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 a b s t r a c t

A method based on Bayesian structural time series is proposed to predict healthcare usage trends and to test 
for changes in the series levels during or after an abnormal year, such as that of the 2020 COVID-19 pandemic. 
Our method can also serve to calculate correction factors for frequency count data that can be integrated in 
a preprocessing step before undertaking a cross-sectional statistical analysis, and, in this way, the impact of a 
shock can be eliminated. Here, adjustments are derived for a large private health insurer in Spain from estimates 
of average healthcare usage. Median claims rate levels in 2020 were 15% down on 2019 figures, but rose in 
2021 and 2022, when the rate was 11% and 8% higher than in 2019, respectively. Once the shock correction is 
incorporated in the preprocessing step, our approach is shown to outperform traditional time series techniques. 
Healthcare insurance usage in Spain did not fully go back to normal levels (assuming that pre-pandemic values 
represent normality) in 2022, with the exception of some patient groups and specific medical services. Our 
method can be implemented in other areas of risk analysis when frequency counts are exposed to shocks and it 
allows estimating the difference in claims volume between real figures and those estimated, had the shock not 
occurred.

1.  Introduction

Following the world-wide outbreak of COVID-19, one of the prob-
lems faced by health insurers was that historical records of the use of 
medical services - which usually serve for the yearly update of future 
premiums - have become heavily influenced by the pandemic conse-
quences (Kim et al., 2022b; Xu et al., 2021; Cantor et al., 2022). After the 
COVID-19 pandemic, analysts might be tempted to delete the informa-
tion for the years 2020 to 2022, and return to using 2019 as their base-
line, on the grounds that once things are back to normal, 2019 should be 
everyone’s reference year. This poses the question as to whether 2020 
to 2022 data remain useful for future projections. If rescaling were fea-
sible, then data following a shock year could still be analyzed, net, that 
is, of the shock effect; otherwise, data from shock and post-shock years 
may not be comparable to those from regular periods.

Here, we seek to measure the impact of the mandatory lockdown 
driven by the Spanish authorities as a COVID-19 pandemic mitigation 
action in terms of the frequency of use of medical insurance services. 
Moreover, we take advantage of these estimates to correct individ-
ual portfolio (the company’s inforce of policies) data since 2020 for
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statistical modeling in the subsequent years, so that no data have to 
be discarded. In so doing, we draw on traditional time series decompo-
sition methods by looking at weekly data, in order to balance temporal 
granularity and statistical stability. The lockdown effect can be iden-
tified and deducted from the original series in order to derive future 
trends net of the shock.

Our objectives are: 1) the quantification of the impact of a shock on 
weekly claim frequency rate series, 2) the determination as to whether 
a claim frequency series continues to show a significant impact of that 
shock, and 3) the rescaling of frequency data to eliminate the effects of 
the impact. These objectives are achieved by following the modelling 
framework described in the following sections.

We illustrate our method with data drawn from a Spanish private 
health insurance company. We seek to quantify the effect of the pan-
demic outbreak and lockdowns on the time series of claims, by identi-
fying the size of that shock in 2020 and the return to the pre-pandemic 
level of 2019. To do so, we design a step-by-step procedure that can 
help health insurers decide whether or not their portfolio information 
continues to be affected by the pandemic shock. In this way, they will 
know if the claims data are suitable for use in their predictive modeling, 
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or, should the data continue to present signs of a post-pandemic effect, 
they can determine the size of this distortion and how the data might 
be corrected to make them suitable for accurate premium calculations. 
The analytical procedure we propose can be conducted with all types 
of claim, as well as by subgroups defined by claimant characteristics, 
including sex and age, and by type of healthcare service. 
2.  Background

Many analysts realize that the years 2020, 2021, and 2022 can be 
deemed special in terms of health insurance provision. Moreover, retain-
ing those stressful periods is a challenge for risk analysis (Biancalana and 
Baione, 2022). Besides the catastrophic effect those particular periods 
might have on insurability and contract design in all lines of business 
(Hartwig et al., 2020), the problem is identifying whether the fluctua-
tions in claims frequency and severity seemed to stabilize. In this regard, 
a tool that quantitatively adjusts claim frequency to correct for imbal-
ances in claims (both underuse and overuse) is particularly valuable. 
This allows future analyses to rely on recent data rather than reverting 
to 2019 data.

The consequences of having to reschedule medical treatment and 
preventive care in 2020, which may have led to an overuse of medical 
services in 2021, and possibly 2022, are still unclear (Wilensky, 2022). 
Some medical specialties have suffered the effects more than others, in-
dicating that the post-pandemic impact may still be significant for some 
specific medical use records. During the pandemic, hospitals had to ride 
the various waves of the pandemic, but on-going cancer treatments, in-
cluding chemotherapy and surgeries, were discontinued as little as pos-
sible. Yet, many non-urgent surgeries, preventative care appointments, 
and some diagnostic services were canceled, resulting in delayed treat-
ment and an increased healthcare burden for patients with non-COVID 
related conditions.

In a case study of a large insurance company in Spain, we find that 
health insurance claims during the pandemic (2020) were about 15% 
down on pre-pandemic figures (2019), while in 2021 and 2022, the us-
age of health care services increased but did not return to 2019 levels. 
There are, however, a number of exceptions to this general result. For 
instance, the series of frequency health care claims for people aged 60+
quickly returned to the 2019 average, whereas some services, such as 
visits to a general practitioner (GP) for all ages, were higher in 2022 
than in 2019.

The pandemic and lockdowns caused an unprecedented disruption to 
the global health insurance market (Przybytniowski et al., 2022; Szczy-
gielski et al., 2022). First and foremost, it obliged many people to stay 
home, so that the number of medical appointments, hospital admissions, 
and other medical services in 2020 were initially down on 2019 figures. 
The fall in the frequency of claims for healthcare usage can be attributed 
to the postponement of elective medical procedures, such as surgeries 
and other invasive treatments, which are typically covered by health in-
surance. These procedures were often put on hold due to the strain that 
the healthcare system was under, as well as the mobility restrictions in 
many areas. Likewise, the fear of contracting COVID-19 in healthcare 
settings led some to avoid seeking medical care, even for serious condi-
tions that would typically require health insurance coverage. Overall, it 
has been reported that the decrease in health insurance claims during 
the pandemic was attributable to a combination of these factors (Plott 
et al., 2020), but that a rebound was expected after the pandemic. The 
resilience of health insurance systems to the impact of contagious dis-
eases like COVID-19 has been discussed from a theoretical approach 
(Hong and Seog, 2023). From the methodological point of view, it is 
important to bear in mind that we can date quite precisely the moment 
when the pandemic consequences start impacting the usage of health 
services, so we can define the pre- and post-shock periods. Sometimes, 
the date a shock starts impacting the series of interest is not known and 
must be estimated. In these cases, the date could be estimated within the 
Bayesian framework following the ideas of Barry and Hartigan (1993) 
or Rosenberg and Young (1999).

The pandemic created a state of emergency across all areas of health-
care, resulting in reduced resources for the treatment of other illnesses. 
This pattern was similar in many countries around the globe (Xu et al., 
2021; Mogharab et al., 2022), but there is evidence that some de-
mographic groups were more badly affected than others. For exam-
ple, older adults in the Netherlands (Mizee et al., 2022) and Germany 
(Michalowsky et al., 2021) suffered substantially higher cancellation 
rates of medical visits and the postponement of medical care in 2020 
than younger adults. In this regard, several studies discuss the conse-
quences of delaying the treatment of non-emergency diseases (Kim et al., 
2022a; Kotrych et al., 2022; Di Martino et al., 2022) and scheduled surg-
eries (Ricciardiello et al., 2021).

In general, in many countries, private health insurance enjoyed 
something of a boost after 2020 as the market expanded, with a price 
hike in premiums and a considerable rise in the number of policy hold-
ers. One reason why premiums rose, despite the fact that the initial effect 
of COVID-19 was a reduction in claims, is that the pandemic changed 
how health insurance companies view pandemics as a real catastrophe 
rather than a potential risk (Richter and Wilson, 2020). Indeed, many 
insurers opted to take a more cautious approach to risk after COVID-19, 
resulting in higher premiums, increased deductibles, and reduced cov-
erage. Additionally, some insurers have changed their eligibility criteria 
and now charge higher premiums for those with pre-existing conditions. 
The pandemic has also triggered an increase in the cost of healthcare ser-
vices (Poisal et al., 2022), reflecting the higher demand, and increased 
costs for both medical supplies and the delivery of care. As a result, 
many health insurance companies have increased their prices. A further 
trigger has been the greater uncertainty surrounding a possible increase 
in claims due to the fact that some pathologies that might otherwise 
have been diagnosed, were not. In these instances the treatment is likely 
to be more expensive than had the disease been identified in its early 
stages. Furthermore, reports of the long-term effects of COVID-19 have 
also raised fears of a protracted increase in the level of claims.

3.  Methods and data

Here, we propose an approach that adapts the well-known 
difference-in-differences (DD) methodology to the time series setting. 
We do so by explicitly modeling the counterfactual of a time series 
observed both before and after the occurrence of an event of inter-
est, potentially impacting the evolution of the process, the case, in this 
instance, of the shock provoked by the COVID-19 pandemic. Our ap-
proach provides a fully Bayesian time-series estimate of the effect and 
uses model averaging to construct the most appropriate synthetic con-
trol for modeling the counterfactual that the shock never happened. The 
traditional DD approach is based on a static regression model that as-
sumes independent and identically distributed data despite the fact that 
the design has a temporal component, and usually considers only two 
time points: before and after the shock. As discussed, for instance, in An-
tonakis et al. (2010), when fit to serially correlated data, static models 
yield overoptimistic inferences with too narrow uncertainty intervals. 
The challenges of DD schemes can be mitigated by employing state-
space models combined with flexible regression techniques to capture 
the temporal dynamics of an observed outcome. State-space models dif-
ferentiate between two components: the state equation, which governs 
the transition of latent variables over time, and the observation equa-
tion, which links the system’s state to measurable data. This separa-
tion provides significant flexibility and power, as discussed in Leeflang 
et al. (2009) in the context of marketing research. The proposed method 
adopts three key aspects of the state-space framework. First, our method 
allows for flexible incorporation of various assumptions about latent 
states and emission processes, such as local trends and seasonality. Sec-
ond, we apply a fully Bayesian approach to model the temporal pro-
gression of counterfactual scenarios and incremental impacts, offering 
versatility in how posterior inferences are summarized. Finally, the re-
gression component avoids rigidly adhering to a fixed set of control 
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Fig. 1. Methodology for testing the impact of a shock and, afterwards, filtering the data.

variables by accounting for uncertainty in both the influence of indi-
vidual predictors and the selection of relevant predictors, thus reducing 
the risk of overfitting. To summarize, this approach extends the com-
monly used DD approach to time-series analysis by explicitly modeling 
the counterfactual for a time series observed both before and after the 
intervention. It offers two key improvements over other existing meth-
ods: it provides a fully Bayesian estimate of the intervention’s effect in a 
time-series context, and it employs model averaging to create the most 
suitable synthetic control for the counterfactual modeling (Brodersen 
et al., 2015).

By using the proposed approach, as summarized in Fig. 1, the ex-
pected claim frequency obtained in the cross-sectional analysis corre-
sponds to what would be expected once the impact of the shock is re-
moved.

Methodological frameworks based on BSTS have also been adopted 
in other research areas, notably for quantifying the effects of physical 
modifications on water consumption (Schmitt et al. (2018)) and for eval-
uating the role of sea rescue operations in shaping irregular migration 
dynamics (Rodríguez Sánchez et al. (2023)).

3.1.  Shock impact detection and evaluation

Let 𝑦𝑡 denote the observation 𝑡 in a real-valued time series 𝑡 = 1,… , 𝑛, 
where 𝑛 is the last period of observation. A structural time series (STS) 
model can be described by a pair of model equations relating 𝑦𝑡 to a 
𝑑-dimensional vector of latent state variables 𝛼𝑡: 
𝑦𝑡 = 𝑍′

𝑡𝛼𝑡 + 𝜖𝑡, 𝜖𝑡 ∼ 𝑁(0,𝐻𝑡) (1)

𝛼𝑡+1 = 𝑇𝑡𝛼𝑡 + 𝑅𝑡𝜂𝑡, 𝜂𝑡 ∼ 𝑁(0, 𝑄𝑡). (2)

Eq. 1, or the observation equation, links observed data 𝑦𝑡 with the unob-
served latent state 𝛼𝑡; whereas Eq. 2, or the transition equation, defines 
how the latent state 𝛼𝑡 evolves over time. A model that can be described 
by these two equations is known to be in state space form, which defines 
a large class of models including the autoregressive integrated moving 
average or ARIMA (Scott and Varian, 2014).

Note that ′ denotes transposition, 𝑦𝑡 represents the evolution in the 
weekly claims rate associated with a private health insurance company, 

𝑍𝑡 is a 𝑑-dimensional output vector, 𝑇𝑡 is a 𝑑 × 𝑑 transition matrix, 𝑅𝑡 is 
a 𝑑 × 𝑞 control matrix, 𝜖𝑡 is a scalar observation error with noise variance 
𝐻𝑡, and 𝜂𝑡 is a 𝑞-dimensional system error with a 𝑞 × 𝑞 state-diffusion ma-
trix 𝑄𝑡, where 𝑞 ≤ 𝑑. In our setting, in particular, the best fitting model 
considers a static intercept, a seasonal effect of period 52 (as we are 
dealing with weekly data) and the effects of holidays. In this case, the 
general model described in Eqs. 1 and 2 can be rewritten as 
𝑦𝑡 = 𝑐 + 𝛼𝑡 + 𝜖𝑡, 𝜖𝑡 ∼ 𝑁(0, 𝜎2𝜖,𝑡) (3)

𝛼𝑡+𝑑 = −
𝑠−2
∑

𝑖=0
𝛼𝑡−𝑖×𝑑 + 𝜂𝑡, 𝜂𝑡 ∼ 𝑁(0, 𝜎2𝜂,𝑡), (4)

where 𝑐 is a constant value, 𝑠 is the number of seasons and 𝑑 is the 
seasonal duration (number of time periods in each season, set to 1 for the 
week cycles but specifically defined for the holidays effects). The model 
can be thought of as a regression on 𝑠 dummy variables representing 𝑠
seasons and 𝛼𝑡 denotes their joint contribution to the observed response 
𝑦𝑡. The mean of 𝛼𝑡+𝑑 is such that the total seasonal effect is zero when 
summed over 𝑠 seasons.

Let 𝜃 denote the set of all model parameters and 𝛼 = (𝛼1,… , 𝛼𝑚) de-
note the full state sequence. Following Brodersen et al. (2015), a prior 
distribution 𝑝(𝜃) is specified on the model parameters jointly with a 
distribution 𝑝(𝛼0 ∣ 𝜃) on the initial state values. We then sample from 
𝑝(𝛼, 𝜃 ∣ 𝑦) using a Markov chain Monte Carlo (MCMC) algorithm. To es-
timate the impact of a shock on the evolution of a time series based 
on the methodology proposed, draws of the model parameters 𝜃 and 
the state vector 𝛼 given the observed data 𝑦1,… , 𝑦𝑛 in the training pe-
riod are simulated. We denote 𝑦1,… , 𝑦𝑛 as 𝑦1∶𝑛. The posterior simula-
tions are then used to simulate from the posterior predictive distribu-
tion 𝑝(𝑦̃𝑛+1∶𝑚 ∣ 𝑦1∶𝑛) over the counterfactual time series 𝑦̃𝑛+1∶𝑚 given the 
observed pre-shock activity 𝑦1∶𝑛. Finally, we use the posterior predictive 
samples to compute the posterior distribution of the pointwise impact 
𝑦𝑡 − 𝑦̃𝑡 for each 𝑡 = (𝑛 + 1),… , 𝑚 and the posterior distribution of cumu-
lative impact, summarized by their median, which can be interpreted 
as the shock level, and its 95% credible intervals (CI). When using the 
Bayesian methodology described to estimate the parameters, the method 
is usually referred to as a Bayesian structural time series (BSTS). A
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different approach, based on classical time series models and interven-
tion analysis was used in Li et al. (2017) to explore the increase in the 
number of terrorist bombing attacks observed by late 2011, after United 
States’ troops withdrawal from Afghanistan and Iraq. The Bayesian ap-
proach requires specifying a prior distribution on the model parameters 
and on the initial state values. We used the default prior distributions 
defined in the R package CausalImpact (Brodersen et al., 2015). For the 
model defined in Eqs. 3 and 4, the priors for the inverse of the variances 
𝜎2𝜖,𝑡 and 𝜎2𝜂,𝑡 are (10−2, 10−2𝑠2𝑦), where 𝑠2𝑦 = 1

𝑛−1
∑

𝑡(𝑦𝑡 − 𝑦̄)2 and (𝑎, 𝑏) is 
the Gamma distribution with expectation 𝑎𝑏 . The prior for the initial state 
𝑝(𝛼0 ∣ 𝜃) is a flat normal distribution. More details on the modelling ap-
proach and prior choices can be found in Brodersen et al. (2015). TODO: 
Additionally,

As shown below, this methodology is also capable of providing ac-
curate forecasts. Its performance is compared to that of usual time se-
ries modelling, such as ARIMA (see for instance Shumway and Stoffer 
(2017)) by means of two commonly used error measures - that is, the 
root mean square error (RMSE) and the mean absolute percentage error 
(MAPE) -, computed according to Eqs. 5 and 6 respectively. We assume 
that 𝑛∗ periods are forecast, and we denote the observed values 𝑂𝑗 and 
the forecast values 𝐹𝑗 , with 𝑗 = 1,… , 𝑛∗.

𝑅𝑀𝑆𝐸 =

√

√

√

√

√

1
𝑛∗

⋅
𝑛∗
∑

𝑗=1
(𝑂𝑗 − 𝐹𝑗 )2, (5)

𝑀𝐴𝑃𝐸 = 100
𝑛∗

𝑛∗
∑

𝑗=1

|

|

|

|

|

𝑂𝑗 − 𝐹𝑗

𝑂𝑗

|

|

|

|

|

. (6)

In order to select the best fitting ARIMA model, Akaike’s Information 
Criterion (AIC) as defined below will be used. 
𝐴𝐼𝐶 = 2 ⋅ 𝑘 − 2 ⋅ ln (𝐿̂), (7)

where 𝑘 is the number of estimated parameters in the model and 𝐿̂
is the maximized value of the likelihood function for the model.

3.2.  Implications for pre-processing data net of a shock impact in GLM 
frequency modelling

The BSTS-estimated median shock level (the values reported in
Table 1) can be used afterwords to pre-process data in order to filter 
out the effect of the impact of the pandemic shock in a cross-sectional 
analysis including individual data on observed claims and claimant co-
variate information. The details on how to use the BSTS-estimates in a 
cross-sectional analysis are provided below.

Let us introduce the notation of cross-sectional data at time 𝑇 . Sup-
pose that 𝑁𝑖𝑇  is the observed number of claims for policy holder 𝑖 in 
year 𝑇 , where 𝑖 = 1,… , 𝑁𝑇  and 𝑁𝑇  is the number of policy holders in 
year 𝑇 . Assume that a vector of 𝐾 + 1 characteristics 𝑥𝑖𝑇  is available 
for individual 𝑖 in year 𝑇  where the first component is a constant and 
𝜈𝑖𝑇 ∈ (0, 1] denotes exposure, i.e. the fraction of the whole year when 
the policy was valid, then predictive modeling of the expected num-
ber of claims usually establishes that 𝐸(𝑁𝑖𝑇 |𝑥𝑖𝑇 , 𝜈𝑖𝑇 ) = 𝜈𝑖𝑇 𝜇(𝑥𝑖𝑇 ), where 
𝜇 is a function that links the effect of the covariates to the expected 
number of claims, provided that this effect is proportional to exposure 
(Wüthrich and Merz, 2023). In the Poisson model, 𝜇(𝑥𝑖𝑇 ) = 𝛽′𝑥𝑖𝑇 , with 
𝛽 = (𝛽0,… , 𝛽𝐾 ) a vector of parameters to be estimated, where 𝛽0 is an 
intercept.

If the impact of a shock has to be eliminated from these data for the 
purpose of predictive modeling and making comparisons between years, 
then the expected number of claims should be affected by a change and 
this can easily be achieved through the exposure component. Therefore 
new individual exposures 𝜈∗𝑖𝑇  can be defined so that
𝜈∗𝑖𝑇 = 𝜈𝑖𝑇 × 𝑚𝑇

where 𝑚𝑇 = 1 + 𝑓𝑇  is obtained from the Bayesian estimate described in 
the previous section, which can be expressed as a percent change, 𝑓𝑇 . 

For instance, a global correction could be applied to the Poisson model 
by considering 𝑓𝑇 = −0.15 as given in Table 1 (a percent reduction of 
15%), and therefore 𝑚𝑇 = 1 − 0.15 = 0.85, so individuals with a valid 
policy in the whole year (𝜈𝑖𝑇 = 1) using the considered health services 
in 2020 are only 85% exposed to use these services compared to indi-
viduals observed in 2019 (𝜈∗𝑖𝑇 = 1 × 0.85).

Note that 𝑓𝑇  refers to the cumulated posterior distribution median 
relative change. A positive 𝑓𝑇  means that the shock has produced an 
excess of counts, corresponding to increased exposure. A negative 𝑓𝑇
means that the shock has reduced the number of counts, corresponding 
to decreased exposure. Note that 𝑓𝑇  may be a global correction that is 
equal for all individuals, or it may have been calculated by subgroups, so 
that it could change by individual. We have opted to drop the 𝑖 subindex 
in order to eliminate complex notation from the methodology.

Once the corrected exposures, 𝜈∗𝑖𝑇 , are used in the Poisson model esti-
mation process, the model outcome is net of the pandemic shock impact. 
In simpler terms, the estimation proceeds by first fitting a model to the 
2019 data in order to approximate how many individuals would have 
used health insurance-related services in 2020 had the COVID-19 pan-
demic not occurred. This model is then used to produce counterfactual 
forecasts for 2020, which are compared with the actual observations. 
The resulting discrepancy is interpreted as the shock impact. Finally, 
the observed 2020 data are adjusted by removing this estimated im-
pact, thus providing shock-free values that can be employed in the cross-
sectional models. Below we illustrate how this can be implemented.

In this illustration, we have incorporated the Bayesian estimates into 
the individual exposures and fitted Poisson regression models for claims 
frequency in a simple example with portfolio data sets before, dur-
ing, and after the pandemic shock. We compare analyses of single vs 
multiple-year predictive modeling, with and without the inclusion of 
the shock correction, and show that predictive claim models for pre- 
and post-pandemic yearly portfolios are actually comparable. Some ad-
ditional results, including the comparison of the distribution of the pre-
dicted number of claims per individual with and without the pandemic 
effect, reveal a persistent change in the distribution. The analysis by 
groups of individuals, also shows that processing before eliminating the 
pandemic effect need not be homogeneous for the whole portfolio. It is 
important to note that the impact of shocks cannot be directly estimated 
in the Poisson model, since the data used for this model are typically ag-
gregated by year, sex, and age group.

3.3.  Gap of cost estimation

If average claim cost information is available, the approach proposed 
here can be used to estimate what would annual costs have been in the 
absence of the shock. Therefore, an estimate of the gap between the 
real observed cost and the estimated cost level without the shock can be 
provided.

In our case, if we assign an average unit cost of 𝐶 per visit or health 
care claim, costs can be estimated. We need to predict number of poli-
cies with 0 claims under the difference scenarios of shock removal. Sim-
ilarly, the number of policies with 1, 2, 3, 4, 5+ claims can be estimated, 
respectively. These approximations can be carried out based on the Pois-
son models that were estimated with the data that were already pre-
processes to eliminate the pandemic shock effect. Other more sophisti-
cated models can also be used for predictive modeling purpose, because 
the only requirement here is to use the suitable preprocessed data or the 
original data.

Finally, the gap of cost is the difference between the real observed 
cost and the estimated cost level obtained from the claims predictions 
without the shock.

3.4.  Data

We observed the weekly number of medical claims associated with a 
private health insurance scheme run by one of the largest companies in 
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Spain from the beginning of 2019 to the end of 2022, by type of service, 
province, sex and age group. The overall monthly number of contracts 
was also taken into account, to control for observed trends unrelated 
to the consequences of pandemic claims. To make the latter weekly, 
we performed a linear interpolation process and the final considered 
outcome was the density of claims by 1,000 active contracts, computed 
as 𝑦𝑡 = 𝑐𝑡

𝑛𝑡
⋅ 1000, where 𝑐𝑡 is the number of claims produced at week 𝑡

and 𝑛𝑡 is the total number of active contracts at week 𝑡.
A weekly frequency count corresponds to the number of claims re-

ported to the insurance company in the course of one week. A claim 
refers to the use of a medical service, such as a visit to a GP, a blood 
test, an x-ray, surgery, a visit to a specialist, the use of an ambulance 
or treatment in an emergency room or hospital that was covered by the 
insurance policy.

The insurer providing us with their data was affected by the enforce-
ment of social distance measures, adopted in Spain as in many other 
countries. These triggered a sudden fall in the frequency of health in-
surance claims and this decrease, moreover, was substantial given that 
during the lockdowns in 2020 people reduced their normal activities and 
canceled preventive medical visits, while medical services were primar-
ily focused on treating COVID-19 patients. In addition, the insurance 
company’s portfolio initially fell markedly in 2020, affected in all prob-
ability by the impact of the death of a certain number of policy holders 
during the pandemic. Then, as in other European countries, the portfo-
lio grew substantially owing to the saturation of the public health sys-
tem. The latter situation raised grave concerns among many citizens 
who opted to underwrite private health insurance to protect themselves 
and their families in case of a global medical service collapse. Although 
private hospitals, accessible to holders of a health insurance contract, 
were also relatively saturated during the pandemic, COVID-19 mainly 
impacted public hospitals.

The immediate impact of the COVID-19 pandemic can be quanti-
fied by comparing the number of claims in 2019 and 2020, while the 
medium- and long-term consequences can be quantified by comparing 
the number of claims in 2019, with those in 2021 and 2022. To illustrate 
the ability of the methodology proposed to quantify the impact of the 
pandemic on the use of private health services, in what follows we de-
scribe in detail the evolution in medical claims globally, by sex, among 
those aged over 60 and in the three Spanish provinces that are home to 
the country’s largest cities (that is, Madrid, Barcelona, and Valencia). A 
number of specific services of particular interest are also analyzed.

The R code used to generate the results and figures described below is 
available in the GitHub repository https://github.com/dmorinya/BSTS_
HealthInsurance. The results reported in Tables 2 and 3 can be repro-
duced with the cardiology subset, available in https://data.mendeley.
com/datasets/kb9fyth3xh/1. The rest of our data cannot be made pub-
licly available due to owner restrictions. All coding has been done in 
R software (Team, 2019), using the packages bsts (Scott, 2024) and 
CausalImpact (Brodersen et al., 2015).

4.  Results

Although the impact of the COVID-19 pandemic onset on the usage of 
health insurance services could be calculated as the reduction in claims 
frequency observed in 2020 with respect to 2019 and the increase ob-
served in 2021 and 2022, also with respect to 2019, this information 
could not then simply be used to forecast the future behavior of claims. 
Indeed, in the case study we conduct here, we could simply state that a 
total of 11,754,419 claims (recall this corresponds to the whole portfo-
lio of a large insurance company, where a claim is defined as any med-
ical service provided, including for example a blood test) were made 
in 2019, while 10,305,088 were made in 2020, 13,337,053 in 2021 
and 14,129,286 in 2022. That is, a decrease of 12% was recorded in 
2020 and increases of some 13 and 20% were recorded, respectively, in 
2021 and 2022, compared in both cases to 2019. However, on the basis 
of these figures, data analysts cannot then predict future usage trends. 

Moreover, these figures are affected by the number of policy holders in 
the portfolio, in particular, an increase of new policy holders from 2020 
onwards.

A more sophisticated approach, and one that would allow analysts 
to make a forecast of future behavior, is provided by the classical 
ARMA time series models, although the original process is not station-
ary (Kwiatkowski - Phillips - Schmidt - Shin (KPSS) test p-value lower 
than 0.01). In order to deal with a stationary series, one regular differ-
ence is applied (KPSS test p-value of the differenced series is 0.1). When 
fitting the best ARMA model to the differenced series, based on AIC, to 
the period January 2019 to June 2022 - that is an ARMA(1, 1) process 
with a seasonality of 52 weeks - the weekly frequency of claims forecast 
produced for the period July 2022 to December 2022 is shown in Fig. 2.

It is evident that the ARMA-based forecast is only capable of cap-
turing the central tendency of the process, but at the price of consid-
erable discrepancies between observed and forecast values (RMSE of 
52,731.67 and MAPE of 18.55%). The forecast for the same period pro-
vided by the BSTS approach outlined above is shown in Fig. 3. Several 
BSTS alternative models were considered (using a static intercept, sea-
sonal, autoregressive and local linear trend state component) and the 
one that provided lowest RMSE and MAPE was preferred, correspond-
ing to a static intercept and seasonal state component. All the reported 
results in this section correspond to this approach. Here, it is clear that 
the forecast produced is much more accurate than that provided by the 
classical approach. Indeed, in this case, the RMSE is around 33,870 and 
the MAPE is around 18.47%; thus, in both instances the error is lower 
than when adopting the classical ARMA-based approach. The BSTS ap-
proach is also capable of providing a visual idea of how the series would 
have behaved in the counterfactual situation of no COVID-19 shock, rep-
resented by the solid blue line in Fig. 3.

Table 1 reports the estimated effect - both the median and 95% cred-
ible intervals (instead of the mean and mean-related dispersion mea-
sures, as is common in the Bayesian context, although reported results 
do not differ substantially from the corresponding posterior means) - 
of the pandemic shock on the overall weekly time series of claims fre-
quency rate observations and by group of policy holders, geographical 
area and medical specialty, by comparing the indicated annualities. In-
dependent models were fitted stratifying by group of policy holders, ge-
ographical area and medical specialty, without any covariates. As these 
estimates are capturing the impact of the shock on the annualities com-
parison, could be used as an individual exposure adjustment in a cross-
sectional analysis of the claims frequency as detailed on Section 3.2.

As can be seen, a quite remarkable reduction was recorded in the 
usage of health insurance services in 2020 compared to the previous 
year (with the exception of general medicine services), while a boost is 
evident in most cases in 2021, most notably in general medicine, car-
diology and osteopathy. The non significant 1.2% decrease estimated 
for general medicine in 2020 (and a part of the 14 and 21% increases 
reported, respectively, for 2021 and 2022) can be attributed to the fact 
that some of the COVID-19 testing was conducted by this service. Geo-
graphically, the behavior of Barcelona and Valencia is largely similar in 
both comparisons, while Madrid records a greater reduction in usage in 
2020 and smaller increases in both 2021 and 2022. This might reflect 
the fact that Madrid has an older exposure profile; yet, this hypothe-
sis cannot be confirmed with the data available as the monthly number 
of contracts is aggregated only at the national level. The behavior of 
both sexes is also very similar, but the reduction in usage among indi-
viduals aged over 60 in 2020 is significantly greater than that of the 
general population. Moreover, in this group, no increase in usage was 
recorded in 2021 (indeed, we find a reduction of around 8%, although 
it is non-significant, and a decrease of around 3% in 2022, again non-
significant). Here, it should be borne in mind that COVID-19-associated 
mortality rates were much higher among this subpopulation; thus, it 
is reasonable to expect that the older adults (> 60) that survived are 
healthier than in the past and that their need for health services is not 
as great as that of older adults in 2019.
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Fig. 2. Number of weekly claims (black) and the ARIMA-based forecast for the period July-December 2022 (red), 95% confidence bands in light blue, 90% confidence 
bands in orange and 75% confidence bands in light red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.).

Fig. 3. Number of weekly claims (black) and BSTS forecast for the period July-December 2022 (red), 95% confidence bands in light blue, 90% confidence bands in 
orange and 75% confidence bands in light red. The blue line depicts the prediction under the counterfactual situation of no COVID-19 shock. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.).

The results are robust to different choices of prior distributions. In 
particular, when wide normal priors are applied, the estimates remain 
virtually unchanged, as shown in Table S9 (Supplementary Material), 
and are consistent with those reported in Table 1.

To illustrate how the Bayesian estimates provided by the proposed 
methodology can be incorporated in data analysis in a standard cross-
sectional context, we next fit several Poisson regression models to the 
number of cardiology claims (i.e. a visit to a cardiologist) by age (30 − 60
/ > 60) and sex (male/female). The distribution of these variables is rea-
sonably balanced (49.99% females, 36.09% over 60). We fit one model 
per year (2019, 2020, 2021, and 2022) and a global model including 
data for all the years under consideration. Additionally, we fit a Poisson 
regression model using an offset correction accounting for the global 
Bayesian estimates reported in Table 1 (i.e. -15% for 2020, 11% for 
2021, and 8.1% for 2022) and a further Poisson regression model us-
ing specific Bayesian estimates for each subgroup of age and sex. To 
summarize, the results of the time series analysis provide the factor that 
is introduced as a data weighting to eliminate the excess counts. This 
is a common procedure when conducting data analyses from data aris-
ing from complex sampling schemes that require using sample weights 
(see Pfeffermann (1993) or Kish and Frankel (1974) for instance). The 
estimates yielded by each of these models are shown in Table 2. The

differences are immediately evident, especially in the case of the im-
pact of the age group parameter when using specific corrections. Note 
that this model reflects the expected claims net of the impact of the 
pandemic. Thus, when all years are combined and the shock is filtered 
out, the incidence in adults aged > 60 is 1.91 times greater than that 
in adults aged 30 to 60, while the incidence in men is 17% higher than 
that in women, see the last row of Table 2. A year-by-year analysis with-
out any shock correction reveals lower incidence rates in general, but 
in particular for 2022.

Table 3 shows that the observed data are best fitted by the Poisson 
regression model without any correction, whereas those incorporating 
global and specific corrections model (with less and more detail, respec-
tively) the counterfactual that the impact of the COVID-19 pandemic is 
negligible. This indicates that insurance companies can use all the in-
formation to compare the temporal behavior of usage series, without 
having to exclude any specific year.

Moreover, note that the last row of Table 3 shows what the outcome 
distribution would have been in the absence of the pandemic shock. 
Indeed, the full sample model with this specific correction reports the 
expected behavior net of the 2020 pandemic shock, and comparison 
with the uncorrected full sample reveals how the estimated incidences 
impact the final premiums.
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Table 1 
BSTS estimated median percentage change attributable to impact of lockdown and post-pandemic behavior over the frequency 
usage of health insurance associated services.

 2019–2020  2019–2021  2019–2022
 Difference (95% CI)  p-value  Difference (95% CI)  p-value  Difference (95% CI)  p-value

 Total -15.0% (-19.0%, -11.0%) < 0.01  11.0% (2.8%, 20.0%) < 0.01  8.1% (0.9%, 16.0%)  0.01
 Females -15.0% (-19.0%, -10.0%) < 0.01  11.0% (2.4%, 20.0%) < 0.01  7.8% (0.5%, 16.0%)  0.02
 Males -15.0% (-19.0%, -11.0%) < 0.01  11.0% (3.3%, 21.0%) < 0.01  8.5% (1.4%, 16.0%) < 0.01
 Over 60 -22.0% (-26.0%, -18.0%) < 0.01 -8.2% (-16.0%, 0.3%)  0.03 -3.0% (-10.0%, 4.8%)  0.21
 Oncology -14.0% (-19.0%, -8.3%) < 0.01  3.7% (-3.4%, 12.0%)  0.17  3.0% (-3.0%, 9.7%)  0.17
 Cardiology -13.0% (-17.0.%, -8.4%) < 0.01  14.0% (5.0%, 24.0%) < 0.01  12.0% (4.1%, 21.0%) < 0.01
 Obstetrics -15.0% (-19.0%, -10.0%) < 0.01  8.6% (0.4%, 18.0%)  0.02  6.4% (-1.0%, 15.0%)  0.05
 Urology -14.0% (-18.0%, -9.0%) < 0.01  15.0% (5.9%, 25.0%) < 0.01  13.0% (4.8%, 22.0%) < 0.01
 General medicine -1.2% (-5.9%, 4.1%)  0.30  14.0% (7.0%, 23.0%) < 0.01  21.0% (13.0%, 30.0%) < 0.01
 Osteopathy -26.0% (-30.0%, -21.0%) < 0.01  15.0% (3.3%, 28.0%) < 0.01  24.0% (14.0%, 36.0%) < 0.01
 Madrid -19.0% (-23.0%, -14.0%) < 0.01  2.5% (-5.8%, 12.0%)  0.30  3.2% (-4.2%, 11.0%)  0.22
 Barcelona -12.0% (-17.0%, -7.1%) < 0.01  18.0% (8.3%, 28.0%) < 0.01  12.0% (3.6%, 21.0%) < 0.01
 Valencia -12.0% (-16.0%, -7.0%) < 0.01  21.0% (13.0%, 31.0%) < 0.01  17.0% (8.9%, 26.0%) < 0.01

Table 2 
Parameter estimates of incidence rate ratios for Poisson regression modeling of the frequency of claims 
originating in a cardiology service (p-values correspond to testing incidence rate equal to 1) for policy 
holders aged 30+. A correction refers to a change in exposure before estimating the Poisson regression 
using the BSTS impact estimate for 2020, 2021, and 2022 either globally, the same for all individuals, or 
by gender/age group. A correction eliminates the impact of the pandemic shock.
 Model 𝑒𝛽0  (p-value) 𝑒𝛽Sex (Male)  (p-value) 𝑒𝛽Age (60+)  (p-value)  Sample size
 Only 2019  0.60 (< 0.01)  1.15 (< 0.01)  1.74 (< 0.01)  75,218
 Only 2020  0.57 (< 0.01)  1.14 (< 0.01)  1.68 (< 0.01)  73,477
 Only 2021  0.64 (< 0.01)  1.15 (< 0.01)  1.63 (< 0.01)  86,737
 Only 2022  0.66 (< 0.01)  1.15 (< 0.01)  1.59 (< 0.01)  91,188
 Full sample (without correction)  0.62 (< 0.01)  1.15 (< 0.01)  1.65 (< 0.01)  326,620
 Full sample (with global correction)  0.61 (< 0.01)  1.15 (< 0.01)  1.66 (< 0.01)  326,620
 Full sample (with specific correction)  0.56 (< 0.01)  1.17 (< 0.01)  1.91 (< 0.01)  326,620

Table 3 
Observed and expected distribution of number of cardiology claims in each Poisson regression model considered. 
Period 2019–2022.
 Model  0 claims  1 claim  2 claims  3 claims  4 claims  5 or more claims
 Observed  150,670.0  120,040.0  38,283.0  11,499.0  3,861.0  2,267.0
 Full sample (without correction)  150,562.9  113,790.0  45,585.7  13,008.4  2,977.5  695.5
 Full sample (with global correction)  152,588.6  113,316.4  44,666.6  12,559.7  2,836.2  652.5
 Full sample (with specific correction)  156,958.7  110,657.2  42,913.5  12,371.3  2,966.2  753.1

If cost information is available, the approach proposed can be used 
to estimate annual costs in the absence of the shock. In our case, 
if we assign an average unit cost of 50e per visit to the cardiology 
service, Table 3 shows that the accumulated cost of cardiology vis-
its over the period 2019–2022 is around 12,975,500e. Actual annual 
costs were 3,020,850e in 2019; 2,704,550e in 2020; 3,489,900e in 
2021, and 3,760,200e in 2022. Using the global adjustment, the total 
cost in the absence of the pandemic can be estimated at 12,825,174e
which implies an excess cost equal to 150,326e (i.e. 12,975,500e– 
12,825,174e). When incorporating the specific age/gender correction, 
the estimated excess cost is equal to 413,169e. Note that these figures 
are already accommodated to the size of the portfolio.

The usage made of other services, including that of general medicine, 
was also analyzed as described above for cardiology, and the results 
were very similar to those reported in this section. 
5.  Discussion

The method we propose is able to estimate the impact of the COVID-
19 pandemic/lockdowns on the usage of services covered by private 
health insurance. Our analysis of a Spanish insurance portfolio shows a 
marked fall-off in usage in 2020 that is largely independent of the med-
ical service or geographical area. For example, the reduction is most 
evident in less urgent services, such as osteopathy, but in the case of 

more critical services - most notably cardiology and oncology - this re-
duction is clearly more limited by the nature of the associated diseases 
(Table 1). More interestingly, our model is also able to estimate the sub-
sequent shock attributable to the pandemic. Here, we report a general 
increase in service usage in general (up to 21% and 17% in Valencia in 
2021 and 2022 respectively), less clear when looking at specific services 
or geographic areas, probably because the increase is more subtle than 
the decrease during the lockdown and the time series is too short. In 
this sense, it would be interesting to analyze the behavior of the series 
when more recent data become available.

The described methodology provides insurance companies with a 
convenient alternative for processing their data before implementation 
of their pricing models. Indeed, by using our more realistic estimations, 
they no longer need ignore data for 2020 - the usual approach employed 
to date - which also means overlooking the subsequent overuse of health 
services in the wake of the COVID-19 pandemic. Similarly, the method-
ology also highlights for the healthcare services the differential behavior 
of the oldest population, reflecting the well documented “high costs of 
dying”, that is, the disproportionate expenditure on medical care at the 
end of life (Lubitz and Prihoda, 1984; Scitovsky, 2005).

One limitation is that we could not analyze the claims severity di-
rectly. However, since these data are mostly medical visits, a standard 
flat cost is usually applied. An additional consideration in this work is 
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that one of the main objectives of the methodology in Brodersen et al. 
(2015) is to construct a time series that would have occurred without 
the intervention. In this line of thinking, plotting how the series would 
have looked without the pandemic intervention, as well as the pointwise 
differences and cumulative differences is interesting. We have omitted 
too many plots here because they are quite straightforward. Another po-
tential limitation of the study is that the impact of the increase in the 
use of telemedicine visits during and after the pandemic has not been 
considered, as the study focuses on traditional medical services.

When dealing with time series data that represents count observa-
tions, it is crucial to exercise caution. Traditional Gaussian and linear 
time series models may not be suitable for such data unless the counts 
are sufficiently large to be approximated as continuous variables. For 
further insight, refer to Example 8.8.3 in Brockwell and Davis (2002). 
This consideration extends beyond the ARIMA model to include the 
BSTS model as well. For instance, Example 8 in the bsts() function doc-
umentation (Scott, 2024) highlights the inappropriateness of using the 
Gaussian family for count data. However, we have implemented our 
modelling effort to the weekly rate series, i.e. claims per policy.

6.  Conclusion

When considering claim frequency data that might have been af-
fected by a pandemic/lockdown shock, identification of the impact 
should help in understanding expected future trends. Here, we calcu-
late an average yearly effect as a means of assessing the impact of the 
shock in 2021 and 2022 by medical service and subgroup of insureds. 
Our findings suggest that analysts need not be concerned by the impact 
of the pandemic on health insurance claim frequency after 2021 as it 
affects certain some specific groups. In our illustration, old adults and 
medical specialties would seem to have recovered pre-pandemic levels 
of usage (albeit that some services, most notably visits to general prac-
titioners, present unusually high frequency values).

Our study highlights the need for regulators to encourage risk anal-
yses that use good, preprocessed data when merging pre- and post-
pandemic datasets so as to offset the misconception that such data are 
comparable, that shocks can be ignored and/or that they affect all in-
dividuals equally. Implementing a step-by-step analysis - like the one 
advocated here - should help in identifying the impact of a pandemic 
shock and even in clarifying if its effects have faded or whether they 
persist over time.
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of COVID-19 uncertainty: a global industry analysis. International Review of Financial 
Analysis 80, 101837.

Team, R.C., 2019. R: A Language and Environment for Statistical Computing. Place: Vi-
enna, Austria, https://www.r-project.org/.

Wilensky, G.R., 2022. The COVID-19 pandemic and the us health care workforce. JAMA 
Health Forum 3 (1), e220001–e220001.

Wüthrich, M.V., Merz, M., 2023. Statistical Foundations of Actuarial Learning and its 
Applications. Springer Nature.

Xu, S., Glenn, S., Sy, L., Qian, L., Hong, V., Ryan, D.S., Jacobsen, S., 2021. Im-
pact of the COVID-19 pandemic on health care utilization in a large integrated 
health care system: retrospective cohort study. J. Med. Internet Res. 23 (4),
e26558.

Insurance Mathematics and Economics 126 (2026) 103175 

9 

http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0018
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0018
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0018
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0019
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0019
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0019
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0019
https://doi.org/10.2307/1403631
https://doi.org/10.2307/1403631
https://doi.org/10.2307/1403631
https://doi.org/10.2307/1403631
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0021
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0021
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0022
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0022
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0022
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0022
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0022
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0023
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0023
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0023
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0024
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0024
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0024
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0024
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0025
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0025
https://doi.org/10.1038/s41598-023-38119-4
https://doi.org/10.1038/s41598-023-38119-4
https://doi.org/10.1038/s41598-023-38119-4
https://doi.org/10.1038/s41598-023-38119-4
https://doi.org/10.1080/10920277.1999.10595808
https://doi.org/10.1080/10920277.1999.10595808
https://doi.org/10.1214/18-AOAS1166
https://doi.org/10.1214/18-AOAS1166
https://doi.org/10.1214/18-AOAS1166
https://doi.org/10.1214/18-AOAS1166
https://doi.org/10.1111/j.1468-0009.2005.00402.x
https://doi.org/10.1111/j.1468-0009.2005.00402.x
https://doi.org/10.1111/j.1468-0009.2005.00402.x
https://doi.org/10.1111/j.1468-0009.2005.00402.x
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0030
https://CRAN.R-project.org/package=bsts
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0030
https://CRAN.R-project.org/package=bsts
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0031
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0031
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0031
https://doi.org/10.1007/978-3-319-52452-8_3
https://doi.org/10.1007/978-3-319-52452-8_3
https://doi.org/10.1007/978-3-319-52452-8_3
https://doi.org/10.1007/978-3-319-52452-8_3
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0033
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0033
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0033
https://www.r-project.org/
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0034
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0034
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0035
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0035
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0036
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0036
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0036
http://refhub.elsevier.com/S0167-6687(25)00122-2/sbref0036

	Back to normal? a method to test and correct a shock impact on healthcare usage frequency data 
	1 Introduction 
	2 Background
	3 Methods and data
	3.1 Shock impact detection and evaluation
	3.2 Implications for pre-processing data net of a shock impact in GLM frequency modelling
	3.3 Gap of cost estimation
	3.4 Data

	4 Results
	5 Discussion
	6 Conclusion


