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Abstract

We show the existence of singular inner functions that are cyclic in some Besov-type
spaces of analytic functions over the unit disc. Our sufficient condition is stated only
in terms of the modulus of smoothness of the underlying measure. Such singular inner
functions are cyclic also in the space Eﬁ of holomorphic functions with coefficients in
£ . This can only happen for measures that place no mass on any Beurling—Carleson
set.
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1 Introduction

Let i be a holomorphic function over the unit disc D. We say 4 is inner if |h(z)| < 1
for every point z € D and |1*(e'?)| = 1 for almost every point of T, where h* denotes
the function defined for almost every point of T by taking radial limits of /. Let u be
a positive Borel measure on the unit circle T, singular with respect to the Lebesgue
measure. Then we can associate to 4 an inner function S, that we call singular, defined
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on D by taking:

+z

2w if
S (2) = exp{—/o ¢ du(e)} zeD. (1.1)

el —z

Inner functions, and singular ones in particular, have played a crucial role in the
complex analysis of the last century, due to their relationship with the structure of the
Hardy space HZ. This is the set of all functions holomorphic over D with a square
summable sequence of Maclaurin coefficients (with the natural Hilbert space norm).
Functions in H? can be decomposed in an essentially unique manner as the product
of an inner function and an outer function, that is, a holomorphic function g with
no zeros in D, such that log|g*(z)| has the mean value property on T. See [8] for
the basic theory regarding the H? space. The seminal work of Beurling, [4], shows
that inner function are canonical generators of all proper invariant subspaces for the
shift operator in the Hardy space. In the present article, we discuss whether there
exist singular inner functions that are cyclic (for the shift operator) in other spaces of
analytic functions over the unit disc. Cyclic functions are those contained in no proper
invariant subspace, but in our context, we may say that a function f is cyclic in a space
X, if there exists a sequence of polynomials {p,},en such that ||p, f — 1|lx — O.
In what follows, we will denote by [ f]x the smallest closed subspace that contains
f € X and that is invariant by multiplication by z. If the space X is clear from the
context, we will drop it in our notation and call such invariant subspace [ f].

Our primary goal will be to describe those singular inner functions that are cyclic
in X in the case that X is any Eﬁ space for p > 2. With this purpose, we define the
space

0h = {f € Hol(DD) ‘ 115 =D 1/l < oo,

k=0

where f (k) denotes the Maclaurin coefficient of f of order k. The Eﬁ spaces are
Banach spaces whenever p > 1 (and quasi-Banach for p > 0). Notice that p = 2
yields the Hardy space H2. Moreover, for p < 2 it is clear that there cannot be any
singular inner functions which are cyclic as far as Beurling’s theorem implies that
there are no cyclic inner functions in the Hardy space ¢2 other than constants.

Our description of cyclic singular inner vectors in é%a will take advantage of the
relation between coefficient spaces and Besov-type spaces. For all 0 < p < oo, the
Besov space DZ_I is the space of all analytic functions over ) whose norm

1

P
IIfIIDIgfl =10+ (/ﬂ)(l — 2D @1F dA(Z))
is finite. From [10, Th. 1.1, (ii) and Th. 1.2] and [16, Th. 7.1] we get
H' cD) ,cty, p=2 (1.2)
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and
tycD) CHP, 0<p=2, (1.3)

where H? denotes the standard Hardy space of exponent p. Notice that, once again,
the case p = 2 corresponds to the Hardy space H2. Moreover, the second inclusion in
(1.3) implies that no singular inner function can be cyclic in D;’_ 1»if 1 < p < 2.For

p = oo the space Dg_l coincides with the familiar Bloch space B, that is, the space
of those analytic functions over D such that

sup | f/(2)|(1 = |z]) < oo. (1.4)
zeD

Cyclic singular inner functions in the Bloch space were studied in [2] via regularity

conditions on their defining singular measure. Given a positive Borel measure v on T,
its modulus of continuity is defined as

8y (1) := sup {v(D)},

=
while its modulus of smoothness is
wy(t) :=sup{|v(l) —v(J)|| I, J adjacent intervals, || = |J| < t}.

The main result of [2] shows the existence of a singular inner function S, that is
(weak*) cyclic in B; in fact, any singular measure p satisfying

t

5,(t) < 8t (2 +967 loglog ;) . wu(n) <36 (1.5)

log ¢

is cyclic in B. The hard part of their argument is to show that a singular measure p
satisfying both bounds in (1.5) actually exists. It is worth noticing that the argument in
[2] extends to the Besov spaces Dg_ | for2 < p < oco. In particular, any singular inner

function satisfying (1.5) has a power that is cyclic for D;’_l, even for 2 < p < oo.
Namely, the same techniques in [2] yield the existence of a singular inner function
that is cyclic in Dﬁ_l, and hence in Eﬁ via the embedding (1.2). Alternatively, [14],

one can embed a Bloch-type space inside KZ, and use once again the same argument
in [2].

This note grew out of the attempt to give a better description of singular inner
vectors in Z’;, for p > 2. Indeed, constructing examples of a singular measure p
satisfying (1.5) is highly non trivial, and the construction in [2] is not explicit. On the
other hand, it is considerably easier to construct a singular measure by prescribing
only its modulus of smoothness. Our main results reads as follows:

) Birkhauser
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Theorem 1.1 Let S,, be a singular inner function such that

w,(t) <C te0,1) (1.6)

log ¢

jN

for some C > 0. Then S, is cyclic in Dg_l (and hence in Eﬁ)for all p > 2.

An explicit construction of a singular measure satisfying (1.6) can be found in [21,
Th. IT]. The proof of Theorem 1.1 is contained in Sect.4, and it can be outlined as
follows. The reader familiar with the argument in [2] notices that the extra assumption
in §,, is required to estimate the dilates of 1/|S,,| pointwise, since in that setting one
works with the seminorm (1.4). In the setting Dﬁfw one can replace a pointwise
estimate of 1/|S,| with an estimate of its L”-norm on circles approaching T. To
obtain such an estimate, we will relate 1/]S,| with a dyadic martingale on the unit
circle. The description of such martingales, together with the tools that are necessary
to estimate the above mentioned L”-averages, are contained in Sect.2. As a result,
under an even weaker condition than (1.6) one has that a power of S, is cyclic in DI‘Z?]
[1:_1 , we need to show
that (1.6) implies that S, is a multiplier of D,":_ 1> this is done in Sect. 3. On the other

hand, Theorem 1.1 implies that such singular inner function is not a multiplier of Eﬁ
for all p € (1, 0c0)\{2}; in fact, it is not in Zﬁ forall 1 < p < 2 (see Remark 4.3).
Sections 5 and 6 includes some additional remarks and open problems on the relation
between cyclicity in Dg_l , outer functions and logarithmic conditions.

(Theorem 4.1). In order to conclude that S, itself is cyclic in D

We also point out that a necessary condition for S, to be cyclic in Eﬁ comes from

their embeddings into some Bergman-type spaces. Let 61’“ be the space of analytic
functions such that

S 1P +n)® < co. (1.7)

n=0

For o = 0, we recover the Hardy space H?, while for negative o we obtain Bergman-
type spaces. It was proven in two works by Korenblum [13] and Roberts [18] that
for any @ < 0O a singular inner function S, is cyclic in Ki’“ if and only if u(E) =
0 for any Beurling—Carleson set E C T. We recall that a closed set E C T is a
Beurling—Carleson set if it has null Lebesgue measure and

1
Z |1, | log T < 00, (1.8)
_ Al

where T\ E is the disjoint union of the open intervals (/,,),, and |-| denotes the Lebesgue
measure on T. Such sets play a crucial role in classic function theory: for instance,
they are the boundary zero sets of those holomorphic functions over D which extend
to a C* function on D.

W Birkhauser
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Since for all ¢ > 0 and p > 2 one has

KZ c Ki,(l+8)(%—l)

we obtain that for all p > 2 any cyclic singular inner function in Eﬁ must satisfy
Korenblum’s condition:

Theorem 1.2 If S, is cyclic in Eﬁfor some p > 2, then u(E) = 0 for any Beurling—
Carleson set E C T.

In view of the embedding (1.2), the same holds for cyclic singular inner functions in

P .
D,
Corollary 1.3 IfS,, iscyclicin Dﬁ_lfor some p > 2, then w(E) = 0forany Beurling—
Carleson set E C T.

On the other hand, the proof of the sufficiency of Korenblum’s condition for the
Bergman-type spaces Ei’“ uses, among other tools, that the multiplier algebra of such
Bergman spaces coincides isometrically with H° and that the norm of fz", for f in
such spaces, is asymptotically small, as n — co. None of these two properties hold
for ¢ Z; nonetheless, the question of whether Korenblum’s characterization extends to
singular inner vectors in Eﬁ arises naturally:

Question 1 Let u be a singular, positive Borel measure on T such that u(E) = 0 for
any Beurling—Carleson set E C T, and let p > 2. Is S, cyclic in Eﬁ ? Is it cyclic in

P9
Dp_l.

2 Dyadic martingales and singular measures

LetD = Un D,, be the collection of all dyadic intervals on the torus, where

) JoJFHLy .
o= {[£250) [s=0.2 ]

denote the collection of all dyadic intervals of length 27". A dyadic martingale is a
family M = (M) ;<p such that the mean value property

_ MI] + Mlz

M
! 2

2.1)

holds for all I, Iy, I in D so that I = I} U I and I} N I = (. Alternatively, one can
think of a dyadic martingale as a sequence (M,,), of functions on T:

M, (0) := My,

) Birkhauser
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where Iy is the unique interval in D, that contains 6. Given a positive sequence
B = (Bn)n, we say that a dyadic martingale M is S-smooth if

|M1_MJ|§ﬂn

for any adjacent intervals I, J in D,,. This, together with (2.1), implies that (8,), also
bounds the increments of the martingale M ; more precisely,

My (0) — Mp—1(0)| < % (2.2)
We denote by (M), the quantity
3
(M), (0) := Z |M;©6) — M,-,]((9)|2 0 eT.

j=1

Hence, if M is B-smooth, then

(M (9><— Zﬁ

The following Lemma can be interpreted as a concentration inequality for dyadic
martingales, given in terms of the quantity

Ay = sup(M),(0).
0eT

This kind of result was first noted in [7], while the statement below can be extracted
from the proof of [20, Ch. 4, Lemma 7]:

Lemma 2.1 Let M be a dyadic martingale. Then

52

10 € T||M,(0) — Mo(8)| > s}| <e % s € (0,00).

In particular, for any positive o,

/ea\Mn(e)\dg — / H|Mn| . log) H dx
T o

 log(x)2
< / o WA gy 2.3)
o242
< CqAje 72

W Birkhauser
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Let 1 be a positive Borel measure on T. Then the quantities

.+
]

define a dyadic martingale. Moreover, one can estimate its characteristic function
(M}) via smoothness properties of 1. We say that a function ¢ on (0, 1] is almost
decreasing if there exists a ¢ > 0 such that ¢(x) > ¢ ¢(y) for any y > x.

Definition 1 Let ¢ : (0, 1] — (0, +00) be a function. A positive measure p on T is
@-smooth if

wu(8) = Cép(d)

for some C > 0.

It was shown in [22] that if v is p-smooth and

/1 @2 (1)
< 00,
0 t

then v is absolutely continuous with respect to Lebesgue measure. On the other hand,
if fol @(1)*/t = oo, then there exists a ¢-smooth singular measure. We refer the reader
to [12], where one can find how to construct such singular measures using dyadic
martingales. Suppose in addition that pu is g-smooth, and that ¢ is a continuous,
increasing function such that ¢(z)/¢# is almost decreasing for some 0 < g < 1. If

1, 2 %
(©)(s) = (f g"T(”azr) ,

then the increments of M* are controlled by the sequence f := (3¢(2")), . and the
regularity properties of ¢ ensure that

2

Al = sup(M™),0) S | Y p2™?
ot j=1 (2.4)

1
1 2 2
~ (/ ‘p(;) dt) = ()2,

This provides the discrete setting that we use to estimate the p- means of 1/[S,,|. The
link between the continuous and the discrete settings is given by the following Lemma.
Given an interval /I C T denote by 77 the top-half of its Carleson box, that is,

Tr:={zeD|z/lzl € I,|1|/2<1—|z*> < |I]}.

) Birkhauser
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Lemma 2.2 Let u be a positive Borel measure on T such that the increments of the
dyadic martingale M* are uniformly bounded. Then there exists a C > 0 so that

1 1
< ECMIZ

S zeD
1S (2]

where I is the unique dyadic interval such that z € Ty,.

Proof Note that

L _ne,
1S (2)]
where P, is the Poisson integral of u. Let z* := z/|z| and let n € N be so that

|I.| = 27", thatis, 2=*FD < 1 — |z]2 < 27", Let (1,,,)2" n1_, denote all the
dyadic intervals of generation n, Ip being I; and sup,., dist(lo, x) = |m |27". Hence
if@ € I, one has |z* — €| ~ |m|(1 — |z|?). Therefore

2
P()—/|1 e —du(®)

— |z)?

- 0
T max2{1 — |z2|, |z* — €i?|} w0
=Mjf
IM” M”I
Mp+C+y —E
>

m

Since M* has uniformly bounded increments, given any two dyadic intervals / and J
of generation n

M} — MY Slogy |P(T, D),

where P (I, J) is the smallest common dyadic ancestor of / and J. Therefore, by
splitting the last sum according to the length of P (I, I,;,),

|Ml/~ I n—1 2J+1 1 n—1 j
m /
P <D DD Dl S~D DLy Lok
m J=0  |m|=2J Jj=0
concluding the proof. O

Corollary 2.3 For all p > 0 there exists a C, > 0 such that, for any singular inner
Junction S,

/ < (@)1 = e,
T

|Su(ret®)|p ™~

W Birkhauser
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provided that |1 is @-smooth and that ¢ is a continuous, increasing function such that
@(1)/tP is almost decreasing for some 0 < B < 1.

Proof Fixr € (0, 1) andletn be so that2="~! < 1—r2 < 27" Thanks to Lemma 2.2,
one has

3 (4’

1 CpM ) "
/deGS/TeP d@prAne 2 )

thanks to (2.3). The desired estimate follows from (2.4). ]

'R T p
3 Multipliers of D,_,

Let X be a Banach function space on a domain © C C¢. The multiplier algebra of X
is defined as

Multy :={h: Q > C|hf € X, f e X}.

If point evaluations are bounded linear functionals in X, an application of the closed
graph theorem yields that, for any / in Multy, the associated multiplication operator

My: f— fh

is bounded on X . This provides Multx with a Banach space structure, modulo defining
I2lMutey == IIMpllB(x). Inafairly general setting, a non-vanishing multiplier is cyclic
if and only if its square is:

Lemma 3.1 Assume that X is a Banach space of holomorphic functions over D.
Assume that X has a dense subspace formed by all analytic polynomials, and that
each polynomial is a multiplier. If h € Multy and h is cyclic in X then h? is cyclic in
X.

Proof Under our assumptions, the constant 1 function is cyclic and thus, the fact that
h is cyclic is equivalent with the existence of a sequence of polynomials {p, },<n such
that
11— pnhllx — 0,
as n — 00. Fix ¢ > 0 and choose ng € N:
e
1= pnhlx < >

for all n > ng. Define g, = pn pm Where m > n is to be determined later in terms of
n. The triangle inequality gives

11— gmh?lix < 11 = pahllx + | pah(1 — puh)lix.

) Birkhauser
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The first summand of the right-hand side is bounded by § while the second term is
bounded by

I PnhliMutex 1T — pmblix -

Let Cp, := || puhlMulty - It is enough to take m large enough so that

I
1—puhlx < s
11— pmhllx < 3C,

to obtain that
2
11— gmh’llx <e.

O

Corollary 3.2 Let h: D — C such that hP is a multiplier of X for all > 0. Then h
is cyclic provided that h* is, for some a > 0.

Proof Pick k in N so that 2 > 1. By Lemma 3.1, n2e s cyclic in X. Since h2e =
hh2‘e=l ¢ [], this yields that £ is cyclic as well. O

We now focus on the case X = D,":_ 1- In [23] it is shown that an analytic map g
on D is a multiplier of Dg_ | if and only if it is bounded and

Ve p =18/ @1P (1 — |z))P~!

induces a Carleson measure for Dﬁf 1
LP(D, vg, ). Itis interesting to note that Carleson measures for Dﬁ _ are characterized
only for p < 2, and they are independent of p. Namely, a positive Borel measure v
is Carleson for Dﬁ_l if and only if there exists a constant C such that, for all arcs

1 CD,

thatis, itrealizes abounded embedding DZ*I -

v(S()) = C 1]
where
S(U):={zeD|z/|lzlel,1—z| <|I|} 3.1
denotes the Carleson box associated to /. Condition (3.1) is usually referred to as
the one-box condition. It is known that, for p > 2, (3.1) is not sufficient for v to be
Carleson for Dg_ 1 [9]. On the other hand, the stronger condition
1-2
e 2
(S S I (log |7|> IcT (3.2)

W Birkhauser
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is sufficient for i to be Carleson for Dg_l, [17]. We will use the fact, proved in
[2, Lemma 4], that if u is ¢-smooth for some positive, continuous, non decreasing
function ¢ on (0, 1] such that ¢(¢)/ t# is almost decreasing for some 0 < 8 < 1, then

1 —
sup [, (2)| < ‘p(f:). (3.3)

lzl=r 1

Proposition 3.3 Let u be a singular measure on T satisfying (1.6). Then S, is a
multiplier of Dg_l.

Proof By (3.3), one sees that

1
5, § ———= [l=r.
(1—1") logm

Hence, given an interval / € T and p > 2

Vs, p(S(1) =/ 1S, @171 — 1z~ dA(z)
S)

g/ dA(z) .
S 1 —1zh (10g I—lel) 2

1 dr

LS R (log ﬁ)

1-2
e 2
~|1| (log —) .
7]

Thus vs,,,, satisfies (3.2), and S, is a multiplier of Dgfr ]

=[]

P
2

4 Proof of Theorem 1.1

We are now ready for the proof of Theorem 1.1. Let u be a positive, singular Borel
measure on T satisfying (1.6). By Proposition 3.3, Sﬁ is a multiplier of Dg_l for all
B > 0. In view of Corollary 3.2, it is enough to show the existence, for all p > 2,
of a power of S, that is cyclic in D?_ 1~ This is the case be for ¢-smooth measures
(according to Definition 1), provided that ¢ satisfies an integrability condition:

Theorem 4.1 Let S, be a singular inner function such that | is ¢-smooth. If

1
/ g’)p@)(r)es@)(”z dt < oo 4.1)
0

p

for some & > 0, then there exists an o > 0 such that Sy is cyclic in Dp71~

) Birkhauser
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C

Remark 4.2 Equation (1.6) implies (4.1). Indeed, if we take ¢(t) = then

L
<<p>(s>2:=C/ !

tlog ¥’

which, for s € (0, 1), is controlled from above by log log £. This means that

(9)(1) < C[loglog §

and thus

1 p 1 ,/loglog ¢
t
/ &@)(I)es(w)(ﬂz dt < C/ —ldt.
0 0

t (log ¢) 7

Since p > 2, one can choose ¢ small enough so that p/2 — Ce > 1, so the latter
integral is finite.

Proof of Theorem 4.1 Thanks to [5, Proposition 5] a function f is cyclic in D;’_l,
provided that

< o0, (4.2)

P
Db,

sup
1€(0,1)

Ji

since forall 7 € (0, 1) the function f(z) := f(¢z) is analytic on an open neighborhood
of D.
Let o be a positive number to be fixed later. Thanks to (3.3), we have

e —r)

sup (8 (2)| < aC——=, (4.3)
Zl=r (I—=r)
for some positive C. Let g;/(z) := Sfj(z)/Sfj(tz). We wish to prove that

SUP;e(0,1) llg: ”D/Ij—l < o0. To this end, observe that since S, is inner we have

I(SD'@1 1S ()]
1St ISt

lg)(2)| <

W Birkhauser
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Therefore, thanks to Corollary 2.3 and (4.3),

gl = /D g @IP (1~ 1z dA)

1

1 —ryP 1

5[ el =r) / ____40dr
0 1—r T ISM(tre’9)|°‘1’

Lol —tr)? 1
+/ o — i) f __dodr
0 1—1tr T |Sﬂ(tre’9)|"”’

1
< f (1 —r)?P ()1 — tr)eapC(ga)(l—tr)z dr
0

~ 1—r

1
+/ (1 —tr)P (o)1 — tr)e2apCle =i gy
0 1 — Ir

By assumption, both ¢(s)/s and (@) are decreasing. Hence
1
1—r)P
gy S f PAZD )1 = pyetarC1=r7 gy,
Dpfl 0 1 —r
which is finite (uniformly on #) provided that 0 < & < 52~ o

2pC*
This concludes the proof of Theorem 1.1.

Remark 4.3 Our argument shows that a singular inner function S, satisfying (1.6) is a
multiplier of Dg—l but not a multiplier of Zﬁ. By Proposition 3.3, S, is a multiplier of

Dz—l‘ On the other hand, notice that if S, is in Multlz, then S, is in Multzz, q being

the dual exponent of p, since the two multiplier algebras coincide, [15]. In particular,
S, belongs to 2%, since Z‘/ﬁ contains constant functions. This contradicts the fact that
S, is cyclic in Kﬁ: let ¢, be the functional defined on polynomials by

21
¢5.(N) = | f(@®)e?S,(e1?) do.
If S, € €%, then ¢s, extends to a bounded linear functional acting on £/;. Since

2
b5, (2" Sp) =/ e M9 qp = 0
0

forallm =0, 1, ..., we found a non-zero bounded linear functional that annihilates
[Sy]¢r- Hence Sy, cannot be cyclic in ¢/, giving the desired contradiction.

5 Outer functions in Dz_1

Any outer function in H? is cyclic in H2, and any outer function in B is (weak*) cyclic
in B, [6]. Hence the following question naturally arises:

) Birkhauser
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P9
p—1
The aim of this section is to address Question 2 under some extra assumptions on f.
As a preliminary remark we note that if p > 2 then H” C Dﬁfl , [16]. Therefore any

Question 2 Let p > 2. Is any outer function in DZ—l cyclic for D

outer function in H? is cyclic in Dg_l. In what follows, we show that the same holds
for outer functions in Dg_l N B:

Theorem 5.1 Let f be an outer function in Df,,,] N B, p > 2. Then f is cyclic in
D).
Since DZ_l NB ¢ HP, Theorem 5.1 doesn’t follow directly from the embedding
HP C D;’_l mentioned above. The main tool we use is the following adaptation of
the argument in [6]:

Lemma5.2 Letp > 1, ¢ in Dﬁ_l and f in the Bloch space B. Then

sup /Dl(f(Z) — fa)e )P = 2P T1dAR) 5, ||<p||f)pi1 £z

O<r<1
Proof Since f(z) = [y f’(s)ds, one gets

1 —1|z]
1—lz|’

7@ = £62) = [ 17 @ldiel < 115
1z
where we used that | f/(z)| < || fllg/(1 — |z|). Therefore, for all € (0, 1),

/D [(f(2) = ft2)e )P (1 = [P~ dA(z)

, =1\ 1—1lz\?
fnfng/ka t2)|P)(1 —t]z])|? 1(1—t|z|> (l"gl——m) dA(z).

For all t and |z| in (0, 1), 11—_),“|Zz|| lies in (0, 1). The Lemma then follows by observing

that the function x > xP~! (log %)p is bounded on the unit interval, provided that
p > 1 m|

As a Corollary, we obtain a sufficient condition for a function in D[f_ | to be in the
invariant subspace generated by another:

Corollary5.3 Letp > 1, f € D571 NBand g in D571 such that g/ f € H*®. Then
gelfl

Proof Let ¢ := g/f. By assumption, ¢ is a bounded analytic function. Since ¢ f
converges pointwise to g and ¢; f € [ f], it suffices to show that sup, |l¢; f | 57 | < oo
p—

To this end, notice that forall0 < ¢ < 1

[ | <l f1+1f = fil log] + (@) fi
<leloa (1L T+ 1D+ 1f = fil lo]] + (@ f)]
=|llcoh1 + ha + h3,

W Birkhauser
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respectively. We wish to show that
[ r@a-Ertaae =123 (5.1)
D

are uniformly bounded on ¢. For i = 1, the integral in (5.1) is bounded since f is in
D} _, and dilates of D} _, functions converge in norm. Similarly, since g = ¢ f is in

D? _ the integral in (5.1) is also uniformly bounded for i = 3. Fori = 2, the integral
in (5.1) is bounded thanks to Lemma 5.2. O

We are now ready for the proof of Theorem 5.1.

Proof of Theorem 5.1 As in [6, Th. 3], we note that any bounded outer function is
weak™ cyclic in H*, and therefore cyclic in Dllj_l since H® C Dg_l forall p > 2
and the embedding is weak™ continuous. Thanks to Corollary 5.3, we only have to
show that there exists a bounded outer function g in DZ_I that is pointwise bounded
by f. The function

4z (i
e (0] e do
2(2) = o/ s loglg™ ()] €D
where

1 if | f*(e)] =1

(') = .
8 €)= poei®)) otherwise

is the function we seek. |

6 Logarithmic conditions

As we pointed out in Sect. 2, if v is a ¢-smooth measure on T and

/1 @2 (1)
< 00,
0 t

then v is absolutely continuous with respect to Lebesgue measure. On the other hand,

if fol @(1)%/t = oo, then there exists a ¢-smooth singular inner measure (see [12]). In
particular, there exists a singular ¢-smooth measure on T such that

1
/O “’pt(t) < oo, 6.1)

for all p > 2. It turns out that singular inner functions generated by such measures
have logarithms in D;’fl:

) Birkhauser
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Lemma 6.1 Let p > 0 and let

£0(2) 1= exp {—/ Wz dv(w)} , 6.2)
T

w—Zz

where v is a positive Borel ¢-smooth measure. Assume that ¢ satisfies the additional
integrability condition (6.1). Then log f, is in Dﬁil.

Proof Thanks to [2, Lemma 4] one obtains that |(log f,,)| < 2U=1) hence

1—r >

1 r
t
() dt < o0

/ | dog £,) @IP(1 — 2P~ dA(z) ,S/
D 0

O

When p > 2, Lemma 6.1 and the embedding into KZ spaces yield a summability
property for the Fourier coefficients of v

V(z) = / e Mdv@®) neZ
T

provided that v is sufficiently smooth.
Corollary 6.2 Let p > 2 and let v be a positive singular ¢-smooth measure such that

@ satisfying the p integrability condition (6.1). Then

Zw(n)v’ < o0.

nez

In particular, if p = 2 then the function f,, must be outer.

Proof Since v is a positive measure, V(—n) = (n) for all n € Z. Hence it suffices to
show that (D(n)),>0 is in £7. Let f, be defined as in (6.2). Thanks to Proposition 6.1,
log f, isin Dgfl. By the embedding (1.2),

log fu =142 d(n)Z" (6.3)

n>1
. . p
isin £,. O

Notice that (6.1) is a weaker condition than the main hypothesis of Theorem 4.1.
The following question arises then naturally:

Question 3 Let f be an analytic function on D such that both f and log f belong to

D;l;fl’ p > 2. 1Is f cyclic in D£71 ?

W Birkhauser
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The cyclicity of functions whose logarithm belongs to a given space has been studied
in various settings. For instance, the analog of Question 3 has a positive answer when
replacing D;’f] with the Dirichlet space [1, 3] or with Hardy spaces H? as a direct
consequence of Theorem 11.4.6 and Theorem I1.7.4 in [8]. For certain Bergman-type
spaces this is evidently false: let « < 0 and consider the spaces Ei’a defined in
(1.7). Recall that, in this setting, a singular inner function is cyclic exactly when the
corresponding measure places no mass on any Beurling—Carleson set. This condition
is not satisfied by the atomic singular inner function

+2z

f@) =€ T,

However, its logarithm is in all Ei’a spaces when o < —1. The conditions studied
in [11] for membership of singular inner functions in Dirichlet-type spaces probably
provide counterexamples to Question 3 for other Bergman spaces with values of «
closer to 0: if a singular inner function S, belongs to Ei’”‘ and to its Cauchy dual 5124‘7“,
then S, can’t be cyclic in either of these spaces since its backward shift BS,, does not
belong to the invariant subspace generated by S,,.

To the best of our knowledge, Question 3 remains open even for singular inner
functions. On the other hand, the analog question for ZZ has a negative answer.

Theorem 6.3 For all p > 2, there exists a positive singular measure . on T which is
supported on a Beurling—Carleson set whose Fourier coefficients are in £P.

In particular, since (ft(n)),ez isin £7, then log S, is in Kﬁ by (6.3). On the other hand,
S, is not cyclic in EZ by Theorem 1.2.

Proof of Theorem 6.3 Our claim follows by a construction of Salem, [19, Th. IT], where
it is shown that for all @ € (0, 1) and & > 0, there exists a positive singular measure
w supported on a perfect set £ of Hausdorff dimension « such that

fi(n) = O(1/n37°). (6.4)

Fixed p > 2, for the Fourier coefficient of i to lie in £7, it suffices to choose « and &
in the allowed range so that p (% —¢) > 1.

To conclude, we need to observe that a more detailed inspection of Salem’s proof
shows that E is a Beurling—Carleson set. Indeed, E is a Cantor-type set constructed
as follows: two parameters d € N, d > 2, and £ so that 0 < £ < 1/d are given, and
they depend exclusively on « and ¢. Then E is the Cantor set constructed recursively
as follows. Eg = T and for all interval I of generation j — 1 composing E;_; we
pick d sub-intervals whose length is equal to &;|/| and such that two consecutive left
endpoints are at distance v|/|, where v := w. The union of such sub-intervals
composes E; and the set E is defined as () ; Ej. Even if the sequence (§;); is not
given explicitly, it is shown that there exists one choice for such sequence satisfying

1
<1_ (j+1)2>s =5 =f @
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and a positive measure p supported on E satisfying (6.4) (in fact, this is the case for
a generic sequence (&,) satisfying (6.5)). Therefore, we only need to show that any
possible choice satisfying (6.5) provides a set E that is a Beurling—Carleson set. At
step j, the construction of the set E discards d/ intervals of length T j» where, from
(6.5) we obtain

E+1/d |
=lo-o<[1(55 (1))

After canceling the £ terms and taking common factor, this gives

ij(%) e =1 2 ‘

Then, we can apply standard estimates on the logarithm function to arrive to

. 1 (%_1).15{5 - Ca,g__
= 2y = (2d)J

Therefore > j T jlog I‘Lj < 00, and E is a Beurling—Carleson set thanks to (1.8). O
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