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ARTICLE INFO ABSTRACT

Handling Editor: Enrique Ferndndez Crop yields are increasingly threatened by intensifying droughts in southern Europe, yet the long-term, spatially
explicit quantification of yield response to agricultural drought remains limited. Remote sensing can address this
gap by providing continuous spatiotemporal estimates of crop water stress. This study quantified the response of
wheat yield to agricultural drought from 2003 to 2021 across four autonomous communities in Spain—La Rioja,
Castilla y Leén, Castilla-La Mancha, and Andalucia—using three drought indicators, including a meteorological
drought index, the Standardized Precipitation-Evapotranspiration Index (SPEI), and two remote sensing-based
indices, the Standardized Precipitation-Actual Evapotranspiration Index (SPET) and the Standardized Evapo-
transpiration Deficit Index (SEDI), derived from a physical model that estimates actual crop evapotranspiration
(ET, act)- Drought indices were aggregated at timescales from 1 to 12 months to identify the accumulation of
timescales most relevant to wheat yield variability in each region. Results indicated that correlations varied
spatially, with the strongest wheat yield—-drought correlation in La Rioja (r = 0.79 for SPEI], 0.62 for SPET, and
0.81 for SEDI) and the weakest in Andalucia (r ~ 0.33-0.35). Mediterranean regions (Andalucia and Castilla-La
Mancha) showed the strongest correlation at short timescales (1-3 month) during late spring, while temperate
continental regions (Castilla y Le6n and La Rioja) responded to longer timescales (3—-6 month) in early summer.
Among indices, SEDI exhibited the strongest and most consistent correlation with wheat yield variability. These
results highlight the value of integrating remotely sensed ET, 5. with ERA5 reanalysis for region-specific drought
monitoring, offering significant potential for advancing operational agricultural water management strategies
under increasing drought frequency and climate change.
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1. Introduction productivity for adopting agricultural water management strategies as
an effective way for drought mitigation impacts (Garcia-Leon et al.,

Agricultural drought poses a significant threat to crop productivity 2019; Mahadevan et al., 2024; Wilhite and Svoboda, 2000) as well as

and, ultimately, global food security, intensified by climate-driven water
scarcity and the escalating demands of a growing global population
(Leng and Hall, 2019; Marengo et al., 2017; Visser et al., 2024; Wang
and Ren, 2025; Wen et al., 2025). Over the past five decades,
drought-related yield reductions have contributed to global cereal pro-
duction losses ranging from 4 % to 13 % (Lobell and Di Tommaso, 2025).
Economically, agricultural gross domestic product (GDP) losses due to
natural disasters are estimated at 3-7.5 % annually, with drought
emerging as a leading driver and projected to account for nearly 35 % of
total agricultural losses by 2035 (OECD, 2025). These trends underscore
the critical need to understand drought impacts on agricultural

improving crop yield prediction frameworks (Anderson et al., 2016;
Jurecka et al., 2021).

This vulnerability is particularly pronounced in strategically
important crops such as wheat, the most extensively cultivated and
increasingly demanded cereal globally (Curtis, 2019). However, rising
temperatures and increasing frequency of drought events threaten
wheat productivity (Asseng et al., 2015). This challenge is particularly
significant in Spain, where wheat is predominantly grown under rainfed
systems and recurrent droughts associated with the Mediterranean
climate pose a major risk to yield stability (Ribeiro et al., 2019;
Vicente-Serrano et al., 2013, 2012; Wu et al., 2014). The magnitude of
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this problem becomes evident when considering that nearly 30 % of
Spain’s population already experiences permanent water stress, while
up to 70 % is affected by seasonal water stress (European Environmental
Agency (EEA) (EEA), 2024), increasingly constraining the expansion of
irrigated agriculture. This context underscores the urgent need to
improve our understanding of drought impacts on rainfed crop pro-
ductivity, which is essential for national water and food security (Qiu
et al., 2023; Rockstrom et al., 2010; Zampieri et al., 2017).

Understanding the dynamic of agricultural drought is fundamental
to addressing these challenges. Agricultural drought occurs when
meteorological drought—characterized by prolonged reduced precipi-
tation combined with elevated atmospheric evaporative demand—pro-
pagates into root-zone moisture deficits, constraining plant water
uptake, growth, and productivity (Wilhite, 2005). In water-limited re-
gions such as Spain, where agriculture is predominantly rainfed, pre-
cipitation variability plays a critical role in crop productivity
(Pena-Gallardo et al., 2019). Recent studies report a long-term decline in
total rainfall across Spain, accompanied by more frequent and intense
extreme precipitation events (Jiménez-Donaire et al., 2020). These shifts
in precipitation patterns are especially concerning rainfed agriculture,
which relies directly on rainfall (Rockstrom et al., 2010). Consequently,
intra-annual and interannual precipitation variability are intensifying
crop water stress and amplifying yield instability in Spain’s rainfed
agricultural systems.

Thus, to monitor and assess agricultural drought, numerous indices
have been developed with different conceptual foundations (Heim,
2002; Wilhite et al., 2014). These indicators are mainly based on
meteorological variables (Palmer, 1965; Vicente-Serrano et al., 2010,
2011; McKee et al., 1993; Stagge et al., 2014), hydrological components
(Anderson et al., 2011; Karl, 1986; Nalbantis and Tsakiris, 2009; Shukla
and Wood, 2008; Wu et al., 2021), and vegetation characteristics
(Alatorre et al., 2015; Brown et al., 2008; Xu et al., 2024; Z. Xu et al.,
2024). However, traditional meteorological indices present significant
limitations in fully capturing crop water stress. The Palmer Drought
Severity Index (PDSI), based on precipitation and temperature, is con-
strained by its fixed temporal resolution (Guttman, 1998; Palmer, 1965),
while the Standardized Precipitation Index (SPI) addresses timescale
limitations but relies solely on precipitation data (McKee et al., 1993).
Since drought encompasses both reduced precipitation and increased
temperature, which drives rising atmospheric evaporative demand
(Begueria et al., 2014; Stagge et al., 2017), precipitation alone may be
insufficient to capture crop water stress.

In order to address these limitations, the Standardized Precipitation-
Evapotranspiration Index (SPEI), developed by (Vicente-Serrano et al.,
2010), constitutes a multi-temporal index based on the climatic water
balance between precipitation and potential evapotranspiration (ET),
offering insights into both short- and long-term drought conditions
(Vicente-Serrano et al., 2012, 2013; Vicente-Serrano and Begueria,
2016). Initially, potential ET was estimated using the Thornthwaite
method, which relies on temperature and daylight hours. However,
Begueria et al. (2014) demonstrated that using reference ET (ET,) based
on the Penman-Monteith method provided a more physically robust
alternative, albeit requiring more meteorological inputs. Some studies
have further proposed using actual crop evapotranspiration (ET. act)
instead of ET,, arguing that the surface water balance (precipitation
minus ET. ) better reflects crop water availability (Richard G. Allen
etal., 1998; Peng et al., 2024; Perez et al., 2024). Accordingly, (Begueria
et al., 2014) suggested that replacing precipitation with ET. ¢ (ET,
minus ET. 5.t) may enhance the accuracy of drought assessments as it
better represents crop water deficits. Nevertheless, the extent to which
ET-based drought indices can explain crop yield-drought variability
requires further evaluation.

While ET, ot represents crop water loss under actual conditions by
integrating both biophysical and climatic variables, its spatial estima-
tion presents methodological challenges. Ground-based methods such as
lysimeters and eddy covariance towers provide only point-scale
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estimates that fail to capture the spatial heterogeneity of agricultural
areas (Sun et al., 2025), limiting their utility for regional drought
assessment and yield analysis. Remote sensing overcomes these limita-
tions by offering spatially continuous, long-term observations of land
surface temperature and biophysical variables, thus providing robust
drought monitoring across diverse spatial and temporal scales and
enhancing the accuracy of crop water stress assessments (Hu et al., 2020;
Schwartz et al., 2022; West et al., 2019). Leveraging satellite-derived
ET, 4t data thus offers a practical approach for assessing drought im-
pacts across Spain with diverse agricultural landscapes and climatic
zones.

Previous studies in Spain have explored the relationship between
drought indices and vegetation variability, providing valuable insights
while also revealing methodological gaps. Vicente-Serrano et al. (2006)
reported that the SPI at 3-4-month timescales was most strongly
correlated with NDVI and cereal yield in northeastern Spain.
Pena-Gallardo et al. (2019) demonstrated that drought indices
computed at multi-timescales better explained yield variability than
single-timescale indicators, while Garcia-Leon et al., (2019) found that
satellite-derived indices outperformed meteorological indices in
explaining spatial yield variability. Possega et al. (2023) similarly
demonstrated that agricultural drought indices, which account for soil
water balance, better captured vegetation responses than meteorolog-
ical indicators. Benito-Verdugo et al. (2023) also emphasized the role of
root-zone soil moisture in explaining cereal yield variability in the
center of Spain (Castilla y Leén and Castilla-La Mancha). Khlif et al.
(2023) assessed the performance of remote sensing-based drought
indices in relation to rainfed cereal crops in northeastern Spain, finding
that the Evapotranspiration Anomaly Index, derived from ET,, showed
the strongest correlation with wheat yield, reaching a correlation coef-
ficient of 0.75 in July. More recently, Bellvert et al. (2025) investigated
drought impacts on agricultural productivity in northeastern Spain
using a remote sensing-based ET. 5 model, demonstrating its effec-
tiveness in capturing spatial and temporal variations in crop yield.

Although previous studies have advanced our understanding of
drought dynamics, a notable gap remains in systematically evaluating
the long-term performance of both meteorological and remote sensing-
based drought indices across multiple timescales against farm-level
yield data in Spain. To address this gap, this study aims to calculate
three drought indices, the Standardized Precipitation Evapotranspira-
tion Index (SPEI), the Standardized Precipitation-Actual Evapotranspi-
ration Index (SPET) and the Standardized Evapotranspiration Deficit
Index (SEDI), through ET,, estimates from meteorological data (ERA5) as
well as ET, ,. estimates from a remote sensing modelling framework and
to assess them using field reports of rainfed wheat yield from 2003 to
2021 across four major wheat-producing autonomous communities in
Spain, with the objective of identifying the most suitable drought index
and the accumulation timescales to enhance agricultural drought
monitoring and inform regional agricultural water management
strategies.

Thus, to improve drought impact assessment and support more
resilient agricultural water management and yield forecasting, the main
study objectives are to (1) determine which drought index best explains
yield response to drought and (2) identify the accumulation timescales
that most effectively capture yield variability in each region.

2. Materials and methods
2.1. Wheat yield data

The ESYRCE dataset (Encuesta sobre Superficies y Rendimientos de
Cultivos — ESYRCE - https://www.mapa.gob.es/es/estadistica/temas/es
tadisticas-agrarias/agricultura/esyrce/) was used to extract the winter
rainfed wheat yield (including common and durum wheat). This survey
has recorded crop production at the farm level since 1990.

The ESYRCE survey employs a conglomerate stratified sampling
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approach, utilizing the Universal Transverse Mercator (UTM10) coor-
dinate system to construct 10 km x 10 km grid blocks, covering the
entire Spain. Each of these blocks is divided into 100 cells of 1 km
x 1 km. Squared segments of 500 m to 700 m in each cell are the basic
units to survey crop yields every year from May to August. In this
dataset, wheat data for 2001 and 2002 were missing. Hence, to align
with the ET, estimated from meteorological data (ERA5) and ET¢ act
dataset calculated using remote sensing and meteorological data (Aqua
MODIS images and ERAS5 meteorological data, see Bozorgi et al., 2024),
this study covered the period from 2003 to 2021.

Wheat is one of the most widespread crops in Spain, intensively
located at the central plateaus (Garcia-Leon et al., 2019; Marti-
nez-Moreno et al., 2023). Accordingly, four Spanish autonomous com-
munities were selected for this study (Fig. 1): La Rioja, Castilla y Leon,
Castilla-La Mancha, and Andalucia where wheat represents one of the
most significant crops (Martinez-Moreno et al., 2023). In the study area,
winter wheat sowing and harvesting periods vary across cultivars and
regions, typically spanning from late November for sowing to July for
harvesting.

2.2. Actual crop evapotranspiration (ET; qct)

Monthly ET, 5.t was derived by integrating daily estimates from the
Two-Source Energy Balance (TSEB) model, implemented at 1 km spatial
resolution using MODIS Aqua observations combined with ERA5
meteorological data. The TSEB framework partitions the surface energy
balance into soil and canopy components, estimating latent heat flux
(LE) as the residual of available energy—net radiation (Rn) minus soil
heat flux (G)—and sensible heat flux (H). This approach leverages
remotely sensed land surface temperature, which integrates the thermal
contributions of vegetation and soil and is therefore well-suited for
mixed agricultural landscapes. Vegetation indices were incorporated to
retrieve key biophysical variables, while land cover products were used
to specify vegetation properties and surface characteristics required by
the model. Further methodological details are provided in (Bozorgi
et al., 2024) and in the supplementary materials.

8°0,IO’W

3°O.]OW
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2.3. Reference evapotranspiration (ET,)

Daily ET, was computed using the FAO-56 Penman-Monteith
equation (Allen et al., 1998), driven by ERA5 meteorological data
(incoming shortwave radiation, air temperature, actual water vapor
pressure, atmospheric pressure and wind speed) at 0.25° spatial reso-
lution. The FAO-56 formulation was applied with aerodynamic and
surface resistances outlined in the FAO-56 guidelines. The methodology
is detailed in (Bozorgi et al., 2024). Daily ET, estimates were subse-
quently aggregated to obtain monthly ET, values.

2.4. Precipitation

Daily precipitation data were obtained from the Spanish State
Meteorological Agency (AEMET), which operates over 2000 stations
nationwide. The ROCIO (Rejilla Observacional con Interpolacién
()ptima) method (Rodriguez et al., 2003) was used to interpolate station
observations into a 5 km gridded dataset, applying optimal interpolation
and built-in AEMET quality control checks (e.g., internal consistency,
temporal coherence, and range filtering).

2.5. Quality assurance and quality control (QA/QC)

QA/QC procedures were applied to all datasets and model outputs to
ensure methodological representativeness and reliability (Figure S6).

To evaluate the stability of the wheat yield data, we implemented a
bootstrap resampling procedure for each autonomous community
following the approach described by Toma et al. (2017). This analysis
confirmed that the dataset was statistically representative for every re-
gion during the study period.

ET. act retrieved from the TSEB model using MODIS Aqua and ERA5
was validated against 11 eddy covariance (EC) flux towers from the
FLUXNET2015 and ICOS Warm Winter 2020 datasets. The EC data was
filtered to retain days with mean energy balance closure of approxi-
mately 1. The comparison yielded a mean bias of 1.16 mm.day™ , an
average root mean square error (RMSE) of 1.76 mm.day™! and a corre-
lation coefficient (r) of 0.52. Detailed evaluations are presented in the
supplementary material (Figure S3 and Tabel S1).

To ensure reliable estimation of ET. o high-end biophysical
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Fig. 1. Study area location of the four selected Spanish autonomous communities with spatial distribution of wheat dataset (black dots).
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variables such as LAI and FPAR from the MODIS LAI/FPAR Collection 6
product were used (Yan et al., 2016). Temporal gap-filling and residual
noise removal were applied on vegetation indices using TIMESAT
Savitzky-Golay filtering method and the quality control layers
embedded in MODIS products (Eklundh and Jonsson, 2017) and
following (Gao et al., 2008) methodology, thus improving the reliability
of satellite-derived vegetation metrics.

ET, was computed using the FAO-56 Penman-Monteith (PM)
formulation (Allen et al., 1998) with ERA5 meteorological data
(incoming shortwave radiation, air temperature, actual water vapor
pressure, atmospheric pressure and wind speed). Incoming shortwave
radiation was corrected using a digital elevation model (DEM) and the
MODIS MCD19A2 aerosol optical depth product. Solar zenith angle was
derived from MODIS Aqua acquisition times to compute instantaneous
shortwave radiation and ET,, which were upscaled to daily values
(Bozorgi et al., 2024). The reliability of ERA5-derived ET, was evaluated
against 16 weather station observations in Spain (Figure S2).

Assessing ERA5-derived ET, against weather stations showed a mean
bias of 0.36 mm.day™', an RMSE of 0.84 mm.day" and r of 0.95
(Figure S4). These results compare well with previous evaluations of
ERAS5-based ET, across diverse climatic regions reported RMSE values of
0.57-0.90 mm.day-1 (Vanella et al., 2022; Ippolito et al., 2024; Xu et al.,
2024).

The accuracy of wind speed from ERA5, previously identified as the
variable with the largest bias (Aguirre-Garcia et al., 2021; Vanella et al.,
2022), was evaluated against weather stations indicated a mean bias of
—2.31 m-s?, an average RMSE of 3.22 m-s™ , and r of 0.65 (Figure S5).

The ROCIO daily precipitation dataset was previously validated
against 64 independent meteorological stations, yielding a mean RMSE
< 4 mm.day! and a bias near 0 mm.day™' (Peral Garcia et al., 2017),
confirming its reliability for regional-scale hydrological analyses.

2.6. Drought indices

2.6.1. Standardized precipitation-evapotranspiration index (SPEI)

The Standardized Precipitation-Evapotranspiration Index (SPEI)
developed by Vicente-Serrano et al. (2010), incorporates precipitation
(P) and ET, retrieved from ERA5 data to represent climatic water bal-
ance anomalies. The index is calculated as the difference between
monthly precipitation and ET,. SPEI has been widely applied in evalu-
ating drought impacts on crop yields (Pena-Gallardo et al., 2019; Sosa
et al., 2025; Tian et al., 2018; Vicente-Serrano et al., 2012; Zhao et al.,
2023).

2.6.2. Standardized precipitation-actual evapotranspiration (SPET)

The Standardized Precipitation-Actual Evapotranspiration Index
(SPET) developed by Padron et al. (2020) assesses drought by
computing anomalies in the difference between precipitation and ET 4t
retrieved from remote sensing data. Numerous studies have highlighted
the strong link between ET. 4 and crop productivity (Bellvert et al.,
2025; Tadesse et al., 2015), underscoring its importance in assessing
drought impacts.

2.6.3. Standardized evapotranspiration deficit index (SEDI)

The Standardized Evapotranspiration Deficit Index (SEDI) developed
by Vicente-Serrano et al. (2018) quantifies crop water stress based on
the standardized monthly water balance as the difference between ET,
act and ET,. This formulation, also expressed as an ET, ,.t/ET, ratio, has
been widely used to assess plant water stress and drought impacts
(Anderson et al., 2016; Jurecka et al., 2021; Kim and Rhee, 2016; Mishra
et al., 2013; Sepulcre-Canto et al., 2014; Stephenson, 1998).

2.6.4. Drought indices calculation

To identify the most responsive drought index for each region and to
capture the influence of antecedent precipitation and soil-moisture
conditions on wheat yield, drought indices were calculated at 1- to 12-
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month timescales over a harvest-to-harvest, ranging from the 1-month
timescale in August to the 12-month timescales in July. Additionally,
to ensure statistical robustness, all indices were fitted to a three-
parameter log-logistic distribution following (Begueria et al., 2014;
Vicente-Serrano et al., 2010). The cumulative distribution function of
the log-logistic distribution is:

a 1777
1+{ } } &)
-

where x represents the water-balance series (D), and a, # and y are the
scale, shape and location parameters that are estimated from data.
The D series for each index were computed as:

fl) =

Dspgr = P—ET, (2
Dspgr = P — ET¢qet 3
DSEDI = ETcact - ETa (4)

Standardized values were obtained using the classical Abramo-
witz-Stegun approximation to the standard normal distribution,
following Vicente-Serrano et al. (2010). All drought index calculations
were performed in RStudio.

2.7. Correlation analysis

To isolate the climatic effects in yield variations, the yield time series
were detrended to remove the effects of non-climatic factors such as
technological improvements and increased mechanization (Potopova
et al., 2015; Tian et al., 2018), following (Lobell et al., 2011). For each
community i, a quadratic polynomial trend was fitted to the time series
of observed wheat yield (Eq. 5):

y’iT =Yic— yi[ )

where y;; is detrended yield, y; is the observed yield, and y,, is the
mean of fitted value from the quadratic polynomial trend model.

The standardized yield residual series (SYRS) was then derived using
Eq. 6:

SYRS _Yir— M )
Si

where, y; and §; are the mean and standard deviation, respectively, of

detrended yield for the community 4.

The yield data was tested for normality using the Kolmogor-
ov-Smirnov (K-S) test (Reschenhofer, 1997). Since the yield data did
not meet the assumption of normality distribution, the non-parametric
Spearman’s rank correlation coefficient (p) was employed to quantify
the correlation between drought indices and SYRS (Eq. 7):

6> d

i -1 ) 7

where d; represents the difference in rank between paired observa-
tions and n is the total number of observations. The statistical correla-
tion significance was set at the 95 % level.

3. Results
3.1. Statistical distribution of wheat yield

Bootstrapping confirmed adequate representativeness of the avail-
able data for all four study regions. The empirical cumulative distribu-
tion functions (ECDFs) of standardized wheat yield residuals across La
Rioja, Castilla y Ledn, Castilla-La Mancha, and Andalucfa (Fig. 2)
revealed marked inter-regional differences in yield variability. Andalu-
cia displayed flatter ECDFs, indicating wider yield variability likely
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Fig. 2. Yield distribution for the period 2003-2021 within each selected autonomous community in Spain.

driven by climatic events and episodic droughts, whereas Castilla-La
Mancha and Castilla y Ledn exhibited steeper slopes reflecting more
stable yield productivity.

The Kolmogorov-Smirnov (K-S) test rejected the null hypothesis of

normality distribution for all regions (p < 0.05). This statistical asym-
metry made it necessary to use non-parametric and distribution-free

approaches in evaluating yield—drought
zones.
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3.2. Spatial patterns of interannual precipitation variability exposure to hydrological extremes such as prolonged droughts and
episodic flooding. Conversely, La Rioja showed relatively stable pre-
The temporal variability of precipitation across four Spanish auton- cipitation distribution with fewer extreme values, indicating a more
omous communities—La Rioja, Castilla y Ledn, Castilla-La Mancha, and moderate hydroclimate regime. The pronounced north-south gradient
Andalucia—revealed pronounced seasonal patterns (Fig. 3), with in precipitation variability underscored the spatial heterogeneity of
notably lower precipitation during the summer (June-August) and Spain’s hydroclimatic regimes, emphasizing the need for spatially
higher levels during spring (March-May) and late autumn (October and explicit drought-impact assessment and region-specific agricultural
November). water management strategies.

Andalucia displayed the greatest interannual variability by a large
spread and frequency of outliers, indicating recurrent alternation be-
tween anomalously dry and wet years. This pattern reflected the region’s
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Fig. 4. Correlation patterns of the standardized wheat yield residuals series (SYRS) for the period 2003-2021 with SPEI, the standardized precipitation-
evapotranspiration index; SPET, the standardized precipitation-actual evapotranspiration index; and SEDI, the standardized evapotranspiration deficit index, in
1-12 month timescales within each selected autonomous community in Spain. The color scale represents Spearman’s correlation, and the dots show statistically
significant correlations at the 95 % significant level (p < 0.05).
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3.3. Spatial and temporal patterns of drought-wheat yield response

Drought-yield relationships exhibited clear spatial and temporal
heterogeneity across Spain’s main wheat-producing regions (Fig. 4). In
Mediterranean areas such as Andalucia and Castilla-La Mancha, yield
variability is most correlated at short timescales (1-3-month accumu-
lation) peaking in late spring. In contrast, in more temperate continental
regions (Castilla y Ledn and La Rioja), yield variability correlated more
strongly with longer drought periods (3-6-month accumulation) in early
summer. These patterns highlight the need for region-specific drought
monitoring strategies that account for local climatic regimes and agro-
nomic heterogeneity.

Among the four regions, La Rioja displayed the highest correlations
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between drought indices and yield, with r = 0.81 for SEDI (July, six-
month timescale), r = 0.79 for SPEI (July, seven-month timescale),
and r = 0.62 for SPET (February, two-month timescale). The consistent
performance of all indices likely reflects the relatively homogeneous
climatic and land management conditions of this region. In Castilla y
Ledn, notable correlations were observed for SEDI in June (r = 0.54,
three-month timescale), SPEI in July (r = 0.51, five-month timescale),
and SPET in May (r = 0.36, six-month timescale). In northern Spain,
SEDI generally more outperformed other indices, suggesting that inte-
grating biophysical and climate variables—such as solar radiation,
vapor pressure, and wind speed—enhances crop water availability
estimation and yield-drought response.

In Castilla-La Mancha, the strongest relationships (r = 0.45-0.49)

SPEI SPET SEDI
—o— July 6 —o— Feb_2 —— July 6
2 2 2 2 2
2 2 3
[ 1 1 [ 14 1 [ 1 ~ 1
o x . x H x -
59 . [ * )
-1 2 o 2 -] g
ZEO o £ £ 0 o & £0 o £
2 f "] _E (1] 5 n
2 g 2
3-1 -1 811 -1 31 -1
a Q o
2 -2 -2 -2 -2 -2
—o— July 5 —o— May 6 —o— June_3
2 2 2 2 2
] [ @
3 ) 3
£ = = P |
3 [ 1 1 [ 1 1 [ 1 1
3 o 3 o 3 ”
mEO o £ £0 0 & £0 o £
=< ] = “© = w
%o ) i
© 3 _ 3 o) _ S . _
V) -1 1 8 1 1 2 1 1
() a 1)
2 -2 21 -2 2 -2
—e— May 3 —e— May 3 —e— May 2
2 2 2 2 2
-] [ o
L3 3 3
g ,—; 1 1 E 14 1 § 1 1
]
x x x
- 2 3 g 3 2
feo o £ £0 o £ €0 o £
© £ @ = @ = v
2% % )
"3l -1 31 -1 31 -1
FB- 2 2
- a ()
2 -2 21 -2 2 -2
—e— March_1 —e— March_1 —e— May 3
2 2 2 2 2
2 2 2
[ 1 w1 1 c 1 1
© > > >
§§ 0 E 0 .E' ")
®E O o £ EO o £ £0 o £
T n = 0 = n
a5 B )
31 -1 3-1 -1 3-1 -1
4 2 2
a a o
-2 -2 2 -2 -2 -2
2005 2010 2015 2020 2005 2010 2015 2020 2005 2010 2015 2020
Year Year Year
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occurred for SEDI in May (two-month timescale) and for SPEI and SPET
in May (three-month timescale), indicating limited differentiation
among indices. This suggests that additional variables, such as soil
properties or agricultural management, may be required to better
represent crop water stress in this semi-arid region. Similarly, in
Andalucia, correlations were relatively weak (r = 0.33-0.35), peaking
for SPEI and SPET in March (one-month timescale) and for SEDI in May
(three-month timescale). These results from high spatial variability in
cropping systems, cultivars, and management practices, which obscure
direct drought-yield linkages.

3.4. Drought-wheat yield interannual variation

The interannual variation of the drought indices and wheat yield was
shown in Fig. 5, based on the highest correlations observed in Fig. 4 in
each drought index.

Temporal co-variation between drought indices and wheat yield
demonstrated that all indices captured interannual yield fluctuations to
varying degrees. In La Rioja, yield reductions in 2009, 2012, and 2017
were well represented by all indices, with SEDI providing the most ac-
curate estimation of yield loss magnitude. However, in 2007 and 2008,
drought indices indicated extremely wet conditions (values > +1.5),
while yield anomalies were only moderately positive (~0.5), suggesting
that non-climatic limitations—such as disease and pest—may have
constrained yield potential during those years.

In Castilla y Ledn, yield deficits observed in 2003, 2004, and 2017
closely corresponded with negative drought index values, with SEDI
outperforming in capturing both the occurrence and severity of drought-
induced yield reductions.

In Castilla-La Mancha, drought indices effectively reflected yield
losses during 2003, 2005, and 2017, with SEDI best reproducing both
the direction and magnitude of yield variability. Nevertheless, in years
such as 2009 and 2011, all indices failed to represent observed yield
anomalies, implying that additional agronomic information, particu-
larly soil fertility, can improve wheat-yield response accuracy.

In Andalucia, negative yield anomalies in 2005, 2012, 2019, and
2021 coincided with negative signals in all drought indices, although the
magnitude of yield loss was only moderately reproduced. This reduced
correlation likely reflects the region’s pronounced heterogeneity in
management practices, soil conditions, and cultivar selection, which can
obscure direct climate-yield linkages.

Regional differences in the agreement between drought indices and
wheat yield can be attributed to climatic contrasts. La Rioja and Castilla
y Ledn experience humid-subtropical and warm-summer Mediterranean
climates, where precipitation and temperature variability jointly regu-
late crop water availability. Conversely, Andalucia and Castilla-La
Mancha are dominated by hot-summer Mediterranean and semi-arid
conditions, where crop water stress interacts with management and
cultivar differences. These climatic and agronomic disparities largely
explain the heterogeneous drought-yield responses observed across
Spain and emphasize the need for region-specific drought impact as-
sessments for agricultural water management.

4. Discussion

4.1. Monitoring regional drought dynamics and implications for
agricultural water management

Regional heterogeneity between drought indices and wheat yield
underscored the necessity of spatially explicit agricultural drought
monitoring and adaptive agricultural water management across Spain’s
diverse agroclimatic regions. The distinct climatic gradients -from the
humid temperate north to the semi-arid south- generate contrasting
yield response to agricultural drought.

In the northern temperate zones, yield variability was strongly
coupled with hydroclimatic drivers, suggesting that drought indices can

Agricultural Water Management 323 (2026) 110092

effectively serve as proxies for agricultural drought monitoring. These
findings align with a previous study (Pena-Gallardo et al., 2019) that
showed strong correlations between drought indices and yield in the
north and central Spain. Therefore, understanding climate-driven yield
variability provides a valuable foundation for enhancing yield predic-
tion models and informing strategic agricultural management decisions
in these regions.

Conversely, southern semi-arid regions (Andalucia and Castilla-La
Mancha) exhibited weaker yield-drought correlation, highlighting the
dominance of management and cultivar selection. The prevalence of
extreme precipitation events in these areas further complicates water
management. These hydroclimatic irregularities amplify yield vari-
ability and necessitate proactive soil moisture monitoring networks,
irrigation optimization, and drought forecasting in these areas.

The superior performance of SEDI, particularly in northern Spain,
demonstrates that remote sensing—derived ET 4.t can capture the actual
crop water availability and crop water stress. SEDI integrates remotely
sensed ET. 5t with ERAS5 reanalysis data, thereby providing a more
direct measure of agricultural drought intensity. This aligns with the
findings of Bellvert et al. (2025) who emphasized the potential of remote
sensing and ET ,t for monitoring crop water deficits in Mediterranean
agroecosystems. However, this study advances previous research by
identifying long-term yield-drought interactions across multiple agro-
climatic zones revealed the spatially explicit of wheat yield responses to
drought, demonstrating that regional differences significantly influence
the magnitude and distribution of drought impacts on wheat yield.

Additionally, while previous studies identified May-June as a high-
risk period for drought impacts on cereal crops (Khlif et al., 2023),
our results show that the accumulation timescales-not only the calendar
month- critically determines yield response to drought which was varied
regionally. In Andalusia and Castilla-La-Mancha yield variability was
most strongly correlated with short timescales that peak in late spring
(1-3-month accumulation; Fig. 4), whereas in Castilla y Leén and La
Rioja the strongest correlations occurred for longer timescales, in early
summer (3-6-month accumulation; Fig. 4). These contrasting timescales
are consistent with regional differences in wheat phenology and
growing-season length. These findings are consistent with
Pena-Gallardo et al. (2019), which demonstrated that wheat yield is
particularly vulnerable to spring droughts across Spain at both short
(1-3 months) and medium (4-6 months) timescales.

This insight reinforces the need for dynamic drought monitoring
systems leveraging remote sensing to deliver continuous spatiotemporal
data. Such systems are essential for enabling policymakers and farm
managers to transition from reactive drought responses toward antici-
patory, risk-based decision-making frameworks.

Ultimately, the study contributes to a refined understanding of
spatially differentiated drought-yield relationships across Spain, offer-
ing region-specific drought mitigation strategies and adaptive agricul-
tural water management under climate change.

4.2. Integration of drought indices into yield prediction and crop
modelling frameworks

Drought indices demonstrate the capacity to explain spatial and
temporal variations in wheat yield, reinforcing their potential utility in
yield prediction systems and crop modelling calibration. Given that
drought remains the principal constraint on cereal production particu-
larly in semi-arid Mediterranean agroecosystems (Asseng et al., 2015;
Vadez et al., 2024), the spatial and temporal patterns identified in this
study provide a foundation for improving both statistical and
process-based yield prediction models.

Integrating drought indices—particularly SEDI—into crop models
can enhance the parameterization of crop water stress functions and
improve simulation accuracy under variable climatic regimes. More-
over, these indices can support early-warning systems that translate
observed anomalies into yield forecasts, contributing directly to food
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security and strategic water allocation planning.

The relationship between drought indices and yield variability is also
shaped by factors that co-vary with water stress, including soil charac-
teristics, nutrients, pest and disease pressure, and management in-
tensity. These co-drivers are particularly influential in southern Spain,
where more heterogeneous management regimes amplify the yield
response to drought (Navarro-Cerrillo et al., 2022; Yang et al., 2024).

In this context, the study’s results contribute to the operationaliza-
tion of data-driven agricultural water management, bridging the gap
between remote sensing science and decision-making.

4.3. Limitation and perspective

The coarse spatial resolution of both ET, and ET, 4 products likely
contributed to the low correlations observed between drought indices
and wheat yield. ET, 4t derived from Aqua MODIS data at 1 km reso-
lution introduces sub-pixel heterogeneity, as individual pixels may
encompass multiple land-cover types. Consequently, ET. o estimates
may represent aggregated evaporation and transpiration from mixed
vegetation rather than crop-specific fluxes. To mitigate this trade-off,
data-fusion techniques that combine the high spatial data from Land-
sat/Sentinel imagery with the temporal density of MODIS are recom-
mended to improve ET, ,¢ estimation accuracy.

Meteorological forcing data with finer, agronomically relevant
spatial resolution, particularly for wind speed, would further strengthen
drought indices’ performance. However, such high-resolution and
continuous datasets are not yet available. As a result, ERA5 remains the
only practical and consistent source for spatially explicit ET, and
drought indicators.

Additionall, incorporating sub-monthly drought indices (e.g., pentad
or 10-day composites) might allow capturing flash droughts and heat-
wave impacts on crop productivity.

Finally, integrating information on soil characteristics, crop man-
agement practices, cultivar selection, and sowing and harvest dates will
support region-specific analysis of drought impacts on wheat yield.

5. Conclusions

This study demonstrates that the Standardized Evapotranspiration
Deficit Index (SEDI) provided the most robust and spatially consistent
representation of drought-wheat yield relationships. Its strong perfor-
mance highlights the effectiveness of integrating remotely sensed crop
evapotranspiration (ET. ,y) with ERA5 reanalysis data to produce
continuous, spatially explicit drought monitoring, offering significant
potential for advancing operational agricultural water management
strategies.

Spatial analysis revealed pronounced geographical contrasts. In the
northern regions, correlations between drought indices and wheat yields
were consistently stronger. By contrast, the greater environmental and
management variability across southern regions weakened these re-
lationships, making drought impacts more difficult to discern. Such
patterns highlight the inherent challenges of evaluating drought effects
in heterogeneous dryland systems, underscoring the importance of
concentrating analyses in areas with relatively uniform land character-
istics, such as La Rioja, where drought-yield linkages can be identified
with greater reliability.

Wheat-yield variability was most correlated to soil-moisture deficits
from late winter to spring, but the relevant accumulation timescales
differed by climate zone. Mediterranean regions such as Andalucia and
Castilla-La Mancha responded to short timescales (1-3 months),
whereas temperate continental regions including Castilla y Leén and La
Rioja were influenced by longer timescales (3—6 months). These con-
trasting drought-wheat yield responses indicate that drought indicators
must be region-specific to support accurate drought monitoring and
water management strategies.

Future research should expand drought-yield assessment by
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incorporating higher spatial and temporal resolution of drought indices
with soil characteristics, cultivar data, and sowing and harvest dates to
better represent local agronomic drivers. Integrating these variables will
further enhance the operational relevance of drought monitoring tools
for climate-resilient agricultural water management.
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