

This is the **accepted version** of the book part:

Martín i Pedret, Joaquim; Carro, María J. «On embedding properties of some extrapolation spaces». A: Function spaces, interpolation theory and related topics. Proceedings of the International Conference in honour of Jaak Peetre on his 65th birthday. 2002, p. 241-248. 8 pàg. New York: De Gruyter. DOI 10.1515/9783110198058.241

This version is available at https://ddd.uab.cat/record/271866 under the terms of the $\bigcirc^{\mbox{\footnotesize IN}}$ license

On embedding properties of some extrapolation spaces *

María J. Carro and Joaquim Martín

Abstract

Given a sublinear operator T satisfying that $||Tf||_{L^p(\nu)} \leq \frac{C}{p-1}||f||_{L^p(\mu)}$, for every 1 , with <math>C independent of f and p, it has been recently proved that $T: L \log L \to M(\varphi)$, where $M(\varphi)$ is the maximal Lorentz space with $\varphi(t) = t(1 + \log^+ t)^{-1}$. Also, if T satisfies that $||Tf||_{L^p(\nu)} \leq Cp||f||_{L^p(\mu)}$, for every $p \geq p_0$, then $T: \Lambda^1(\min(t^{-1}, 1)) \cap L^\infty \to M(\varphi)$, where $\varphi(t) = (1 + \log^+(1/t))^{-1}$.

The purpose of this note, is to study embedding properties of the extrapolation spaces $L \log L$ and $M(\varphi)$ with respect to L^1 , and also embedding properties of $\Lambda^1\big(\min(t^{-1},1)\big)\cap L^\infty$ and $M(\phi)$ with respect to L^∞ . We shall also extend these type of results to more general extrapolation theorems.

1 Introduction

In 1951, Yano (see [6]) proved that for every sublinear operator satisfying that

$$T: L^p(\mu) \longrightarrow L^p(\nu)$$

is bounded, for every $1 , with constant less than or equal to <math>\frac{C}{p-1}$, where μ and ν are two finite measure, it holds that $T: L \log L(\mu) \longrightarrow L^1(\nu)$ is bounded. If the measures involved are not finite, then an easy modification in the proof of this result shows that $T: L \log L(\mu) \longrightarrow L^1(\nu) + L^{\infty}(\nu)$ is bounded.

 $^{^{*}\}mathrm{This}$ work has been partially supported by the DGICYT PB97-0986 and by CIRIT 1999SGR 00061.

Key words and phrases: Real interpolation, extrapolation, maximal and minimal Lorentz spaces

²⁰⁰⁰ Mathematichs Subject Classification: 46M35

This theorem has recently been improved in [3] and [4], showing that, if μ and ν are σ -finite measures and T satisfies that

$$T: L^{p,1}(\mu) \longrightarrow L^{p,\infty}(\nu),$$

is bounded with constant less than or equal to $\frac{C}{p-1}$, where $L^{p,\infty}(\nu)$ is endowed with the norm $\|f\|_{L^{p,\infty}} = \sup_t (t^{1/p} f_{\nu}^{**}(t))$, then

$$T: L \log L(\mu) \longrightarrow M(\varphi; \nu)$$

where $\varphi(t) = t(1 + \log^+ t)^{-1}$ and, the maximal Lorentz space $M(\varphi) = M(\varphi; \nu)$ is defined (see [1], p. 69]) as the set of measurable functions such that

$$||f||_{M(\varphi)} = \sup_{t>0} \left(\varphi(t) f_{\nu}^{**}(t) \right) < \infty,$$

where $f_{\nu}^{**}(t) = \frac{1}{t} \int_0^t f_{\nu}^*(s) ds$ and f_{ν}^* is the decreasing rearrangement of f with respect to the measure ν , (in what follows, we shall omit the subindices ν or μ whenever it is clear the measure we are working with). In particular, if $\varphi(t) = t^{1/p}$, $M(\varphi) = L^{p,\infty}$.

Also, in the setting of Lorentz spaces, it holds that $L \log L$ is the minimal Lorentz space $\Lambda(\varphi)$, where $\varphi(t) = t(1 + \log^+(1/t))$ and

$$||f||_{\Lambda(\varphi)} = \int_0^\infty f^*(t) \, d\varphi(t) \cdot$$

If $\varphi(t) = t^{1/p}$, $\Lambda(\varphi)$ is the Lorentz space $L^{p,1}$, where

$$||f||_{L^{p,1}} = \frac{1}{p} \int_0^\infty f^*(t) t^{1/p-1} dt.$$
 (1)

Therefore, in this context of minimal-maximal Lorentz spaces, the new version of Yano's theorem can be stated as follows:

Theorem 1.1 (Yano) Let $\varphi_{\theta}(t) = t^{1-\theta}$ and let T be a sublinear operator such that

$$T: \Lambda(\varphi_{\theta}; \mu) \to M(\varphi_{\theta}; \nu)$$

is bounded with $||T|| \le C/\theta$, $(0 < \theta < \theta_0 \le 1)$. Then

$$T: \Lambda(\varphi_{D_+}; \mu) \to M(\varphi_{R_+}; \nu),$$

where $\varphi_{D_+}(t) = t(1 + \log^+ \frac{1}{t})$ and $\varphi_{R_+}(t) = t(1 + \log^+ t)^{-1}$.

We also have a dual version. That is, if

$$||Tf||_{L^p(\nu)} \le Cp||f||_{L^p(\mu)},$$

for every $p \ge p_0$, then, it was proved in [4] that

$$T: \Lambda^1(\min(t^{-1},1);\mu) \cap L^{\infty}(\mu) \to M(\phi;\nu),$$

where $\phi(t) = 1/(1 + \log^+(1/t))$, improving a previous result due to Zygmund (see [7], p. 119). The formulation of this result in the above terminology is the following:

Theorem 1.2 (Zygmund) Let $\varphi_{\theta}(t) = t^{1-\theta}$ and let T be a sublinear operator such that

$$T: \Lambda(\varphi_{\theta}; \mu) \to M(\varphi_{\theta}; \nu)$$

is bounded with $||T|| \leq C/(1-\theta)$, $(\theta_0 < \theta < 1)$. Then

$$T: \Lambda(\varphi_{D_{-}}; \mu) \to M(\varphi_{R_{-}}; \nu),$$

where
$$\varphi_{D_{-}}(t) = (1 + \log^{+} t)$$
 and $\varphi_{R_{-}}(t) = (1 + \log^{+}(1/t))^{-1}$.

Now, let us consider **compatible pairs** of Banach spaces $\bar{A} = (A_0, A_1)$. That is, we assume that there is a large topological vector space \mathcal{V} such that $A_i \subset \mathcal{V}$, i = 0, 1, continuously. Usually we drop the terms "compatible" and "Banach" and refer to a compatible Banach pair simply as a "pair".

Let us recall that given a pair $\bar{A} = (A_0, A_1)$, the Peetre K-functional is defined, for $a \in A_0 + A_1$ and t > 0, by

$$K(a,t) = K(a,t; \bar{A}) = \inf\{\|a_0\|_{A_0} + t \|a_1\|_{A_1} : a = a_0 + a_1, \ a_i \in A_i\}$$

It is easy to see that K(t, a) is a nonnegative and concave function of t > 0, (and thus also continuous). Therefore

$$K(a, t; \bar{A}) = K(a, 0^+; \bar{A}) + \int_0^t k(a, s; \bar{A}) ds,$$

where the k-functional, $k(a, s; \bar{A}) = k(a, s)$, is a uniquely defined, nonnegative, decreasing and right-continuous function of s > 0.

In particular, if $\bar{A} = (L^1(\nu), L^{\infty}(\nu))$, we have that $k(a, s; \bar{A}) = f^*(s)$ and

$$K(f,t) = \int_0^t f^*(s) \, ds \cdot$$

The new point of view of Yano's and Zygmund's theorems presented above gives us the idea of defining, for a pair \overline{A} , the corresponding minimal and maximal spaces as follows:

Definition 1.1 The minimal Lorentz space, $\Lambda(\varphi; \bar{A})$, is the set of elements $a \in A_0 + A_1$ such that $K(a, 0^+; \bar{A}) = 0$ and

$$||a||_{\Lambda(\varphi;\bar{A})} = \int_0^\infty k(a,s;\bar{A}) \, d\varphi(s) < \infty,$$

and the maximal Lorentz space, $M(\varphi; \bar{A})$, is the set of elements $a \in A_0 + A_1$ such that

$$||a||_{M(\varphi;\bar{A})} = \sup_{t>0} \left(\frac{K(a,t;\bar{A})}{t} \varphi(t) \right) < \infty.$$

Then, the two following extrapolation results have been obtained in [5]

Theorem 1.3 Let $\bar{A} = (A_0, A_1)$ and $\bar{B} = (B_0, B_1)$ be two pairs and let T be a linear operator such that

$$T: \Lambda(\varphi_{\theta}; \bar{A}) \to M(\varphi_{\theta}; \bar{B})$$

is bounded with $||T|| \leq \frac{C}{\theta}$, $(0 < \theta < \theta_0)$. Then

$$T: \Lambda(\varphi_{D_+}; \bar{A}) \to M(\varphi_{R_+}; \bar{B})$$
.

Theorem 1.4 Let $\bar{A} = (A_0, A_1)$ and $\bar{B} = (B_0, B_1)$ be two pairs and let T be a linear operator such that

$$T: \Lambda(\varphi_{\theta}; \bar{A}) \to M(\varphi_{\theta}; \bar{B})$$

is bounded with $||T|| \leq \frac{C}{1-\theta}$, $(\theta_0 < \theta < 1)$. Then

$$T: \Lambda(\varphi_{D_{-}}; \bar{A}) \to M(\varphi_{R_{-}}; \bar{B})$$

The purpose of this note is to study embedding properties of the extrapolation spaces $\Lambda(\varphi_{D_+}; \bar{A})$, $M(\varphi_{R_+}; \bar{B})$, $\Lambda(\varphi_{D_-}; \bar{A})$ and $M(\varphi_{R_-}; \bar{B})$ with respect to the corresponding end-point spaces A_0 , A_1 , B_0 and B_1 respectively. For example: it is clear that the domain space $\Lambda(\varphi_{D_+}; \bar{A}) \subset A_0$, while the opposite embedding does not clearly hold. However, if we consider the Lions-Peetre real interpolation spaces $\bar{A}_{\theta,p}$ defined by (see [1])

$$||a||_{\bar{A}_{\theta,p}} = \left(\theta(1-\theta) \int_0^\infty \left(\frac{K(t,a;\bar{A})}{t^\theta}\right)^p \frac{dt}{t}\right)^{1/p},$$

then, for every $0 < \theta < 1$ and $p \ge 1$,

$$\bar{A}_{\theta,1} \subset \cdots \bar{A}_{\theta,p} \subset \cdots \bar{A}_{\theta,\infty},$$

and, we obtain (see Theorem 2.3 below) that if we intersect A_0 with the biggest space of the above chain then

$$A_0 \cap \bar{A}_{\theta,\infty} \subset \Lambda(\varphi_{D_+}; \bar{A})$$
.

Similar results will be proved for the other three extrapolation spaces.

Constants such as C will denote universal constants (independent of the parameters involved) and may change from one occurrence to the next. As usual, the symbol $f \approx g$ will indicate the existence of a universal positive constant C so that $f/C \leq g \leq Cf$, while the symbol $f \leq g$ means that $f \leq Cg$.

2 Relationship between the extrapolation and the end-point spaces.

Let us start by analyzing the case $\bar{L} = (L^1, L^{\infty})$.

Proposition 2.1 For every p > 1,

$$L^1 \cap L^{p,\infty} \subset L \log L \subset L^1$$
,

and,

$$L^1 \subset M(\varphi_{R_+}) \subset L^1 + L^{p,1},$$

where the constant of the first and last embeddings are less than or equal to Cp/(p-1).

Proof: To show the first embedding, we observe that

$$||f||_{L\log L} \approx ||f||_1 + \int_0^1 f^{**}(t) dt,$$

and therefore

$$||f||_{L\log L} \leq ||f||_{L^{1}} + \int_{0}^{1} \frac{t^{1/p} f^{**}(t)}{t^{1/p}} dt \leq ||f||_{L^{1}} + ||f||_{L^{p,\infty}} \int_{0}^{1} t^{-1/p} dt$$
$$= ||f||_{L^{1}} + \frac{p}{p-1} ||f||_{L^{p,\infty}}.$$

The second and third embeddings are trivial. To prove the last embedding, let $f \in M(\varphi_{R_+})$. Then, for every t > 0,

$$\int_0^t f^* \le \|f\|_{M(\varphi_{R_+})} (1 + \log^+ t) \cdot$$

Then, if we define $\overline{f} = f\chi_{\{|f| > f^*(1)\}}$, we have that

$$\|\overline{f}\|_{L^1} = \int_0^1 f^*(t) dt \le \|f\|_{M(\varphi_{R_+})}.$$

Now, set $\underline{f} = f - \overline{f}$ and recall that the norm in $L^{p,1}$ is given by (1). Then, if $p > \overline{1}$, an integration by parts shows that

$$\begin{split} \|\underline{f}\|_{L^{p,1}} &= \frac{1}{p} \int_{0}^{\infty} \underline{f}^{*}(t) t^{1/p-1} dt \leq f^{*}(1) + \frac{1}{p} \int_{1}^{\infty} f^{*}(t) t^{1/p-1} dt \\ & \leq \|f\|_{M(\varphi_{R_{+}})} + \frac{p-1}{p} \|f\|_{M(\varphi_{R_{+}})} + \frac{p-1}{p} \int_{1}^{\infty} \left(\int_{0}^{t} f^{*}\right) t^{1/p-2} dt \\ & \leq \frac{p-1}{p} \|f\|_{M(\varphi_{R_{+}})} + \|f\|_{M(\varphi_{R_{+}})} \frac{p-1}{p} \int_{1}^{\infty} (1 + \log^{+} t) t^{1/p-2} dt \\ & \approx \frac{p}{p-1} \|f\|_{M(\varphi_{R_{+}})} \end{split}$$

from which the result follows. \Box

Proposition 2.2 For every p > 1, it holds that

$$L^{\infty} \cap L^{p,\infty} \subset \Lambda(\varphi_D) \subset L^{\infty}$$
,

and,

$$L^{\infty} \subset M(\varphi_{R_{-}}) \subset L^{\infty} + L^{p,1},$$

where the constants of the first and last embedding are less than or equal to Cp.

Proof: The proof follows the same pattern than Proposition 2.1. Also, it can be deduced using duality in Proposition 2.1, since the associated space of $L^{p,1}$ is equal to $L^{p',\infty}$ and it was proved in [4] that $\Lambda(\varphi_{D_-})$ is the associated space of $M(\varphi_{R_+})$ and $M(\varphi_{R_-})$ is the associated space of $L \log L$. \square

Let us consider now, the general case $\bar{A} = (A_0, A_1)$.

Theorem 2.1 Let $\bar{A} = (A_0, A_1)$ be a pair. Then, for every $0 < \theta < 1$,

$$A_0 \cap \bar{A}_{\theta,\infty} \subset \Lambda(\varphi_{D_+}; \bar{A}) \subset A_0,$$

and,

$$A_0 \subset M(\varphi_{R_{\perp}}; \bar{A}) \subset A_0 + \bar{A}_{\theta,1},$$

where the constants of the first and last embedding are less than or equal to C/θ .

Proof: The second and the third embeddings are trivial. The first embedding follows from the fact that if $a \in A_0 \cap \bar{A}_{\theta,\infty}$, then $k(.;a) \in L^1 \cap L^{1/(1-\theta),\infty}$, and, by Proposition 2.1, we have that $k(.;a) \in L \log L$, which is equivalent to

$$||a||_{\Lambda}(\varphi_{D_+}; \bar{A}) \approx \int_0^\infty k(t; a) \left(1 + \log^+ \frac{1}{t}\right) dt < \infty$$

To prove the last embedding, we have to proceed as in Proposition 2.1. Let $a \in M(\varphi_{R_+}; \bar{A})$. Then,

$$\int_0^t k(s, a) \, ds \le ||a||_{M(\varphi_{R_+}; \bar{A})} (1 + \log^+ t) \cdot$$

Then, if we define $\overline{k}(s,a) = k(s,a)\chi_{(0,1)}$ and $\underline{k}(s,a) = k(s,a)\chi_{(1,\infty)}$ we have that

$$K(t,a) \leq \int_0^t \overline{k}(s,a) \, ds + \int_0^t \underline{k}(s,a) \, ds$$

$$\leq \int_0^t \overline{k}(s,a) ds + \int_0^t (\underline{k}(s,a) + k(1,a)\chi_{(0,1)}) ds,$$

and since the last two functions are concave, we can use the K-divisibility theorem (see [2], Theorem 3.2.7) to have that there exist a_0 and a_1 such that $a = a_0 + a_1$,

$$K(t, a_0) \le \int_0^t \overline{k}(s, a) \, ds,$$

and

$$K(t,a_1) \le \int_0^t \left(\underline{k}(s,a) + k(1,a)\chi_{(0,1)}\right) ds \cdot$$

Now, if we define \tilde{A}_0 as the set of elements in $A_0 + A_1$ such that $\sup_t K(t, a_0) < \infty$ then, using Holmstedt's formula and Theorem 1.5 of [1] (p. 297), we have

that $A_0 + A_{\theta,1} = \tilde{A}_0 + A_{\theta,1}$ with equivalent norms and, hence,

$$\begin{aligned} \|a\|_{A_0+A_{\theta,1}} &\approx \|a\|_{\tilde{A}_0+A_{\theta,1}} \leq \|a_0\|_{\tilde{A}_0} + \|a_1\|_{A_{\theta,1}} \\ &= \sup_t K(t,a_0) + \theta(1-\theta) \int_0^\infty \frac{K(t,a_1)}{t^{1+\theta}} dt \\ &\leq \int_0^\infty \overline{k}(s,a) \, ds + \theta(1-\theta) K(1,a) \int_0^1 t^{-\theta} \, dt \\ &+ \theta(1-\theta) \int_1^\infty \frac{K(t,a)}{t^{1+\theta}} \, dt \\ &\preceq \int_0^1 k(s,a) \, ds + K(1,a) \\ &+ \|a\|_{M(\varphi_{R_+};\bar{A})} \theta(1-\theta) \int_1^\infty \frac{(1+\log^+ t)}{t^{1+\theta}} \, dt \\ &\preceq \frac{1}{\theta} \|a\|_{M(\varphi_{R_+};\bar{A})}, \end{aligned}$$

from which the result follows. \Box And, similarly:

Theorem 2.2 Let \bar{A} be a pair. Then, for every $0 < \theta < 1$,

$$A_1 \cap \bar{A}_{\theta,\infty} \subset \Lambda(\varphi_{D_-}; \bar{A}) \subset A_1,$$

and

$$A_1 \subset M(\varphi_{R_-}; \bar{A}) \subset A_1 + \bar{A}_{\theta,1},$$

where the constants of the first and last embeddings are less than or equal to $C/(1-\theta)$.

References

- [1] C. Bennett and R. Sharpley, *Interpolation of Operators*, Academic Press, Boston, (1988).
- [2] Yu. A. Brudnyi and N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces, North-Holland, Amsterdam (1991).
- [3] M.J. Carro, New extrapolation estimates J. Funct. Anal. 174 (2000), 155–166.

- [4] M.J. Carro, On the range space of Yano's extrapolation theorem and new extrapolation estimates at infinity, Preprint (2000).
- [5] M.J. Carro and J. Martín, Extrapolation theory for the real interpolation method, Preprint (2000).
- [6] S. Yano, An extrapolation theorem J. Math. Soc. Japan 3 (1951), 296–305.
- [7] A. Zygmund, *Trigonometric Series* Cambridge Univ. Press, Cambridge-New York, vol I 1959.

Departament de Matemàtica Aplicada i Anàlisi Universitat de Barcelona, E-08071 Barcelona E-mail: carro@mat.ub.es, jmartin@mat.ub.es