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 a b s t r a c t

This paper presents a Machine Learning (ML) methodology for automatically tuning parallel applications in het-
erogeneous High Performance Computing (HPC) environments using Hardware Performance Counters (HwPCs). 
The methodology addresses three critical challenges: counter quantity versus accessibility tradeoff, data interpre-
tation complexity, and dynamic optimization needs. The introduced ensemble-based methodology automatically 
identifies minimal yet informative HwPC sets for code region identification and tuning parameter optimization. 
Experimental validation demonstrates high accuracy in predicting optimal thread allocation (>0.90K-fold accu-
racy) and thread affinity (>0.95 accuracy) while requiring only 4–6 HwPCs. Compared to search-based methods 
like OpenTuner, the methodology achieves competitive performance with dramatically reduced optimization 
time. The architecture-agnostic design enables consistent performance across CPU and GPU platforms. These 
results establish a foundation for efficient, portable, automatic, and scalable tuning of parallel applications.

1.  Introduction

The tuning of parallel applications in modern High Performance 
Computing (HPC) systems presents significant challenges due to increas-
ing architectural complexity and heterogeneity. Hardware Performance 
Counters (HwPCs) provide detailed low-level performance data offering 
valuable insights into application behavior, leading to the hypothesis 
that HwPCs and Machine Learning (ML) methodologies can be used to 
optimize parallel code regions, defined as distinct computational blocks 
within an application that can be independently optimized. However, 
their effective use presents several challenges:
1. Monitoring Limitations: Hardware limitations prevent simultane-
ous access to all HwPCs. Measuring fewer, carefully selected events is 
crucial for accuracy, allowing for more measurement time per event 
when using techniques such as multiplexing.

2. Scalability and Data Volume Constraints: The volume of HwPC 
data, especially from GPUs, with hundreds of associated counters, 
implies serious scalability challenges. Manual analysis becomes im-
practical, necessitating automated approaches.

3. Runtime Decision Requirements: HPC environments require rapid 
analysis. This demands efficient performance models that use a min-
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imal set of HwPCs that accurately represent application behavior to 
enable runtime optimization decisions.

These challenges have spurred interest in leveraging ML for HwPC-
based tuning. Our previous research in [1,2] demonstrated promising 
results in identifying OpenMP code regions and predicting the optimal 
number of threads using a reduced set of HwPCs. However, this initial 
approach had critical limitations: feature selection relied on manual, an-
alytical methods (PCA and Correlation) that did not scale to richer HwPC 
architectures, and used the same HwPC set for both region identifica-
tion and parameter tuning, a conceptual flaw, as the optimal counters 
for these tasks likely differ.

This caused interpretability issues due to manual HwPC selection, 
limited portability across architectures, and inconsistent prediction ac-
curacy using a the same set of HwPCs for classification and tuning.

In [3], we proposed a fully ML-based automated methodology to se-
lect the minimum number of HwPCs necessary to identify an OpenMP 
code region, addressing the manual selection flaw. However, a critical 
gap remained: the lack of an end-to-end automated methodology that 
seamlessly identifies parallel code regions and optimizes Tuning Param-
eters (TPs) using different, task-specific HwPC sets across diverse archi-
tectures.
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To bridge this gap, an effective automatic tuning system must pro-
vide:

• Efficient HwPC Selection: Identifying the most informative subset 
of HwPCs to reduce overhead.

• Automated Pattern Recognition: Detecting patterns for accurate 
code region characterization.

• Predictive Tuning: Learning optimal TP configurations from perfor-
mance data.

• Cross-Architecture Portability: Adapting to diverse hardware like 
CPUs and GPUs.

The primary contributions of this paper, which address the afore-
mentioned gap and limitations, are:

• A Novel End-to-End ML Methodology: We introduce a new ap-
proach that builds upon [3] by not only automating the selection of 
a reduced HwPC set but also determining distinct, task-specific sets: 
one for code region identification and separate sets for optimizing 
each region’s associated TPs.

• A Portable Multi-Architecture Solution: We extend this methodol-
ogy to be effective across different architectures (CPU and GPU), en-
suring consistent performance without manual, architecture-specific 
modifications.

The remainder of this paper is organized as follows. Section 2 shows 
the background, including previous works on HwPC reduction and tech-
nical concepts. Section 3 describes the novel and automatic ensemble 
methodology for automatic HwPC reduction, code region identification, 
and TP optimization. Section 4 shows the evaluation of the proposed 
methodology on different architectures. Section 5 presents related work. 
Finally, Section 6 concludes the paper.

2.  Background

This section discusses the integration of HwPCs and ML methodolo-
gies for parallel computing performance optimization, reviewing prior 
research on HwPC-based code region identification and ML-driven TP 
optimization, their achievements and limitations. The section also in-
troduces the automatic ML ensemble methodology and constituent al-
gorithms, as a framework for accurate TP optimization, along with eval-
uation metrics to assess the predictive capabilities.

2.1.  Previous work

In [1] the authors reduced HwPC numbers for code region identifica-
tion using PCA (Principal Component Analysis) and Linear Correlation 
Analysis (LCA).

PCA is a dimensionality reduction technique that projects data into a 
new coordinate system that emphasizes variability patterns while elimi-
nating less informative dimensions, thereby facilitating data exploration 
and analysis. It was employed to assess the visual separability of data 
classes.

LCA is a statistical method that quantifies the linear relationship be-
tween two continuous numerical variables, producing a correlation co-
efficient ranging from -1 to 1. When variables exhibit perfect correlation 
(coefficient of 1 or -1), one variable’s value can be predicted from the 
other through appropriate linear transformation, while a coefficient of 
0 indicates no linear relationship exists. The analysis is used to reduce 
HwPCs, thus variables exhibiting high correlation coefficients are re-
moved, after which PCA is applied again to confirm that the dimensional 
reduction maintains adequate characterization of the parallel code re-
gion. Using this approach the authors successfully reduced the number 
of HwPCs from 58 to 20.

A related study [2] focused on optimizing the number of threads 
through ML methodologies. The authors evaluated multiple ML tech-
niques including Logistic Regression, Artificial Neural Network (ANN), 

and Decision Trees (DT), ultimately retaining only the ANN and DT mod-
els due to their significantly superior accuracy compared to other ap-
proaches. This was validated with the STREAM [4] and PolyBench [5] 
benchmarks.

Both studies exhibited limitations. The first study’s reliance on man-
ual selection for HwPC reduction introduced overhead and compro-
mised the scalability of the approach. The second study revealed a criti-
cal limitation in the model’s predictive accuracy. Specifically, for Stride 
code regions, the model consistently underestimated the optimal num-
ber of threads, leading to significant performance degradation. This un-
derestimation, to a lesser extent, was also observed in several other code 
regions, indicating a general weakness rather than an isolated issue.

In [3], the first study’s limitation was addressed with an automatic 
HwPC reduction methodology, which was able to accurately identify 
code regions across different architectures. The methodology employs 
an ML ensemble to identify minimal HwPC sets necessary for effec-
tive code region identification. While this approach effectively reduced 
HwPC sets for code region identification, it did not address the TP opti-
mization weakness.

The present work further advances the methodology by employing 
ML ensembles not only to reduce the HwPC sets for both, code region 
identification and TP optimization, but also to train dedicated ensem-
bles on these minimal sets. These ensembles are then used for code 
region identification and TP optimization, providing a unified and au-
tomated framework that extends prior approaches. Therefore, this re-
search addresses both previous limitations through an automatic bifur-
cated HwPC reduction strategy that leverages distinct HwPC sets for 
code region identification and TP optimization, thus enhancing discrim-
inative capability and predictive accuracy. Moreover, we have extended 
the methodology to support CPU and GPU architectures.

Thus, while building on prior work, the present contribution repre-
sents a substantial step from code region identification toward a com-
plete automatic optimization methodology.

2.2.  Dataset construction

ML methodologies excel at extracting insights from complex datasets 
in computational performance analysis. The quality of the model’s pre-
dictions depends on comprehensive data-collection, requiring sophisti-
cated approaches to data acquisition and preprocessing.

In [6] an approach for systematically building balanced datasets of 
Hardware Performance Counters (HwPCs) for OpenMP parallel regions 
was introduced. This method takes into account all possible combina-
tions of architectural characteristics (e.g., number of cores, memory hi-
erarchy), region characteristics (e.g., data layout and size), compiler 
optimizations, and parallelization strategies (e.g., number of threads, 
affinity). Consequently, characterizing each code region requires a sig-
nificant number of executions. The approach utilizes the Performance 
Application Programming Interface (PAPI) [7,8] to collect only preset 
HwPCs, ensuring cross-architecture generalizability. To overcome the 
limitation on the number of HwPCs that can be monitored concurrently, 
the execution of each region configuration is repeated for each group of 
compatible events; the resulting measures are then concatenated to cre-
ate a single, comprehensive characterization of the region.

Furthermore, the methodology requires that problem sizes be di-
rectly proportional to the memory size at each level of the memory 
hierarchy. Specifically, for on-processor caches (L1, L2, L3), problem 
sizes must be proportional to the number of physical cores per proces-
sor, while for memories outside the processor, they must be proportional 
to the number of processors in the system. For each private cache level, 
problem sizes are defined starting with the size of one private cache 
and multiplied by the different core configurations, ending with the ac-
cumulated size of the private caches in the same level. For each shared 
cache level, the problem sizes are bigger than the accumulated size of 
the lower level cache and slightly lower than the maximum shared mem-
ory in the current cache level. Finally, for the main memory, the initial 
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Table 1 
Summary of the execution parameters for a spe-
cific platform (Xeon E5-4620).

 Parameter  Values for Xeon E5-4620
 Counter Sets 𝑆  12
 Threads 𝑇  32
 Problem Sizes 𝑃  29
 OpenMP TPs 𝑂𝑃  11
 Repetitions 𝑁  100
 Total 𝐸  12249600

Fig. 1. Theoretical model ensembling process.

problem size is bigger than the last level cache of the processor, and the 
other sizes are obtained gradually increasing the necessary memory. The 
last problem size is 1.5 times the aggregated size of the last level cache 
of all the processors in the system.

The methodology demonstrates robustness through systematic vari-
ation of OpenMP parameters, manipulating dimensions including num-
ber of threads, thread affinity policies, scheduling strategies, and chunk 
sizes. The execution strategy involves multiple repetitions across differ-
ent configurations that can be calculated as:

𝐸 = 𝑆 × 𝑇 × 𝑃 × 𝑂𝑃 ×𝑁, (1)

where 𝐸 denotes executions, 𝑆 HwPC sets, 𝑇  number of threads, 𝑃  prob-
lem sizes, 𝑂𝑃  OpenMP TP combinations, and 𝑁 repetitions.

The final dataset undergoes preprocessing, where the HwPC values 
are normalized, and null values and zero-variance features are removed. 
Table 1 presents a summary of the execution parameters associated with 
their particular values for the Xeon E5-4620 platform. From this dataset, 
optimal TP values are identified as configurations minimizing the objec-
tive function (e.g. 𝑃𝑖(𝑋) or execution time) for the number of threads, 
affinity, or scheduling/chunk-size. These optimal configurations serve 
as ground truth for training the ensemble models.

2.3.  Ensemble methodology

Ensemble modeling combines multiple individual models (weak or 
base learners) to create a robust and accurate prediction system [9,10]. 
As shown in Fig. 1, this process comprises several key components:

Model Diversity: The ensemble consists of multiple independent 
models working in parallel. Each weak model provides a unique perspec-
tive using different algorithms or training parameters, capturing various 
aspects of the underlying patterns while reducing individual model bi-
ases.

Input Processing: Test input is simultaneously fed into all models, 
allowing each to analyze the same data independently and generate pre-
dictions based on unique characteristics and learned patterns.

Model Integration through Voting: Individual predictions are com-
bined through majority voting (most frequent prediction), weighted 
voting (based on model confidence), or soft voting (aggregating prob-
ability distributions), producing more stable and accurate predictions 
than any single model.

Performance Benefits: Ensemble methods demonstrate superior 
performance by averaging out different error types, reducing sensitiv-
ity to outliers and noise, and improving generalization across diverse 
input data.

2.4.  Ensemble algorithms

The ensemble models were selected to maximize complementarity 
across algorithmic paradigms specifically for HwPC feature spaces. Four 
models were selected from nine initial candidates through evaluation 
based on computational efficiency during training and predictive per-
formance metrics. Models with excessive training requirements or infe-
rior accuracy, precision, and recall were discarded to ensure practical 
deployment in resource-constrained environments.

Logistic Regression with Elastic Net [11–14] addresses the multi-
collinearity inherent in HwPC data (e.g., correlated cache miss events) 
while providing feature selection through L1 regularization. This is cru-
cial because most HwPCs measure related architectural events. It excels 
when linear relationships exist between HwPC combinations and per-
formance outcomes, particularly for compute-bound code regions where 
instruction counts linearly predict execution time.

Random Forest [15] addresses nonlinear interactions in memory-
intensive code regions, where relationships between cache misses, mem-
ory bandwidth, and performance are interdependent. Its resilience to 
outliers is essential given that HwPC values can span several orders 
of magnitude. Its feature importance mechanism also provides inter-
pretability for identifying which architectural events most influence per-
formance.

XGBoost [16] addresses class imbalances that may arise in the 
dataset (where optimal configurations may be rare) through its weight-
ing mechanisms. Its boosting framework captures dependencies between 
HwPC events and provides strong performance in high-dimensional, 
sparse feature spaces.

TabNet [17] handles the heterogeneous nature of HwPC data (mix-
ing instruction counts, temporal cycles, and throughput rates) through 
its attention mechanism, automatically learning which HwPC groups 
are relevant for specific code regions. Unlike other models, it performs 
simultaneous feature selection and prediction, which is crucial when 
dealing with 50+ HwPCs where many may be irrelevant.

This diversity enables handling different aspects of the HwPC fea-
ture space: from linear to complex nonlinear relationships, from bal-
anced to imbalanced classes, and from simple to hierarchical decision 
boundaries.

2.5.  Ensemble evaluation metrics

Evaluation of model performance is critical for assessing the effi-
cacy and reliability of ML methodologies in performance optimization. 
Five key indicators were selected based on the requirements of tuning 
tasks: accuracy, precision, recall, F1-Score, and ROC AUC. Each metric 
addresses distinct challenges in performance optimization.

Accuracy quantifies overall correctness but may be misleading in 
imbalanced scenarios (e.g., when the optimal configuration occurs in 
only 15% of cases). Nevertheless, it provides a baseline measure of gen-
eral performance. To obtain a more reliable estimate of generalization, 
we adopted K-fold cross-validation with 𝑘 = 5 balancing statistical ro-
bustness and computational feasibility. Cross-validation accuracy is de-
fined as the mean accuracy across 𝑘 validation folds, offering an estimate 
that is less sensitive to data partitioning.

Precision is relevant because false positives are costly. Recommend-
ing a suboptimal configuration can waste significant runtime. High pre-
cision ensures that when the model recommends a configuration, it is 
indeed the optimal or near-optimal configuration.

Recall addresses the complementary risk of missing optimal con-
figurations. In tuning scenarios, low recall means the model overlooks 
optimal configurations, leaving potential performance gains undiscov-
ered.

F1-Score balances precision and recall, which is essential because 
neither metric alone suffices. A model with high precision but low re-
call might only predict in obvious cases (e.g., always recommending 
maximum threads) while missing subtler optimal configurations. The
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Fig. 2. Process of HwPC reduction, code region identification, and Tuning Parameter optimization.

F1-Score penalizes such behavior, encouraging both correctness and 
coverage.

ROC AUC measures discriminative ability across thresholds, it is cru-
cial when suboptimal choices incur varying penalties. E.g., choosing 8 
instead of 16 threads may cause only a 10% slowdown, while choosing 
2 may cause an 80% slowdown. ROC AUC reflects the model’s ability to 
rank configurations appropriately, not just classify them as optimal or 
not.

3.  Application performance tuning using machine learning

This section presents a novel automatic methodology for tuning par-
allel applications using HwPCs, transforming raw HwPC data into ac-
tionable performance insights through ML methodologies. The method-
ology addresses performance analysis challenges by identifying code re-
gions and optimizing TPs using HwPC data. The ensemble identifies both 
minimal sets of HwPCs required for code region identification and for 
TP optimization, improving efficiency and accuracy while automating 
application performance optimization.

In this work, a code region refers to a distinct computational block 
within an application that exhibits consistent performance charac-
teristics and can be independently optimized. In an OpenMP con-
text, code regions typically correspond to parallel loops or paral-
lel sections enclosed by #pragma omp parallel directives. For GPU 
applications, code regions correspond to individual CUDA kernels. 
Each code region is characterized by its computational pattern (e.g., 
memory-bound, compute-bound, irregular access), which determines 
its optimal TP configurations. The methodology identifies code re-
gions through their unique HwPC signatures rather than static code
analysis.

A key motivation for using separate HwPC subsets for code region 
identification and TP optimization is that the most discriminative Hw-
PCs for recognizing computational patterns could not be the most in-
formative for predicting TPs. For example, cache-related HwPCs can 
distinguish compute- from memory-bound code regions, while instruc-
tion throughput HwPCs can be related to core utilization and thread 
placement TPs. By decoupling the subsets, the methodology maximizes 
predictive accuracy for both tasks.

In practice, as it will be discussed in Section 4, the computational 
overhead of the proposed approach remains modest: the reduction phase 
is performed offline, while online execution requires monitoring only 4-
7 HwPCs per task, adding negligible runtime overhead.

Fig. 2 shows that the proposed methodology is composed of a HwPC 
Reduction phase, which is performed off-line only once for a specific 
architecture using the input dataset, and an Application Execution 
phase, which is applied to optimize a given application.

The input of the HwPC Reduction Phase is a dataset  = (𝐥,𝐡, 𝐭)
where 𝐥 ∈  represents code region labels, 𝐡 ∈  denotes HwPC values, 
and 𝐭 ∈   represents TP values. Its objectives are to minimize the sets of 

HwPCs needed to identify code regions, and optimizing TPs. Section 3.1 
describes in detail this phase’s two steps.

• Step 1: Code Region HwPCs Reduction. The 𝐥 and 𝐡 components 
of the dataset are used to identify relevant HwPCs for code region 
classification, producing a reduced HwPC list and a classification 
model.

• Step 2: Tuning Parameter HwPCs Reduction. The 𝐥, 𝐡, and 𝐭 com-
ponents of the dataset are used to identify relevant HwPCs for each 
TP associated to each code region, resulting in a reduced HwPC list 
and a prediction model for each specific TP of each code region.
The Application Execution Phase involves the optimization of a 

given application using the reduced sets of HwPCs obtained in the pre-
vious phase. It also includes two steps described in detail in Section 3.2.

• Step 3: Code Region Identification. At runtime, the values of the 
HwPCs from the list produced in Step 1 are collected, and the clas-
sification model is used to identify the executing code region.

• Step 4: Tuning Parameter Optimization. After identifying the ex-
ecuting code region, for each TP associated with this code region, it 
collects the values of the HwPCs of the list produced in Step 2, and 
the corresponding prediction model is used to determine the optimal 
TP value.
Consequently, the methodology’s output is a value 𝑡𝑜𝑝𝑡 ∈   for each 

TP that optimizes the performance of each code region in an application.

3.1.  HwPC reduction phase

This subsection presents a dual-purpose methodology for HwPC re-
duction, as illustrated in Fig. 3. The first branch (Step 1) identifies im-
portant HwPCs for code region identification using sub-datasets con-
taining code region labels and HwPC values. The second branch (Step 
2) identifies important HwPCs for optimizing TPs using separate sub-
datasets for each code region and TP combination, with their corre-
sponding HwPCs.

The methodology uses an ML ensemble in three steps: (1) training 
and validation of classifier models to establish relationships between 
code regions and HwPCs (Step 1.1), and between TPs and HwPCs (Step 
2.1); (2) extracting and quantifying importance scores for individual 
HwPCs across all ensemble models for code region identification (Step 
1.2) and TP optimization (Step 2.2); and (3) ranking and reduction to 
identify a minimal HwPC set for code region identification (Step 1.3) 
and minimal specialized sets for TP optimization (Step 2.3). During in-
ference, the models generate individual predictions with the final pre-
diction determined by majority vote. Model performance is evaluated 
using accuracy to quantify correct classifications.

3.1.1.  Ensemble training and validation
The ensemble training and validation correspond to Steps 1.1 and 

2.1 in Fig. 3. The ensemble methodology integrates the four models in-
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Fig. 3. HwPCs reduction with model ensembles.

Fig. 4. Step 2: Ensemble for HwPC importance scoring.

troduced in Section 2.4: Logistic Regression with Elastic Net, Random 
Forest, XGBoost, and TabNet, capturing linear and nonlinear relation-
ships across varying dataset characteristics.

The implementation utilized a 70-30 split, with 30% reserved for fi-
nal testing to provide an unbiased evaluation of generalization capabil-
ities. The remaining 70% underwent 5-fold stratified cross-validation, 
preserving code region class distributions across folds. In each itera-
tion, the models are trained on approximately 56% of the total data 
and validated on 14%. A value of 𝑘 = 5 was chosen to balance statisti-
cal reliability and computational cost (only 5 training iterations). Larger 
𝑘 values (e.g., 10) doubled computational cost with marginal accuracy 
gains, whereas smaller values (e.g., 3) led to higher variance in valida-
tion scores. The stratified approach further ensured consistent handling 
of imbalanced TP distributions. Accuracy served as the primary evalua-
tion metric throughout.

3.1.2.  Weight extraction
The weight extraction process corresponds to Steps 1.2 and 2.2 

in Fig. 3. Following training, each HwPC received normalized impor-
tance scores (0.0 to 1.0) based on model-specific criteria. Logistic Model 
with Elastic Net derives importance from coefficient magnitudes. Ran-
dom Forest quantifies it through an average impurity reduction. XG-
Boost evaluates importance based on performance gain. TabNet em-
ploys an attention mechanism for feature contributions. The final im-
portance score is computed using the weighted average of the indi-
vidual model scores. Each model’s weight corresponds to its validation
accuracy.

Fig. 4 illustrates this process. The final weighted score 𝑊𝑖 for the 𝑖th 
HwPC is calculated as:

𝑊𝑖 =

∑3
𝑗=0 𝑐𝑖,𝑗𝑤𝑗
∑3

𝑗=0 𝑤𝑗

, (2)

where 𝑐𝑖,𝑗 is a score of the 𝑖th HwPC from the 𝑗th model and 𝑤𝑗 is an 
accuracy-based weight of the 𝑗th model. This formulation ensures that 
models with higher validation accuracy contribute more significantly to 
the final importance scores.

3.1.3.  HwPC ranking and reduction
The HwPC ranking and reduction process corresponds to Steps 1.3 

and 2.3 in Fig. 3. The kneedle algorithm [18] was used to select Hw-
PCs for code region identification and TP optimization. The reduction 
process ranks HwPCs in descending order based on weighted average 
scores (Fig. 5(a)).

Then, as shown in Fig. 5(b), a reference line is established between 
points (0,0) and (N-1, accuracy N-1), where N is the total number of Hw-
PCs and accuracy N-1 is the validation accuracy using all HwPCs. The 
models are trained iteratively, starting with the highest-ranked HwPC 
and progressively adding HwPCs in rank order. For each model, the dis-
tance between the accuracy and the reference line is calculated. The 
process stops when adding a new HwPC no longer increases this dis-
tance, indicating the knee point where accuracy gains become marginal. 
The minimum effective set of HwPCs includes those added up to this 
point, balancing model complexity with accuracy.

The reduction process produces a minimal list of HwPCs for code 
region identification, and TP-specific lists per code region for TP opti-
mization:

- 𝐻𝑤𝑃𝐶𝑖 = ℎ0, ℎ1,… , ℎ𝐶−1: the minimal set of HwPCs to classify the 
code region 𝑖

- 𝐻𝑤𝑃𝐶𝑖𝑗 = ℎ0, ℎ1,… , ℎ𝑇−1: the minimal set of HwPCs to tune the 𝑗th 
TP for the 𝑖th code region

where 0 < 𝐶, 𝑇 ≤ 𝑁 − 1.
At the end of the reduction process, the final ensemble models 

trained with these reduced HwPC sets are stored. These ensembles are 
then used during the subsequent Application Execution Phase for code 
region identification and TP optimization.

3.2.  Application execution phase

Fig. 6 delineates the process for code region identification and TP 
optimization during application execution. The process begins when the 
target application is running. First, Step 3 identifies different code re-
gions within the application. In Step 3.1, the methodology collects mea-
surements from a reduced set of HwPCs that were specifically selected 
to identify code regions.

In Step 3.2, this set of HwPCs’ values is the input to the Code Region 
Identifier Model generated in the Step 1 of the HwPC reduction phase 
described in Section 3.1. The final code region class indicated by the 
ensemble is decided by majority vote, that is, whichever code region 
class receives the most votes.

As observed in Fig. 6, upon code region identification, the process 
transitions to Step 4, TP optimization. In Step 4.1, the system collects 
a specific set of HwPC measurements from the executing application. 
Importantly, each identified code region uses a different set of HwPCs 
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Fig. 5. Step 3: HwPC reduction considering the knee point.

for each TP being optimized. This means that for a given code region, the 
system monitors one specific set of HwPCs when optimizing TP A, and a 
different set of HwPCs when optimizing TP B. This approach allows for 
detailed analysis of how each individual TP affects performance within 
that specific code region.

In Step 4.2, the collected HwPC measurements are passed to the ap-
propriate optimization models. For each code region, there are multiple 
TP optimization models - one for each TP. Each of these models was 
trained using the reduced set of HwPCs that are most relevant for op-
timizing that specific TP within that particular code region. As for the 
code region identification, each optimization model is an ensemble of 
the four ML classifiers and the final optimized TP value is determined 
by majority vote.

4.  Evaluation

This section analyzes the results obtained using the proposed ensem-
ble methodology for HwPC reduction, code region identification, and TP 
optimization. The evaluation methodology begins with a comprehensive 
analysis using OpenMP code regions on CPUs, where the reliability of 
the approach is validated through a comparative analysis with the find-
ings in [1].

Sections 4.1 and 4.2 present this initial evaluation phase, where the 
dataset consisted of code regions already known to the models, pro-
viding a baseline for performance assessment. Section 4.3 demonstrates 
the robustness and generalization capabilities of the methodology by 
extending the evaluation to previously unseen code regions extracted 
from the NAS parallel benchmarks (NPB) [19]. Section 4.4 expands the 
analysis to GPU architectures, where the methodology was applied to 
GPU datasets containing different code regions.

Table 2 
Preset HwPCs available on the Xeon E5-4620 platform.
 Branches  Cache L1  Cache L2  Cache L3  TLB  Cycles  Ops.  Ins.
 6  5  14  9  2  3  3  8

Table 3 
Reduced HwPCs for code region identification.

 Instructions  Operations  Branches
 PAPI_SR_INS  PAPI_FP_OPS  PAPI_BR_NTK
 PAPI_FDV_INS  PAPI_DP_OPS  PAPI_BR_MSP

Table 4 
Reduced HwPCs for 2D4PStencil_E code re-
gion’s number of threads optimization.

 L2 Cache  L3 Cache  Operations
 PAPI_L2_ICH  PAPI_L3_TCM  PAPI_FP_OPS
 PAPI_L2_DCH
 PAPI_L2_DCR

All CPU benchmarks were compiled using GCC version 9.2.0 with 
-O2 optimization, and executed on the 32-core Xeon E5-4620 platform. 
GPU benchmarks were compiled with NVCC using CUDA 10.1 (driver 
418.67) for GTX 1070 and RTX 2080, CUDA 12.1 (driver 535.183) for 
RTX 3090, and CUDA 12.3 (driver 545.23) for RTX 4080.

This cross-platform evaluation demonstrates the versatility of the 
methodology and its consistent effectiveness across both CPU and GPU 
architectures, showing its portability to diverse computing environ-
ments.

4.1.  Reduction of CPU HwPCs for identification and tuning of OpenMP 
regions

The methodology was tested on an 18 code region dataset [3], com-
prising:

• STREAM: four code regions- Copy, Scale, Sum, and Triad-ach with 
distinct memory access patterns and operation counts [4].

• PolyBench: twelve code regions from synthetic benchmarks for com-
mon computational programs in scientific and engineering applica-
tions [5].

• Additional Code Regions: two code regions for computing Collatz 
sequences and Friendly numbers with different computational load 
per iteration.

PAPI was used for HwPC collection. It provides a standardized set of 
preset events for performance monitoring, which were grouped to max-
imize the information gathered during each execution while respecting 
hardware limitations [1]. Each HwPC group was measured across multi-
ple executions, systematically varying parameters, including number of 
threads, thread affinity policy, scheduling policy, and chunk size. Prob-
lem sizes were computed using the methodology in [2] to stress differ-
ent memory hierarchy levels. For statistical significance, 100 executions 
were conducted for each combination of HwPC group, problem size, and 
configuration. The preset HwPCs for the target architecture are shown 
in Table 2.

Starting with 50 available HwPCs, the methodology reduced the set 
to six HwPCs, shown in Table 3, for code region identification while 
maintaining high prediction capabilities.

The methodology further refined the reduction process at the TP 
level, creating unique HwPC sets for each code region’s TPs to reflect 
distinct computational characteristics . Starting with 50 available Hw-
PCs, the methodology successfully reduced the set to only 4–7 HwPCs 
for each TP. As an example, Table 4 shows the 5 HwPCs selected for 
optimizing the number of threads for the 2D4PStencil_E code region.
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Fig. 6. Code region identification and tuning parameter optimization with model ensembles.

Table 5 
Evaluation results of the ensemble for the code region identification 
(expanded benchmark.
 Metric  K-F Acc.  Pr.  Rc.  F1  R-A  Full Set  Red.
 Label  0.9765  0.9644  0.9556  0.9596  0.9996  50  6

4.2.  Identification and tuning of OpenMP regions with a comprehensive 
dataset

Once we have a comprehensive dataset, the minimal set of HwPCs 
for code region identification, and the minimal sets of HwPCs for each 
TP, we can evaluate the effectiveness of the ensemble methodology. The 
methodology first goes through identifying the code regions with a min-
imal set of HwPCs. Once the code region is identified, it proceeds to 
optimize different TPs.

For comparison, the OpenTuner tool [20] was employed. It is an 
extensible auto-tuning framework that leverages multiple search tech-
niques to efficiently explore configuration spaces. Its pluggable archi-
tecture enables sophisticated optimization strategies that support vari-
ous hardware platforms by abstracting configuration spaces and search 
mechanisms.

4.2.1.  Code region identification
This section evaluates the performance of the ensemble methodology 

for code region identification using minimal HwPC sets. The model was 
trained and validated using stratified 5-fold cross-validation on a subset 
of the data, achieving a mean accuracy of 97.65%. Its generalizability 
was then confirmed on a held-out test set comprising 30% of the full 
dataset.

The comprehensive results of this evaluation when applying the re-
duced HwPC set are presented in Table 5, which shows exceptional per-
formance for all the metrics. The K-fold accuracy of 0.9765 and ROC 
AUC of 0.9996 indicate near perfect discrimination capability between 
different code regions. The precision (0.9644) and recall (0.9556) scores 
are well-balanced, yielding a strong F1-score of 0.9596 that confirms the 
methodology’s robust predictive power. Notably, the ensemble achieved 
this high performance while dramatically reducing the required HwPC 
set from 50 to only 6 counters-an 88% reduction. This substantial dimen-
sionality reduction, coupled with high classification accuracy, validates 
the effectiveness of the methodology and suggests strong generalizabil-
ity for identifying relevant HwPCs for code region classification tasks.

4.2.2.  Tuning parameter: Number of threads
This section evaluates the optimization of the number of threads TP 

for various code regions.
The evaluation starts considering the trade-off between performance 

(time) and resource (core) utilization. To quantify the number of threads 
efficiency, the performance index defined in [21] was used, which pro-

Fig. 7. Evaluation results of the ensemble for the prediction of the number of 
threads TP minimizing 𝑃𝑖(𝑋).

vides a metric for evaluating the number of threads efficiency. The per-
formance index 𝑃𝑖(𝑋) was calculated using the following equation:

𝑃𝑖(𝑋) =
𝑇𝑡(𝑋)
𝐸(𝑋)

=
𝑋 ⋅ 𝑇𝑡(𝑋)2

𝑇𝑡(1)
, (3)

where 𝑋 denotes the number of threads, 𝑇𝑡(𝑋) and 𝐸(𝑋) denote the 
obtained execution time and efficiency of a code region using this num-
ber of threads. Therefore, 𝑃𝑖(𝑋) relates execution time with resource 
efficiency, allowing to automatically find the number of threads that 
maximizes performance (minimizing execution time) without wasting 
resources.

𝑃𝑖(𝑋) captures the trade-off between execution time and thread uti-
lization. Configurations with long execution times or poor efficiency 
are penalized, while configurations that achieve fast execution with-
out wasting cores yield a lower index. Minimizing 𝑃𝑖(𝑋) identifies the 
optimal number of threads that balances runtime and resource usage. 
For example, if doubling the number of threads only slightly reduces 
execution time, efficiency decreases and 𝑃𝑖(𝑋) increases, signaling that 
adding more threads is not beneficial.

Fig. 7 presents the results of the ensemble methodology for optimiz-
ing the number of threads for all code regions, according to the objec-
tive function that minimizes 𝑃𝑖(𝑋). The results show that the ensemble 
achieves consistently high classification accuracy scores ranging from 
0.9041 to 0.9974, while using only 4–7 HwPCs. The ensemble consis-
tently reaches high precision and recall rates. The high ROC AUC scores 
(0.9963-0.9998) confirm robust discriminative capability across differ-
ent code regions, demonstrating the ensemble’s efficiency and practical 
applicability. These metrics indicate that the methodology reliably iden-
tifies the optimal number of threads’ configurations for the code regions 
considered.
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Fig. 8. Evaluation results of the ensemble for the prediction of the number of 
threads TP minimizing the execution time.

Fig. 9. Comparison of the optimal (Opt.), ensemble minimizing 𝑃𝑖(𝑋) (Perf), 
and OpenTuner (OpenT.) mean performance indices.

For comparative analysis with OpenTuner, which optimizes execu-
tion time, a second ensemble model was trained using minimum exe-
cution time as the objective function. This alternative model not only 
provides a basis for a fair comparison, but also reinforces the adaptabil-
ity of our proposed methodology to different optimization targets. Fig. 8 
shows that the ensemble has consistently strong performance, maintain-
ing high classification accuracy across all evaluation metrics, with K-fold 
accuracies ranging from 0.7987 to 0.9937. The high precision, recall, 
and F1-scores indicate that the approach effectively identifies optimal 
number of thread configurations for minimizing execution time with a 
reduced set of 4–7 HwPCs. This confirms the methodology’s effective-
ness to target execution time reduction.

Fig. 9 compares the optimal performance index (Eq. (3)) with the one 
obtained by the ensemble methodology (optimizing 𝑃𝑖(𝑋)) and by Open-
Tuner (optimizing execution time). As expected, the ensemble method-
ology achieves optimal or almost optimal results for all regions, while 
OpenTuner consistently produces worse (i.e., higher) performance in-
dices across all code regions, indicating less efficient resource utiliza-
tion. Performance index degradation is particularly severe for certain 
code regions: Add_E (4.33× worse), Scale_E (4.22× worse), Matxvec
(4.20× worse), and Stride64_E (4.05× worse).

Fig. 10 presents the speedup comparison between OpenTuner, the 
ensemble methodology (optimizing 𝑃𝑖(𝑋) and execution time), and the 
optimal speedup. It shows that the ensemble minimizing execution time 
(Time) achieves speedups closer to the optimal values in the majority of 
cases (13 out of 18 code regions), while the ensemble minimizing 𝑃𝑖(𝑋)
(Perf) shows larger deviations from optimal values but it obtains better 
results than OpenTuner (11 out of 18).

Fig. 11 shows the comparison of the time needed to compute the 
number of threads by the ensemble and OpenTuner. The ensemble mod-
els consistently deliver 2-7 s when optimizing 𝑃𝑖(𝑋) and 3-7 s when op-
timizing speedup, ensuring low predictable optimization overhead in all 
scenarios. In contrast, OpenTuner exhibits significant time variability, 
with execution times ranging from 2 s to over 4min.

Fig. 10. Comparison of the optimal (Opt.), ensemble minimizing 𝑃𝑖(𝑋) (Perf), 
ensemble minimizing execution time (Time), and OpenTuner (OpenT.) mean 
speedups.

Fig. 11. Comparison of the execution times (logarithmic scale) required for 
computing the number of threads: ensemble minimizing 𝑃𝑖(𝑋) (Perf), ensemble 
minimizing execution time (Time), and OpenTuner (OpenT.).

This combination of generally superior speedup performance and 
consistent execution times reinforces the ensemble’s practical advantage 
for performance-critical optimization scenarios.

4.2.3.  Tuning parameter: Thread affinity policy
The next evaluated TP is thread affinity policy. The optimal affinity 

policy 𝑎∗ for a given code region is defined as the policy that minimizes 
execution time:
𝑎∗ = min

𝑎∈𝐴
𝑇 (𝑎) (4)

where 𝐴 = {close, spread} is the set of available affinity policies and 
𝑇 (𝑎) represents the execution time under affinity policy 𝑎. The method-
ology predicts the affinity policy that achieves the minimum execution 
time. Prediction accuracy is measured as the percentage of correct iden-
tifications of 𝑎∗.

Fig. 12 shows that the ensemble methodology maintains high per-
formance for affinity TP prediction. The ensemble achieves high K-fold 
accuracies ranging from 0.9512 to 0.9993, with most code regions ex-
ceeding 97% accuracy. The strong precision (0.9474-0.9991) and recall 
(0.9229-0.9990) values confirm reliable identification of optimal affin-
ity configurations. The methodology accomplishes this performance us-
ing only 4–7 HwPCs. These results show the ensemble’s effective feature 
reduction while maintaining strong discriminative capability for thread 
affinity optimization.

Fig. 13 shows that OpenTuner underperforms across all evalua-
tion metrics for affinity tuning. K-fold accuracies range from 0.3427 to 
0.6433, with precision, recall, and F1-scores consistently below 0.6, in-
dicating poor classification performance barely exceeding random selec-
tion. Time percentage differences reveal substantial performance degra-
dation, with most benchmarks showing deterioration up to 39.96%.

Finally, looking at the execution times between the ensemble and 
OpenTuner (Fig. 14), the ensemble shows a higher efficiency with con-
sistently low execution times (0.42-0.59s) across all code regions. In 
contrast, OpenTuner exhibits highly variable performance, ranging from 
0.79 s to under 1.5min, with poor scalability for compute-intensive code 
regions like MatrixMult (32.91s) and MatrixMultNOpt (1m 33s). Over-
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Fig. 12. Evaluation results of the ensemble for the prediction of the affinity TP.

Fig. 13. Evaluation results of OpenTuner for the prediction of the affinity TP.

Fig. 14. Comparison of the execution times (logarithmic scale) required for 
computing affinity: ensemble and OpenTuner.

all, the ensemble methodology achieves from 2 to 180× faster opti-
mization times while maintaining a higher classification performance 
reinforcing its practical advantage for runtime tuning of affinity TP.

4.2.4.  Tuning parameter: Scheduling policy and chunk size
The final TPs we consider are the scheduling policy and the chunk 

size. The optimal scheduling policy 𝑠∗ and corresponding chunk size 𝑐∗
are determined by:
(𝑠∗, 𝑐∗) = min

(𝑠,𝑐)∈𝑆×𝐶
𝑇 (𝑠, 𝑐) (5)

where 𝑆 = {static, dynamic, guided} is the set of OpenMP scheduling 
policies and 𝐶 is the discrete set of evaluated chunk sizes. The methodol-
ogy predicts the policy-size combination that minimizes execution time. 
These TPs are evaluated through classification accuracy (correctly pre-
dicting the configuration with minimum execution time) since they rep-
resent discrete categorical choices rather than continuous resource allo-
cation.

Table 6 
Evaluation results of the ensemble for the prediction of the scheduling 
policy and chunk size parameter.
 Tuning Param.  Reg./Metr.  K-F Acc.  Pr.  Rc.  F1  R-A  Red.

Scheduling Policy  Collatz  0.9883  0.9848  0.9831  0.9839  0.9992  5
 Friends  0.9893  0.9924  0.9917  0.9921  0.9994  6

Chunk Size  Collatz  0.9897  0.9913  0.9799  0.9853  0.9995  5
 Friends  0.9853  0.9824  0.9820  0.9821  0.9994  5

Table 7 
Evaluation results of OpenTuner for the prediction of the scheduling policy 
and chunk size parameter.

 Tuning Param.  Reg./Metr.  K-F Acc.  Pr.  Rc.  F1
Scheduling Policy  Collatz  0.4224  0.3702  0.3656  0.3654

 Friends  0.3637  0.3328  0.2813  0.2866

Chunk Size  Collatz  0.4165  0.3856  0.3921  0.3785
 Friends  0.3367  0.3556  0.3509  0.3341

Table 8 
Comparison of the execution times re-
quired for computing scheduling pol-
icy and chunk size: ensemble and 
OpenTuner.

 Reg./Exec. Time  Ens.  OpenT.
 Collatz  1.34 s  4.18 s
 Friends  1.61 s  0.78 s

Table 6 presents evaluation results for scheduling policy and chunk 
size TPs optimization on two code regions. The ensemble methodology 
demonstrates high performance for both TPs, achieving K-fold accura-
cies exceeding 98% across both cases. The results are consistently high 
across the rest of the presented metrics for both TPs. This shows that the 
ensemble can effectively identify optimal configurations for both TPs 
using only 4–7 HwPCs, demonstrating its versatility in handling diverse 
TPs beyond number of threads or thread affinity.

Table 7 summarizes the results that show that OpenTuner performs 
poorly for both scheduling policy and chunk size TP optimization. K-fold 
accuracies range from 0.3367 to 0.4224, indicating performance barely 
above random selection. Precision, recall, and F1-scores consistently re-
main below 0.4 across all cases, demonstrating inadequate classification 
capability for both TPs. Additionally, OpenTuner shows performance 
degradation with time percentage differences of 2.32-4.67%. Contrast-
ing these results with the ensemble methodology’s accuracy >98%, fur-
ther confirms the ensemble’s capabilities for TP optimization.

Finally, considering the execution times between the ensemble 
methodology and OpenTuner for scheduling and chunk size optimiza-
tion (Table 8) the results show no clear time-wise advantage between 
them, as each method outperforms the other on different benchmarks. 
These divergent results highlight the complexity of scheduling and 
chunk size optimization.

4.3.  Application to the NAS parallel benchmarks

To ensure a comprehensive and representative assessment, 7 
OpenMP code regions from NAS Parallel Benchmarks (NPB) [19] were 
extracted. The code regions represent a diverse range of computational 
patterns. The NPB suite is widely recognized and extensively used in 
parallel computing to evaluate the performance of parallel systems. This 
dataset was not used for training, it was only used for evaluation pur-
poses. As previously, PAPI was used to gather the HwPC data.

- BT benchmark: extracted code region - add_BT. It maps to the BT’s 
add function.

- CG benchmark: extracted code regions - normztox_CG,
norm_temps_CG, rhorr_CG, pr_beta_p_CG, and qAp_CG.
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Fig. 15. Evaluation results of the ensemble for the code region identification 
(NAS benchmarks).

Fig. 16. Comparison of the optimal (Opt.), ensemble minimizing 𝑃𝑖(𝑋) (Perf), 
and OpenTuner (OpenT.) mean performance indices (NAS benchmarks).

- LU benchmark: extracted code region - l2norm_LU.

4.3.1.  Code region identification
To validate the proposed methodology, we conducted comprehen-

sive experiments using the NPB dataset. The initial evaluation focuses on 
code region identification by leveraging an ensemble of models trained 
on the comprehensive dataset from Section 4.2.

Fig. 15 presents code region identification results using the ensemble 
methodology with a minimal set of HwPCs. The ensemble demonstrates 
strong code region identification performance across most code regions, 
achieving high accuracy scores. The high F1 scores (>0.96) suggests the 
ensemble is highly confident of the predictions.

4.3.2.  Tuning parameter: Number of threads
The evaluation continues with the optimization of the number of 

threads, focusing on efficiency as defined by the performance index 
(Eq. (3)).

Fig. 16 compares the optimal performance index (Eq. (3)) with the 
one obtained by the ensemble methodology (optimizing 𝑃𝑖(𝑋)) and by 
OpenTuner (optimizing execution time). The results obtained by the en-
semble are usually close to the optimal value, and, in all cases, similar 
to the ones obtained by OpenTuner. These results hint that, for these re-
gions, the difference between the number of threads minimizing 𝑃𝑖(𝑋)
and the one minimizing execution time is not significant.

Fig. 17 presents the speedup comparison between OpenTuner, the 
ensemble methodology (optimizing 𝑃𝑖(𝑋) and execution time), and the 
optimal speedup. It shows that, in effect, the execution time difference 
optimizing 𝑃𝑖(𝑋) and optimizing time are not significant in most cases 
(except for the qAp_CG case). Consequently, the values obtained by the 
ensemble methodology and OpenTuner are quite close.

Fig. 18 shows the comparison of the time needed to compute the 
number of threads by the ensemble and OpenTuner. The ensemble mod-
els consistently completes optimization in under a minute for all cases: 
2-44 s when minimizing 𝑃𝑖(𝑋) and 2-50 s when maximizing speedup, 

Fig. 17. Comparison of the optimal (Opt.), ensemble minimizing 𝑃𝑖(𝑋) (Perf), 
ensemble minimizing execution time (Time), and OpenTuner (OpenT.) mean 
speedups (NAS benchmarks).

Fig. 18. Comparison of the execution times (logarithmic scale) required for 
computing the number of threads: ensemble minimizing 𝑃𝑖(𝑋) (Perf), ensemble 
minimizing execution time (Time), and OpenTuner (OpenT) (NAS benchmarks).

Fig. 19. Evaluation results of the ensemble for the prediction of the affinity TP 
(NAS benchmarks).

ensuring low predictable optimization overhead in all scenarios. In con-
trast, OpenTuner exhibits significant time variability, with execution 
times ranging from approximately 18min for CG regions to nearly 3h 
for BT regions. This means that the ensemble methodology is 20 to 300x 
faster than OpenTuner in these cases.

4.3.3.  Tuning parameter: Thread affinity policy
Thread affinity policy is the next TP evaluated. After identifying the 

code region, a specialized set of HwPCs is used to predict the thread 
affinity policy. Fig. 19 shows varied performances across NAS bench-
mark code regions when using the ensemble methodology to predict 
optimal thread affinity. Several CG code regions exhibit high accuracy, 
e.g.: normztox_CG (0.9988) or rhorr_CG (0.9916), suggesting the en-
semble methodology effectiveness for these sparse matrix operation pat-
terns. However, precision, recall, and F1-scores for these code regions 
remained approximately 0.5, indicating potential imbalance in predic-
tion classes.

Looking at the OpenTuner’s affinity optimization results (Fig. 20) 
even more severe performance issues appear compared to the ensem-
ble. The accuracy values are consistently poor across all code regions. 

Future Generation Computer Systems 179 (2026) 108358 

10 



S. Harutyunyan Gevorgyan et al.

Fig. 20. Evaluation results of OpenTuner for the prediction of the affinity TP 
(NAS benchmarks).

Fig. 21. Comparison of the execution times (logarithmic scale) required for 
computing affinity: ensemble and OpenTuner (NAS benchmarks).

As before, OpenTuner suffers from the same class imbalance symptoms 
with multiple code regions having low precision and recall values.

Finally, the execution times (Fig. 21) for optimal thread affinity pre-
diction between the ensemble methodology and OpenTuner are com-
pared. While the ensemble consistently completes optimization in 1-3 s 
across all code regions, OpenTuner requires dramatically longer times 
ranging from ∼2-4min for CG code regions up to nearly 38min for BT
code regions. Overall, despite both approaches struggling with predic-
tion accuracy due to class imbalance, the ensemble achieves comparable 
or better performance metrics while being orders of magnitude faster 
than OpenTuner’s long optimization times.

4.4.  Applying the methodology to GPUs

The final experiments demonstrate the methodology’s applicability 
to GPUs by reducing necessary HwPCs for code region identification 
and TP optimization. HwPC data were collected using the Kernel Tun-
ing Toolkit (KTT) [22,23] on GTX 1070 (Pascal), RTX 2080 (Turing), 
RTX 3090 (Ampere), and RTX 4080 (Ada Lovelace) GPUs across the 
code regions analyzed by Petrovič et al. [23]: Convolution, Couloumb 
Sum, N-body, Transposition, and GEMM. Additionally code regions were 
added to some of the architectures. The Reduction code region was 
added for Pascal, the Biconjugate Gradient and Hotspot code regions 
were added for Turing, and Biconjugate Gradient was added for Ada 
Lovelace. All GPU code regions use CUDA as the parallelization model.

A summary of the TPs targeted per architecture is presented in Table
9, where work-group size balances parallelism against resource con-
sumption, work-item coarsening adjusts the computational workload 
per thread, local memory caching enables explicit use of fast shared 
memory as a cache, private memory caching optimizes register usage 
for fastest data access, tile size defines memory blocking dimensions to 
improve locality, loop unrolling reduces branching overhead and in-
creases instruction-level parallelism, local memory padding prevents 

Fig. 22. Evaluation results of the ensemble for the HwPC reduction and code 
region identification for GPUs.

bank conflicts in GPU shared memory, and explicit vectorization facil-
itates generation of efficient vector memory instructions.

The ensemble methodology was able to greatly reduce the number 
of HwPCs for code region identification as exemplified in Table 10 for 
the GTX 1070.

As summarized in Fig. 22 stratified 5-fold cross-validation achieved 
average accuracy scores of 0.9999 for the four datasets, with near-
perfect results across precision, recall, F1-Score, and ROC AUC metrics. 
This exceptional accuracy suggests highly effective prediction despite 
significantly different available HwPCs between architectures (32 vs. 
167), although the small dataset size and limited number of code re-
gions may contribute to these results.

Finally, Table 11 summarizes code region-specific TP optimization 
across the four GPU architectures. In this case we are presenting av-
eraged prediction metrics for different code regions, since each con-
tains varying numbers of TPs. For each code region we also present the 
range of HwPCs required for the optimization of the TPs. The results 
demonstrate consistently strong performance across all architectures, 
with most code regions achieving high accuracy (> 0.81), precision (>
0.81), and recall (>0.81) values.

Pascal generally exhibits the strongest performance, particularly ev-
ident in the Reduction code region which achieves near-perfect met-
rics (0.9933 accuracy, F1 score of 0.9937). Turing shows good perfor-
mance with notable strength in N-body (0.9200 accuracy) and BiCG
(0.9307 accuracy) code regions. Ampere demonstrates solid perfor-
mance across most code regions, although with slightly lower accuracy 
in Convolution and Coulomb Sum compared to other architectures. Ada 
Lovelace shows improved performance in Coulomb Sum (0.8775 accu-
racy) compared to Ampere, while maintaining fair results for other code 
regions. Across all architectures, the Coulomb Sum kernel consistently 
presents the most challenging optimization case, due to the extremely 
small sample size (209–270 samples). Meanwhile, N-body and special-
ized code regions like Reduction and BiCG achieve the highest predic-
tion accuracy.

Notably, the ensemble requires only a modest number of HwPCs to 
achieve these predictions, with most code regions needing between 2–9 
HwPCs, indicating efficient feature utilization for accurate TP optimiza-
tion across different GPU generations. These results validate that the en-
semble methodology maintains robust optimization capabilities across 
diverse GPU architectures.

4.5.  Discussion of the evaluation results

The evaluation results demonstrated both strengths and limitations 
of the ensemble methodology for optimizing OpenMP code region TPs. 
The methodology predicted near-optimal number of threads across di-
verse code regions, with K-fold accuracy scores frequently exceeding 
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Table 9 
Common TPs by code region. Tile size is ticked when it can be configured differently than WG size. 
Abbreviations used: WG is work-group, LM is local memory, PM is private memory.

 Reg./Metr.  WG size  coarsen.  LM cach.  PM cach.  Tile size  unroll.  LM pad.  vector.
 Conv. × × × × × × × ×
 Coul. Sum × × × ×
 N-body × × × × × ×
 Transp. × × × × × ×
 GEMM × × × × × ×
 Reduc. × × ×
 BiCG × × × × ×
 Hotspot × × × × ×

Table 10 
List of the reduced HwPCs for 
the Pascal GPU.

 GTX 1080 (Pascal)
 inst_per_warp
 gld_requested_throughput
 gst_requested_throughput
 dram_read_throughput

Table 11 
Results for code region TP evaluation on different GPUs.
 GPU  Reg./Metr.  K-F Acc.  Pr.  Rc.  F1  R-A  Red.

Pascal

 Conv.  0.9024  0.9243  0.9061  0.9115  0.9832  2–8
 Coul. Sum  0.7930  0.7876  0.7819  0.7824  0.8272  2–8
 N-body  0.9166  0.9153  0.8976  0.8999  0.9670  2–8
 Transp.  0.8690  0.8633  0.8607  0.8597  0.9734  6–11
 GEMM  0.9035  0.9062  0.8972  0.8997  0.9546  3–11
 Reduc.  0.9933  0.9933  0.9952  0.9937  0.9999  2

Turing

 Conv.  0.8351  0.8694  0.8244  0.8383  0.9660  4–8
 Coul. Sum  0.7879  0.7820  0.7790  0.7783  0.8283  4–9
 N-body  0.9200  0.9224  0.9085  0.9129  0.9819  3–6
 Transp.  0.8411  0.8412  0.8393  0.8376  0.9588  5–8
 GEMM  0.8673  0.8652  0.8549  0.8585  0.9334  3–8
 BiCG  0.9307  0.9293  0.9273  0.9280  0.9286  3–9
 Hotspot  0.8859  0.8968  0.8860  0.8879  0.9740  4–8

Ampere

 Conv.  0.8163  0.8433  0.8101  0.8189  0.9621  3–7
 Coul. Sum  0.7244  0.7151  0.7156  0.7119  0.8071  2–7
 N-body  0.9126  0.9167  0.9008  0.9057  0.9783  3–6
 Transp.  0.8425  0.8433  0.8409  0.8391  0.9558  5–7
 GEMM  0.8455  0.8458  0.8323  0.8377  0.9238  4–7

Lovelace

 Conv.  0.8197  0.8421  0.8068  0.8142  0.9642  2–7
 Coul. Sum  0.8775  0.8718  0.8675  0.8676  0.9211  5–7
 N-body  0.9104  0.9104  0.9046  0.9069  0.9815  2–9
 Transp.  0.8166  0.8225  0.8102  0.8128  0.9495  4–7
 GEMM  0.8666  0.8669  0.8618  0.8633  0.9540  3–6
 BiCG  0.9235  0.9235  0.9235  0.9235  0.9254  2–9

0.90 and ROC AUC scores consistently exceeding 0.99. However, per-
formance varied across code regions, with operations such as Copy_E
and Matxvec showing lower accuracy scores (0.9260 and 0.9041, re-
spectively), indicating potential areas for improvement.

Thread affinity prediction demonstrated strong performance, with 
most code regions achieving accuracy scores greater than 0.95 while re-
quiring only 4–7 HwPCs, suggesting effective optimization with minimal 
overhead. Compared to OpenTuner, the ensemble methodology demon-
strated a crucial advantage in optimization time. While OpenTuner re-
quired higher optimization time-notably 32.91 s for MatrixMult and 
1min 33 s for MatrixMultNOpt-the ensemble methodology consistently 
completed optimization in slightly over 50 s across all evaluated code 
regions.

The methodology demonstrated versatility in handling other 
OpenMP optimization aspects, with strong performance in predicting 
scheduling policies and chunk sizes for the Collatz and Friends code 
regions (accuracies above 0.90). However, limitations include varying 

performance across code regions and certain complex computational 
patterns, indicating that the current HwPC set may not fully capture all 
relevant program behavior aspects. Results highlight a trade-off between 
optimization quality and speed, not always achieving the performance 
of search methods like OpenTuner, the ensemble methodology deliv-
ers substantial speedups with minimal optimization overhead, making 
it suitable for dynamic optimization scenarios requiring rapid adapta-
tion to changing code regions.

Application to NAS Parallel Benchmarks further validated the 
methodology’s effectiveness across scientific code regions, maintaining 
strong performance in code region identification with most code re-
gions showing accuracy above 0.90. Although the ensemble method-
ology generally achieved near-optimal speedups for number of threads 
and maintained reasonable accuracy in thread affinity prediction, its 
most significant advantage was computational efficiency. The ensem-
ble consistently completed optimization tasks in seconds compared to 
OpenTuner’s minutes to hours, representing execution time improve-
ments of up to ×30 while delivering comparable or superior optimiza-
tion quality. The GPU validation experiments on GTX 1070 (Pascal), 
RTX 2080 (Turing), RTX 3090 (Ampere), and RTX 4080 (Ada Lovelace) 
architectures demonstrated the methodology’s cross-platform effective-
ness across four GPU generations. TP optimization across multiple code 
regions showed consistently strong performance (>0.81 accuracy, pre-
cision, and recall), with Pascal achieving the highest performance, par-
ticularly in specialized kernels like Reduction (0.9933 accuracy). Tur-
ing and Ada Lovelace demonstrated competitive results, while Ampere 
showed solid performance across most kernels with some variations in 
specific code regions. The methodology required only 2–9 HwPCs for 
most code regions, validating efficient feature utilization and broad ap-
plicability across modern GPU architectures in heterogeneous comput-
ing environments.

Finally, we analyze the computational cost of our methodology. The 
initial reduction phase, which involves automated HwPC selection and 
model training, incurs a high but one-time cost per target architecture. 
The application execution phase, which occurs frequently, introduces 
minimal overhead. This overhead consists of HwPC data collection and 
model inference, and has been measured on the same platform used in 
the experimentation (Xeon E5-4620), obtaining:

• Code Region Identification:
– Collection: ∼3 it./region, ̄𝑡 = 0.1063𝑚𝑠/iter (𝜎 = 0.0279ms)
– Inference: ̄𝑡 = 0.5667𝑚𝑠 (𝜎 = 0.0270𝑚𝑠).

• Tuning Parameter (TP) Optimization:
– Collection: ∼2-3 it./region, ̄𝑡 = 0.0942𝑚𝑠/iter (𝜎 = 0.0293𝑚𝑠).
– Inference: ̄𝑡 = 0.8404𝑚𝑠 (𝜎 = 0.0122𝑚𝑠).

The results demonstrate that the runtime overhead of our method-
ology during application execution is low, making it suitable even for 
dynamic tuning.

5.  Related work

ML methodologies for characterizing code regions and tuning paral-
lel applications using HwPCs have gained significant attention recently, 
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spanning various approaches for application identification and parame-
ter optimization across CPU and GPU architectures.

The foundation for HwPC-based optimization lies in standardized 
access to performance monitoring capabilities. The PAPI project [7,8] 
established the foundational infrastructure by specifying a standard API 
for accessing HwPCs across diverse microprocessor architectures, pro-
viding cross-platform access to the small set of registers that count pro-
cessor events. This standardization enables correlation between source 
code structure and architectural mapping efficiency, facilitating perfor-
mance analysis and tuning across major HPC platforms. However, the 
reliability of HwPC measurements presents significant challenges for op-
timization methodologies. Weaver and McKee [24] demonstrated that 
HwPCs can exhibit coefficients of variation up to 1.07% under standard 
conditions, though careful experimental setup can reduce observed er-
rors to less than 0.002%. Their analysis revealed that subtle changes 
in experimental conditions can significantly impact results, highlight-
ing the importance of rigorous measurement protocols for HwPC-based 
optimization approaches.

For CPU-based parallel applications, several methodologies have 
emerged leveraging different aspects of performance data. The au-
thors in [2] predicted optimal OpenMP number of threads using Hw-
PCs and correlation analysis, addressing imbalanced datasets through 
Random Forest and binary classification. Alternatively, Yadav et al. 
[25] employed Random Forest Regression on static code features rather 
than HwPCs, analyzing loop characteristics to optimize thread num-
bers. OpenTuner [20] provides a broader optimization framework us-
ing ensembles of search techniques-including AUC Bandit Meta, dif-
ferential evolution, and hillclimbers-to efficiently explore configura-
tion spaces across computational domains. Dutta et al. [26] intro-
duced an OpenMP loop auto-tuning approach using Graph Neural 
Networks with flow-aware program representation and HwPC data
integration.

Beyond runtime optimization, HwPCs have proven valuable for 
compile-time improvements. Wicht et al. [27] developed a Profile-
Guided Optimization approach that samples Last Branch Record HwPCs 
to recreate source locations, achieving 83% of the gains obtained with 
instrumentation-based PGO while reducing profiling overhead from 
16% to only 1.06%.

For GPU-based applications, the optimization landscape presents 
unique challenges due to architectural diversity and varying data char-
acteristics. Filipovič et al. [28] introduced a method that leverages Hw-
PCs to navigate autotuning search spaces towards faster GPU implemen-
tations. Their approach builds problem-specific models from sampled 
tuning spaces that can be applied across various GPUs and input char-
acteristics. Similarly, the authors also introduced Kernel Tuning Toolkit 
[23], which combines static analysis and ML to optimize parallel code 
regions across programming models and architectures. Conversely, the 
Kernel Tuner [29] offers a Python-based tool supporting various pro-
gramming languages and search algorithms for both compile-time and 
runtime optimization.

While these studies demonstrate the potential of data-driven ap-
proaches for parallel computing optimization, current approaches face 
several limitations. The reliability concerns identified by Weaver and 
McKee [24] necessitate careful experimental design, while the infras-
tructure provided by PAPI enables standardized access but does not ad-
dress the challenge of selecting the most informative HwPCs from the 
hundreds available on modern processors. Furthermore, existing GPU 
optimization approaches, such as Filipovič et al. [28] focus on autotun-
ing convergence but do not provide comprehensive automated method-
ologies for identifying the most relevant HwPCs across diverse architec-
tures.

In contrast to the works discussed, the core contribution of our re-
search is a novel methodology to derive minimal sets of HwPCs for 
both code region identification and tuning parameter optimization. This 
methodology forms the foundation of our proposed end-to-end optimiza-
tion process, but its principled approach to feature selection is also di-

rectly applicable as a complement to other HwPC-based techniques, en-
abling them to identify a more relevant and efficient set of counters.

6.  Conclusions and future work

This paper presents an automated ML methodology for performance 
optimization in heterogeneous HPC environments that addresses criti-
cal challenges in utilizing HwPCs for application tuning. The proposed 
methodology integrates HwPC reduction, parallel code region character-
ization, and TP optimization while demonstrating efficiency and porta-
bility across architectures. The methodology advances automated per-
formance optimization by: (1) addressing HwPC quantity versus acces-
sibility through ML-based identification of minimal HwPC sets, reduc-
ing data collection overhead while maintaining precision; (2) tackling 
data interpretation using ML ensemble methodologies that automati-
cally process complex HwPC data patterns; and (3) enabling efficient TP 
optimization through fast automated analysis. Experimental validation 
across diverse hardware architectures and code regions demonstrates 
high accuracy in predicting optimal TP configurations, and architecture-
agnostic design with consistent performance across CPU and GPU plat-
forms.

Future research directions include: (1) Integration of the proposed 
methodology into a dynamic tuning environment that monitors execu-
tion of parallel applications, identifies code regions and adjusts their TPs 
continuously during runtime; (2) Verification of the proposed method-
ology for dynamically tuning a wider set of parallel applications dur-
ing runtime; (3) Define multi-objective optimization methodology that 
simultaneously tunes multiple TPs while balancing conflicting perfor-
mance objectives such as execution time, energy consumption, and re-
source utilization; (4) Evaluation of the methodology on non-NVIDIA 
GPU platforms (e.g., AMD GPUs) to assess the generalizability of the ap-
proach across diverse hardware vendors and generations; (5) Apply the 
proposed methodology for different purposes for GPU platforms, such as 
developing visualization tools that help developers understand how dif-
ferent TPs affect HwPC behavior and overall application performance; 
and (6) Scalability studies for large-scale systems. These directions aim 
to expand the methodology’s capabilities while maintaining automation, 
portability, and efficiency as HPC systems evolve in complexity and het-
erogeneity.
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