UAB
 Universitat Autònoma de Barcelona

Dipòsit digital

 de documents de la UABThis is the accepted version of the book part:
Martín i Pedret, Joaquim; Carro, María J. «On embedding properties of some extrapolation spaces». A: Function spaces, interpolation theory and related topics. Proceedings of the International Conference in honour of Jaak Peetre on his 65th birthday. 2002, p. 241-248. 8 pàg. New York: De Gruyter. DOI 10.1515/9783110198058.241

This version is available at https://ddd.uab.cat/record/271866
under the terms of the © ${ }_{\text {COPPRIGHT }}^{\mathbb{N}}$ license

On embedding properties of some extrapolation spaces *

María J. Carro and Joaquim Martín

Abstract

Given a sublinear operator T satisfying that $\|T f\|_{L^{p}(\nu)} \leq \frac{C}{p-1}\|f\|_{L^{p}(\mu)}$, for every $1<p \leq p_{0}$, with C independent of f and p, it has been recently proved that $T: L \log L \rightarrow M(\varphi)$, where $M(\varphi)$ is the maximal Lorentz space with $\varphi(t)=t\left(1+\log ^{+} t\right)^{-1}$. Also, if T satisfies that $\|T f\|_{L^{p}(\nu)} \leq C p\|f\|_{L^{p}(\mu)}$, for every $p \geq p_{0}$, then $T: \Lambda^{1}\left(\min \left(t^{-1}, 1\right)\right) \cap$ $L^{\infty} \rightarrow M(\phi)$, where $\phi(t)=\left(1+\log ^{+}(1 / t)\right)^{-1}$.

The purpose of this note, is to study embedding properties of the extrapolation spaces $L \log L$ and $M(\varphi)$ with respect to L^{1}, and also embedding properties of $\Lambda^{1}\left(\min \left(t^{-1}, 1\right)\right) \cap L^{\infty}$ and $M(\phi)$ with respect to L^{∞}. We shall also extend these type of results to more general extrapolation theorems.

1 Introduction

In 1951, Yano (see [6]) proved that for every sublinear operator satisfying that

$$
T: L^{p}(\mu) \longrightarrow L^{p}(\nu)
$$

is bounded, for every $1<p \leq p_{0}$, with constant less than or equal to $\frac{C}{p-1}$, where μ and ν are two finite measure, it holds that $T: L \log L(\mu) \longrightarrow L^{1}(\nu)$ is bounded. If the measures involved are not finite, then an easy modification in the proof of this result shows that $T: L \log L(\mu) \longrightarrow L^{1}(\nu)+L^{\infty}(\nu)$ is bounded.

[^0]This theorem has recently been improved in [3] and [4], showing that, if μ and ν are σ-finite measures and T satisfies that

$$
T: L^{p, 1}(\mu) \longrightarrow L^{p, \infty}(\nu),
$$

is bounded with constant less than or equal to $\frac{C}{p-1}$, where $L^{p, \infty}(\nu)$ is endowed with the norm $\|f\|_{L^{p, \infty}}=\sup _{t}\left(t^{1 / p} f_{\nu}^{* *}(t)\right)$, then

$$
T: L \log L(\mu) \longrightarrow M(\varphi ; \nu)
$$

where $\varphi(t)=t\left(1+\log ^{+} t\right)^{-1}$ and, the maximal Lorentz space $M(\varphi)=$ $M(\varphi ; \nu)$ is defined (see [1], p. 69]) as the set of measurable functions such that

$$
\|f\|_{M(\varphi)}=\sup _{t>0}\left(\varphi(t) f_{\nu}^{* *}(t)\right)<\infty
$$

where $f_{\nu}^{* *}(t)=\frac{1}{t} \int_{0}^{t} f_{\nu}^{*}(s) d s$ and f_{ν}^{*} is the decreasing rearrangement of f with respect to the measure ν, (in what follows, we shall omit the subindices ν or μ whenever it is clear the measure we are working with). In particular, if $\varphi(t)=t^{1 / p}, M(\varphi)=L^{p, \infty}$.

Also, in the setting of Lorentz spaces, it holds that $L \log L$ is the minimal Lorentz space $\Lambda(\varphi)$, where $\varphi(t)=t\left(1+\log ^{+}(1 / t)\right)$ and

$$
\|f\|_{\Lambda(\varphi)}=\int_{0}^{\infty} f^{*}(t) d \varphi(t) .
$$

If $\varphi(t)=t^{1 / p}, \Lambda(\varphi)$ is the Lorentz space $L^{p, 1}$, where

$$
\begin{equation*}
\|f\|_{L^{p, 1}}=\frac{1}{p} \int_{0}^{\infty} f^{*}(t) t^{1 / p-1} d t \tag{1}
\end{equation*}
$$

Therefore, in this context of minimal-maximal Lorentz spaces, the new version of Yano's theorem can be stated as follows:

Theorem 1.1 (Yano) Let $\varphi_{\theta}(t)=t^{1-\theta}$ and let T be a sublinear operator such that

$$
T: \Lambda\left(\varphi_{\theta} ; \mu\right) \rightarrow M\left(\varphi_{\theta} ; \nu\right)
$$

is bounded with $\|T\| \leq C / \theta,\left(0<\theta<\theta_{0} \leq 1\right)$. Then

$$
T: \Lambda\left(\varphi_{D_{+}} ; \mu\right) \rightarrow M\left(\varphi_{R_{+}} ; \nu\right),
$$

where $\varphi_{D_{+}}(t)=t\left(1+\log ^{+} \frac{1}{t}\right)$ and $\varphi_{R_{+}}(t)=t\left(1+\log ^{+} t\right)^{-1}$.

We also have a dual version. That is, if

$$
\|T f\|_{L^{p}(\nu)} \leq C p\|f\|_{L^{p}(\mu)},
$$

for every $p \geq p_{0}$, then, it was proved in [4] that

$$
T: \Lambda^{1}\left(\min \left(t^{-1}, 1\right) ; \mu\right) \cap L^{\infty}(\mu) \rightarrow M(\phi ; \nu),
$$

where $\phi(t)=1 /\left(1+\log ^{+}(1 / t)\right)$, improving a previous result due to Zygmund (see [7], p. 119). The formulation of this result in the above terminology is the following:

Theorem 1.2 (Zygmund) Let $\varphi_{\theta}(t)=t^{1-\theta}$ and let T be a sublinear operator such that
$\begin{aligned} & T: \Lambda\left(\varphi_{\theta} ; \mu\right) \rightarrow M\left(\varphi_{\theta} ; \nu\right) \\ & \text { is bounded with }\|T\| \leq C /(1-\theta),\left(\theta_{0}<\theta<1\right) . \text { Then }\end{aligned}$

$$
T: \Lambda\left(\varphi_{D_{-}} ; \mu\right) \rightarrow M\left(\varphi_{R_{-}} ; \nu\right),
$$

where $\varphi_{D_{-}}(t)=\left(1+\log ^{+} t\right)$ and $\varphi_{R_{-}}(t)=\left(1+\log ^{+}(1 / t)\right)^{-1}$.
Now, let us consider compatible pairs of Banach spaces $\bar{A}=\left(A_{0}, A_{1}\right)$. That is, we assume that there is a large topological vector space \mathcal{V} such that $A_{i} \subset \mathcal{V}, i=0,1$, continuously. Usually we drop the terms "compatible" and "Banach" and refer to a compatible Banach pair simply as a "pair".

Let us recall that given a pair $\bar{A}=\left(A_{0}, A_{1}\right)$, the Peetre K-functional is defined, for $a \in A_{0}+A_{1}$ and $t>0$, by

$$
K(a, t)=K(a, t ; \bar{A})=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}: a=a_{0}+a_{1}, a_{i} \in A_{i}\right\} .
$$

It is easy to see that $K(t, a)$ is a nonnegative and concave function of $t>0$, (and thus also continuous). Therefore

$$
K(a, t ; \bar{A})=K\left(a, 0^{+} ; \bar{A}\right)+\int_{0}^{t} k(a, s ; \bar{A}) d s,
$$

where the k-functional, $k(a, s ; \bar{A})=k(a, s)$, is a uniquely defined, nonnegative, decreasing and right-continuous function of $s>0$.

In particular, if $\bar{A}=\left(L^{1}(\nu), L^{\infty}(\nu)\right)$, we have that $k(a, s ; \bar{A})=f^{*}(s)$ and

$$
K(f, t)=\int_{0}^{t} f^{*}(s) d s
$$

The new point of view of Yano's and Zygmund's theorems presented above gives us the idea of defining, for a pair \bar{A}, the corresponding minimal and maximal spaces as follows:

Definition 1.1 The minimal Lorentz space, $\Lambda(\varphi ; \bar{A})$, is the set of elements $a \in A_{0}+A_{1}$ such that $K\left(a, 0^{+} ; \bar{A}\right)=0$ and

$$
\|a\|_{\Lambda(\varphi ; \bar{A})}=\int_{0}^{\infty} k(a, s ; \bar{A}) d \varphi(s)<\infty
$$

and the maximal Lorentz space, $M(\varphi ; \bar{A})$, is the set of elements $a \in A_{0}+A_{1}$ such that

$$
\|a\|_{M(\varphi ; \bar{A})}=\sup _{t>0}\left(\frac{K(a, t ; \bar{A})}{t} \varphi(t)\right)<\infty .
$$

Then, the two following extrapolation results have been obtained in [5]
Theorem 1.3 Let $\bar{A}=\left(A_{0}, A_{1}\right)$ and $\bar{B}=\left(B_{0}, B_{1}\right)$ be two pairs and let T be a linear operator such that

$$
T: \Lambda\left(\varphi_{\theta} ; \bar{A}\right) \rightarrow M\left(\varphi_{\theta} ; \bar{B}\right)
$$

is bounded with $\|T\| \leq \frac{C}{\theta},\left(0<\theta<\theta_{0}\right)$. Then

$$
T: \Lambda\left(\varphi_{D_{+}} ; \bar{A}\right) \rightarrow M\left(\varphi_{R_{+}} ; \bar{B}\right) .
$$

Theorem 1.4 Let $\bar{A}=\left(A_{0}, A_{1}\right)$ and $\bar{B}=\left(B_{0}, B_{1}\right)$ be two pairs and let T be a linear operator such that

$$
T: \Lambda\left(\varphi_{\theta} ; \bar{A}\right) \rightarrow M\left(\varphi_{\theta} ; \bar{B}\right)
$$

is bounded with $\|T\| \leq \frac{C}{1-\theta},\left(\theta_{0}<\theta<1\right)$. Then

$$
T: \Lambda\left(\varphi_{D_{-}} ; \bar{A}\right) \rightarrow M\left(\varphi_{R_{-}} ; \bar{B}\right) .
$$

The purpose of this note is to study embedding properties of the extrapolation spaces $\Lambda\left(\varphi_{D_{+}} ; \bar{A}\right), M\left(\varphi_{R_{+}} ; \bar{B}\right), \Lambda\left(\varphi_{D_{-}} ; \bar{A}\right)$ and $M\left(\varphi_{R_{-}} ; \bar{B}\right)$ with respect to the corresponding end-point spaces A_{0}, A_{1}, B_{0} and B_{1} respectively. For example: it is clear that the domain space $\Lambda\left(\varphi_{D_{+}} ; \bar{A}\right) \subset A_{0}$, while the opposite embedding does not clearly hold. However, if we consider the Lions-Peetre real interpolation spaces $\bar{A}_{\theta, p}$ defined by (see [1])

$$
\|a\|_{\bar{A}_{\theta, p}}=\left(\theta(1-\theta) \int_{0}^{\infty}\left(\frac{K(t, a ; \bar{A})}{t^{\theta}}\right)^{p} \frac{d t}{t}\right)^{1 / p}
$$

then, for every $0<\theta<1$ and $p \geq 1$,

$$
\bar{A}_{\theta, 1} \subset \cdots \bar{A}_{\theta, p} \subset \cdots \bar{A}_{\theta, \infty}
$$

and, we obtain (see Theorem 2.3 below) that if we intersect A_{0} with the biggest space of the above chain then

$$
A_{0} \cap \bar{A}_{\theta, \infty} \subset \Lambda\left(\varphi_{D_{+}} ; \bar{A}\right)
$$

Similar results will be proved for the other three extrapolation spaces.
Constants such as C will denote universal constants (independent of the parameters involved) and may change from one occurrence to the next. As usual, the symbol $f \approx g$ will indicate the existence of a universal positive constant C so that $f / C \leq g \leq C f$, while the symbol $f \preceq g$ means that $f \leq C g$.

2 Relationship betwe en the extrapolation and the end-point spaces.

Let us start by analyzing the case $\bar{L}=\left(L^{1}, L^{\infty}\right)$.
Proposition 2.1 For every $p>1$,

$$
L^{1} \cap L^{p, \infty} \subset L \log L \subset L^{1}
$$

and,

$$
L^{1} \subset M\left(\varphi_{R_{+}}\right) \subset L^{1}+L^{p, 1}
$$

where the constant of the first and last embeddings are less than or equal to $C p /(p-1)$.

Proof: To show the first embedding, we observe that

$$
\|f\|_{L \log L} \approx\|f\|_{1}+\int_{0}^{1} f^{* *}(t) d t
$$

and therefore

$$
\begin{aligned}
\|f\|_{L \log L} & \preceq\|f\|_{L^{1}}+\int_{0}^{1} \frac{t^{1 / p} f^{* *}(t)}{t^{1 / p}} d t \leq\|f\|_{L^{1}}+\|f\|_{L^{p, \infty}} \int_{0}^{1} t^{-1 / p} d t \\
& =\|f\|_{L^{1}}+\frac{p}{p-1}\|f\|_{L^{p, \infty}}
\end{aligned}
$$

The second and third embeddings are trivial. To prove the last embedding, let $f \in M\left(\varphi_{R_{+}}\right)$. Then, for every $t>0$,

$$
\int_{0}^{t} f^{*} \leq\|f\|_{M\left(\varphi_{R_{+}}\right)}\left(1+\log ^{+} t\right) .
$$

Then, if we define $\bar{f}=f \chi_{\left\{|f|>f^{*}(1)\right\}}$, we have that

$$
\|\bar{f}\|_{L^{1}}=\int_{0}^{1} f^{*}(t) d t \leq\|f\|_{M\left(\varphi_{R_{+}}\right)} .
$$

Now, set $\underline{f}=f-\bar{f}$ and recall that the norm in $L^{p, 1}$ is given by (1). Then, if $p>1$, an integration by parts shows that

$$
\begin{aligned}
\|f\|_{L^{p, 1}} & =\frac{1}{p} \int_{0}^{\infty} \underline{f}^{*}(t) t^{1 / p-1} d t \leq f^{*}(1)+\frac{1}{p} \int_{1}^{\infty} f^{*}(t) t^{1 / p-1} d t \\
& \preceq\|f\|_{M\left(\varphi_{R_{+}}\right)}+\frac{p-1}{p}\|f\|_{M\left(\varphi_{R_{+}}\right)}+\frac{p-1}{p} \int_{1}^{\infty}\left(\int_{0}^{t} f^{*}\right) t^{1 / p-2} d t \\
& \leq \frac{p-1}{p}\|f\|_{M\left(\varphi_{R_{+}}\right)}+\|f\|_{M\left(\varphi_{R_{+}}\right)} \frac{p-1}{p} \int_{1}^{\infty}\left(1+\log ^{+} t\right) t^{1 / p-2} d t \\
& \approx \frac{p}{p-1}\|f\|_{M\left(\varphi_{R_{+}}\right)}
\end{aligned}
$$

from which the result follows.
Proposition 2.2 For every $p>1$, it holds that

$$
L^{\infty} \cap L^{p, \infty} \subset \Lambda\left(\varphi_{D_{-}}\right) \subset L^{\infty},
$$

and,

$$
L^{\infty} \subset M\left(\varphi_{R_{-}}\right) \subset L^{\infty}+L^{p, 1}
$$

where the constants of the first and last embedding are less than or equal to Cp.

Proof: The proof follows the same pattern than Proposition 2.1. Also, it can be deduced using duality in Proposition 2.1, since the associated space of $L^{p, 1}$ is equal to $L^{p^{\prime}, \infty}$ and it was proved in [4] that $\Lambda\left(\varphi_{D_{-}}\right)$is the associated space of $M\left(\varphi_{R_{+}}\right)$and $M\left(\varphi_{R_{-}}\right)$is the associated space of $L \log L$.

Let us consider now, the general case $\bar{A}=\left(A_{0}, A_{1}\right)$.

Theorem 2.1 Let $\bar{A}=\left(A_{0}, A_{1}\right)$ be a pair. Then, for every $0<\theta<1$,

$$
A_{0} \cap \bar{A}_{\theta, \infty} \subset \Lambda\left(\varphi_{D_{+}} ; \bar{A}\right) \subset A_{0}
$$

and,

$$
A_{0} \subset M\left(\varphi_{R_{+}} ; \bar{A}\right) \subset A_{0}+\bar{A}_{\theta, 1}
$$

where the constants of the first and last embedding are less than or equal to C / θ.

Proof: The second and the third embeddings are trivial. The first embedding follows from the fact that if $a \in A_{0} \cap \bar{A}_{\theta, \infty}$, then $k(. ; a) \in L^{1} \cap L^{1 /(1-\theta), \infty}$, and, by Proposition 2.1, we have that $k(. ; a) \in L \log L$, which is equivalent to

$$
\|a\|_{\Lambda}\left(\varphi_{D_{+}} ; \bar{A}\right) \approx \int_{0}^{\infty} k(t ; a)\left(1+\log ^{+} \frac{1}{t}\right) d t<\infty
$$

To prove the last embedding, we have to proceed as in Proposition 2.1. Let $a \in M\left(\varphi_{R_{+}} ; \bar{A}\right)$. Then,

$$
\int_{0}^{t} k(s, a) d s \leq\|a\|_{M\left(\varphi_{R_{+}} ; \bar{A}\right)}\left(1+\log ^{+} t\right)
$$

Then, if we define $\bar{k}(s, a)=k(s, a) \chi_{(0,1)}$ and $\underline{k}(s, a)=k(s, a) \chi_{(1, \infty)}$ we have that

$$
\begin{aligned}
K(t, a) & \leq \int_{0}^{t} \bar{k}(s, a) d s+\int_{0}^{t} \underline{k}(s, a) d s \\
& \leq \int_{0}^{t} \bar{k}(s, a) d s+\int_{0}^{t}\left(\underline{k}(s, a)+k(1, a) \chi_{(0,1)}\right) d s
\end{aligned}
$$

and since the last two functions are concave, we can use the K-divisibility theorem (see [2], Theorem 3.2.7) to have that there exist a_{0} and a_{1} such that $a=a_{0}+a_{1}$,

$$
K\left(t, a_{0}\right) \leq \int_{0}^{t} \bar{k}(s, a) d s
$$

and

$$
K\left(t, a_{1}\right) \leq \int_{0}^{t}\left(\underline{k}(s, a)+k(1, a) \chi_{(0,1)}\right) d s .
$$

Now, if we define \tilde{A}_{0} as the set of elements in $A_{0}+A_{1}$ such that $\sup _{t} K\left(t, a_{0}\right)<$ ∞ then, using Holmstedt's formula and Theorem 1.5 of [1] (p. 297), we have
that $A_{0}+A_{\theta, 1}=\tilde{A}_{0}+A_{\theta, 1}$ with equivalent norms and, hence,

$$
\begin{aligned}
\|a\|_{A_{0}+A_{\theta, 1}} \approx & \|a\|_{\tilde{A}_{0}+A_{\theta, 1}} \leq\left\|a_{0}\right\|_{\tilde{A}_{0}}+\left\|a_{1}\right\|_{A_{\theta, 1}} \\
= & \sup _{t} K\left(t, a_{0}\right)+\theta(1-\theta) \int_{0}^{\infty} \frac{K\left(t, a_{1}\right)}{t^{1+\theta}} d t \\
\leq & \int_{0}^{\infty} \bar{k}(s, a) d s+\theta(1-\theta) K(1, a) \int_{0}^{1} t^{-\theta} d t \\
& +\theta(1-\theta) \int_{1}^{\infty} \frac{K(t, a)}{t^{1+\theta}} d t \\
\preceq & \int_{0}^{1} k(s, a) d s+K(1, a) \\
& +\|a\|_{M\left(\varphi_{R_{+}} ; \bar{A}\right)} \theta(1-\theta) \int_{1}^{\infty} \frac{\left(1+\log ^{+} t\right)}{t^{1+\theta}} d t \\
\preceq & \frac{1}{\theta}\|a\|_{M\left(\varphi_{R_{+}} ; \bar{A}\right)},
\end{aligned}
$$

from which the result follows.
And, similarly:
Theorem 2.2 Let \bar{A} be a pair. Then, for every $0<\theta<1$,

$$
A_{1} \cap \bar{A}_{\theta, \infty} \subset \Lambda\left(\varphi_{D_{-}} ; \bar{A}\right) \subset A_{1},
$$

and

$$
A_{1} \subset M\left(\varphi_{R_{-}} ; \bar{A}\right) \subset A_{1}+\bar{A}_{\theta, 1},
$$

where the constants of the first and last embeddings are less than or equal to $C /(1-\theta)$.

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, (1988).
[2] Yu. A. Brudnyi and N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces, North-Holland, Amsterdam (1991).
[3] M.J. Carro, New extrapolation estimates J. Funct. Anal. 174 (2000), 155-166.
[4] M.J. Carro, On the range space of Yano's extrapolation theorem and new extrapolation estimates at infinity, Preprint (2000).
[5] M.J. Carro and J. Martín, Extrapolation theory for the real interpolation method, Preprint (2000).
[6] S. Yano, An extrapolation theorem J. Math. Soc. Japan 3 (1951), 296-305.
[7] A. Zygmund, Trigonometric Series Cambridge Univ. Press, CambridgeNew York, vol I 1959.

Departament de Matemàtica Aplicada i Anàlisi
Universitat de Barcelona, E-08071 Barcelona
E-mail: carro@mat.ub.es, jmartin@mat.ub.es

[^0]: *This work has been partially supported by the DGICYT PB97-0986 and by CIRIT 1999SGR 00061.
 Key words and phrases: Real interpolation, extrapolation, maximal and minimal Lorentz spaces
 2000 Mathematichs Subject Classification: 46M35

