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A B S T R A C T

Crop yields are increasingly threatened by intensifying droughts in southern Europe, yet the long-term, spatially 
explicit quantification of yield response to agricultural drought remains limited. Remote sensing can address this 
gap by providing continuous spatiotemporal estimates of crop water stress. This study quantified the response of 
wheat yield to agricultural drought from 2003 to 2021 across four autonomous communities in Spain—La Rioja, 
Castilla y León, Castilla-La Mancha, and Andalucía—using three drought indicators, including a meteorological 
drought index, the Standardized Precipitation-Evapotranspiration Index (SPEI), and two remote sensing-based 
indices, the Standardized Precipitation-Actual Evapotranspiration Index (SPET) and the Standardized Evapo
transpiration Deficit Index (SEDI), derived from a physical model that estimates actual crop evapotranspiration 
(ETc act). Drought indices were aggregated at timescales from 1 to 12 months to identify the accumulation of 
timescales most relevant to wheat yield variability in each region. Results indicated that correlations varied 
spatially, with the strongest wheat yield–drought correlation in La Rioja (r = 0.79 for SPEI, 0.62 for SPET, and 
0.81 for SEDI) and the weakest in Andalucía (r ≈ 0.33–0.35). Mediterranean regions (Andalucía and Castilla-La 
Mancha) showed the strongest correlation at short timescales (1–3 month) during late spring, while temperate 
continental regions (Castilla y León and La Rioja) responded to longer timescales (3–6 month) in early summer. 
Among indices, SEDI exhibited the strongest and most consistent correlation with wheat yield variability. These 
results highlight the value of integrating remotely sensed ETc act with ERA5 reanalysis for region-specific drought 
monitoring, offering significant potential for advancing operational agricultural water management strategies 
under increasing drought frequency and climate change.

1. Introduction

Agricultural drought poses a significant threat to crop productivity 
and, ultimately, global food security, intensified by climate-driven water 
scarcity and the escalating demands of a growing global population 
(Leng and Hall, 2019; Marengo et al., 2017; Visser et al., 2024; Wang 
and Ren, 2025; Wen et al., 2025). Over the past five decades, 
drought-related yield reductions have contributed to global cereal pro
duction losses ranging from 4 % to 13 % (Lobell and Di Tommaso, 2025). 
Economically, agricultural gross domestic product (GDP) losses due to 
natural disasters are estimated at 3–7.5 % annually, with drought 
emerging as a leading driver and projected to account for nearly 35 % of 
total agricultural losses by 2035 (OECD, 2025). These trends underscore 
the critical need to understand drought impacts on agricultural 

productivity for adopting agricultural water management strategies as 
an effective way for drought mitigation impacts (García-León et al., 
2019; Mahadevan et al., 2024; Wilhite and Svoboda, 2000) as well as 
improving crop yield prediction frameworks (Anderson et al., 2016; 
Jurečka et al., 2021).

This vulnerability is particularly pronounced in strategically 
important crops such as wheat, the most extensively cultivated and 
increasingly demanded cereal globally (Curtis, 2019). However, rising 
temperatures and increasing frequency of drought events threaten 
wheat productivity (Asseng et al., 2015). This challenge is particularly 
significant in Spain, where wheat is predominantly grown under rainfed 
systems and recurrent droughts associated with the Mediterranean 
climate pose a major risk to yield stability (Ribeiro et al., 2019; 
Vicente-Serrano et al., 2013, 2012; Wu et al., 2014). The magnitude of 
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this problem becomes evident when considering that nearly 30 % of 
Spain’s population already experiences permanent water stress, while 
up to 70 % is affected by seasonal water stress (European Environmental 
Agency (EEA) (EEA), 2024), increasingly constraining the expansion of 
irrigated agriculture. This context underscores the urgent need to 
improve our understanding of drought impacts on rainfed crop pro
ductivity, which is essential for national water and food security (Qiu 
et al., 2023; Rockström et al., 2010; Zampieri et al., 2017).

Understanding the dynamic of agricultural drought is fundamental 
to addressing these challenges. Agricultural drought occurs when 
meteorological drought—characterized by prolonged reduced precipi
tation combined with elevated atmospheric evaporative demand—pro
pagates into root-zone moisture deficits, constraining plant water 
uptake, growth, and productivity (Wilhite, 2005). In water-limited re
gions such as Spain, where agriculture is predominantly rainfed, pre
cipitation variability plays a critical role in crop productivity 
(Peña-Gallardo et al., 2019). Recent studies report a long-term decline in 
total rainfall across Spain, accompanied by more frequent and intense 
extreme precipitation events (Jiménez-Donaire et al., 2020). These shifts 
in precipitation patterns are especially concerning rainfed agriculture, 
which relies directly on rainfall (Rockström et al., 2010). Consequently, 
intra-annual and interannual precipitation variability are intensifying 
crop water stress and amplifying yield instability in Spain’s rainfed 
agricultural systems.

Thus, to monitor and assess agricultural drought, numerous indices 
have been developed with different conceptual foundations (Heim, 
2002; Wilhite et al., 2014). These indicators are mainly based on 
meteorological variables (Palmer, 1965; Vicente-Serrano et al., 2010, 
2011; McKee et al., 1993; Stagge et al., 2014), hydrological components 
(Anderson et al., 2011; Karl, 1986; Nalbantis and Tsakiris, 2009; Shukla 
and Wood, 2008; Wu et al., 2021), and vegetation characteristics 
(Alatorre et al., 2015; Brown et al., 2008; Xu et al., 2024; Z. Xu et al., 
2024). However, traditional meteorological indices present significant 
limitations in fully capturing crop water stress. The Palmer Drought 
Severity Index (PDSI), based on precipitation and temperature, is con
strained by its fixed temporal resolution (Guttman, 1998; Palmer, 1965), 
while the Standardized Precipitation Index (SPI) addresses timescale 
limitations but relies solely on precipitation data (McKee et al., 1993). 
Since drought encompasses both reduced precipitation and increased 
temperature, which drives rising atmospheric evaporative demand 
(Beguería et al., 2014; Stagge et al., 2017), precipitation alone may be 
insufficient to capture crop water stress.

In order to address these limitations, the Standardized Precipitation- 
Evapotranspiration Index (SPEI), developed by (Vicente-Serrano et al., 
2010), constitutes a multi-temporal index based on the climatic water 
balance between precipitation and potential evapotranspiration (ET), 
offering insights into both short- and long-term drought conditions 
(Vicente-Serrano et al., 2012, 2013; Vicente-Serrano and Beguería, 
2016). Initially, potential ET was estimated using the Thornthwaite 
method, which relies on temperature and daylight hours. However, 
Beguería et al. (2014) demonstrated that using reference ET (ETo) based 
on the Penman-Monteith method provided a more physically robust 
alternative, albeit requiring more meteorological inputs. Some studies 
have further proposed using actual crop evapotranspiration (ETc act) 
instead of ETo, arguing that the surface water balance (precipitation 
minus ETc act) better reflects crop water availability (Richard G. Allen 
et al., 1998; Peng et al., 2024; Perez et al., 2024). Accordingly, (Beguería 
et al., 2014) suggested that replacing precipitation with ETc act (ETo 
minus ETc act) may enhance the accuracy of drought assessments as it 
better represents crop water deficits. Nevertheless, the extent to which 
ET-based drought indices can explain crop yield-drought variability 
requires further evaluation.

While ETc act represents crop water loss under actual conditions by 
integrating both biophysical and climatic variables, its spatial estima
tion presents methodological challenges. Ground-based methods such as 
lysimeters and eddy covariance towers provide only point-scale 

estimates that fail to capture the spatial heterogeneity of agricultural 
areas (Sun et al., 2025), limiting their utility for regional drought 
assessment and yield analysis. Remote sensing overcomes these limita
tions by offering spatially continuous, long-term observations of land 
surface temperature and biophysical variables, thus providing robust 
drought monitoring across diverse spatial and temporal scales and 
enhancing the accuracy of crop water stress assessments (Hu et al., 2020; 
Schwartz et al., 2022; West et al., 2019). Leveraging satellite-derived 
ETc act data thus offers a practical approach for assessing drought im
pacts across Spain with diverse agricultural landscapes and climatic 
zones.

Previous studies in Spain have explored the relationship between 
drought indices and vegetation variability, providing valuable insights 
while also revealing methodological gaps. Vicente-Serrano et al. (2006)
reported that the SPI at 3–4-month timescales was most strongly 
correlated with NDVI and cereal yield in northeastern Spain. 
Peña-Gallardo et al. (2019) demonstrated that drought indices 
computed at multi-timescales better explained yield variability than 
single-timescale indicators, while García-León et al., (2019) found that 
satellite-derived indices outperformed meteorological indices in 
explaining spatial yield variability. Possega et al. (2023) similarly 
demonstrated that agricultural drought indices, which account for soil 
water balance, better captured vegetation responses than meteorolog
ical indicators. Benito-Verdugo et al. (2023) also emphasized the role of 
root-zone soil moisture in explaining cereal yield variability in the 
center of Spain (Castilla y León and Castilla–La Mancha). Khlif et al. 
(2023) assessed the performance of remote sensing-based drought 
indices in relation to rainfed cereal crops in northeastern Spain, finding 
that the Evapotranspiration Anomaly Index, derived from ETo, showed 
the strongest correlation with wheat yield, reaching a correlation coef
ficient of 0.75 in July. More recently, Bellvert et al. (2025) investigated 
drought impacts on agricultural productivity in northeastern Spain 
using a remote sensing-based ETc act model, demonstrating its effec
tiveness in capturing spatial and temporal variations in crop yield.

Although previous studies have advanced our understanding of 
drought dynamics, a notable gap remains in systematically evaluating 
the long-term performance of both meteorological and remote sensing- 
based drought indices across multiple timescales against farm-level 
yield data in Spain. To address this gap, this study aims to calculate 
three drought indices, the Standardized Precipitation Evapotranspira
tion Index (SPEI), the Standardized Precipitation-Actual Evapotranspi
ration Index (SPET) and the Standardized Evapotranspiration Deficit 
Index (SEDI), through ETo estimates from meteorological data (ERA5) as 
well as ETc act estimates from a remote sensing modelling framework and 
to assess them using field reports of rainfed wheat yield from 2003 to 
2021 across four major wheat-producing autonomous communities in 
Spain, with the objective of identifying the most suitable drought index 
and the accumulation timescales to enhance agricultural drought 
monitoring and inform regional agricultural water management 
strategies.

Thus, to improve drought impact assessment and support more 
resilient agricultural water management and yield forecasting, the main 
study objectives are to (1) determine which drought index best explains 
yield response to drought and (2) identify the accumulation timescales 
that most effectively capture yield variability in each region.

2. Materials and methods

2.1. Wheat yield data

The ESYRCE dataset (Encuesta sobre Superficies y Rendimientos de 
Cultivos – ESYRCE - https://www.mapa.gob.es/es/estadistica/temas/es 
tadisticas-agrarias/agricultura/esyrce/) was used to extract the winter 
rainfed wheat yield (including common and durum wheat). This survey 
has recorded crop production at the farm level since 1990.

The ESYRCE survey employs a conglomerate stratified sampling 
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approach, utilizing the Universal Transverse Mercator (UTM10) coor
dinate system to construct 10 km × 10 km grid blocks, covering the 
entire Spain. Each of these blocks is divided into 100 cells of 1 km 
× 1 km. Squared segments of 500 m to 700 m in each cell are the basic 
units to survey crop yields every year from May to August. In this 
dataset, wheat data for 2001 and 2002 were missing. Hence, to align 
with the ETo estimated from meteorological data (ERA5) and ETc act 
dataset calculated using remote sensing and meteorological data (Aqua 
MODIS images and ERA5 meteorological data, see Bozorgi et al., 2024), 
this study covered the period from 2003 to 2021.

Wheat is one of the most widespread crops in Spain, intensively 
located at the central plateaus (García-León et al., 2019; Martí
nez-Moreno et al., 2023). Accordingly, four Spanish autonomous com
munities were selected for this study (Fig. 1): La Rioja, Castilla y León, 
Castilla-La Mancha, and Andalucía where wheat represents one of the 
most significant crops (Martínez-Moreno et al., 2023). In the study area, 
winter wheat sowing and harvesting periods vary across cultivars and 
regions, typically spanning from late November for sowing to July for 
harvesting.

2.2. Actual crop evapotranspiration (ETc act)

Monthly ETc act was derived by integrating daily estimates from the 
Two-Source Energy Balance (TSEB) model, implemented at 1 km spatial 
resolution using MODIS Aqua observations combined with ERA5 
meteorological data. The TSEB framework partitions the surface energy 
balance into soil and canopy components, estimating latent heat flux 
(LE) as the residual of available energy—net radiation (Rn) minus soil 
heat flux (G)—and sensible heat flux (H). This approach leverages 
remotely sensed land surface temperature, which integrates the thermal 
contributions of vegetation and soil and is therefore well-suited for 
mixed agricultural landscapes. Vegetation indices were incorporated to 
retrieve key biophysical variables, while land cover products were used 
to specify vegetation properties and surface characteristics required by 
the model. Further methodological details are provided in (Bozorgi 
et al., 2024) and in the supplementary materials.

2.3. Reference evapotranspiration (ETo)

Daily ETo was computed using the FAO-56 Penman–Monteith 
equation (Allen et al., 1998), driven by ERA5 meteorological data 
(incoming shortwave radiation, air temperature, actual water vapor 
pressure, atmospheric pressure and wind speed) at 0.25◦ spatial reso
lution. The FAO-56 formulation was applied with aerodynamic and 
surface resistances outlined in the FAO-56 guidelines. The methodology 
is detailed in (Bozorgi et al., 2024). Daily ETo estimates were subse
quently aggregated to obtain monthly ETo values.

2.4. Precipitation

Daily precipitation data were obtained from the Spanish State 
Meteorological Agency (AEMET), which operates over 2000 stations 
nationwide. The ROCÍO (Rejilla Observacional con Interpolación 
Óptima) method (Rodríguez et al., 2003) was used to interpolate station 
observations into a 5 km gridded dataset, applying optimal interpolation 
and built-in AEMET quality control checks (e.g., internal consistency, 
temporal coherence, and range filtering).

2.5. Quality assurance and quality control (QA/QC)

QA/QC procedures were applied to all datasets and model outputs to 
ensure methodological representativeness and reliability (Figure S6).

To evaluate the stability of the wheat yield data, we implemented a 
bootstrap resampling procedure for each autonomous community 
following the approach described by Toma et al. (2017). This analysis 
confirmed that the dataset was statistically representative for every re
gion during the study period.

ETc act retrieved from the TSEB model using MODIS Aqua and ERA5 
was validated against 11 eddy covariance (EC) flux towers from the 
FLUXNET2015 and ICOS Warm Winter 2020 datasets. The EC data was 
filtered to retain days with mean energy balance closure of approxi
mately 1. The comparison yielded a mean bias of 1.16 mm.day⁻¹ , an 
average root mean square error (RMSE) of 1.76 mm.day⁻¹ and a corre
lation coefficient (r) of 0.52. Detailed evaluations are presented in the 
supplementary material (Figure S3 and Tabel S1).

To ensure reliable estimation of ETc act, high-end biophysical 

Fig. 1. Study area location of the four selected Spanish autonomous communities with spatial distribution of wheat dataset (black dots).
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variables such as LAI and FPAR from the MODIS LAI/FPAR Collection 6 
product were used (Yan et al., 2016). Temporal gap-filling and residual 
noise removal were applied on vegetation indices using TIMESAT 
Savitzky–Golay filtering method and the quality control layers 
embedded in MODIS products (Eklundh and Jönsson, 2017) and 
following (Gao et al., 2008) methodology, thus improving the reliability 
of satellite-derived vegetation metrics.

ETo was computed using the FAO-56 Penman–Monteith (PM) 
formulation (Allen et al., 1998) with ERA5 meteorological data 
(incoming shortwave radiation, air temperature, actual water vapor 
pressure, atmospheric pressure and wind speed). Incoming shortwave 
radiation was corrected using a digital elevation model (DEM) and the 
MODIS MCD19A2 aerosol optical depth product. Solar zenith angle was 
derived from MODIS Aqua acquisition times to compute instantaneous 
shortwave radiation and ETo, which were upscaled to daily values 
(Bozorgi et al., 2024). The reliability of ERA5-derived ETo was evaluated 
against 16 weather station observations in Spain (Figure S2).

Assessing ERA5-derived ETo against weather stations showed a mean 
bias of 0.36 mm.day⁻¹ , an RMSE of 0.84 mm.day⁻¹ and r of 0.95 
(Figure S4). These results compare well with previous evaluations of 
ERA5-based ETo across diverse climatic regions reported RMSE values of 
0.57–0.90 mm.day⁻1 (Vanella et al., 2022; Ippolito et al., 2024; Xu et al., 
2024).

The accuracy of wind speed from ERA5, previously identified as the 
variable with the largest bias (Aguirre-García et al., 2021; Vanella et al., 
2022), was evaluated against weather stations indicated a mean bias of 
− 2.31 m⋅s⁻¹ , an average RMSE of 3.22 m⋅s⁻¹ , and r of 0.65 (Figure S5).

The ROCIO daily precipitation dataset was previously validated 
against 64 independent meteorological stations, yielding a mean RMSE 
< 4 mm.day⁻¹ and a bias near 0 mm.day⁻¹ (Peral García et al., 2017), 
confirming its reliability for regional-scale hydrological analyses.

2.6. Drought indices

2.6.1. Standardized precipitation-evapotranspiration index (SPEI)
The Standardized Precipitation-Evapotranspiration Index (SPEI) 

developed by Vicente-Serrano et al. (2010), incorporates precipitation 
(P) and ETo retrieved from ERA5 data to represent climatic water bal
ance anomalies. The index is calculated as the difference between 
monthly precipitation and ETo. SPEI has been widely applied in evalu
ating drought impacts on crop yields (Peña-Gallardo et al., 2019; Sosa 
et al., 2025; Tian et al., 2018; Vicente-Serrano et al., 2012; Zhao et al., 
2023).

2.6.2. Standardized precipitation-actual evapotranspiration (SPET)
The Standardized Precipitation-Actual Evapotranspiration Index 

(SPET) developed by Padrón et al. (2020) assesses drought by 
computing anomalies in the difference between precipitation and ETc act 
retrieved from remote sensing data. Numerous studies have highlighted 
the strong link between ETc act and crop productivity (Bellvert et al., 
2025; Tadesse et al., 2015), underscoring its importance in assessing 
drought impacts.

2.6.3. Standardized evapotranspiration deficit index (SEDI)
The Standardized Evapotranspiration Deficit Index (SEDI) developed 

by Vicente-Serrano et al. (2018) quantifies crop water stress based on 
the standardized monthly water balance as the difference between ETc 

act and ETo. This formulation, also expressed as an ETc act/ETo ratio, has 
been widely used to assess plant water stress and drought impacts 
(Anderson et al., 2016; Jurečka et al., 2021; Kim and Rhee, 2016; Mishra 
et al., 2013; Sepulcre-Canto et al., 2014; Stephenson, 1998).

2.6.4. Drought indices calculation
To identify the most responsive drought index for each region and to 

capture the influence of antecedent precipitation and soil-moisture 
conditions on wheat yield, drought indices were calculated at 1- to 12- 

month timescales over a harvest-to-harvest, ranging from the 1-month 
timescale in August to the 12-month timescales in July. Additionally, 
to ensure statistical robustness, all indices were fitted to a three- 
parameter log-logistic distribution following (Beguería et al., 2014; 
Vicente-Serrano et al., 2010). The cumulative distribution function of 
the log-logistic distribution is: 

f(x) =

[

1 +

[
α

x − y

]β
]− 1

(1) 

where x represents the water-balance series (D), and α, β and y are the 
scale, shape and location parameters that are estimated from data.

The D series for each index were computed as: 

DSPEI = P − ETo (2) 

DSPET = P − ETcact (3) 

DSEDI = ETcact − ETo (4) 

Standardized values were obtained using the classical Abramo
witz–Stegun approximation to the standard normal distribution, 
following Vicente-Serrano et al. (2010). All drought index calculations 
were performed in RStudio.

2.7. Correlation analysis

To isolate the climatic effects in yield variations, the yield time series 
were detrended to remove the effects of non-climatic factors such as 
technological improvements and increased mechanization (Potopová 
et al., 2015; Tian et al., 2018), following (Lobell et al., 2011). For each 
community i, a quadratic polynomial trend was fitted to the time series 
of observed wheat yield (Eq. 5): 

yʹ
iT = yit − ŷit (5) 

where ý iT is detrended yield, yit is the observed yield, and ŷit is the 
mean of fitted value from the quadratic polynomial trend model.

The standardized yield residual series (SYRS) was then derived using 
Eq. 6: 

SYRS =
yʹ

iT − μi

δi
(6) 

where, μi and δi are the mean and standard deviation, respectively, of 
detrended yield for the community ⅈ.

The yield data was tested for normality using the Kolmogor
ov–Smirnov (K–S) test (Reschenhofer, 1997). Since the yield data did 
not meet the assumption of normality distribution, the non-parametric 
Spearman’s rank correlation coefficient (ρ) was employed to quantify 
the correlation between drought indices and SYRS (Eq. 7): 

ρ = 1 −
6
∑

d2
i

n(n2 − 1 )
(7) 

where di represents the difference in rank between paired observa
tions and n is the total number of observations. The statistical correla
tion significance was set at the 95 % level.

3. Results

3.1. Statistical distribution of wheat yield

Bootstrapping confirmed adequate representativeness of the avail
able data for all four study regions. The empirical cumulative distribu
tion functions (ECDFs) of standardized wheat yield residuals across La 
Rioja, Castilla y León, Castilla-La Mancha, and Andalucía (Fig. 2) 
revealed marked inter-regional differences in yield variability. Andalu
cía displayed flatter ECDFs, indicating wider yield variability likely 
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driven by climatic events and episodic droughts, whereas Castilla-La 
Mancha and Castilla y León exhibited steeper slopes reflecting more 
stable yield productivity.

The Kolmogorov–Smirnov (K–S) test rejected the null hypothesis of 

normality distribution for all regions (p < 0.05). This statistical asym
metry made it necessary to use non-parametric and distribution-free 
approaches in evaluating yield–drought interactions across Spanish 
zones.

Fig. 2. Yield distribution for the period 2003–2021 within each selected autonomous community in Spain.

Fig. 3. Boxplot of monthly precipitation for the period 2003–2021 within the selected autonomous community in Spain.
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3.2. Spatial patterns of interannual precipitation variability

The temporal variability of precipitation across four Spanish auton
omous communities—La Rioja, Castilla y León, Castilla-La Mancha, and 
Andalucía—revealed pronounced seasonal patterns (Fig. 3), with 
notably lower precipitation during the summer (June–August) and 
higher levels during spring (March–May) and late autumn (October and 
November).

Andalucía displayed the greatest interannual variability by a large 
spread and frequency of outliers, indicating recurrent alternation be
tween anomalously dry and wet years. This pattern reflected the region’s 

exposure to hydrological extremes such as prolonged droughts and 
episodic flooding. Conversely, La Rioja showed relatively stable pre
cipitation distribution with fewer extreme values, indicating a more 
moderate hydroclimate regime. The pronounced north–south gradient 
in precipitation variability underscored the spatial heterogeneity of 
Spain’s hydroclimatic regimes, emphasizing the need for spatially 
explicit drought-impact assessment and region-specific agricultural 
water management strategies.

Fig. 4. Correlation patterns of the standardized wheat yield residuals series (SYRS) for the period 2003–2021 with SPEI, the standardized precipitation- 
evapotranspiration index; SPET, the standardized precipitation-actual evapotranspiration index; and SEDI, the standardized evapotranspiration deficit index, in 
1–12 month timescales within each selected autonomous community in Spain. The color scale represents Spearman’s correlation, and the dots show statistically 
significant correlations at the 95 % significant level (p < 0.05).
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3.3. Spatial and temporal patterns of drought–wheat yield response

Drought–yield relationships exhibited clear spatial and temporal 
heterogeneity across Spain’s main wheat-producing regions (Fig. 4). In 
Mediterranean areas such as Andalucía and Castilla-La Mancha, yield 
variability is most correlated at short timescales (1–3-month accumu
lation) peaking in late spring. In contrast, in more temperate continental 
regions (Castilla y León and La Rioja), yield variability correlated more 
strongly with longer drought periods (3–6-month accumulation) in early 
summer. These patterns highlight the need for region-specific drought 
monitoring strategies that account for local climatic regimes and agro
nomic heterogeneity.

Among the four regions, La Rioja displayed the highest correlations 

between drought indices and yield, with r = 0.81 for SEDI (July, six- 
month timescale), r = 0.79 for SPEI (July, seven-month timescale), 
and r = 0.62 for SPET (February, two-month timescale). The consistent 
performance of all indices likely reflects the relatively homogeneous 
climatic and land management conditions of this region. In Castilla y 
León, notable correlations were observed for SEDI in June (r = 0.54, 
three-month timescale), SPEI in July (r = 0.51, five-month timescale), 
and SPET in May (r = 0.36, six-month timescale). In northern Spain, 
SEDI generally more outperformed other indices, suggesting that inte
grating biophysical and climate variables—such as solar radiation, 
vapor pressure, and wind speed—enhances crop water availability 
estimation and yield-drought response.

In Castilla-La Mancha, the strongest relationships (r = 0.45–0.49) 

Fig. 5. Time series of SPEI, the standardized precipitation-evapotranspiration index; SPET, the standardized precipitation-actual evapotranspiration index; SEDI, the 
standardized evapotranspiration deficit index; and the standardized wheat yield residuals series (SYRS) for the period 2003–2021 in each selected autonomous 
community. The blue lines show SYRS, and the red lines show the drought index values.
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occurred for SEDI in May (two-month timescale) and for SPEI and SPET 
in May (three-month timescale), indicating limited differentiation 
among indices. This suggests that additional variables, such as soil 
properties or agricultural management, may be required to better 
represent crop water stress in this semi-arid region. Similarly, in 
Andalucía, correlations were relatively weak (r = 0.33–0.35), peaking 
for SPEI and SPET in March (one-month timescale) and for SEDI in May 
(three-month timescale). These results from high spatial variability in 
cropping systems, cultivars, and management practices, which obscure 
direct drought–yield linkages.

3.4. Drought-wheat yield interannual variation

The interannual variation of the drought indices and wheat yield was 
shown in Fig. 5, based on the highest correlations observed in Fig. 4 in 
each drought index.

Temporal co-variation between drought indices and wheat yield 
demonstrated that all indices captured interannual yield fluctuations to 
varying degrees. In La Rioja, yield reductions in 2009, 2012, and 2017 
were well represented by all indices, with SEDI providing the most ac
curate estimation of yield loss magnitude. However, in 2007 and 2008, 
drought indices indicated extremely wet conditions (values > +1.5), 
while yield anomalies were only moderately positive (~0.5), suggesting 
that non-climatic limitations—such as disease and pest—may have 
constrained yield potential during those years.

In Castilla y León, yield deficits observed in 2003, 2004, and 2017 
closely corresponded with negative drought index values, with SEDI 
outperforming in capturing both the occurrence and severity of drought- 
induced yield reductions.

In Castilla-La Mancha, drought indices effectively reflected yield 
losses during 2003, 2005, and 2017, with SEDI best reproducing both 
the direction and magnitude of yield variability. Nevertheless, in years 
such as 2009 and 2011, all indices failed to represent observed yield 
anomalies, implying that additional agronomic information, particu
larly soil fertility, can improve wheat-yield response accuracy.

In Andalucía, negative yield anomalies in 2005, 2012, 2019, and 
2021 coincided with negative signals in all drought indices, although the 
magnitude of yield loss was only moderately reproduced. This reduced 
correlation likely reflects the region’s pronounced heterogeneity in 
management practices, soil conditions, and cultivar selection, which can 
obscure direct climate–yield linkages.

Regional differences in the agreement between drought indices and 
wheat yield can be attributed to climatic contrasts. La Rioja and Castilla 
y León experience humid-subtropical and warm-summer Mediterranean 
climates, where precipitation and temperature variability jointly regu
late crop water availability. Conversely, Andalucía and Castilla-La 
Mancha are dominated by hot-summer Mediterranean and semi-arid 
conditions, where crop water stress interacts with management and 
cultivar differences. These climatic and agronomic disparities largely 
explain the heterogeneous drought–yield responses observed across 
Spain and emphasize the need for region-specific drought impact as
sessments for agricultural water management.

4. Discussion

4.1. Monitoring regional drought dynamics and implications for 
agricultural water management

Regional heterogeneity between drought indices and wheat yield 
underscored the necessity of spatially explicit agricultural drought 
monitoring and adaptive agricultural water management across Spain’s 
diverse agroclimatic regions. The distinct climatic gradients -from the 
humid temperate north to the semi-arid south- generate contrasting 
yield response to agricultural drought.

In the northern temperate zones, yield variability was strongly 
coupled with hydroclimatic drivers, suggesting that drought indices can 

effectively serve as proxies for agricultural drought monitoring. These 
findings align with a previous study (Peña-Gallardo et al., 2019) that 
showed strong correlations between drought indices and yield in the 
north and central Spain. Therefore, understanding climate-driven yield 
variability provides a valuable foundation for enhancing yield predic
tion models and informing strategic agricultural management decisions 
in these regions.

Conversely, southern semi-arid regions (Andalucía and Castilla-La 
Mancha) exhibited weaker yield–drought correlation, highlighting the 
dominance of management and cultivar selection. The prevalence of 
extreme precipitation events in these areas further complicates water 
management. These hydroclimatic irregularities amplify yield vari
ability and necessitate proactive soil moisture monitoring networks, 
irrigation optimization, and drought forecasting in these areas.

The superior performance of SEDI, particularly in northern Spain, 
demonstrates that remote sensing–derived ETc act can capture the actual 
crop water availability and crop water stress. SEDI integrates remotely 
sensed ETc act with ERA5 reanalysis data, thereby providing a more 
direct measure of agricultural drought intensity. This aligns with the 
findings of Bellvert et al. (2025) who emphasized the potential of remote 
sensing and ETc act for monitoring crop water deficits in Mediterranean 
agroecosystems. However, this study advances previous research by 
identifying long-term yield–drought interactions across multiple agro
climatic zones revealed the spatially explicit of wheat yield responses to 
drought, demonstrating that regional differences significantly influence 
the magnitude and distribution of drought impacts on wheat yield.

Additionally, while previous studies identified May–June as a high- 
risk period for drought impacts on cereal crops (Khlif et al., 2023), 
our results show that the accumulation timescales-not only the calendar 
month- critically determines yield response to drought which was varied 
regionally. In Andalusia and Castilla-La-Mancha yield variability was 
most strongly correlated with short timescales that peak in late spring 
(1–3-month accumulation; Fig. 4), whereas in Castilla y León and La 
Rioja the strongest correlations occurred for longer timescales, in early 
summer (3–6-month accumulation; Fig. 4). These contrasting timescales 
are consistent with regional differences in wheat phenology and 
growing-season length. These findings are consistent with 
Peña-Gallardo et al. (2019), which demonstrated that wheat yield is 
particularly vulnerable to spring droughts across Spain at both short 
(1–3 months) and medium (4–6 months) timescales.

This insight reinforces the need for dynamic drought monitoring 
systems leveraging remote sensing to deliver continuous spatiotemporal 
data. Such systems are essential for enabling policymakers and farm 
managers to transition from reactive drought responses toward antici
patory, risk-based decision-making frameworks.

Ultimately, the study contributes to a refined understanding of 
spatially differentiated drought–yield relationships across Spain, offer
ing region-specific drought mitigation strategies and adaptive agricul
tural water management under climate change.

4.2. Integration of drought indices into yield prediction and crop 
modelling frameworks

Drought indices demonstrate the capacity to explain spatial and 
temporal variations in wheat yield, reinforcing their potential utility in 
yield prediction systems and crop modelling calibration. Given that 
drought remains the principal constraint on cereal production particu
larly in semi-arid Mediterranean agroecosystems (Asseng et al., 2015; 
Vadez et al., 2024), the spatial and temporal patterns identified in this 
study provide a foundation for improving both statistical and 
process-based yield prediction models.

Integrating drought indices—particularly SEDI—into crop models 
can enhance the parameterization of crop water stress functions and 
improve simulation accuracy under variable climatic regimes. More
over, these indices can support early-warning systems that translate 
observed anomalies into yield forecasts, contributing directly to food 
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security and strategic water allocation planning.
The relationship between drought indices and yield variability is also 

shaped by factors that co-vary with water stress, including soil charac
teristics, nutrients, pest and disease pressure, and management in
tensity. These co-drivers are particularly influential in southern Spain, 
where more heterogeneous management regimes amplify the yield 
response to drought (Navarro-Cerrillo et al., 2022; Yang et al., 2024).

In this context, the study’s results contribute to the operationaliza
tion of data-driven agricultural water management, bridging the gap 
between remote sensing science and decision-making.

4.3. Limitation and perspective

The coarse spatial resolution of both ETo and ETc act products likely 
contributed to the low correlations observed between drought indices 
and wheat yield. ETc act derived from Aqua MODIS data at 1 km reso
lution introduces sub-pixel heterogeneity, as individual pixels may 
encompass multiple land-cover types. Consequently, ETc act estimates 
may represent aggregated evaporation and transpiration from mixed 
vegetation rather than crop-specific fluxes. To mitigate this trade-off, 
data-fusion techniques that combine the high spatial data from Land
sat/Sentinel imagery with the temporal density of MODIS are recom
mended to improve ETc act estimation accuracy.

Meteorological forcing data with finer, agronomically relevant 
spatial resolution, particularly for wind speed, would further strengthen 
drought indices’ performance. However, such high-resolution and 
continuous datasets are not yet available. As a result, ERA5 remains the 
only practical and consistent source for spatially explicit ETo and 
drought indicators.

Additionall, incorporating sub-monthly drought indices (e.g., pentad 
or 10-day composites) might allow capturing flash droughts and heat
wave impacts on crop productivity.

Finally, integrating information on soil characteristics, crop man
agement practices, cultivar selection, and sowing and harvest dates will 
support region-specific analysis of drought impacts on wheat yield.

5. Conclusions

This study demonstrates that the Standardized Evapotranspiration 
Deficit Index (SEDI) provided the most robust and spatially consistent 
representation of drought–wheat yield relationships. Its strong perfor
mance highlights the effectiveness of integrating remotely sensed crop 
evapotranspiration (ETc act) with ERA5 reanalysis data to produce 
continuous, spatially explicit drought monitoring, offering significant 
potential for advancing operational agricultural water management 
strategies.

Spatial analysis revealed pronounced geographical contrasts. In the 
northern regions, correlations between drought indices and wheat yields 
were consistently stronger. By contrast, the greater environmental and 
management variability across southern regions weakened these re
lationships, making drought impacts more difficult to discern. Such 
patterns highlight the inherent challenges of evaluating drought effects 
in heterogeneous dryland systems, underscoring the importance of 
concentrating analyses in areas with relatively uniform land character
istics, such as La Rioja, where drought–yield linkages can be identified 
with greater reliability.

Wheat-yield variability was most correlated to soil-moisture deficits 
from late winter to spring, but the relevant accumulation timescales 
differed by climate zone. Mediterranean regions such as Andalucía and 
Castilla-La Mancha responded to short timescales (1–3 months), 
whereas temperate continental regions including Castilla y León and La 
Rioja were influenced by longer timescales (3–6 months). These con
trasting drought-wheat yield responses indicate that drought indicators 
must be region-specific to support accurate drought monitoring and 
water management strategies.

Future research should expand drought–yield assessment by 

incorporating higher spatial and temporal resolution of drought indices 
with soil characteristics, cultivar data, and sowing and harvest dates to 
better represent local agronomic drivers. Integrating these variables will 
further enhance the operational relevance of drought monitoring tools 
for climate-resilient agricultural water management.
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