(t) ≤ 36

t√
log e

t

(1.5)

is cyclic in B. The hard part of their argument is to show that a singular measure μ

satisfying both bounds in (1.5) actually exists. It is worth noticing that the argument in
[2] extends to the Besov spaces D p

p−1 for 2 < p < ∞. In particular, any singular inner

function satisfying (1.5) has a power that is cyclic for D p
p−1, even for 2 < p < ∞.

Namely, the same techniques in [2] yield the existence of a singular inner function
that is cyclic in D p

p−1, and hence in �
p
A via the embedding (1.2). Alternatively, [14],

one can embed a Bloch-type space inside �
p
A, and use once again the same argument

in [2].
This note grew out of the attempt to give a better description of singular inner

vectors in �
p
A, for p > 2. Indeed, constructing examples of a singular measure μ

satisfying (1.5) is highly non trivial, and the construction in [2] is not explicit. On the
other hand, it is considerably easier to construct a singular measure by prescribing
only its modulus of smoothness. Our main results reads as follows:
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Theorem 1.1 Let Sμ be a singular inner function such that

ωμ(t) ≤ C
t√
log e

t

t ∈ (0, 1) (1.6)

for some C > 0. Then Sμ is cyclic in D p
p−1 (and hence in �

p
A) for all p > 2.

An explicit construction of a singular measure satisfying (1.6) can be found in [21,
Th. II]. The proof of Theorem 1.1 is contained in Sect. 4, and it can be outlined as
follows. The reader familiar with the argument in [2] notices that the extra assumption
in δμ is required to estimate the dilates of 1/|Sμ| pointwise, since in that setting one
works with the seminorm (1.4). In the setting D p

p−1, one can replace a pointwise
estimate of 1/|Sμ| with an estimate of its L p-norm on circles approaching T. To
obtain such an estimate, we will relate 1/|Sμ| with a dyadic martingale on the unit
circle. The description of such martingales, together with the tools that are necessary
to estimate the above mentioned L p-averages, are contained in Sect. 2. As a result,
under an even weaker condition than (1.6) one has that a power of Sμ is cyclic in D p

p−1

(Theorem 4.1). In order to conclude that Sμ itself is cyclic in D p
p−1, we need to show

that (1.6) implies that Sμ is a multiplier of D p
p−1; this is done in Sect. 3. On the other

hand, Theorem 1.1 implies that such singular inner function is not a multiplier of �
p
A

for all p ∈ (1,∞)\{2}; in fact, it is not in �
p
A for all 1 < p < 2 (see Remark 4.3).

Sections5 and 6 includes some additional remarks and open problems on the relation
between cyclicity in D p

p−1, outer functions and logarithmic conditions.

We also point out that a necessary condition for Sμ to be cyclic in �
p
A comes from

their embeddings into some Bergman-type spaces. Let �
2,α
A be the space of analytic

functions such that

∞∑
n=0

| f̂ (n)|2(1 + n)α < ∞. (1.7)

For α = 0, we recover the Hardy space H2, while for negative α we obtain Bergman-
type spaces. It was proven in two works by Korenblum [13] and Roberts [18] that
for any α < 0 a singular inner function Sμ is cyclic in �

2,α
A if and only if μ(E) =

0 for any Beurling–Carleson set E ⊂ T. We recall that a closed set E ⊂ T is a
Beurling–Carleson set if it has null Lebesgue measure and

∑
n

|In| log 1

|In| < ∞, (1.8)

whereT\E is the disjoint union of the open intervals (In)n and |·| denotes theLebesgue
measure on T. Such sets play a crucial role in classic function theory: for instance,
they are the boundary zero sets of those holomorphic functions over D which extend
to a C∞ function on D.
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Since for all ε > 0 and p > 2 one has

�
p
A ⊂ �

2,(1+ε)
(
2
p −1

)
A

we obtain that for all p > 2 any cyclic singular inner function in �
p
A must satisfy

Korenblum’s condition:

Theorem 1.2 If Sμ is cyclic in �
p
A for some p > 2, then μ(E) = 0 for any Beurling–

Carleson set E ⊂ T.

In view of the embedding (1.2), the same holds for cyclic singular inner functions in
D p

p−1:

Corollary 1.3 If Sμ is cyclic in D p
p−1 for some p > 2, then μ(E) = 0 for any Beurling–

Carleson set E ⊂ T.

On the other hand, the proof of the sufficiency of Korenblum’s condition for the
Bergman-type spaces �

2,α
A uses, among other tools, that the multiplier algebra of such

Bergman spaces coincides isometrically with H∞ and that the norm of f zn , for f in
such spaces, is asymptotically small, as n → ∞. None of these two properties hold
for �

p
A; nonetheless, the question of whether Korenblum’s characterization extends to

singular inner vectors in �
p
A arises naturally:

Question 1 Let μ be a singular, positive Borel measure on T such that μ(E) = 0 for
any Beurling–Carleson set E ⊂ T, and let p > 2. Is Sμ cyclic in �

p
A? Is it cyclic in

D p
p−1?

2 Dyadic martingales and singular measures

Let D = ⋃
n Dn be the collection of all dyadic intervals on the torus, where

Dn :=
{[

j

2n
,

j + 1

2n

) ∣∣∣∣ j = 0, . . . 2n − 1

}

denote the collection of all dyadic intervals of length 2−n . A dyadic martingale is a
family M = (MI )I∈D such that the mean value property

MI = MI1 + MI2

2
(2.1)

holds for all I , I1, I2 in D so that I = I1 ∪ I2 and I1 ∩ I2 = ∅. Alternatively, one can
think of a dyadic martingale as a sequence (Mn)n of functions on T:

Mn(θ) := MIθ ,



    2 Page 6 of 19 A. Dayan et al.

where Iθ is the unique interval in Dn that contains θ . Given a positive sequence
β = (βn)n , we say that a dyadic martingale M is β-smooth if

|MI − MJ | ≤ βn

for any adjacent intervals I , J inDn . This, together with (2.1), implies that (βn)n also
bounds the increments of the martingale M ; more precisely,

|Mn(θ) − Mn−1(θ)| ≤ βn

2
(2.2)

We denote by 〈M〉n the quantity

〈M〉n(θ) :=
⎛
⎝ n∑

j=1

∣∣M j (θ) − M j−1(θ)
∣∣2

⎞
⎠

1
2

θ ∈ T.

Hence, if M is β-smooth, then

〈M〉n(θ) ≤ 1

2

⎛
⎝ n∑

j=1

β2
j

⎞
⎠

1
2

.

The following Lemma can be interpreted as a concentration inequality for dyadic
martingales, given in terms of the quantity

An := sup
θ∈T

〈M〉n(θ).

This kind of result was first noted in [7], while the statement below can be extracted
from the proof of [20, Ch. 4, Lemma 7]:

Lemma 2.1 Let M be a dyadic martingale. Then

| {θ ∈ T | |Mn(θ) − M0(θ)| ≥ s} | ≤ e
− s2

2A2n s ∈ (0,∞).

In particular, for any positive α,

∫
T

eα|Mn(θ)| dθ = 1 +
∫ ∞

1

∣∣∣∣
{
|Mn| ≥ log(x)

α

}∣∣∣∣ dx

≤ 1 +
∫ ∞

1
e
− log(x)2

2α2 A2n dx

≤ Cα Ane
α2 A2n

2 .

(2.3)
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Let μ be a positive Borel measure on T. Then the quantities

Mμ
I := μ(I )

|I | I ∈ D

define a dyadic martingale. Moreover, one can estimate its characteristic function
〈Mμ

n 〉 via smoothness properties of μ. We say that a function ϕ on (0, 1] is almost
decreasing if there exists a c > 0 such that ϕ(x) ≥ c ϕ(y) for any y > x .

Definition 1 Let ϕ : (0, 1] → (0,+∞) be a function. A positive measure μ on T is
ϕ-smooth if

ωμ(δ) ≤ Cδϕ(δ)

for some C > 0.

It was shown in [22] that if ν is ϕ-smooth and

∫ 1

0

ϕ2(t)

t
< ∞,

then ν is absolutely continuous with respect to Lebesgue measure. On the other hand,
if

∫ 1
0 ϕ(t)2/t = ∞, then there exists a ϕ-smooth singular measure. We refer the reader

to [12], where one can find how to construct such singular measures using dyadic
martingales. Suppose in addition that μ is ϕ-smooth, and that ϕ is a continuous,
increasing function such that ϕ(t)/tβ is almost decreasing for some 0 < β < 1. If

〈ϕ〉(s) :=
(∫ 1

s

ϕ2(t)

t
dt

) 1
2

,

then the increments of Mμ are controlled by the sequence β := ( 1
2ϕ(2−n)

)
n , and the

regularity properties of ϕ ensure that

Aμ
n = sup

θ∈T
〈Mμ〉n(θ) �

⎛
⎝ n∑

j=1

ϕ(2−n)2

⎞
⎠

1
2

�
(∫ 1

2−n

ϕ(t)2

t
dt

) 1
2

= 〈ϕ〉(2−n).

(2.4)

This provides the discrete setting that we use to estimate the p- means of 1/|Sμ|. The
link between the continuous and the discrete settings is given by the following Lemma.
Given an interval I ⊆ T denote by TI the top-half of its Carleson box, that is,

TI := {z ∈ D | z/|z| ∈ I , |I |/2 ≤ 1 − |z|2 < |I |}.
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Lemma 2.2 Let μ be a positive Borel measure on T such that the increments of the
dyadic martingale Mμ are uniformly bounded. Then there exists a C > 0 so that

1

|Sμ(z)| � eC Mμ
Iz z ∈ D

where Iz is the unique dyadic interval such that z ∈ TIz .

Proof Note that

1

|Sμ(z)| = ePμ(z),

where Pμ is the Poisson integral of μ. Let z∗ := z/|z| and let n ∈ N be so that

|Iz | = 2−n , that is, 2−(n+1) < 1 − |z|2 ≤ 2−n . Let (Im)2
n−1−1

m=−2n−1−1
denote all the

dyadic intervals of generation n, I0 being Iz and supx∈Im
dist(I0, x) = |m|2−n . Hence

if θ ∈ Im , one has |z∗ − eiθ | � |m|(1 − |z|2). Therefore

Pμ(z) =
∫
T

1 − |z|2
|1 − e−iθ z|2 dμ(θ)

�
∫
T

1 − |z|2
max2{1 − |z2|, |z∗ − eiθ |} dμ(θ)

=Mμ
Iz

+
∑

m

Mμ
Im

m2

≤Mμ
Iz

+ C +
∑

m

|Mμ
Iz

− Mμ
Im

|
m2 .

Since Mμ has uniformly bounded increments, given any two dyadic intervals I and J
of generation n

|Mμ
I − Mμ

J | � log2 |P(I , J )|,
where P(I , J ) is the smallest common dyadic ancestor of I and J . Therefore, by
splitting the last sum according to the length of P(Iz, Im),

∑
m

|Mμ
Iz

− Mμ
Im

|
m2 �

n−1∑
j=0

j
2 j+1∑

|m|=2 j

1

m2 �
n−1∑
j=0

j

2 j
≤ C ′,

concluding the proof. ��
Corollary 2.3 For all p > 0 there exists a C p > 0 such that, for any singular inner
function Sμ,

∫
T

dθ

|Sμ(reiθ )|p
� 〈ϕ〉(1 − r)eC p〈ϕ〉(1−r)2 ,
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provided that μ is ϕ-smooth and that ϕ is a continuous, increasing function such that
ϕ(t)/tβ is almost decreasing for some 0 < β < 1.

Proof Fix r ∈ (0, 1) and let n be so that 2−n−1 ≤ 1−r2 < 2−n . Thanks to Lemma 2.2,
one has

∫
T

1

|Sμ(reiθ )|p
dθ �

∫
T

eC p Mμ
n (θ) dθ ≤ C p Aμ

n e
C2

p(A
μ
n )

2

2 ,

thanks to (2.3). The desired estimate follows from (2.4). ��

3 Multipliers ofDp
p−1

Let X be a Banach function space on a domain � ⊂ C
d . The multiplier algebra of X

is defined as

MultX := {h : � → C | h f ∈ X , f ∈ X}.

If point evaluations are bounded linear functionals in X , an application of the closed
graph theorem yields that, for any h in MultX , the associated multiplication operator

Mh : f �→ f h

is bounded on X . This providesMultX with a Banach space structure, modulo defining
‖h‖MultX := ‖Mh‖B(X). In a fairly general setting, a non-vanishingmultiplier is cyclic
if and only if its square is:

Lemma 3.1 Assume that X is a Banach space of holomorphic functions over D.
Assume that X has a dense subspace formed by all analytic polynomials, and that
each polynomial is a multiplier. If h ∈ MultX and h is cyclic in X then h2 is cyclic in
X.

Proof Under our assumptions, the constant 1 function is cyclic and thus, the fact that
h is cyclic is equivalent with the existence of a sequence of polynomials {pn}n∈N such
that

‖1 − pnh‖X → 0,

as n → ∞. Fix ε > 0 and choose n0 ∈ N:

‖1 − pnh‖X ≤ ε

2
,

for all n ≥ n0. Define qm = pn pm where m ≥ n is to be determined later in terms of
n. The triangle inequality gives

‖1 − qmh2‖X ≤ ‖1 − pnh‖X + ‖pnh(1 − pmh)‖X .
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The first summand of the right-hand side is bounded by ε
2 while the second term is

bounded by

‖pnh‖MultX ‖1 − pmh‖X .

Let Cn := ‖pnh‖MultX . It is enough to take m large enough so that

‖1 − pmh‖X ≤ ε

2Cn
,

to obtain that

‖1 − qmh2‖X ≤ ε.

��
Corollary 3.2 Let h : D → C such that hβ is a multiplier of X for all β > 0. Then h
is cyclic provided that hα is, for some α > 0.

Proof Pick k in N so that 2kα > 1. By Lemma 3.1, h2kα is cyclic in X . Since h2kα =
hh2kα−1 ∈ [h], this yields that h is cyclic as well. ��

We now focus on the case X = D p
p−1. In [23] it is shown that an analytic map g

on D is a multiplier of D p
p−1 if and only if it is bounded and

νg,p := |g′(z)|p(1 − |z|)p−1

induces aCarlesonmeasure for D p
p−1, that is, it realizes a bounded embedding D p

p−1 ⊆
L p(D, νg,p). It is interesting to note that Carlesonmeasures for D p

p−1 are characterized
only for p ≤ 2, and they are independent of p. Namely, a positive Borel measure ν

is Carleson for D p
p−1 if and only if there exists a constant C such that, for all arcs

I ⊆ D,

ν(S(I )) ≤ C |I |

where

S(I ) := {z ∈ D | z/|z| ∈ I , 1 − |z| ≤ |I |} (3.1)

denotes the Carleson box associated to I . Condition (3.1) is usually referred to as
the one-box condition. It is known that, for p > 2, (3.1) is not sufficient for ν to be
Carleson for D p

p−1 [9]. On the other hand, the stronger condition

ν(S(I )) � |I |
(
log

e

|I |
)1− p

2

I ⊆ T (3.2)
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is sufficient for μ to be Carleson for D p
p−1, [17]. We will use the fact, proved in

[2, Lemma 4], that if μ is ϕ-smooth for some positive, continuous, non decreasing
function ϕ on (0, 1] such that ϕ(t)/tβ is almost decreasing for some 0 < β < 1, then

sup
|z|=r

|S′
μ(z)| � ϕ(1 − r)

1 − r
. (3.3)

Proposition 3.3 Let μ be a singular measure on T satisfying (1.6). Then Sμ is a
multiplier of D p

p−1.

Proof By (3.3), one sees that

|S′
μ(z)| � 1

(1 − r)
√
log e

1−r

|z| = r .

Hence, given an interval I ⊆ T and p > 2

νSμ,p(S(I )) =
∫

S(I )
|S′

μ(z)|p(1 − |z|)p−1 d A(z)

�
∫

S(I )

d A(z)

(1 − |z|)
(
log e

1−|z|
) p

2

�|I |
∫ 1

1−|I |
dr

(1 − r)
(
log e

1−r

) p
2

�|I |
(
log

e

|I |
)1− p

2

.

Thus νSμ,p satisfies (3.2), and Sμ is a multiplier of D p
p−1. ��

4 Proof of Theorem 1.1

We are now ready for the proof of Theorem 1.1. Let μ be a positive, singular Borel
measure on T satisfying (1.6). By Proposition 3.3, Sβ

μ is a multiplier of D p
p−1 for all

β > 0. In view of Corollary 3.2, it is enough to show the existence, for all p > 2,
of a power of Sμ that is cyclic in D p

p−1. This is the case be for ϕ-smooth measures
(according to Definition 1), provided that ϕ satisfies an integrability condition:

Theorem 4.1 Let Sμ be a singular inner function such that μ is ϕ-smooth. If

∫ 1

0

ϕ(t)p

t
〈ϕ〉(t)eε〈ϕ〉(t)2 dt < ∞ (4.1)

for some ε > 0, then there exists an α > 0 such that Sα
μ is cyclic in D p

p−1.
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Remark 4.2 Equation (1.6) implies (4.1). Indeed, if we take ϕ(t) = C√
log e

t

, then

〈ϕ〉(s)2 := C
∫ 1

s

dt

t log e
t

,

which, for s ∈ (0, 1), is controlled from above by log log e
s . This means that

〈ϕ〉(t) ≤ C

√
log log

e

t
,

and thus

∫ 1

0

ϕ(t)p

t
〈ϕ〉(t)eε〈ϕ〉(t)2 dt ≤ C

∫ 1

0

√
log log e

t(
log e

t

) p
2 −Cε

dt .

Since p > 2, one can choose ε small enough so that p/2 − Cε > 1, so the latter
integral is finite.

Proof of Theorem 4.1 Thanks to [5, Proposition 5] a function f is cyclic in D p
p−1,

provided that

sup
t∈(0,1)

∥∥∥∥ f

ft

∥∥∥∥
D p

p−1

< ∞, (4.2)

since for all t ∈ (0, 1) the function ft (z) := f (t z) is analytic on an open neighborhood
of D.

Let α be a positive number to be fixed later. Thanks to (3.3), we have

sup
|z|=r

|(Sα
μ)′(z)| ≤ αC

ϕ(1 − r)

(1 − r)
, (4.3)

for some positive C . Let gt (z) := Sα
μ(z)/Sα

μ(t z). We wish to prove that
supt∈(0,1) ‖gt‖D p

p−1
< ∞. To this end, observe that since Sμ is inner we have

|g′
t (z)| ≤ |(Sα

μ)′(z)|
|Sμ(t z)|α + t

|(Sα
μ)′(t z)|

|Sμ(t z)|2α .
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Therefore, thanks to Corollary 2.3 and (4.3),

‖gt‖p
D p

p−1
=

∫
D

|gt (z)|p(1 − |z|2)p−1 d A(z)

�
∫ 1

0

ϕ(1 − r)p

1 − r

∫
T

1

|Sμ(treiθ )|α p
dθ dr

+
∫ 1

0

ϕ(1 − tr)p

1 − tr

∫
T

1

|Sμ(treiθ )|α p
dθ dr

�
∫ 1

0

ϕ(1 − r)p

1 − r
〈ϕ〉(1 − tr)eα pC〈ϕ〉(1−tr)2 dr

+
∫ 1

0

ϕ(1 − tr)p

1 − tr
〈ϕ〉(1 − tr)e2α pC〈ϕ〉(1−tr)2 dr .

By assumption, both ϕ(s)/s and 〈ϕ〉 are decreasing. Hence

‖gt‖p
D p

p−1
�

∫ 1

0

ϕ(1 − r)p

1 − r
〈ϕ〉(1 − r)e2α pC〈ϕ〉(1−r)2 dr ,

which is finite (uniformly on t) provided that 0 < α ≤ ε
2pC . ��

This concludes the proof of Theorem 1.1.

Remark 4.3 Our argument shows that a singular inner function Sμ satisfying (1.6) is a
multiplier of D p

p−1 but not a multiplier of �
p
A. By Proposition 3.3, Sμ is a multiplier of

D p
p−1. On the other hand, notice that if Sμ is in Mult�p

A
, then Sμ is in Mult�q

A
, q being

the dual exponent of p, since the two multiplier algebras coincide, [15]. In particular,
Sμ belongs to �

q
A, since �

q
A contains constant functions. This contradicts the fact that

Sμ is cyclic in �
p
A: let φSμ be the functional defined on polynomials by

φSμ( f ) :=
∫ 2π

0
f (eiθ )eiθ Sμ(eiθ ) dθ.

If Sμ ∈ �
q
A, then φSμ extends to a bounded linear functional acting on �

p
A. Since

φSμ(zm Sμ) =
∫ 2π

0
ei(m+1)θ dθ = 0

for all m = 0, 1, . . . , we found a non-zero bounded linear functional that annihilates
[Sμ]�p

A
. Hence Sμ cannot be cyclic in �

p
A, giving the desired contradiction.

5 Outer functions inDp
p−1

Any outer function in H2 is cyclic in H2, and any outer function inB is (weak∗) cyclic
in B, [6]. Hence the following question naturally arises:
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Question 2 Let p > 2. Is any outer function in D p
p−1 cyclic for D p

p−1?

The aim of this section is to address Question 2 under some extra assumptions on f .
As a preliminary remark we note that if p > 2 then H p ⊂ D p

p−1, [16]. Therefore any

outer function in H p is cyclic in D p
p−1. In what follows, we show that the same holds

for outer functions in D p
p−1 ∩ B:

Theorem 5.1 Let f be an outer function in D p
p−1 ∩ B, p > 2. Then f is cyclic in

D p
p−1.

Since D p
p−1 ∩ B �⊂ H p, Theorem 5.1 doesn’t follow directly from the embedding

H p ⊂ D p
p−1 mentioned above. The main tool we use is the following adaptation of

the argument in [6]:

Lemma 5.2 Let p > 1, ϕ in D p
p−1 and f in the Bloch space B. Then

sup
0<t<1

∫
D

|( f (z) − f (t z))ϕ′(t z))|p(1 − |z|)p−1d A(z) �p ‖ϕ‖p
D p

p−1
‖ f ‖p

B

Proof Since f (z) = ∫ z
0 f ′(s)ds, one gets

| f (z) − f (t z)| ≤
∫ z

tz
| f ′(z)|d|z| ≤ ‖ f ‖B log

1 − t |z|
1 − |z| ,

where we used that | f ′(z)| ≤ ‖ f ‖B/(1 − |z|). Therefore, for all t ∈ (0, 1),

∫
D

|( f (z) − f (t z))ϕ′(t z)|p(1 − |z|)p−1d A(z)

≤ ‖ f ‖p
B

∫
D

|ϕ′(t z)|p|(1 − t |z|)|p−1
(
1 − |z|
1 − t |z|

)p−1 (
log

1 − t |z|
1 − |z|

)p

d A(z).

For all t and |z| in (0, 1), 1−|z|
1−t |z| lies in (0, 1). The Lemma then follows by observing

that the function x �→ x p−1
(
log 1

x

)p
is bounded on the unit interval, provided that

p > 1. ��
As a Corollary, we obtain a sufficient condition for a function in D p

p−1 to be in the
invariant subspace generated by another:

Corollary 5.3 Let p > 1, f ∈ D p
p−1 ∩ B and g in D p

p−1 such that g/ f ∈ H∞. Then
g ∈ [ f ].
Proof Let ϕ := g/ f . By assumption, ϕ is a bounded analytic function. Since ϕt f
converges pointwise to g and ϕt f ∈ [ f ], it suffices to show that supt ‖ϕt f ‖D p

p−1
< ∞.

To this end, notice that for all 0 < t < 1

|(ϕt f )′| ≤|ϕt || f ′| + | f − ft | |ϕ′
t | + |(ϕt )

′ ft |
≤‖ϕ‖∞(| f ′| + |( ft )

′|) + | f − ft | |ϕ′
t | + |(ϕt ft )

′|
:=‖ϕ‖∞h1 + h2 + h3,
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respectively. We wish to show that

∫
D

h p
i (z)(1 − |z|)p−1d A(z) i = 1, 2, 3 (5.1)

are uniformly bounded on t . For i = 1, the integral in (5.1) is bounded since f is in
D p

p−1 and dilates of D p
p−1 functions converge in norm. Similarly, since g = ϕ f is in

D p
p−1 the integral in (5.1) is also uniformly bounded for i = 3. For i = 2, the integral

in (5.1) is bounded thanks to Lemma 5.2. ��
We are now ready for the proof of Theorem 5.1.

Proof of Theorem 5.1 As in [6, Th. 3], we note that any bounded outer function is
weak∗ cyclic in H∞, and therefore cyclic in D p

p−1 since H∞ ⊆ D p
p−1 for all p > 2

and the embedding is weak∗ continuous. Thanks to Corollary 5.3, we only have to
show that there exists a bounded outer function g in D p

p−1 that is pointwise bounded
by f . The function

g(z) := e
∫
T

eiθ +z
eiθ −z

log |g∗(eiθ )| dθ
z ∈ D

where

g∗(eiθ ) :=
{
1 if | f ∗(eiθ )| ≥ 1

| f ∗(eiθ )| otherwise

is the function we seek. ��

6 Logarithmic conditions

As we pointed out in Sect. 2, if ν is a ϕ-smooth measure on T and

∫ 1

0

ϕ2(t)

t
< ∞,

then ν is absolutely continuous with respect to Lebesgue measure. On the other hand,
if

∫ 1
0 ϕ(t)2/t = ∞, then there exists a ϕ-smooth singular inner measure (see [12]). In

particular, there exists a singular ϕ-smooth measure on T such that

∫ 1

0

ϕ p(t)

t
< ∞, (6.1)

for all p > 2. It turns out that singular inner functions generated by such measures
have logarithms in D p

p−1:
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Lemma 6.1 Let p > 0 and let

fν(z) := exp

{
−

∫
T

w + z

w − z
dν(w)

}
, (6.2)

where ν is a positive Borel ϕ-smooth measure. Assume that ϕ satisfies the additional
integrability condition (6.1). Then log fν is in D p

p−1.

Proof Thanks to [2, Lemma 4] one obtains that |(log fν)′| � ϕ(1−r)
1−r , hence

∫
D

| (log fν)
′ (z)|p(1 − |z|)p−1d A(z) �

∫ 1

0

ϕ(t)p

t
dt < ∞.

��

When p ≥ 2, Lemma 6.1 and the embedding into �
p
A spaces yield a summability

property for the Fourier coefficients of ν

ν̂(z) :=
∫
T

e−inθ dν(θ) n ∈ Z

provided that ν is sufficiently smooth.

Corollary 6.2 Let p ≥ 2 and let ν be a positive singular ϕ-smooth measure such that
ϕ satisfying the p integrability condition (6.1). Then

∑
n∈Z

|ν̂(n)|p < ∞.

In particular, if p = 2 then the function fν must be outer.

Proof Since ν is a positive measure, ν̂(−n) = ν̂(n) for all n ∈ Z. Hence it suffices to
show that (ν̂(n))n≥0 is in �p. Let fν be defined as in (6.2). Thanks to Proposition 6.1,
log fν is in D p

p−1. By the embedding (1.2),

log fν = 1 + 2
∑
n≥1

ν̂(n)zn (6.3)

is in �
p
A. ��

Notice that (6.1) is a weaker condition than the main hypothesis of Theorem 4.1.
The following question arises then naturally:

Question 3 Let f be an analytic function on D such that both f and log f belong to
D p

p−1, p > 2. Is f cyclic in D p
p−1?
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The cyclicity of functionswhose logarithmbelongs to a given space has been studied
in various settings. For instance, the analog of Question 3 has a positive answer when
replacing D p

p−1 with the Dirichlet space [1, 3] or with Hardy spaces H p as a direct
consequence of Theorem II.4.6 and Theorem II.7.4 in [8]. For certain Bergman-type
spaces this is evidently false: let α < 0 and consider the spaces �

2,α
A defined in

(1.7). Recall that, in this setting, a singular inner function is cyclic exactly when the
corresponding measure places no mass on any Beurling–Carleson set. This condition
is not satisfied by the atomic singular inner function

f (z) = e− 1+z
1−z .

However, its logarithm is in all �
2,α
A spaces when α < −1. The conditions studied

in [11] for membership of singular inner functions in Dirichlet-type spaces probably
provide counterexamples to Question 3 for other Bergman spaces with values of α

closer to 0: if a singular inner function Sμ belongs to �
2,α
A and to its Cauchy dual �2,−α

A ,
then Sμ can’t be cyclic in either of these spaces since its backward shift BSμ does not
belong to the invariant subspace generated by Sμ.

To the best of our knowledge, Question 3 remains open even for singular inner
functions. On the other hand, the analog question for �

p
A has a negative answer.

Theorem 6.3 For all p > 2, there exists a positive singular measure μ on T which is
supported on a Beurling–Carleson set whose Fourier coefficients are in �p.

In particular, since (μ̂(n))n∈Z is in �p, then log Sμ is in �
p
A by (6.3). On the other hand,

Sμ is not cyclic in �
p
A by Theorem 1.2.

Proof of Theorem 6.3 Our claim follows by a construction of Salem, [19, Th. II], where
it is shown that for all α ∈ (0, 1) and ε > 0, there exists a positive singular measure
μ supported on a perfect set E of Hausdorff dimension α such that

μ̂(n) = O(1/n
α
2 −ε). (6.4)

Fixed p > 2, for the Fourier coefficient of μ to lie in �p, it suffices to choose α and ε

in the allowed range so that p
(

α
2 − ε

)
> 1.

To conclude, we need to observe that a more detailed inspection of Salem’s proof
shows that E is a Beurling–Carleson set. Indeed, E is a Cantor-type set constructed
as follows: two parameters d ∈ N, d ≥ 2, and ξ so that 0 < ξ < 1/d are given, and
they depend exclusively on α and ε. Then E is the Cantor set constructed recursively
as follows. E0 = T and for all interval I of generation j − 1 composing E j−1 we
pick d sub-intervals whose length is equal to ξ j |I | and such that two consecutive left
endpoints are at distance ν|I |, where ν := ξ+1/d

2 . The union of such sub-intervals
composes E j and the set E is defined as

⋂
j E j . Even if the sequence (ξ j ) j is not

given explicitly, it is shown that there exists one choice for such sequence satisfying

(
1 − 1

( j + 1)2

)
ξ ≤ ξ j ≤ ξ (6.5)
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and a positive measure μ supported on E satisfying (6.4) (in fact, this is the case for
a generic sequence (ξn) satisfying (6.5)). Therefore, we only need to show that any
possible choice satisfying (6.5) provides a set E that is a Beurling–Carleson set. At
step j , the construction of the set E discards d j intervals of length � j , where, from
(6.5) we obtain

� j =
j∏

i=1

(ν − ξi ) ≤
j∏

i=1

(
ξ + 1/d

2
− ξ

(
1 − 1

(i + 1)2

))
.

After canceling the ξ terms and taking common factor, this gives

� j ≤
(
1/d − ξ

2

) j

e

∑ j
i=1 log

(
1+

2ξ
1/d−ξ

(i+1)2

)

.

Then, we can apply standard estimates on the logarithm function to arrive to

� j ≤ 1

(2d) j
e

(
π2
6 −1

)
· 2ξ
1/d−ξ ≤ Cα,ε

(2d) j
.

Therefore
∑

j d j� j log 1
� j

< ∞, and E is a Beurling–Carleson set thanks to (1.8). ��
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