Future Generation Computer Systems 179 (2026) 108358

journal homepage: www.elsevier.com/locate/fgcs e

Contents lists available at ScienceDirect

Future Generation Computer Systems

FiBICIS!

Automatic tuning based on hardware performance counters and machine

learning

Suren Harutyunyan Gevorgyan ® * Eduardo César

Jordi Alcaraz @ ¢

2 Universitat Autonoma de Barcelona, DACSO, Bellaterra, 08193, Spain
b Masaryk University, ICS, Brno-Krdlovo Pole, 602 00, Czech Republic
¢ University of Oregon, OACISS, Eugene, 97403, USA

2 Anna Sikora

a Jif{ Filipovi¢ &P,

ARTICLE INFO ABSTRACT

Keywords:

Hardware performance counters
Automatic dimension reduction
Machine learning ensembles
Tuning parameter optimization
Parallel region classification

This paper presents a Machine Learning (ML) methodology for automatically tuning parallel applications in het-
erogeneous High Performance Computing (HPC) environments using Hardware Performance Counters (HWPCs).
The methodology addresses three critical challenges: counter quantity versus accessibility tradeoff, data interpre-
tation complexity, and dynamic optimization needs. The introduced ensemble-based methodology automatically
identifies minimal yet informative HwPC sets for code region identification and tuning parameter optimization.

Experimental validation demonstrates high accuracy in predicting optimal thread allocation (>0.90 K-fold accu-
racy) and thread affinity (>0.95 accuracy) while requiring only 4-6 HwPCs. Compared to search-based methods
like OpenTuner, the methodology achieves competitive performance with dramatically reduced optimization
time. The architecture-agnostic design enables consistent performance across CPU and GPU platforms. These
results establish a foundation for efficient, portable, automatic, and scalable tuning of parallel applications.

1. Introduction

The tuning of parallel applications in modern High Performance
Computing (HPC) systems presents significant challenges due to increas-
ing architectural complexity and heterogeneity. Hardware Performance
Counters (HwPCs) provide detailed low-level performance data offering
valuable insights into application behavior, leading to the hypothesis
that HwPCs and Machine Learning (ML) methodologies can be used to
optimize parallel code regions, defined as distinct computational blocks
within an application that can be independently optimized. However,
their effective use presents several challenges:

1. Monitoring Limitations: Hardware limitations prevent simultane-
ous access to all HwPCs. Measuring fewer, carefully selected events is
crucial for accuracy, allowing for more measurement time per event
when using techniques such as multiplexing.

2. Scalability and Data Volume Constraints: The volume of HWPC
data, especially from GPUs, with hundreds of associated counters,
implies serious scalability challenges. Manual analysis becomes im-
practical, necessitating automated approaches.

3. Runtime Decision Requirements: HPC environments require rapid
analysis. This demands efficient performance models that use a min-

* Corresponding author.

imal set of HWPCs that accurately represent application behavior to
enable runtime optimization decisions.

These challenges have spurred interest in leveraging ML for HwPC-
based tuning. Our previous research in [1,2] demonstrated promising
results in identifying OpenMP code regions and predicting the optimal
number of threads using a reduced set of HwPCs. However, this initial
approach had critical limitations: feature selection relied on manual, an-
alytical methods (PCA and Correlation) that did not scale to richer HwPC
architectures, and used the same HwWPC set for both region identifica-
tion and parameter tuning, a conceptual flaw, as the optimal counters
for these tasks likely differ.

This caused interpretability issues due to manual HwPC selection,
limited portability across architectures, and inconsistent prediction ac-
curacy using a the same set of HWPCs for classification and tuning.

In [3], we proposed a fully ML-based automated methodology to se-
lect the minimum number of HWPCs necessary to identify an OpenMP
code region, addressing the manual selection flaw. However, a critical
gap remained: the lack of an end-to-end automated methodology that
seamlessly identifies parallel code regions and optimizes Tuning Param-
eters (TPs) using different, task-specific HWPC sets across diverse archi-
tectures.

E-mail addresses: Suren.Harutyunyan@uab.cat (S. Harutyunyan Gevorgyan), Eduardo.Cesar@uab.cat (E. César), Anna.Sikora@uab.cat (A. Sikora),

fila@ics.muni.cz (J. Filipovi¢), jordia@uoregon.edu (J. Alcaraz).

https://doi.org/10.1016/j.future.2025.108358

Received 31 July 2025; Received in revised form 16 December 2025; Accepted 29 December 2025

Available online 30 December 2025

0167-739X/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nec-nd/4.0/).

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0000-0003-2224-5730

$>$

$>$

\begin {equation}E = S \times T \times P \times OP \times N, \label {Xeqn1-1}\end {equation}

E

S

T

P

OP

N

$P_i(X)$

$k=5$

k

$\mathcal {D} = {(\mathbf {l}, \mathbf {h}, \mathbf {t})}$

$\mathbf {l} \in \mathcal {L}$

$\mathbf {h} \in \mathcal {H}$

$\mathbf {t} \in \mathcal {T}$

$\mathbf {l}$

$\mathbf {h}$

$\mathbf {l}$

$\mathbf {h}$

$\mathbf {t}$

$t_{opt} \in \mathcal {T}$

$k=5$

k

W_i

i

\begin {equation}\label {form:weighted_avg} W_i = \frac {\sum _{j=0}^{3} c_{i,j} w_j}{\sum _{j=0}^{3} w_j},\end {equation}

$c_{i,j}$

i

j

w_j

j

$\mathit {HwPC_i} = {h_0, h_1, \ldots , h_{C-1}}$

i

$\mathit {HwPC_{ij}} = {h_0, h_1, \ldots , h_{T-1}}$

j

i

$0 < C, T \leq N-1$

$P_i(X)$

\begin {equation}P_i(X) = \frac {T_t(X)}{E(X)} = \frac {X \cdot T_t(X)^2}{T_t(1)}, \label {formula:performance_index}\end {equation}

X

$T_t(X)$

$E(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

a^*

\begin {equation}a^* = \min _{a \in A} T(a) \label {Xeqn4-4}\end {equation}

$A = \{\texttt {close}, \texttt {spread}\}$

$T(a)$

a

a^*

s^*

c^*

\begin {equation}(s^*, c^*) = \min _{(s,c) \in S \times C} T(s,c) \label {Xeqn5-5}\end {equation}

$S = \{\texttt {static}, \texttt {dynamic}, \texttt {guided}\}$

C

$>$

$>$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$P_i(X)$

$\sim $

$>$

$>$

$>$

$>$

$\sim $

$\bar {t}=0.1063ms$

$\sigma =0.0279$

$\bar {t}=0.5667ms$

$\sigma =0.0270 ms$

$\sim $

$\bar {t}= 0.0942ms$

$\sigma =0.0293ms$

$\bar {t}=0.8404 ms$

$\sigma =0.0122ms$

https://orcid.org/0000-0002-9729-8557
https://orcid.org/0000-0003-0090-4109
https://orcid.org/0000-0002-5703-9673
https://orcid.org/0000-0002-9640-6763
mailto:Suren.Harutyunyan@uab.cat
mailto:Eduardo.Cesar@uab.cat
mailto:Anna.Sikora@uab.cat
mailto:fila@ics.muni.cz
mailto:jordia@uoregon.edu
https://doi.org/10.1016/j.future.2025.108358
https://doi.org/10.1016/j.future.2025.108358
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Harutyunyan Gevorgyan et al.

To bridge this gap, an effective automatic tuning system must pro-
vide:

o Efficient HWPC Selection: Identifying the most informative subset
of HWPCs to reduce overhead.

¢ Automated Pattern Recognition: Detecting patterns for accurate
code region characterization.

¢ Predictive Tuning: Learning optimal TP configurations from perfor-
mance data.

¢ Cross-Architecture Portability: Adapting to diverse hardware like
CPUs and GPUs.

The primary contributions of this paper, which address the afore-
mentioned gap and limitations, are:

¢ A Novel End-to-End ML Methodology: We introduce a new ap-
proach that builds upon [3] by not only automating the selection of
a reduced HWPC set but also determining distinct, task-specific sets:
one for code region identification and separate sets for optimizing
each region’s associated TPs.

¢ A Portable Multi-Architecture Solution: We extend this methodol-
ogy to be effective across different architectures (CPU and GPU), en-
suring consistent performance without manual, architecture-specific
modifications.

The remainder of this paper is organized as follows. Section 2 shows
the background, including previous works on HWPC reduction and tech-
nical concepts. Section 3 describes the novel and automatic ensemble
methodology for automatic HwPC reduction, code region identification,
and TP optimization. Section 4 shows the evaluation of the proposed
methodology on different architectures. Section 5 presents related work.
Finally, Section 6 concludes the paper.

2. Background

This section discusses the integration of HwPCs and ML methodolo-
gies for parallel computing performance optimization, reviewing prior
research on HwPC-based code region identification and ML-driven TP
optimization, their achievements and limitations. The section also in-
troduces the automatic ML ensemble methodology and constituent al-
gorithms, as a framework for accurate TP optimization, along with eval-
uation metrics to assess the predictive capabilities.

2.1. Previous work

In [1] the authors reduced HwPC numbers for code region identifica-
tion using PCA (Principal Component Analysis) and Linear Correlation
Analysis (LCA).

PCA is a dimensionality reduction technique that projects data into a
new coordinate system that emphasizes variability patterns while elimi-
nating less informative dimensions, thereby facilitating data exploration
and analysis. It was employed to assess the visual separability of data
classes.

LCA is a statistical method that quantifies the linear relationship be-
tween two continuous numerical variables, producing a correlation co-
efficient ranging from -1 to 1. When variables exhibit perfect correlation
(coefficient of 1 or -1), one variable’s value can be predicted from the
other through appropriate linear transformation, while a coefficient of
0 indicates no linear relationship exists. The analysis is used to reduce
HwPCs, thus variables exhibiting high correlation coefficients are re-
moved, after which PCA is applied again to confirm that the dimensional
reduction maintains adequate characterization of the parallel code re-
gion. Using this approach the authors successfully reduced the number
of HWPCs from 58 to 20.

A related study [2] focused on optimizing the number of threads
through ML methodologies. The authors evaluated multiple ML tech-
niques including Logistic Regression, Artificial Neural Network (ANN),

Future Generation Computer Systems 179 (2026) 108358

and Decision Trees (DT), ultimately retaining only the ANN and DT mod-
els due to their significantly superior accuracy compared to other ap-
proaches. This was validated with the STREAM [4] and PolyBench [5]
benchmarks.

Both studies exhibited limitations. The first study’s reliance on man-
ual selection for HWPC reduction introduced overhead and compro-
mised the scalability of the approach. The second study revealed a criti-
cal limitation in the model’s predictive accuracy. Specifically, for Stride
code regions, the model consistently underestimated the optimal num-
ber of threads, leading to significant performance degradation. This un-
derestimation, to a lesser extent, was also observed in several other code
regions, indicating a general weakness rather than an isolated issue.

In [3], the first study’s limitation was addressed with an automatic
HwPC reduction methodology, which was able to accurately identify
code regions across different architectures. The methodology employs
an ML ensemble to identify minimal HWPC sets necessary for effec-
tive code region identification. While this approach effectively reduced
HwPC sets for code region identification, it did not address the TP opti-
mization weakness.

The present work further advances the methodology by employing
ML ensembles not only to reduce the HWPC sets for both, code region
identification and TP optimization, but also to train dedicated ensem-
bles on these minimal sets. These ensembles are then used for code
region identification and TP optimization, providing a unified and au-
tomated framework that extends prior approaches. Therefore, this re-
search addresses both previous limitations through an automatic bifur-
cated HWPC reduction strategy that leverages distinct HwPC sets for
code region identification and TP optimization, thus enhancing discrim-
inative capability and predictive accuracy. Moreover, we have extended
the methodology to support CPU and GPU architectures.

Thus, while building on prior work, the present contribution repre-
sents a substantial step from code region identification toward a com-
plete automatic optimization methodology.

2.2. Dataset construction

ML methodologies excel at extracting insights from complex datasets
in computational performance analysis. The quality of the model’s pre-
dictions depends on comprehensive data-collection, requiring sophisti-
cated approaches to data acquisition and preprocessing.

In [6] an approach for systematically building balanced datasets of
Hardware Performance Counters (HwPCs) for OpenMP parallel regions
was introduced. This method takes into account all possible combina-
tions of architectural characteristics (e.g., number of cores, memory hi-
erarchy), region characteristics (e.g., data layout and size), compiler
optimizations, and parallelization strategies (e.g., number of threads,
affinity). Consequently, characterizing each code region requires a sig-
nificant number of executions. The approach utilizes the Performance
Application Programming Interface (PAPI) [7,8] to collect only preset
HwPCs, ensuring cross-architecture generalizability. To overcome the
limitation on the number of HWPCs that can be monitored concurrently,
the execution of each region configuration is repeated for each group of
compatible events; the resulting measures are then concatenated to cre-
ate a single, comprehensive characterization of the region.

Furthermore, the methodology requires that problem sizes be di-
rectly proportional to the memory size at each level of the memory
hierarchy. Specifically, for on-processor caches (L1, L2, L3), problem
sizes must be proportional to the number of physical cores per proces-
sor, while for memories outside the processor, they must be proportional
to the number of processors in the system. For each private cache level,
problem sizes are defined starting with the size of one private cache
and multiplied by the different core configurations, ending with the ac-
cumulated size of the private caches in the same level. For each shared
cache level, the problem sizes are bigger than the accumulated size of
the lower level cache and slightly lower than the maximum shared mem-
ory in the current cache level. Finally, for the main memory, the initial

S. Harutyunyan Gevorgyan et al.

Table 1
Summary of the execution parameters for a spe-
cific platform (Xeon E5-4620).

Parameter Values for Xeon E5-4620
Counter Sets N 12
Threads T 32

Problem Sizes P 29
OpenMP TPs opP 11
Repetitions N 100

Total E 12249600

Model Training and Inference

-

Model 1 H Prediction 1 |

1

Model N H Prediction N

Fig. 1. Theoretical model ensembling process.

problem size is bigger than the last level cache of the processor, and the
other sizes are obtained gradually increasing the necessary memory. The
last problem size is 1.5 times the aggregated size of the last level cache
of all the processors in the system.

The methodology demonstrates robustness through systematic vari-
ation of OpenMP parameters, manipulating dimensions including num-
ber of threads, thread affinity policies, scheduling strategies, and chunk
sizes. The execution strategy involves multiple repetitions across differ-
ent configurations that can be calculated as:

E=SXTxPXOPXN, (@]

where E denotes executions, .S HWPC sets, T number of threads, P prob-
lem sizes, O P OpenMP TP combinations, and N repetitions.

The final dataset undergoes preprocessing, where the HwPC values
are normalized, and null values and zero-variance features are removed.
Table 1 presents a summary of the execution parameters associated with
their particular values for the Xeon E5-4620 platform. From this dataset,
optimal TP values are identified as configurations minimizing the objec-
tive function (e.g. P,(X) or execution time) for the number of threads,
affinity, or scheduling/chunk-size. These optimal configurations serve
as ground truth for training the ensemble models.

2.3. Ensemble methodology

Ensemble modeling combines multiple individual models (weak or
base learners) to create a robust and accurate prediction system [9,10].
As shown in Fig. 1, this process comprises several key components:

Model Diversity: The ensemble consists of multiple independent
models working in parallel. Each weak model provides a unique perspec-
tive using different algorithms or training parameters, capturing various
aspects of the underlying patterns while reducing individual model bi-
ases.

Input Processing: Test input is simultaneously fed into all models,
allowing each to analyze the same data independently and generate pre-
dictions based on unique characteristics and learned patterns.

Model Integration through Voting: Individual predictions are com-
bined through majority voting (most frequent prediction), weighted
voting (based on model confidence), or soft voting (aggregating prob-
ability distributions), producing more stable and accurate predictions
than any single model.

Performance Benefits: Ensemble methods demonstrate superior
performance by averaging out different error types, reducing sensitiv-
ity to outliers and noise, and improving generalization across diverse
input data.

Future Generation Computer Systems 179 (2026) 108358
2.4. Ensemble algorithms

The ensemble models were selected to maximize complementarity
across algorithmic paradigms specifically for HwPC feature spaces. Four
models were selected from nine initial candidates through evaluation
based on computational efficiency during training and predictive per-
formance metrics. Models with excessive training requirements or infe-
rior accuracy, precision, and recall were discarded to ensure practical
deployment in resource-constrained environments.

Logistic Regression with Elastic Net [11-14] addresses the multi-
collinearity inherent in HwPC data (e.g., correlated cache miss events)
while providing feature selection through L1 regularization. This is cru-
cial because most HWwPCs measure related architectural events. It excels
when linear relationships exist between HWPC combinations and per-
formance outcomes, particularly for compute-bound code regions where
instruction counts linearly predict execution time.

Random Forest [15] addresses nonlinear interactions in memory-
intensive code regions, where relationships between cache misses, mem-
ory bandwidth, and performance are interdependent. Its resilience to
outliers is essential given that HWPC values can span several orders
of magnitude. Its feature importance mechanism also provides inter-
pretability for identifying which architectural events most influence per-
formance.

XGBoost [16] addresses class imbalances that may arise in the
dataset (where optimal configurations may be rare) through its weight-
ing mechanisms. Its boosting framework captures dependencies between
HwPC events and provides strong performance in high-dimensional,
sparse feature spaces.

TabNet [17] handles the heterogeneous nature of HwPC data (mix-
ing instruction counts, temporal cycles, and throughput rates) through
its attention mechanism, automatically learning which HwPC groups
are relevant for specific code regions. Unlike other models, it performs
simultaneous feature selection and prediction, which is crucial when
dealing with 50 + HwPCs where many may be irrelevant.

This diversity enables handling different aspects of the HWPC fea-
ture space: from linear to complex nonlinear relationships, from bal-
anced to imbalanced classes, and from simple to hierarchical decision
boundaries.

2.5. Ensemble evaluation metrics

Evaluation of model performance is critical for assessing the effi-
cacy and reliability of ML methodologies in performance optimization.
Five key indicators were selected based on the requirements of tuning
tasks: accuracy, precision, recall, F1-Score, and ROC AUC. Each metric
addresses distinct challenges in performance optimization.

Accuracy quantifies overall correctness but may be misleading in
imbalanced scenarios (e.g., when the optimal configuration occurs in
only 15% of cases). Nevertheless, it provides a baseline measure of gen-
eral performance. To obtain a more reliable estimate of generalization,
we adopted K-fold cross-validation with k = 5 balancing statistical ro-
bustness and computational feasibility. Cross-validation accuracy is de-
fined as the mean accuracy across k validation folds, offering an estimate
that is less sensitive to data partitioning.

Precision is relevant because false positives are costly. Recommend-
ing a suboptimal configuration can waste significant runtime. High pre-
cision ensures that when the model recommends a configuration, it is
indeed the optimal or near-optimal configuration.

Recall addresses the complementary risk of missing optimal con-
figurations. In tuning scenarios, low recall means the model overlooks
optimal configurations, leaving potential performance gains undiscov-
ered.

F1-Score balances precision and recall, which is essential because
neither metric alone suffices. A model with high precision but low re-
call might only predict in obvious cases (e.g., always recommending
maximum threads) while missing subtler optimal configurations. The

S. Harutyunyan Gevorgyan et al.

Future Generation Computer Systems 179 (2026) 108358

Input HwPC Reduction Phase Application Execution Phase Output
_________________ —~
/ ‘I
- .. — Step 1: Code Region .
(HwPCs Reduction [I
| Application Step 3: Code -
Execution Region Identification |
- 1
Code Region | 1l]
Labels, . > | Tuning
HwPCs and 4L| | —L|Parameter Value
TPs > .
Step 2: TP HWPCs | stepa:TP o
Reduction & Optimization I

Fig. 2. Process of HWPC reduction, code region identification, and Tuning Parameter optimization.

F1-Score penalizes such behavior, encouraging both correctness and
coverage.

ROC AUC measures discriminative ability across thresholds, it is cru-
cial when suboptimal choices incur varying penalties. E.g., choosing 8
instead of 16 threads may cause only a 10% slowdown, while choosing
2 may cause an 80% slowdown. ROC AUC reflects the model’s ability to
rank configurations appropriately, not just classify them as optimal or
not.

3. Application performance tuning using machine learning

This section presents a novel automatic methodology for tuning par-
allel applications using HwWPCs, transforming raw HwPC data into ac-
tionable performance insights through ML methodologies. The method-
ology addresses performance analysis challenges by identifying code re-
gions and optimizing TPs using HWPC data. The ensemble identifies both
minimal sets of HwPCs required for code region identification and for
TP optimization, improving efficiency and accuracy while automating
application performance optimization.

In this work, a code region refers to a distinct computational block
within an application that exhibits consistent performance charac-
teristics and can be independently optimized. In an OpenMP con-
text, code regions typically correspond to parallel loops or paral-
lel sections enclosed by #pragma omp parallel directives. For GPU
applications, code regions correspond to individual CUDA kernels.
Each code region is characterized by its computational pattern (e.g.,
memory-bound, compute-bound, irregular access), which determines
its optimal TP configurations. The methodology identifies code re-
gions through their unique HwWPC signatures rather than static code
analysis.

A key motivation for using separate HWPC subsets for code region
identification and TP optimization is that the most discriminative Hw-
PCs for recognizing computational patterns could not be the most in-
formative for predicting TPs. For example, cache-related HwPCs can
distinguish compute- from memory-bound code regions, while instruc-
tion throughput HwPCs can be related to core utilization and thread
placement TPs. By decoupling the subsets, the methodology maximizes
predictive accuracy for both tasks.

In practice, as it will be discussed in Section 4, the computational
overhead of the proposed approach remains modest: the reduction phase
is performed offline, while online execution requires monitoring only 4-
7 HwPCs per task, adding negligible runtime overhead.

Fig. 2 shows that the proposed methodology is composed of a HWPC
Reduction phase, which is performed off-line only once for a specific
architecture using the input dataset, and an Application Execution
phase, which is applied to optimize a given application.

The input of the HWPC Reduction Phase is a dataset D = (I, h,t)
where 1 € L represents code region labels, h € H denotes HwPC values,
and t € T represents TP values. Its objectives are to minimize the sets of

HwPCs needed to identify code regions, and optimizing TPs. Section 3.1
describes in detail this phase’s two steps.

¢ Step 1: Code Region HWPCs Reduction. The 1 and h components
of the dataset are used to identify relevant HwPCs for code region
classification, producing a reduced HwPC list and a classification
model.

e Step 2: Tuning Parameter HWPCs Reduction. The], h, and t com-
ponents of the dataset are used to identify relevant HwPCs for each
TP associated to each code region, resulting in a reduced HwPC list
and a prediction model for each specific TP of each code region.

The Application Execution Phase involves the optimization of a
given application using the reduced sets of HWPCs obtained in the pre-
vious phase. It also includes two steps described in detail in Section 3.2.

» Step 3: Code Region Identification. At runtime, the values of the
HwPCs from the list produced in Step 1 are collected, and the clas-
sification model is used to identify the executing code region.

¢ Step 4: Tuning Parameter Optimization. After identifying the ex-
ecuting code region, for each TP associated with this code region, it
collects the values of the HwPCs of the list produced in Step 2, and
the corresponding prediction model is used to determine the optimal
TP value.

Consequently, the methodology’s output is a value ¢,,, € 7 for each
TP that optimizes the performance of each code region in an application.

3.1. HwPC reduction phase

This subsection presents a dual-purpose methodology for HwPC re-
duction, as illustrated in Fig. 3. The first branch (Step 1) identifies im-
portant HWPCs for code region identification using sub-datasets con-
taining code region labels and HwPC values. The second branch (Step
2) identifies important HWPCs for optimizing TPs using separate sub-
datasets for each code region and TP combination, with their corre-
sponding HWPCs.

The methodology uses an ML ensemble in three steps: (1) training
and validation of classifier models to establish relationships between
code regions and HwPCs (Step 1.1), and between TPs and HwPCs (Step
2.1); (2) extracting and quantifying importance scores for individual
HwPCs across all ensemble models for code region identification (Step
1.2) and TP optimization (Step 2.2); and (3) ranking and reduction to
identify a minimal HWPC set for code region identification (Step 1.3)
and minimal specialized sets for TP optimization (Step 2.3). During in-
ference, the models generate individual predictions with the final pre-
diction determined by majority vote. Model performance is evaluated
using accuracy to quantify correct classifications.

3.1.1. Ensemble training and validation
The ensemble training and validation correspond to Steps 1.1 and
2.1 in Fig. 3. The ensemble methodology integrates the four models in-

S. Harutyunyan Gevorgyan et al.

HwPC Reduction Phase

Future Generation Computer Systems 179 (2026) 108358

Application

Step 1: Code Region HWPCs Reduction

Execution Phase
— .

_
Code Region
Labels and

Step 1.1:

and Validation

= Step 1.2: Weight
Ensemble Training—>| Extraction with —>| Ranking and
Penalization

Step 1.3: HWPC

Reduction

I
i
i
i
!
L :
i
|
i
i

Code Region
. Labels, .
HwPCs and 1 1 1 |
TPs 1 1 1 .
Step 2.1: Ensemble[®,| | Step 2.2: Weight Step 2.3: HWPC I
Trainingand | Extraction with » Ranking and |
Validation 1| Penalization Reduction .
|
. Step 2: TP HWPCs Reduction l
| J — .)
Fig. 3. HWPCs reduction with model ensembles.
Log. Reg. | | Rand. For. || XGBoost TabNet Wght. Extr. 3.1.3. HWPC ranking and reduction
HwPC|Score| [HwPC|Score| [HwPC|Score| [HwPC|Score| |[HWPC| W. The HwPC ranking and reduction process corresponds to Steps 1.3
0 10.001 0 10.020 0 10028 0 10.014 0 10.016 and 2.3 in Fig. 3. The kneedle algorithm [18] was used to select Hw-
1 10.368 1 10.259 1 10.033 1 10.313 1 10.239 . . e s e . .
5> l0373]| 2 lo3sal| 2 looesl | 2 loo7s 5> |o228 PCs for code region identification and TP optimization. The reduction
process ranks HWPCs in descending order based on weighted average
N-1 10.004] | N-1 10.014] | N-1 [0.027] [N-1 [0.007 N-1 10.013

|wgnt. [0.85 | [wgnt | O.QQMWght.i 0.04 | [wgnt [0.89 |

Fig. 4. Step 2: Ensemble for HwPC importance scoring.

troduced in Section 2.4: Logistic Regression with Elastic Net, Random
Forest, XGBoost, and TabNet, capturing linear and nonlinear relation-
ships across varying dataset characteristics.

The implementation utilized a 70-30 split, with 30% reserved for fi-
nal testing to provide an unbiased evaluation of generalization capabil-
ities. The remaining 70% underwent 5-fold stratified cross-validation,
preserving code region class distributions across folds. In each itera-
tion, the models are trained on approximately 56% of the total data
and validated on 14%. A value of k = 5 was chosen to balance statisti-
cal reliability and computational cost (only 5 training iterations). Larger
k values (e.g., 10) doubled computational cost with marginal accuracy
gains, whereas smaller values (e.g., 3) led to higher variance in valida-
tion scores. The stratified approach further ensured consistent handling
of imbalanced TP distributions. Accuracy served as the primary evalua-
tion metric throughout.

3.1.2. Weight extraction

The weight extraction process corresponds to Steps 1.2 and 2.2
in Fig. 3. Following training, each HWPC received normalized impor-
tance scores (0.0 to 1.0) based on model-specific criteria. Logistic Model
with Elastic Net derives importance from coefficient magnitudes. Ran-
dom Forest quantifies it through an average impurity reduction. XG-
Boost evaluates importance based on performance gain. TabNet em-
ploys an attention mechanism for feature contributions. The final im-
portance score is computed using the weighted average of the indi-
vidual model scores. Each model’s weight corresponds to its validation
accuracy.

Fig. 4 illustrates this process. The final weighted score W; for the ith
HwPC is calculated as:

3
W, = Z,:;) Cuwj’ @
Z j=0 wi

where ¢; ; is a score of the ith HWPC from the jth model and w; is an
accuracy-based weight of the jth model. This formulation ensures that
models with higher validation accuracy contribute more significantly to
the final importance scores.

scores (Fig. 5(a)).

Then, as shown in Fig. 5(b), a reference line is established between
points (0,0) and (N-1, accuracy N-1), where N is the total number of Hw-
PCs and accuracy N-1 is the validation accuracy using all HwPCs. The
models are trained iteratively, starting with the highest-ranked HwPC
and progressively adding HwPCs in rank order. For each model, the dis-
tance between the accuracy and the reference line is calculated. The
process stops when adding a new HwPC no longer increases this dis-
tance, indicating the knee point where accuracy gains become marginal.
The minimum effective set of HWPCs includes those added up to this
point, balancing model complexity with accuracy.

The reduction process produces a minimal list of HWPCs for code
region identification, and TP-specific lists per code region for TP opti-
mization:

- HwPC, = hy, hy, ...
code region i

- HwPC;; = hy, hy, ..., hy_;: the minimal set of HWPCs to tune the jth
TP for the ith code region

,he_: the minimal set of HWPCs to classify the

where 0 < C, T < N —1.

At the end of the reduction process, the final ensemble models
trained with these reduced HwPC sets are stored. These ensembles are
then used during the subsequent Application Execution Phase for code
region identification and TP optimization.

3.2. Application execution phase

Fig. 6 delineates the process for code region identification and TP
optimization during application execution. The process begins when the
target application is running. First, Step 3 identifies different code re-
gions within the application. In Step 3.1, the methodology collects mea-
surements from a reduced set of HwPCs that were specifically selected
to identify code regions.

In Step 3.2, this set of HWPCs’ values is the input to the Code Region
Identifier Model generated in the Step 1 of the HWPC reduction phase
described in Section 3.1. The final code region class indicated by the
ensemble is decided by majority vote, that is, whichever code region
class receives the most votes.

As observed in Fig. 6, upon code region identification, the process
transitions to Step 4, TP optimization. In Step 4.1, the system collects
a specific set of HwPC measurements from the executing application.
Importantly, each identified code region uses a different set of HwPCs

S. Harutyunyan Gevorgyan et al.

r Iter. 0 7
0 HwPC 1
i Step 3
Ranking Iter. 1 p
HwWPC |W. Avg. 0 HwWPC 1 Iter. |Accuracy
T 1 |0.239 1 | Hwpc2 0 0.4
eigl 1 06
2 oo 1> -
0 0.016 Iter. K-1
0 HwPC 1 K-1 08
N-1{0.013 1 | HwPC2
L K-1 | HWPC K-1 Reduced
- List of K
HwPCs

(a) Weight ranking and reduction process

HwPC Reduction with Knee Detecion

1.0 —
. ! -
0.9 1 : H i ! i
| I i | *'/’

0.8 . : i

0.7 L I ¥

X H | L
g L I N 7
o H | . |
2 0.6 | H | LR

H 1 R
z i ! H [
@ 0.5 i | [ad
3 | i | /*
8 H
£ 0.4 i ! L’
H 1 ! /‘
0.3 4 | ‘<
L
] : -
0.2 | ,k —— Accuracy Curve
0.1 }/ —--- Reference Line
/’ —e- Distance
0.0 T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 N-1

Top Ranked HWPCs

(b) Knee detection of the accuracy curve

Fig. 5. Step 3: HWPC reduction considering the knee point.

for each TP being optimized. This means that for a given code region, the
system monitors one specific set of HwPCs when optimizing TP A, and a
different set of HwPCs when optimizing TP B. This approach allows for
detailed analysis of how each individual TP affects performance within
that specific code region.

In Step 4.2, the collected HWPC measurements are passed to the ap-
propriate optimization models. For each code region, there are multiple
TP optimization models - one for each TP. Each of these models was
trained using the reduced set of HWPCs that are most relevant for op-
timizing that specific TP within that particular code region. As for the
code region identification, each optimization model is an ensemble of
the four ML classifiers and the final optimized TP value is determined
by majority vote.

4. Evaluation

This section analyzes the results obtained using the proposed ensem-
ble methodology for HWPC reduction, code region identification, and TP
optimization. The evaluation methodology begins with a comprehensive
analysis using OpenMP code regions on CPUs, where the reliability of
the approach is validated through a comparative analysis with the find-
ings in [1].

Sections 4.1 and 4.2 present this initial evaluation phase, where the
dataset consisted of code regions already known to the models, pro-
viding a baseline for performance assessment. Section 4.3 demonstrates
the robustness and generalization capabilities of the methodology by
extending the evaluation to previously unseen code regions extracted
from the NAS parallel benchmarks (NPB) [19]. Section 4.4 expands the
analysis to GPU architectures, where the methodology was applied to
GPU datasets containing different code regions.

Future Generation Computer Systems 179 (2026) 108358

Table 2
Preset HWPCs available on the Xeon E5-4620 platform.

Branches Cache L1 CacheL2 CachelL3 TLB Cycles Ops. Ins.

6 5 14 9 2 3 3 8
Table 3
Reduced HwPCs for code region identification.
Instructions Operations Branches
PAPI_SR_INS PAPI_FP_OPS PAPI_BR_NTK
PAPI_FDV_INS PAPI_DP_OPS PAPI_BR_MSP

Table 4
Reduced HwPCs for 2D4PStencil_E code re-
gion’s number of threads optimization.

L2 Cache L3 Cache Operations
PAPI_L2_ICH PAPI_L3_TCM PAPI_FP_OPS
PAPI_L2_DCH

PAPI_L2_DCR

All CPU benchmarks were compiled using GCC version 9.2.0 with
-02 optimization, and executed on the 32-core Xeon E5-4620 platform.
GPU benchmarks were compiled with NVCC using CUDA 10.1 (driver
418.67) for GTX 1070 and RTX 2080, CUDA 12.1 (driver 535.183) for
RTX 3090, and CUDA 12.3 (driver 545.23) for RTX 4080.

This cross-platform evaluation demonstrates the versatility of the
methodology and its consistent effectiveness across both CPU and GPU
architectures, showing its portability to diverse computing environ-
ments.

4.1. Reduction of CPU HwPCs for identification and tuning of OpenMP
regions

The methodology was tested on an 18 code region dataset [3], com-
prising:

e STREAM: four code regions- Copy, Scale, Sum, and Triad-ach with
distinct memory access patterns and operation counts [4].

¢ PolyBench: twelve code regions from synthetic benchmarks for com-
mon computational programs in scientific and engineering applica-
tions [5].

¢ Additional Code Regions: two code regions for computing Collatz
sequences and Friendly numbers with different computational load
per iteration.

PAPI was used for HWPC collection. It provides a standardized set of
preset events for performance monitoring, which were grouped to max-
imize the information gathered during each execution while respecting
hardware limitations [1]. Each HWPC group was measured across multi-
ple executions, systematically varying parameters, including number of
threads, thread affinity policy, scheduling policy, and chunk size. Prob-
lem sizes were computed using the methodology in [2] to stress differ-
ent memory hierarchy levels. For statistical significance, 100 executions
were conducted for each combination of HwPC group, problem size, and
configuration. The preset HwPCs for the target architecture are shown
in Table 2.

Starting with 50 available HwPCs, the methodology reduced the set
to six HWPCs, shown in Table 3, for code region identification while
maintaining high prediction capabilities.

The methodology further refined the reduction process at the TP
level, creating unique HWPC sets for each code region’s TPs to reflect
distinct computational characteristics . Starting with 50 available Hw-
PCs, the methodology successfully reduced the set to only 4-7 HwPCs
for each TP. As an example, Table 4 shows the 5 HwPCs selected for
optimizing the number of threads for the 2D4PStencil_E code region.

S. Harutyunyan Gevorgyan et al.

Future Generation Computer Systems 179 (2026) 108358

HwPC Reduction Phase Application Execution Phase Output

T ~
i Step 3: Code Region Identification \
; |
i s + 3|
| N || Step 3.1: Code . . e |-
i AEppllcaFlon Region HWPCs *)Step 3.2._ pode Region| | Identlfle_d Code I |
'\ Execution M Identifier Model Region !
i easurements j |

j |
. i L | e
| ; . ﬁ . i
i i Step 4.1: TP HWPCs _Stgp 42 TP 1 | TP Value
. ! Measurements Optimization Model T
|) .
! — i
| N :
N Step 4: TP Optimization /

Fig. 6. Code region identification and tuning parameter optimization with model ensembles.

Table 5
Evaluation results of the ensemble for the code region identification
(expanded benchmark.

Metric K-F Acc. Pr. Re. F1 R-A Full Set Red.

Label 0.9765 0.9644 0.9556 0.9596 0.9996 50 6

4.2. Identification and tuning of OpenMP regions with a comprehensive
dataset

Once we have a comprehensive dataset, the minimal set of HWPCs
for code region identification, and the minimal sets of HwPCs for each
TP, we can evaluate the effectiveness of the ensemble methodology. The
methodology first goes through identifying the code regions with a min-
imal set of HWPCs. Once the code region is identified, it proceeds to
optimize different TPs.

For comparison, the OpenTuner tool [20] was employed. It is an
extensible auto-tuning framework that leverages multiple search tech-
niques to efficiently explore configuration spaces. Its pluggable archi-
tecture enables sophisticated optimization strategies that support vari-
ous hardware platforms by abstracting configuration spaces and search
mechanisms.

4.2.1. Code region identification

This section evaluates the performance of the ensemble methodology
for code region identification using minimal HwPC sets. The model was
trained and validated using stratified 5-fold cross-validation on a subset
of the data, achieving a mean accuracy of 97.65%. Its generalizability
was then confirmed on a held-out test set comprising 30% of the full
dataset.

The comprehensive results of this evaluation when applying the re-
duced HWPC set are presented in Table 5, which shows exceptional per-
formance for all the metrics. The K-fold accuracy of 0.9765 and ROC
AUC of 0.9996 indicate near perfect discrimination capability between
different code regions. The precision (0.9644) and recall (0.9556) scores
are well-balanced, yielding a strong F1-score of 0.9596 that confirms the
methodology’s robust predictive power. Notably, the ensemble achieved
this high performance while dramatically reducing the required HWPC
set from 50 to only 6 counters-an 88% reduction. This substantial dimen-
sionality reduction, coupled with high classification accuracy, validates
the effectiveness of the methodology and suggests strong generalizabil-
ity for identifying relevant HwPCs for code region classification tasks.

4.2.2. Tuning parameter: Number of threads

This section evaluates the optimization of the number of threads TP
for various code regions.

The evaluation starts considering the trade-off between performance
(time) and resource (core) utilization. To quantify the number of threads
efficiency, the performance index defined in [21] was used, which pro-

Distribution of Performance Metrics

1.00 4 Rows_E
(Rows) (Rows E) (MatRvec]
4
098 =
0.96 1
» 0.94
[
S X
& 0.92 4
0.90 1
ﬁrlen.s
0.88 4
0.86 1
0.84 - - st Ehds - :
K-F Acc. Pr. Rc. F1 R-A

Metrics

Fig. 7. Evaluation results of the ensemble for the prediction of the number of
threads TP minimizing P,(X).

vides a metric for evaluating the number of threads efficiency. The per-
formance index P;(X) was calculated using the following equation:

LX) X -T(X)

- L& , 3
EX) - T @

Pi(X)
where X denotes the number of threads, T;(X) and E(X) denote the
obtained execution time and efficiency of a code region using this num-
ber of threads. Therefore, P,(X) relates execution time with resource
efficiency, allowing to automatically find the number of threads that
maximizes performance (minimizing execution time) without wasting
resources.

P,(X) captures the trade-off between execution time and thread uti-
lization. Configurations with long execution times or poor efficiency
are penalized, while configurations that achieve fast execution with-
out wasting cores yield a lower index. Minimizing P,(X) identifies the
optimal number of threads that balances runtime and resource usage.
For example, if doubling the number of threads only slightly reduces
execution time, efficiency decreases and P;(X) increases, signaling that
adding more threads is not beneficial.

Fig. 7 presents the results of the ensemble methodology for optimiz-
ing the number of threads for all code regions, according to the objec-
tive function that minimizes P,(X). The results show that the ensemble
achieves consistently high classification accuracy scores ranging from
0.9041 to 0.9974, while using only 4-7 HwPCs. The ensemble consis-
tently reaches high precision and recall rates. The high ROC AUC scores
(0.9963-0.9998) confirm robust discriminative capability across differ-
ent code regions, demonstrating the ensemble’s efficiency and practical
applicability. These metrics indicate that the methodology reliably iden-
tifies the optimal number of threads’ configurations for the code regions
considered.

S. Harutyunyan Gevorgyan et al.

Distribution of Performance Metrics

1.00 - MatrMuIt
(Matxvec]
0.98
0.96 -
0
9 0.94
o
v}
N 0.92 4
0.90 -
0.8 |
-Maixvec
Matxvec
K-F Acc. Pr. RC. F1 RA

Metrics

Fig. 8. Evaluation results of the ensemble for the prediction of the number of
threads TP minimizing the execution time.

>)
T e i e Opt.
< w = Ens. (Perf)
A
g 10-1 . B Ope‘n'li
© L]
g 1072 N —1
g T - L T LR 1
9 1073 s 8= = LI, . - .
< 9 R S« <
AR, &L R 707 ot &8 07 7 N S
ST S N FF F FTEE ERE
R R R S P N
&
Code Region

Fig. 9. Comparison of the optimal (Opt.), ensemble minimizing P,(X) (Perf),
and OpenTuner (OpenT.) mean performance indices.

For comparative analysis with OpenTuner, which optimizes execu-
tion time, a second ensemble model was trained using minimum exe-
cution time as the objective function. This alternative model not only
provides a basis for a fair comparison, but also reinforces the adaptabil-
ity of our proposed methodology to different optimization targets. Fig. 8
shows that the ensemble has consistently strong performance, maintain-
ing high classification accuracy across all evaluation metrics, with K-fold
accuracies ranging from 0.7987 to 0.9937. The high precision, recall,
and F1-scores indicate that the approach effectively identifies optimal
number of thread configurations for minimizing execution time with a
reduced set of 4-7 HwPCs. This confirms the methodology’s effective-
ness to target execution time reduction.

Fig. 9 compares the optimal performance index (Eq. (3)) with the one
obtained by the ensemble methodology (optimizing P;(X)) and by Open-
Tuner (optimizing execution time). As expected, the ensemble method-
ology achieves optimal or almost optimal results for all regions, while
OpenTuner consistently produces worse (i.e., higher) performance in-
dices across all code regions, indicating less efficient resource utiliza-
tion. Performance index degradation is particularly severe for certain
code regions: Add_E (4.33 X worse), Scale_E (4.22 X worse), Matxvec
(4.20 X worse), and Stride64_E (4.05 X worse).

Fig. 10 presents the speedup comparison between OpenTuner, the
ensemble methodology (optimizing P,(X) and execution time), and the
optimal speedup. It shows that the ensemble minimizing execution time
(Time) achieves speedups closer to the optimal values in the majority of
cases (13 out of 18 code regions), while the ensemble minimizing P,(X)
(Perf) shows larger deviations from optimal values but it obtains better
results than OpenTuner (11 out of 18).

Fig. 11 shows the comparison of the time needed to compute the
number of threads by the ensemble and OpenTuner. The ensemble mod-
els consistently deliver 2-7 s when optimizing P,(X) and 3-7 s when op-
timizing speedup, ensuring low predictable optimization overhead in all
scenarios. In contrast, OpenTuner exhibits significant time variability,
with execution times ranging from 2s to over 4 min.

Future Generation Computer Systems 179 (2026) 108358

« Opt.

20 ° = Ens. (Perf.)
a Ens. (Time)
15 4 OpenT.

Code Region

Fig. 10. Comparison of the optimal (Opt.), ensemble minimizing P,(X) (Perf),
ensemble minimizing execution time (Time), and OpenTuner (OpenT.) mean
speedups.

“w —=— Ens. (Perf.)
“E) 10 —=— Ens. (Time)
£
c
o
=}
S
o
o}
x
w

Code Region

Fig. 11. Comparison of the execution times (logarithmic scale) required for
computing the number of threads: ensemble minimizing P,(X) (Perf), ensemble
minimizing execution time (Time), and OpenTuner (OpenT.).

This combination of generally superior speedup performance and
consistent execution times reinforces the ensemble’s practical advantage
for performance-critical optimization scenarios.

4.2.3. Tuning parameter: Thread affinity policy

The next evaluated TP is thread affinity policy. The optimal affinity
policy a* for a given code region is defined as the policy that minimizes
execution time:

a* = minT(a) “4)
a€A

where A = {close, spread} is the set of available affinity policies and
T (a) represents the execution time under affinity policy a. The method-
ology predicts the affinity policy that achieves the minimum execution
time. Prediction accuracy is measured as the percentage of correct iden-
tifications of a*.

Fig. 12 shows that the ensemble methodology maintains high per-
formance for affinity TP prediction. The ensemble achieves high K-fold
accuracies ranging from 0.9512 to 0.9993, with most code regions ex-
ceeding 97% accuracy. The strong precision (0.9474-0.9991) and recall
(0.9229-0.9990) values confirm reliable identification of optimal affin-
ity configurations. The methodology accomplishes this performance us-
ing only 4-7 HwPCs. These results show the ensemble’s effective feature
reduction while maintaining strong discriminative capability for thread
affinity optimization.

Fig. 13 shows that OpenTuner underperforms across all evalua-
tion metrics for affinity tuning. K-fold accuracies range from 0.3427 to
0.6433, with precision, recall, and F1-scores consistently below 0.6, in-
dicating poor classification performance barely exceeding random selec-
tion. Time percentage differences reveal substantial performance degra-
dation, with most benchmarks showing deterioration up to 39.96%.

Finally, looking at the execution times between the ensemble and
OpenTuner (Fig. 14), the ensemble shows a higher efficiency with con-
sistently low execution times (0.42-0.59s) across all code regions. In
contrast, OpenTuner exhibits highly variable performance, ranging from
0.79 s to under 1.5 min, with poor scalability for compute-intensive code
regions like MatrixMult (32.91s) and MatrixMultNOpt (1m 33s). Over-

S. Harutyunyan Gevorgyan et al.

Distribution of Performance Metrics

1.00 [2Pstencil E Strided E Strided E Stride4_E 2PStencil B
1
0.991
0.98
» 0971
9]
<
S 0.96 1
0
0.951 (Stride2_E]
Ewg
0.94 1
0.931
0.92 1 2D4PStencil _E
K-F Acc. Pr. Rc. F1 R-A

Metrics

Fig. 12. Evaluation results of the ensemble for the prediction of the affinity TP.

Distribution of Performance Metrics

0.65 - [MatrixMultNOpt
0.60 1
0.55 4 ° Matrix%ﬂ\tNOpt :]Matrix_u_ltNOpt
o
$ 0.50
<
3
wn 0.45 -
> -
& :
0.351
(Seencil
0.301 (mlmy

K-F Acc. Pr. Rc. F1
Metrics

Fig. 13. Evaluation results of OpenTuner for the prediction of the affinity TP.

—=— Ens.

—— OpenT.

Code Region

Fig. 14. Comparison of the execution times (logarithmic scale) required for
computing affinity: ensemble and OpenTuner.

all, the ensemble methodology achieves from 2 to 180X faster opti-
mization times while maintaining a higher classification performance
reinforcing its practical advantage for runtime tuning of affinity TP.

4.2.4. Tuning parameter: Scheduling policy and chunk size

The final TPs we consider are the scheduling policy and the chunk
size. The optimal scheduling policy s* and corresponding chunk size c*
are determined by:

(s*,¢*) =) min T(s,c) 5)

s,c)eSXC

where § = {static,dynamic, guided} is the set of OpenMP scheduling
policies and C is the discrete set of evaluated chunk sizes. The methodol-
ogy predicts the policy-size combination that minimizes execution time.
These TPs are evaluated through classification accuracy (correctly pre-
dicting the configuration with minimum execution time) since they rep-
resent discrete categorical choices rather than continuous resource allo-
cation.

Future Generation Computer Systems 179 (2026) 108358

Table 6
Evaluation results of the ensemble for the prediction of the scheduling
policy and chunk size parameter.

Tuning Param. Reg./Metr. K-F Acc. Pr. Re. F1 R-A Red.

Scheduling Polic Collatz 0.9883 0.9848 0.9831 0.9839 0.9992 5
s Y Friends 0.9893 0.9924 0.9917 0.9921 0.9994 6
Chunk Size Collatz 0.9897 0.9913 0.9799 0.9853 0.9995 5
Friends 0.9853 0.9824 0.9820 0.9821 0.9994 5

Table 7

Evaluation results of OpenTuner for the prediction of the scheduling policy
and chunk size parameter.

Tuning Param. Reg./Metr. K-F Acc. Pr. Re. F1
seheduling policy €012 04224 03702 0.3656 0.3654
8 X0UY Priends 0.3637 0.3328 0.2813 0.2866
Chunk Size Collatz 0.4165 0.3856 0.3921 0.3785
Friends 0.3367 0.3556 0.3509 0.3341
Table 8

Comparison of the execution times re-
quired for computing scheduling pol-
icy and chunk size: ensemble and

OpenTuner.
Reg./Exec. Time Ens. OpenT.
Collatz 1.34s 4.18s
Friends 1.61s 0.78s

Table 6 presents evaluation results for scheduling policy and chunk
size TPs optimization on two code regions. The ensemble methodology
demonstrates high performance for both TPs, achieving K-fold accura-
cies exceeding 98% across both cases. The results are consistently high
across the rest of the presented metrics for both TPs. This shows that the
ensemble can effectively identify optimal configurations for both TPs
using only 4-7 HwPCs, demonstrating its versatility in handling diverse
TPs beyond number of threads or thread affinity.

Table 7 summarizes the results that show that OpenTuner performs
poorly for both scheduling policy and chunk size TP optimization. K-fold
accuracies range from 0.3367 to 0.4224, indicating performance barely
above random selection. Precision, recall, and F1-scores consistently re-
main below 0.4 across all cases, demonstrating inadequate classification
capability for both TPs. Additionally, OpenTuner shows performance
degradation with time percentage differences of 2.32-4.67%. Contrast-
ing these results with the ensemble methodology’s accuracy >98%, fur-
ther confirms the ensemble’s capabilities for TP optimization.

Finally, considering the execution times between the ensemble
methodology and OpenTuner for scheduling and chunk size optimiza-
tion (Table 8) the results show no clear time-wise advantage between
them, as each method outperforms the other on different benchmarks.
These divergent results highlight the complexity of scheduling and
chunk size optimization.

4.3. Application to the NAS parallel benchmarks

To ensure a comprehensive and representative assessment, 7
OpenMP code regions from NAS Parallel Benchmarks (NPB) [19] were
extracted. The code regions represent a diverse range of computational
patterns. The NPB suite is widely recognized and extensively used in
parallel computing to evaluate the performance of parallel systems. This
dataset was not used for training, it was only used for evaluation pur-
poses. As previously, PAPI was used to gather the HwPC data.

- BT benchmark: extracted code region - add_BT. It maps to the BT’s
add function.

- CG benchmark: extracted code regions - normztox_CG,
norm_temps_CG, rhorr_CG, pr_beta_p_CG, and qAp_CG.

S. Harutyunyan Gevorgyan et al.

Distribution of Performance Metrics

0.975 1 ﬁ
0.950 A
#0925 1
<4
o
& 0.900 A 12nofh_LU
0.875 A
0.850 A
0825 (ropey —
T T
K-F Acc. Pr. Rc. F1
Metrics

Fig. 15. Evaluation results of the ensemble for the code region identification
(NAS benchmarks).

%5 .
1072 L]
2 s t i
° o
O 1073
c A
H
g s Opt.
S5 107* = Ens. (Perf) '
EJ 1+ OpenT. H : * H
25’/\ o > e(lo +(9 © & &
§ & o+ 97 RY; &7
¥ \W(\o '&,\(\ (@,{y P & &
&7 ® $7
& N
<
Code Region

Fig. 16. Comparison of the optimal (Opt.), ensemble minimizing P.(X) (Perf),
and OpenTuner (OpenT.) mean performance indices (NAS benchmarks).

- LU benchmark: extracted code region - 12norm_LU.

4.3.1. Code region identification

To validate the proposed methodology, we conducted comprehen-
sive experiments using the NPB dataset. The initial evaluation focuses on
code region identification by leveraging an ensemble of models trained
on the comprehensive dataset from Section 4.2.

Fig. 15 presents code region identification results using the ensemble
methodology with a minimal set of HWPCs. The ensemble demonstrates
strong code region identification performance across most code regions,
achieving high accuracy scores. The high F1 scores (>0.96) suggests the
ensemble is highly confident of the predictions.

4.3.2. Tuning parameter: Number of threads

The evaluation continues with the optimization of the number of
threads, focusing on efficiency as defined by the performance index
(Eq. (3.

Fig. 16 compares the optimal performance index (Eq. (3)) with the
one obtained by the ensemble methodology (optimizing P;(X)) and by
OpenTuner (optimizing execution time). The results obtained by the en-
semble are usually close to the optimal value, and, in all cases, similar
to the ones obtained by OpenTuner. These results hint that, for these re-
gions, the difference between the number of threads minimizing P;(X)
and the one minimizing execution time is not significant.

Fig. 17 presents the speedup comparison between OpenTuner, the
ensemble methodology (optimizing P;(X) and execution time), and the
optimal speedup. It shows that, in effect, the execution time difference
optimizing P,(X) and optimizing time are not significant in most cases
(except for the QAp_CG case). Consequently, the values obtained by the
ensemble methodology and OpenTuner are quite close.

Fig. 18 shows the comparison of the time needed to compute the
number of threads by the ensemble and OpenTuner. The ensemble mod-
els consistently completes optimization in under a minute for all cases:
2-44s when minimizing P,(X) and 2-50s when maximizing speedup,

10

Future Generation Computer Systems 179 (2026) 108358

129 . opt.
a 10 = Ens. (P.enﬁ)
_g 8 Ens. (Time)
i OpenT.
V6 4 P .
Q o .
Vo4 H v “ i
o s . ' '
S & & £ £ £ &
¥ & S o7 & ©
o < & < €
o‘&/ & &7
<
Code Region

Fig. 17. Comparison of the optimal (Opt.), ensemble minimizing P,(X) (Perf),
ensemble minimizing execution time (Time), and OpenTuner (OpenT.) mean
speedups (NAS benchmarks).

\\

—=— Ens. (Perf.)
—=— Ens. (Time)

m

=
5}
2

-
A

=
o

Execution Time (s)
5

vé QO« é(@ & @9 5 &
<& < & S
c&\ <& &7
A
Code Region

Fig. 18. Comparison of the execution times (logarithmic scale) required for
computing the number of threads: ensemble minimizing P,(X) (Perf), ensemble
minimizing execution time (Time), and OpenTuner (OpenT) (NAS benchmarks).

Distribution of Performance Metrics

1.04 normztox_CG
0.9 A
" 0.8 12nofi_LU
[
=
o
& 071
_Morm LU
0.6 -
051 —
T T T
K-F Acc. Pr. Rc. F1
Metrics

Fig. 19. Evaluation results of the ensemble for the prediction of the affinity TP
(NAS benchmarks).

ensuring low predictable optimization overhead in all scenarios. In con-
trast, OpenTuner exhibits significant time variability, with execution
times ranging from approximately 18 min for CG regions to nearly 3h
for BT regions. This means that the ensemble methodology is 20 to 300x
faster than OpenTuner in these cases.

4.3.3. Tuning parameter: Thread affinity policy

Thread affinity policy is the next TP evaluated. After identifying the
code region, a specialized set of HWPCs is used to predict the thread
affinity policy. Fig. 19 shows varied performances across NAS bench-
mark code regions when using the ensemble methodology to predict
optimal thread affinity. Several CG code regions exhibit high accuracy,
e.g.: normztox_CG (0.9988) or rhorr_CG (0.9916), suggesting the en-
semble methodology effectiveness for these sparse matrix operation pat-
terns. However, precision, recall, and F1-scores for these code regions
remained approximately 0.5, indicating potential imbalance in predic-
tion classes.

Looking at the OpenTuner’s affinity optimization results (Fig. 20)
even more severe performance issues appear compared to the ensem-
ble. The accuracy values are consistently poor across all code regions.

S. Harutyunyan Gevorgyan et al.

Distribution of Performance Metrics

0.6 12norm_LU
S
27
0.4
0
[
=
3
A 034
0.2 4
01{ T
rhorr_CG
T T T
K-F Acc. Pr. Rc. F1
Metrics

Fig. 20. Evaluation results of OpenTuner for the prediction of the affinity TP
(NAS benchmarks).

w
~ 103 —=— Ens.
"E) —— OpenT.
10 T
c
2
510!
o
193
X l\.——-—-//\-
w100
¢>§\ @? 66’ +c5-’ & & &
& P & & 97 R &7
v o < & &8 & R
&7 & &7
AN
Code Region

Fig. 21. Comparison of the execution times (logarithmic scale) required for
computing affinity: ensemble and OpenTuner (NAS benchmarks).

As before, OpenTuner suffers from the same class imbalance symptoms
with multiple code regions having low precision and recall values.

Finally, the execution times (Fig. 21) for optimal thread affinity pre-
diction between the ensemble methodology and OpenTuner are com-
pared. While the ensemble consistently completes optimization in 1-3s
across all code regions, OpenTuner requires dramatically longer times
ranging from ~2-4min for CG code regions up to nearly 38 min for BT
code regions. Overall, despite both approaches struggling with predic-
tion accuracy due to class imbalance, the ensemble achieves comparable
or better performance metrics while being orders of magnitude faster
than OpenTuner’s long optimization times.

4.4. Applying the methodology to GPUs

The final experiments demonstrate the methodology’s applicability
to GPUs by reducing necessary HWPCs for code region identification
and TP optimization. HWPC data were collected using the Kernel Tun-
ing Toolkit (KTT) [22,23] on GTX 1070 (Pascal), RTX 2080 (Turing),
RTX 3090 (Ampere), and RTX 4080 (Ada Lovelace) GPUs across the
code regions analyzed by Petrovi¢ et al. [23]: Convolution, Couloumb
Sum, N-body, Transposition, and GEMM. Additionally code regions were
added to some of the architectures. The Reduction code region was
added for Pascal, the Biconjugate Gradient and Hotspot code regions
were added for Turing, and Biconjugate Gradient was added for Ada
Lovelace. All GPU code regions use CUDA as the parallelization model.

A summary of the TPs targeted per architecture is presented in Table
9, where work-group size balances parallelism against resource con-
sumption, work-item coarsening adjusts the computational workload
per thread, local memory caching enables explicit use of fast shared
memory as a cache, private memory caching optimizes register usage
for fastest data access, tile size defines memory blocking dimensions to
improve locality, loop unrolling reduces branching overhead and in-
creases instruction-level parallelism, local memory padding prevents

11

Future Generation Computer Systems 179 (2026) 108358

Distribution of Performance Metrics

] Turi Turi A A
1.000 uring uring mpere mpere @
09951
0.996 1
w 0.994 1
[}
=
S 0.992
@
0.990 1
0.988
0.986
0.984 . .) . .
K-F Acc. Pr. Rc. F1 R-A
Metrics

Fig. 22. Evaluation results of the ensemble for the HWPC reduction and code
region identification for GPUs.

bank conflicts in GPU shared memory, and explicit vectorization facil-
itates generation of efficient vector memory instructions.

The ensemble methodology was able to greatly reduce the number
of HWPCs for code region identification as exemplified in Table 10 for
the GTX 1070.

As summarized in Fig. 22 stratified 5-fold cross-validation achieved
average accuracy scores of 0.9999 for the four datasets, with near-
perfect results across precision, recall, F1-Score, and ROC AUC metrics.
This exceptional accuracy suggests highly effective prediction despite
significantly different available HwPCs between architectures (32vs.
167), although the small dataset size and limited number of code re-
gions may contribute to these results.

Finally, Table 11 summarizes code region-specific TP optimization
across the four GPU architectures. In this case we are presenting av-
eraged prediction metrics for different code regions, since each con-
tains varying numbers of TPs. For each code region we also present the
range of HWPCs required for the optimization of the TPs. The results
demonstrate consistently strong performance across all architectures,
with most code regions achieving high accuracy (> 0.81), precision (>
0.81), and recall (>0.81) values.

Pascal generally exhibits the strongest performance, particularly ev-
ident in the Reduction code region which achieves near-perfect met-
rics (0.9933 accuracy, F1 score of 0.9937). Turing shows good perfor-
mance with notable strength in N-body (0.9200 accuracy) and BiCG
(0.9307 accuracy) code regions. Ampere demonstrates solid perfor-
mance across most code regions, although with slightly lower accuracy
in Convolution and Coulomb Sum compared to other architectures. Ada
Lovelace shows improved performance in Coulomb Sum (0.8775 accu-
racy) compared to Ampere, while maintaining fair results for other code
regions. Across all architectures, the Coulomb Sum kernel consistently
presents the most challenging optimization case, due to the extremely
small sample size (209-270 samples). Meanwhile, N-body and special-
ized code regions like Reduction and BiCG achieve the highest predic-
tion accuracy.

Notably, the ensemble requires only a modest number of HwPCs to
achieve these predictions, with most code regions needing between 2-9
HwPCs, indicating efficient feature utilization for accurate TP optimiza-
tion across different GPU generations. These results validate that the en-
semble methodology maintains robust optimization capabilities across
diverse GPU architectures.

4.5. Discussion of the evaluation results

The evaluation results demonstrated both strengths and limitations
of the ensemble methodology for optimizing OpenMP code region TPs.
The methodology predicted near-optimal number of threads across di-
verse code regions, with K-fold accuracy scores frequently exceeding

S. Harutyunyan Gevorgyan et al.

Table 9

Future Generation Computer Systems 179 (2026) 108358

Common TPs by code region. Tile size is ticked when it can be configured differently than WG size.
Abbreviations used: WG is work-group, LM is local memory, PM is private memory.

Reg./Metr. WG size coarsen. LM cach. PM cach. Tilesize unroll. LM pad. vector.
Conv. X X X X X X X X
Coul. Sum X X X X
N-body X X X X X X
Transp. X X X X X X
GEMM X X X X X X
Reduc. X X X
BiCG X X X X X
Hotspot X X X X X
Table 10 performance across code regions and certain complex computational
List of the reduced HWPCs for patterns, indicating that the current HwPGC set may not fully capture all
the Pascal GPU. relevant program behavior aspects. Results highlight a trade-off between
GTX 1080 (Pascal) optimization quality and speed, not always achieving the performance
inst_per_warp of search methods like OpenTuner, the ensemble methodology deliv-
gld_requested_throughput ers substantial speedups with minimal optimization overhead, making
gst_requested_throughput it suitable for dynamic optimization scenarios requiring rapid adapta-
dram_read_throughput tion to changing code regions.
Application to NAS Parallel Benchmarks further validated the
Table 11 methodology’s effectiveness across scientific code regions, maintaining
Results for code region TP evaluation on different GPUs. strong performance in code region identification with most code re-
GPU Reg./Metr. K-F Acc. Pr. Re. 1 RA Red gions showing accuracy above 0.?0. Although the ensemble method-
ology generally achieved near-optimal speedups for number of threads
Cony. 0.90240.9243 0.9061 0.9115 0.9832 2-8 and maintained reasonable accuracy in thread affinity prediction, its
Coul. Sum 0.7930 0.7876 0.7819 0.7824 0.8272 2-8 ol y . ity p i
paseal P01y 09166 09153 0.8976 0.8999 0.9670 2-8 most significant advantage was computational efficiency. The ensem-
aS€a1 Transp. 0.8690 0.8633 0.8607 0.8597 0.9734 6-11 ble consistently completed optimization tasks in seconds compared to
GEMM 0.9035 0.9062 0.8972 0.8997 0.9546 3-11 OpenTuner’s minutes to hours, representing execution time improve-
Reduc. 0.9933 0.9933 0.9952 0.9937 0.9999 2 ments of up to X 30 while delivering comparable or superior optimiza-
Conv. 0.8351 0.8694 0.8244 0.8383 0.9660 4-8 tion quality. The GPU validation experiments on GTX 1070 (Pascal),
Coul. Sum 0.7879 0.7820 0.7790 0.7783 0.8283 4-9 RTX 2080 (Turing), RTX 3090 (Ampere), and RTX 4080 (Ada Lovelace)
N-body ~ 0.9200 0.9224 0.9085 0.9129 0.9819 3-6 :) -
architectures demonstrated the methodology’s cross-platform effective-
Turing Transp. 0.8411 0.8412 0.8393 0.8376 0.9588 5-8 . 08Y'S ¢ P .
GEMM 0.8673 0.8652 0.8549 0.8585 0.0334 3-8 ness across four GPU generations. TP optimization across multiple code
BiCG 0.9307 0.9293 0.9273 0.9280 0.9286 3-9 regions showed consistently strong performance (>0.81 accuracy, pre-
Hotspot 0.8859 0.8968 0.8860 0.8879 0.9740 4-8 cision, and recall), with Pascal achieving the highest performance, par-
Conv. 0.8163 0.8433 0.8101 0.8189 0.9621 3-7 ticularly in specialized kernels like Reduction (0.9933 accuracy). Tur-
Coul. Sum 0.7244 0.7151 0.7156 0.7119 0.8071 2-7 ing and Ada Lovelace demonstrated competitive results, while Ampere
Ampere N-body 0.9126 0.9167 0.9008 0.9057 0.9783 3-6 showed solid performance across most kernels with some variations in
Transp. 0.8425 0.8433 0.8409 0.8391 0.9558 5-7 specific code regions. The methodology required only 2-9 HwPCs for
GEMM 0.8455 0.8458 0.8323 0.8377 0.9238 4-7 . i - e
most code regions, validating efficient feature utilization and broad ap-
Conv. 0.8197 0.8421 0.8068 0.8142 0.9642 2-7 plicability across modern GPU architectures in heterogeneous comput-
Coul. Sum 0.8775 0.8718 0.8675 0.8676 0.9211 5-7 ing environments
Lovelace N7body 0.9104 0.9104 0.9046 0.9069 0.9815 2-9 § ¢) .
ovelace . omsp. 0.8166 0.8225 0.8102 0.8128 0.9495 4-7 Finally, we analyze the computational cost of our methodology. The
GEMM 0.8666 0.8669 0.8618 0.8633 0.9540 3-6 initial reduction phase, which involves automated HwPC selection and
BiCG 0.9235 0.9235 0.9235 0.9235 0.9254 2-9

0.90 and ROC AUC scores consistently exceeding 0.99. However, per-
formance varied across code regions, with operations such as Copy_E
and Matxvec showing lower accuracy scores (0.9260 and 0.9041, re-
spectively), indicating potential areas for improvement.

Thread affinity prediction demonstrated strong performance, with
most code regions achieving accuracy scores greater than 0.95 while re-
quiring only 4-7 HwPCs, suggesting effective optimization with minimal
overhead. Compared to OpenTuner, the ensemble methodology demon-
strated a crucial advantage in optimization time. While OpenTuner re-
quired higher optimization time-notably 32.91s for MatrixMult and
1 min 33s for MatrixMultNOpt-the ensemble methodology consistently
completed optimization in slightly over 50s across all evaluated code
regions.

The methodology demonstrated versatility in handling other
OpenMP optimization aspects, with strong performance in predicting
scheduling policies and chunk sizes for the Collatz and Friends code
regions (accuracies above 0.90). However, limitations include varying

12

model training, incurs a high but one-time cost per target architecture.
The application execution phase, which occurs frequently, introduces
minimal overhead. This overhead consists of HWPC data collection and
model inference, and has been measured on the same platform used in
the experimentation (Xeon E5-4620), obtaining:

¢ Code Region Identification:
- Collection: ~3 it./region, 7 = 0.1063ms/iter (¢ = 0.0279 ms)
- Inference: 7 = 0.5667ms (o = 0.0270ms).

¢ Tuning Parameter (TP) Optimization:
- Collection: ~2-3 it./region, 7 = 0.0942ms/iter (¢ = 0.0293ms).
— Inference: 7 = 0.8404ms (o = 0.0122ms).

The results demonstrate that the runtime overhead of our method-
ology during application execution is low, making it suitable even for
dynamic tuning.

5. Related work

ML methodologies for characterizing code regions and tuning paral-
lel applications using HwPCs have gained significant attention recently,

S. Harutyunyan Gevorgyan et al.

spanning various approaches for application identification and parame-
ter optimization across CPU and GPU architectures.

The foundation for HwPC-based optimization lies in standardized
access to performance monitoring capabilities. The PAPI project [7,8]
established the foundational infrastructure by specifying a standard API
for accessing HWPCs across diverse microprocessor architectures, pro-
viding cross-platform access to the small set of registers that count pro-
cessor events. This standardization enables correlation between source
code structure and architectural mapping efficiency, facilitating perfor-
mance analysis and tuning across major HPC platforms. However, the
reliability of HwPC measurements presents significant challenges for op-
timization methodologies. Weaver and McKee [24] demonstrated that
HwPCs can exhibit coefficients of variation up to 1.07% under standard
conditions, though careful experimental setup can reduce observed er-
rors to less than 0.002%. Their analysis revealed that subtle changes
in experimental conditions can significantly impact results, highlight-
ing the importance of rigorous measurement protocols for HwPC-based
optimization approaches.

For CPU-based parallel applications, several methodologies have
emerged leveraging different aspects of performance data. The au-
thors in [2] predicted optimal OpenMP number of threads using Hw-
PCs and correlation analysis, addressing imbalanced datasets through
Random Forest and binary classification. Alternatively, Yadav et al.
[25] employed Random Forest Regression on static code features rather
than HwPCs, analyzing loop characteristics to optimize thread num-
bers. OpenTuner [20] provides a broader optimization framework us-
ing ensembles of search techniques-including AUC Bandit Meta, dif-
ferential evolution, and hillclimbers-to efficiently explore configura-
tion spaces across computational domains. Dutta et al. [26] intro-
duced an OpenMP loop auto-tuning approach using Graph Neural
Networks with flow-aware program representation and HwPC data
integration.

Beyond runtime optimization, HWPCs have proven valuable for
compile-time improvements. Wicht et al. [27] developed a Profile-
Guided Optimization approach that samples Last Branch Record HWPCs
to recreate source locations, achieving 83% of the gains obtained with
instrumentation-based PGO while reducing profiling overhead from
16% to only 1.06%.

For GPU-based applications, the optimization landscape presents
unique challenges due to architectural diversity and varying data char-
acteristics. Filipovi€ et al. [28] introduced a method that leverages Hw-
PCs to navigate autotuning search spaces towards faster GPU implemen-
tations. Their approach builds problem-specific models from sampled
tuning spaces that can be applied across various GPUs and input char-
acteristics. Similarly, the authors also introduced Kernel Tuning Toolkit
[23], which combines static analysis and ML to optimize parallel code
regions across programming models and architectures. Conversely, the
Kernel Tuner [29] offers a Python-based tool supporting various pro-
gramming languages and search algorithms for both compile-time and
runtime optimization.

While these studies demonstrate the potential of data-driven ap-
proaches for parallel computing optimization, current approaches face
several limitations. The reliability concerns identified by Weaver and
McKee [24] necessitate careful experimental design, while the infras-
tructure provided by PAPI enables standardized access but does not ad-
dress the challenge of selecting the most informative HWPCs from the
hundreds available on modern processors. Furthermore, existing GPU
optimization approaches, such as Filipovic et al. [28] focus on autotun-
ing convergence but do not provide comprehensive automated method-
ologies for identifying the most relevant HwPCs across diverse architec-
tures.

In contrast to the works discussed, the core contribution of our re-
search is a novel methodology to derive minimal sets of HwWPCs for
both code region identification and tuning parameter optimization. This
methodology forms the foundation of our proposed end-to-end optimiza-
tion process, but its principled approach to feature selection is also di-

13

Future Generation Computer Systems 179 (2026) 108358

rectly applicable as a complement to other HwPC-based techniques, en-
abling them to identify a more relevant and efficient set of counters.

6. Conclusions and future work

This paper presents an automated ML methodology for performance
optimization in heterogeneous HPC environments that addresses criti-
cal challenges in utilizing HWPCs for application tuning. The proposed
methodology integrates HwPC reduction, parallel code region character-
ization, and TP optimization while demonstrating efficiency and porta-
bility across architectures. The methodology advances automated per-
formance optimization by: (1) addressing HWPC quantity versus acces-
sibility through ML-based identification of minimal HWPC sets, reduc-
ing data collection overhead while maintaining precision; (2) tackling
data interpretation using ML ensemble methodologies that automati-
cally process complex HwPC data patterns; and (3) enabling efficient TP
optimization through fast automated analysis. Experimental validation
across diverse hardware architectures and code regions demonstrates
high accuracy in predicting optimal TP configurations, and architecture-
agnostic design with consistent performance across CPU and GPU plat-
forms.

Future research directions include: (1) Integration of the proposed
methodology into a dynamic tuning environment that monitors execu-
tion of parallel applications, identifies code regions and adjusts their TPs
continuously during runtime; (2) Verification of the proposed method-
ology for dynamically tuning a wider set of parallel applications dur-
ing runtime; (3) Define multi-objective optimization methodology that
simultaneously tunes multiple TPs while balancing conflicting perfor-
mance objectives such as execution time, energy consumption, and re-
source utilization; (4) Evaluation of the methodology on non-NVIDIA
GPU platforms (e.g., AMD GPUs) to assess the generalizability of the ap-
proach across diverse hardware vendors and generations; (5) Apply the
proposed methodology for different purposes for GPU platforms, such as
developing visualization tools that help developers understand how dif-
ferent TPs affect HwPC behavior and overall application performance;
and (6) Scalability studies for large-scale systems. These directions aim
to expand the methodology’s capabilities while maintaining automation,
portability, and efficiency as HPC systems evolve in complexity and het-
erogeneity.

CRediT authorship contribution statement

Suren Harutyunyan Gevorgyan: Writing — review & editing, Writ-
ing — original draft, Investigation; Eduardo César: Writing — review &
editing, Writing — original draft, Investigation; Anna Sikora: Writing —
review & editing, Writing — original draft, Investigation; Jifi Filipovic:
Writing — review & editing, Data curation; Jordi Alcaraz: Writing — re-
view & editing, Data curation.

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Funding

This work was supported by the Ministerio de Ciencia e Inno-
vacién MCIN AEI/10.13039/501100011033 under contract PID2023-
1461930B-100, by the Catalan government under contract 2021 SGR
00574, and by the Ministry of Education, Youth and Sports from the
Large Infrastructures for Research, Experimental Development and In-
novations project “e-Infrastructure CZ - LM2023054”.

S. Harutyunyan Gevorgyan et al.

References

[1]

[2]

[3]

[4]

[5]

(6]

[7]

[8]

[91
[10]
[11]
[12]
[13]
[14]

[15]

J. Alcaraz, A. Sikora & E. César, Hardware Counters’ Space Reduction for Code Re-
gion Characterization, Euro-Par 2019: Parallel Processing, 2019, Springer Interna-
tional Publishing, Cham, 74-86.

J. Alcaraz, A. TehraniJamsaz, A. Dutta, A. Sikora, A. Jannesari, J. Sorribes & E. César,
Predicting number of threads using balanced datasets for OpenMP regions, Comput-
ing, 105 (5) (2023) 999-1017. https://doi.org/10.1007/S00607-022-01081-6

S. Harutyunyan, E. César, A. Sikora, J. Filipovié, A. Dutta, A. Jannesari & J. Alcaraz,
Efficient Code Region Characterization Through Automatic Performance Counters
Reduction Using Machine Learning Techniques. Carretero, J.,Shende, S., Garcia-
Blas, J.,Brandic, I., Olcoz, K.,Schreiber, M. (EDS.), Euro-Par 2024: Parallel Process-
ing, 2024, Springer Nature Switzerland, Cham, 18-32.

J. McCalpin, Memory Bandwidth and Machine Balance in High Performance Com-
puters, IEEE Technical Committee on Computer Architecture Newsletter (1995)
19-25.

T. Yuki, Understanding PolyBench/C 3.2 kernels, in: S. Rajopadhye, S. Verdoolaege
(Eds.), Proceedings of the 4th International Workshop on Polyhedral Compila-
tion Techniques, the 4th International Workshop on Polyhedral Compilation Tech-
niquesVienna, Austria, 2014.

J. Alcaraz, S. Sleder, A. Tehrani Jamsaz, A. Sikora, A. Jannesari, J. Sorribes & E.
César, Building Representative and Balanced Datasets of OpenMP Parallel Regions,
29th Euromicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP 2021), Valladolid, Spain, March 10-12, 2021, IEEE (2021)
67-74. https://doi.org/10.1109/PDP52278.2021.00019

H. Jagode, A. Danalis, G. Congiu, D. Barry, A. Castaldo, J. Dongarra, Advancements
of PAPI for the exascale generation, Int. J. High Perform. Comput. Appl. 39 (2)
(2025) 251-268. https://doi.org/10.1177/10943420241303884

S. Browne, J. Dongarra, N. Garner, K. London, P. Mucci, A scalable cross-platform
infrastructure for application performance tuning using hardware counters, in: SC
’00: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, 2000, p.
42. https://doi.org/10.1109/SC.2000.10029

D. Opitz, R. Maclin, Popular ensemble methods: an empirical study, J. Artif. Int. Res.
11 (1) (1999) 169-198.

R. Polikar, Ensemble based systems in decision making, IEEE Circuits Syst. Mag. 6
(3) (2006) 21-45.

D.R. Cox, The regression analysis of binary sequences, J. R. Stat. Soc. Ser. B 20 (2)
(1958) 215-232.

H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat.
Soc. Ser. B 67 (2) (2005) 301-320.

R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser.
B 58 (1) (1996) 267-288.

A.E. Hoerl, R.W. Kennard, Ridge regression: biased estimation for nonorthogonal
problems, Technometrics 12 (1) (1970) 55-67.

L. Breiman, Random forests, Mach. Learn. 45 (2001) 5-32.

14

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

Future Generation Computer Systems 179 (2026) 108358

T. Chen, C. Guestrin, XGBoost: a scalable tree boosting system, in: ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16, New
York, NY, USA, ACM, 2016, pp. 785-794. Proceedings of the 22nd.

S.0. Arik, T. Pfister, TabNet: Attentive Interpretable Tabular Learning, CoRR
abs/1908.07442, 2019.

V. Satopaa, J. Albrecht, D. Irwin, B. Raghavan, Finding a “Kneedle” in a Haystack:
detecting knee points in system behavior, in: 2011 31st International Conference on
Distributed Computing Systems Workshops, 2011.

D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, P.
Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, S. Weer-
atunga, The NAS parallel benchmarks, Int. J. Supercomput. Appl. 5 (3) (1991)
63-73. https://doi.org/10.1177,/109434209100500306

J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M. O’reilly,
S. Amarasinghe, OpenTuner: an extensible framework for program autotuning, in:
Proceedings of the 23rd International Conference on Parallel Architectures and Com-
pilation, PACT ’14, the 23rd International Conference on Parallel Architectures and
Compilation, PACT "14New York, NY, USA, Association for Computing Machinery,
2014, pp. 303-316. https://doi.org/10.1145/2628071.2628092

E. Cesar, A. Moreno, J. Sorribes, E. Luque, Modeling master/worker applications for
automatic performance tuning, Parallel Comput. 32 (7) (2006) 568-589. Algorith-
mic Skeletons. https://doi.org/10.1016/j.parco.2006.06.005

F. Petrovi¢, J. Filipovi¢, Kernel Tuning Toolkit 22 (2023) 101385.

F. Petrovi¢, D. Stelak, J. Hozzov4, J. Oiha, R. Trembecky, S. Benkner, J. Filipovi¢, A
benchmark set of highly-efficient CUDA and OpenCL kernels and its dynamic auto-
tuning with kernel tuning toolkit, Future Gener. Comput. Syst. 108 (2020) 161-177.
V.M. Weaver, S.A. Mckee, Can hardware performance counters be trusted?, in: IEEE
International Symposium on Workload Characterization, 2008, pp. 141-150. https:
//doi.org/10.1109/1ISWC.2008.4636099

A. Yadav, M. Ahmed, Predictive modeling for thread optimization in OpenMP-based
parallelization using machine learning, in: 2024 IEEE 17th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 2024, pp. 339-344.
https://doi.org/10.1109/MCS0C64144.2024.00062

A. Dutta, J. Alcaraz, A. Tehrani, A. Jamsaz, E. Sikora, A. Cesar, Jannesari, Pattern-
based autotuning of OpenMP loops using graph neural networks, in: 2022 IEEE/ACM
International Workshop on Artificial Intelligence and Machine Learning for Scien-
tific Applications (AI4S), 2022, pp. 26-31.

B. Wicht, R.A. Vitillo, D.D. Chen, Hardware counted profile-guided optimization,
arXiv:1411.6361. (2014).

J. Filipovi¢, J. Hozzov4, A. Nezarat, J. Ol’ha, F. Petrovi¢, Using hardware perfor-
mance counters to speed up autotuning convergence on GPUs, J. Parallel Distrib.
Comput. 160 (2022) 16-35. https://doi.org/10.1016/].jpdc.2021.10.003

B.V. Werkhoven, Kernel tuner: a search-optimizing GPU code auto-tuner, Future
Gener. Comput. Syst. 90 (2019) 347-358. https://doi.org/10.1016/j.future.2018.
08.004

http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0001
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0001
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0001
https://doi.org/10.1007/S00607-022-01081-6
https://doi.org/10.1007/S00607-022-01081-6
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0003
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0003
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0003
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0003
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0003
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0004
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0004
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0004
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0005
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0005
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0005
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0005
https://doi.org/10.1109/PDP52278.2021.00019
https://doi.org/10.1109/PDP52278.2021.00019
https://doi.org/10.1177/10943420241303884
https://doi.org/10.1177/10943420241303884
https://doi.org/10.1109/SC.2000.10029
https://doi.org/10.1109/SC.2000.10029
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0009
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0009
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0010
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0010
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0011
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0011
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0012
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0012
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0013
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0013
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0014
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0014
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0015
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0016
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0016
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0016
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0017
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0017
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0018
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0018
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0018
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1016/j.parco.2006.06.005
https://doi.org/10.1016/j.parco.2006.06.005
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0022
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0023
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0023
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0023
https://doi.org/10.1109/IISWC.2008.4636099
https://doi.org/10.1109/IISWC.2008.4636099
https://doi.org/10.1109/IISWC.2008.4636099
https://doi.org/10.1109/IISWC.2008.4636099
https://doi.org/10.1109/MCSoC64144.2024.00062
https://doi.org/10.1109/MCSoC64144.2024.00062
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0026
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0026
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0026
http://refhub.elsevier.com/S0167-739X(25)00652-1/sbref0026
http://arxiv.org/abs/1411.6361
https://doi.org/10.1016/j.jpdc.2021.10.003
https://doi.org/10.1016/j.jpdc.2021.10.003
https://doi.org/10.1016/j.future.2018.08.004
https://doi.org/10.1016/j.future.2018.08.004
https://doi.org/10.1016/j.future.2018.08.004
https://doi.org/10.1016/j.future.2018.08.004

	Automatic tuning based on hardware performance counters and machine learning
	1 Introduction
	2 Background
	2.1 Previous work
	2.2 Dataset construction
	2.3 Ensemble methodology
	2.4 Ensemble algorithms
	2.5 Ensemble evaluation metrics

	3 Application performance tuning using machine learning
	3.1 HwPC reduction phase
	3.1.1 Ensemble training and validation
	3.1.2 Weight extraction
	3.1.3 HwPC ranking and reduction

	3.2 Application execution phase

	4 Evaluation
	4.1 Reduction of CPU HwPCs for identification and tuning of OpenMP regions
	4.2 Identification and tuning of OpenMP regions with a comprehensive dataset
	4.2.1 Code region identification
	4.2.2 Tuning parameter: Number of threads
	4.2.3 Tuning parameter: Thread affinity policy
	4.2.4 Tuning parameter: Scheduling policy and chunk size

	4.3 Application to the NAS parallel benchmarks
	4.3.1 Code region identification
	4.3.2 Tuning parameter: Number of threads
	4.3.3 Tuning parameter: Thread affinity policy

	4.4 Applying the methodology to GPUs
	4.5 Discussion of the evaluation results

	5 Related work
	6 Conclusions and future work

