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On embedding properties of some extrapolation

spaces ∗

Maŕıa J. Carro and Joaquim Mart́ın

Abstract

Given a sublinear operator T satisfying that ‖Tf‖Lp(ν) ≤ C
p−1‖f‖Lp(µ),

for every 1 < p ≤ p0, with C independent of f and p, it has been re-
cently proved that T : L logL → M(ϕ), where M(ϕ) is the maximal
Lorentz space with ϕ(t) = t(1 + log+ t)−1. Also, if T satisfies that
‖Tf‖Lp(ν) ≤ Cp‖f‖Lp(µ), for every p ≥ p0, then T : Λ1

(
min(t−1, 1)

)
∩

L∞ →M(φ), where φ(t) =
(
1 + log+(1/t)

)−1
.

The purpose of this note, is to study embedding properties of the
extrapolation spaces L logL and M(ϕ) with respect to L1, and also
embedding properties of Λ1

(
min(t−1, 1)

)
∩L∞ and M(φ) with respect

to L∞. We shall also extend these type of results to more general
extrapolation theorems.

1 Introduction

In 1951, Yano (see [6]) proved that for every sublinear operator satisfying
that

T : Lp(µ) −→ Lp(ν)

is bounded, for every 1 < p ≤ p0, with constant less than or equal to C
p−1 ,

where µ and ν are two finite measure, it holds that T : L logL(µ) −→ L1(ν)
is bounded. If the measures involved are not finite, then an easy modification
in the proof of this result shows that T : L logL(µ) −→ L1(ν) + L∞(ν) is
bounded.
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This theorem has recently been improved in [3] and [4], showing that, if
µ and ν are σ-finite measures and T satisfies that

T : Lp,1(µ) −→ Lp,∞(ν),

is bounded with constant less than or equal to C
p−1 , where Lp,∞(ν) is endowed

with the norm ‖f‖Lp,∞ = supt (t1/pf∗∗ν (t)), then

T : L logL(µ) −→M(ϕ; ν)

where ϕ(t) = t(1 + log+ t)−1 and, the maximal Lorentz space M(ϕ) =
M(ϕ; ν) is defined (see [1], p. 69]) as the set of measurable functions such
that

‖f‖M(ϕ) = sup
t>0

(
ϕ(t)f∗∗ν (t)

)
<∞,

where f∗∗ν (t) = 1
t

∫ t
0 f
∗
ν (s) ds and f∗ν is the decreasing rearrangement of f with

respect to the measure ν, (in what follows, we shall omit the subindices ν
or µ whenever it is clear the measure we are working with). In particular,
if ϕ(t) = t1/p, M(ϕ) = Lp,∞.

Also, in the setting of Lorentz spaces, it holds that L logL is the minimal
Lorentz space Λ(ϕ), where ϕ(t) = t(1 + log+(1/t)) and

‖f‖Λ(ϕ) =

∫ ∞
0

f∗(t) dϕ(t)·

If ϕ(t) = t1/p, Λ(ϕ) is the Lorentz space Lp,1, where

‖f‖Lp,1 =
1

p

∫ ∞
0

f∗(t)t1/p−1 dt· (1)

Therefore, in this context of minimal-maximal Lorentz spaces, the new
version of Yano’s theorem can be stated as follows:

Theorem 1.1 (Yano) Let ϕθ(t) = t1−θ and let T be a sublinear operator
such that

T : Λ(ϕθ;µ)→M(ϕθ; ν)

is bounded with ‖T‖ ≤ C/θ, (0 < θ < θ0 ≤ 1) . Then

T : Λ(ϕD+ ;µ)→M(ϕR+ ; ν),

where ϕD+(t) = t(1 + log+ 1
t ) and ϕR+(t) = t(1 + log+ t)−1.
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We also have a dual version. That is, if

‖Tf‖Lp(ν) ≤ Cp‖f‖Lp(µ),

for every p ≥ p0, then, it was proved in [4] that

T : Λ1( min(t−1, 1);µ) ∩ L∞(µ)→M(φ; ν),

where φ(t) = 1/(1+log+(1/t)), improving a previous result due to Zygmund
(see [7], p. 119). The formulation of this result in the above terminology is
the following:

Theorem 1.2 (Zygmund) Let ϕθ(t) = t1−θ and let T be a sublinear oper-
ator such that

T : Λ(ϕθ;µ)→M(ϕθ; ν)

is bounded with ‖T‖ ≤ C/(1− θ), (θ0 < θ < 1) . Then

T : Λ(ϕD− ;µ)→M(ϕR− ; ν),

where ϕD−(t) = (1 + log+ t) and ϕR−(t) = (1 + log+(1/t))−1.

Now, let us consider compatible pairs of Banach spaces Ā = (A0, A1).
That is, we assume that there is a large topological vector space V such that
Ai ⊂ V, i = 0, 1, continuously. Usually we drop the terms “compatible” and
“Banach” and refer to a compatible Banach pair simply as a “pair”.

Let us recall that given a pair Ā = (A0, A1), the Peetre K−functional
is defined, for a ∈ A0 +A1 and t > 0, by

K(a, t) = K(a, t; Ā) = inf{‖a0‖A0
+ t ‖a1‖A1

: a = a0 + a1, ai ∈ Ai}·

It is easy to see that K(t, a) is a nonnegative and concave function of t > 0,
(and thus also continuous). Therefore

K(a, t; Ā) = K(a, 0+; Ā) +

∫ t

0
k(a, s; Ā) ds,

where the k−functional, k(a, s; Ā) = k(a, s), is a uniquely defined, nonneg-
ative, decreasing and right-continuous function of s > 0.

In particular, if Ā = (L1(ν), L∞(ν)), we have that k(a, s; Ā) = f∗(s) and

K(f, t) =

∫ t

0
f∗(s) ds·

The new point of view of Yano’s and Zygmund’s theorems presented
above gives us the idea of defining, for a pair Ā, the corresponding minimal
and maximal spaces as follows:
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Definition 1.1 The minimal Lorentz space, Λ(ϕ; Ā), is the set of elements
a ∈ A0 +A1 such that K(a, 0+; Ā) = 0 and

‖a‖Λ(ϕ;Ā) =

∫ ∞
0

k(a, s; Ā) dϕ(s) <∞,

and the maximal Lorentz space, M(ϕ; Ā), is the set of elements a ∈ A0 +A1

such that

‖a‖M(ϕ;Ā) = sup
t>0

(
K(a, t; Ā)

t
ϕ(t)

)
<∞·

Then, the two following extrapolation results have been obtained in [5]

Theorem 1.3 Let Ā = (A0, A1) and B̄ = (B0, B1) be two pairs and let T
be a linear operator such that

T : Λ(ϕθ; Ā)→M(ϕθ; B̄)

is bounded with ‖T‖ ≤ C
θ , (0 < θ < θ0) . Then

T : Λ(ϕD+ ; Ā)→M(ϕR+ ; B̄)·

Theorem 1.4 Let Ā = (A0, A1) and B̄ = (B0, B1) be two pairs and let T
be a linear operator such that

T : Λ(ϕθ; Ā)→M(ϕθ; B̄)

is bounded with ‖T‖ ≤ C
1−θ , (θ0 < θ < 1) . Then

T : Λ(ϕD− ; Ā)→M(ϕR− ; B̄)·

The purpose of this note is to study embedding properties of the ex-
trapolation spaces Λ(ϕD+ ; Ā), M(ϕR+ ; B̄), Λ(ϕD− ; Ā) and M(ϕR− ; B̄) with
respect to the corresponding end-point spaces A0, A1, B0 and B1 respec-
tively. For example: it is clear that the domain space Λ(ϕD+ ; Ā) ⊂ A0, while
the opposite embedding does not clearly hold. However, if we consider the
Lions-Peetre real interpolation spaces Āθ,p defined by (see [1])

‖a‖Āθ,p =

(
θ(1− θ)

∫ ∞
0

(
K(t, a; Ā)

tθ

)p dt
t

)1/p

,

then, for every 0 < θ < 1 and p ≥ 1,

Āθ,1 ⊂ · · · Āθ,p ⊂ · · · Āθ,∞,
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and, we obtain (see Theorem 2.3 below) that if we intersect A0 with the
biggest space of the above chain then

A0 ∩ Āθ,∞ ⊂ Λ(ϕD+ ; Ā)·

Similar results will be proved for the other three extrapolation spaces.
Constants such as C will denote universal constants (independent of the

parameters involved) and may change from one occurrence to the next. As
usual, the symbol f ≈ g will indicate the existence of a universal positive
constant C so that f/C ≤ g ≤ Cf , while the symbol f � g means that
f ≤ Cg.

2 Relationship betwe en the extrapolation and the
end-point spaces.

Let us start by analyzing the case L̄ = (L1, L∞).

Proposition 2.1 For every p > 1,

L1 ∩ Lp,∞ ⊂ L logL ⊂ L1,

and,
L1 ⊂M(ϕR+) ⊂ L1 + Lp,1,

where the constant of the first and last embeddings are less than or equal to
Cp/(p− 1).

Proof: To show the first embedding, we observe that

‖f‖L logL ≈ ‖f‖1 +

∫ 1

0
f∗∗(t) dt,

and therefore

‖f‖L logL � ‖f‖L1 +

∫ 1

0

t1/pf∗∗(t)

t1/p
dt ≤ ‖f‖L1 + ‖f‖Lp,∞

∫ 1

0
t−1/p dt

= ‖f‖L1 +
p

p− 1
‖f‖Lp,∞ ·
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The second and third embeddings are trivial. To prove the last embed-
ding, let f ∈M(ϕR+). Then, for every t > 0,∫ t

0
f∗ ≤ ‖f‖M(ϕR+

)(1 + log+ t)·

Then, if we define f = fχ{|f |>f∗(1)}, we have that

‖f‖L1 =

∫ 1

0
f∗(t) dt ≤ ‖f‖M(ϕR+

)·

Now, set f = f − f and recall that the norm in Lp,1 is given by (1).
Then, if p > 1, an integration by parts shows that

‖f‖Lp,1 =
1

p

∫ ∞
0

f∗(t)t1/p−1 dt ≤ f∗(1) +
1

p

∫ ∞
1

f∗(t)t1/p−1 dt

� ‖f‖M(ϕR+
) +

p− 1

p
‖f‖M(ϕR+

) +
p− 1

p

∫ ∞
1

( ∫ t

0
f∗
)
t1/p−2 dt

≤ p− 1

p
‖f‖M(ϕR+

) + ‖f‖M(ϕR+
)
p− 1

p

∫ ∞
1

(1 + log+ t)t1/p−2 dt

≈ p

p− 1
‖f‖M(ϕR+

)

from which the result follows.

Proposition 2.2 For every p > 1, it holds that

L∞ ∩ Lp,∞ ⊂ Λ(ϕD−) ⊂ L∞,

and,
L∞ ⊂M(ϕR−) ⊂ L∞ + Lp,1,

where the constants of the first and last embedding are less than or equal to
Cp.

Proof: The proof follows the same pattern than Proposition 2.1. Also, it
can be deduced using duality in Proposition 2.1, since the associated space of
Lp,1 is equal to Lp

′,∞ and it was proved in [4] that Λ(ϕD−) is the associated
space of M(ϕR+) and M(ϕR−) is the associated space of L logL.

Let us consider now, the general case Ā = (A0, A1).

6



Theorem 2.1 Let Ā = (A0, A1) be a pair. Then, for every 0 < θ < 1,

A0 ∩ Āθ,∞ ⊂ Λ(ϕD+ ; Ā) ⊂ A0,

and,
A0 ⊂M(ϕR+ ; Ā) ⊂ A0 + Āθ,1,

where the constants of the first and last embedding are less than or equal to
C/θ.

Proof: The second and the third embeddings are trivial. The first embed-
ding follows from the fact that if a ∈ A0∩Āθ,∞, then k(.; a) ∈ L1∩L1/(1−θ),∞,
and, by Proposition 2.1, we have that k(.; a) ∈ L logL, which is equivalent
to

‖a‖Λ(ϕD+ ; Ā) ≈
∫ ∞

0
k(t; a)

(
1 + log+ 1

t

)
dt <∞·

To prove the last embedding, we have to proceed as in Proposition 2.1.
Let a ∈M(ϕR+ ; Ā). Then,∫ t

0
k(s, a) ds ≤ ‖a‖M(ϕR+

;Ā)(1 + log+ t)·

Then, if we define k(s, a) = k(s, a)χ(0,1) and k(s, a) = k(s, a)χ(1,∞) we have
that

K(t, a) ≤
∫ t

0
k(s, a) ds+

∫ t

0
k(s, a) ds

≤
∫ t

0
k(s, a)ds+

∫ t

0
(k(s, a) + k(1, a)χ(0,1))ds,

and since the last two functions are concave, we can use the K-divisibility
theorem (see [2], Theorem 3.2.7) to have that there exist a0 and a1 such
that a = a0 + a1,

K(t, a0) ≤
∫ t

0
k(s, a) ds,

and

K(t, a1) ≤
∫ t

0
(k(s, a) + k(1, a)χ(0,1)) ds·

Now, if we define Ã0 as the set of elements inA0+A1 such that suptK(t, a0) <
∞ then, using Holmstedt’s formula and Theorem 1.5 of [1] (p. 297), we have

7



that A0 +Aθ,1 = Ã0 +Aθ,1 with equivalent norms and, hence,

‖a‖A0+Aθ,1 ≈ ‖a‖Ã0+Aθ,1
≤ ‖a0‖Ã0

+ ‖a1‖Aθ,1

= sup
t
K(t, a0) + θ(1− θ)

∫ ∞
0

K(t, a1)

t1+θ
dt

≤
∫ ∞

0
k(s, a) ds+ θ(1− θ)K(1, a)

∫ 1

0
t−θ dt

+θ(1− θ)
∫ ∞

1

K(t, a)

t1+θ
dt

�
∫ 1

0
k(s, a) ds+K(1, a)

+‖a‖M(ϕR+
;Ā)θ(1− θ)

∫ ∞
1

(1 + log+ t)

t1+θ
dt

� 1

θ
‖a‖M(ϕR+

;Ā),

from which the result follows.
And, similarly:

Theorem 2.2 Let Ā be a pair. Then, for every 0 < θ < 1,

A1 ∩ Āθ,∞ ⊂ Λ(ϕD− ; Ā) ⊂ A1,

and
A1 ⊂M(ϕR− ; Ā) ⊂ A1 + Āθ,1,

where the constants of the first and last embeddings are less than or equal to
C/(1− θ).
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