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On embedding properties of some extrapolation
spaces *

Maria J. Carro and Joaquim Martin

Abstract

Given a sublinear operator T satisfying that ||Tf|| Lr () < % (EAFZI

for every 1 < p < pg, with C independent of f and p, it has been re-
cently proved that T : Llog L — M(y), where M(y) is the maximal
Lorentz space with o(t) = t(1 +log™ t)~!. Also, if T satisfies that
1T fll o) < CpIfll Loy, for every p > po, then T : A*(min(t~*,1)) N
L% = M(g), where ¢(t) = (1 +log*(1/)) .

The purpose of this note, is to study embedding properties of the
extrapolation spaces Llog L and M (p) with respect to L', and also
embedding properties of A*(min(t~*,1)) N L> and M (¢) with respect
to L>°. We shall also extend these type of results to more general
extrapolation theorems.

1 Introduction

In 1951, Yano (see [6]) proved that for every sublinear operator satisfying
that
T:LP(u) — LP(v)

is bounded, for every 1 < p < pg, with constant less than or equal to z%’

where 1 and v are two finite measure, it holds that T : Llog L(u) — L'(v)
is bounded. If the measures involved are not finite, then an easy modification
in the proof of this result shows that T : Llog L(p) — L'(v) + L>®(v) is
bounded.
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This theorem has recently been improved in [3] and [4], showing that, if
w1 and v are o-finite measures and T satisfies that

T: L (4) — LP(v),

is bounded with constant less than or equal to ]%, where LP*°(v) is endowed

with the norm || f||r.es = sup, (/7 £*(t)), then
T:LlogL(p) — M(p;v)

where ¢(t) = t(1 + logtt)~! and, the maximal Lorentz space M(p) =
M (p;v) is defined (see [1], p. 69]) as the set of measurable functions such
that

[ £llas(e) = sup (e £ 1)) < o,

where f3*(t) = 1 fg f(s)ds and f} is the decreasing rearrangement of f with
respect to the measure v, (in what follows, we shall omit the subindices v
or u whenever it is clear the measure we are working with). In particular,
if o(t) = t'/P, M(p) = LP°,

Also, in the setting of Lorentz spaces, it holds that L log L is the minimal
Lorentz space A(p), where (t) = t(1 +log™(1/t)) and

7w = [ F®delt)

If o(t) = t'/P, A(¢p) is the Lorentz space LP!, where

£l = [ Frorrar 0

Therefore, in this context of minimal-maximal Lorentz spaces, the new
version of Yano’s theorem can be stated as follows:

Theorem 1.1 (Yano) Let pg(t) = t'=% and let T be a sublinear operator
such that

T : Mo ) = M(pg; v)
is bounded with |T|| < C/0, (0 <60 <6y <1). Then

T:Aep,ip) = M(pr,;v),

where pp, (t) =t(1+1log™ 1) and ¢, (t) = t(1 +log™ )~
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We also have a dual version. That is, if

||Tf||Lp(l/) < Cp”fHLp(u)’
for every p > po, then, it was proved in [4] that

T: AN(min(t™!, 1); ) N L () — M(¢;v),

where ¢(t) = 1/(1+log™(1/t)), improving a previous result due to Zygmund
(see [7], p- 119). The formulation of this result in the above terminology is
the following:

Theorem 1.2 (Zygmund) Let pg(t) = t'=% and let T be a sublinear oper-
ator such that

T : A(pg; ) = M(pp;v)
is bounded with | T|| < C/(1—0), (6o <8 <1). Then

T: Mep_;p) = M(pr_;v),
where op_(t) = (1 +1log™ t) and pr_(t) = (1 +1log™(1/t))~L.

Now, let us consider compatible pairs of Banach spaces A = (Ag, 41).
That is, we assume that there is a large topological vector space V such that
A; CV,i=0,1, continuously. Usually we drop the terms “compatible” and
“Banach” and refer to a compatible Banach pair simply as a “pair”.

Let us recall that given a pair A = (Ag, A1), the Peetre K —functional
is defined, for a € Ay + A1 and t > 0, by

K(a,t) = K(a,t; A) = inf{llao o, + ¢ Lo, : @ = ag + a1, ai € Ai}-

It is easy to see that K(¢,a) is a nonnegative and concave function of ¢ > 0,
(and thus also continuous). Therefore

_ _ t _
K(a,t; A) = K(a,0"; A) +/ k(a,s; A)ds,
0

where the k—functional, k(a, s; A) = k(a, s), is a uniquely defined, nonneg-
ative, decreasing and right-continuous function of s > 0. B
In particular, if A = (L!(v), L>°(v)), we have that k(a, s; A) = f*(s) and

K7t = [ () ds

The new point of view of Yano’s and Zygmund’s theorems presented
above gives us the idea of defining, for a pair A, the corresponding minimal
and maximal spaces as follows:



Definition 1.1 The minimal Lorentz space, A(p; A), is the set of elements
a € Ay + Ay such that K(a,0"; A) =0 and

lallaoay = [ lasi A)diols) < o,

and the mazimal Lorentz space, M (p; A), is the set of elements a € Ag+ Ay

such that _
K(a,t; A)

sy = sup (5 o)) < oo

t>0

Then, the two following extrapolation results have been obtained in [5]

Theorem 1.3 Let A = (Ag, A1) and B = (By, B1) be two pairs and let T
be a linear operator such that

T : A(pg; A) — M(pg; B)

is bounded with |T|| < &, (0 <6 < 6y). Then

T:Ap,;A) = M(¢r,; B)

Theorem 1.4 Let A = (Ag, A1) and B = (By, B1) be two pairs and let T
be a linear operator such that

T : Apo; A) — M (pg; B)

is bounded with ||T|| < 15, (0o < 0 < 1). Then

T:Ap_;A) = M(pr_; B):

The purpose of this note is to study embedding properties of the ex-
trapolation spaces A(¢p,; A), M(pr,; B), A(pp_; A) and M (pg_; B) with
respect to the corresponding end-point spaces Ag, A1, By and Bj respec-
tively. For example: it is clear that the domain space A(¢p, ; A) C Ag, while
the opposite embedding does not clearly hold. However, if we consider the

Lions-Peetre real interpolation spaces Ay, defined by (see [1])

lols,, = (0 - 0) [~ (KLY Ay

then, for every 0 < 6 <1 and p > 1,

[1971 C ...Ae’p C ...[19’007
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and, we obtain (see Theorem 2.3 below) that if we intersect Ay with the
biggest space of the above chain then

Ao N Ag oo C App,; A)-

Similar results will be proved for the other three extrapolation spaces.

Constants such as C' will denote universal constants (independent of the
parameters involved) and may change from one occurrence to the next. As
usual, the symbol f = ¢ will indicate the existence of a universal positive
constant C' so that f/C < g < Cf, while the symbol f < g means that
f<Cg.

2 Relationship betwe en the extrapolation and the
end-point spaces.

Let us start by analyzing the case L = (L', L>).
Proposition 2.1 For every p > 1,
L'NIP>® c LlogL C L',

and,
L' € M(¢gr,)C L' + L,

where the constant of the first and last embeddings are less than or equal to

Cp/(p—1).
Proof: To show the first embedding, we observe that
1
g 71+ [ £ (et

and therefore

tl pf** 1 1y
i = I+ [ S0 e < 17l 4 1l [

= [[fllzs + ]ﬁHfHLP"’O'



The second and third embeddings are trivial. To prove the last embed-
ding, let f € M(pr, ). Then, for every ¢t > 0,

t
|7 < 1 son, (1 108" 1)
Then, if we define f = IX{f1>f*1)}> we have that
_ L
Tl = [ £@dt <1 st

Now, set f = f — f and recall that the norm in LP! is given by (1).
Then, if p > 1, an integration by parts shows that

_}OO* 1/p—1 * 100* 1/p—1
s = 5 [T @t ta< @ [T paear

p—1 p—1 [, t . B
j Hf||M(‘PR+)+p||f||M(@R+)+pA (/0 f )tl/p th
< pHfHM(SDRJr)+||f||M(<pR+)p/1 (1 + log* £)t1/P=2 4t

Q

b
Eﬂf“M(@M)
from which the result follows. O

Proposition 2.2 For every p > 1, it holds that
L*NLP>* C A(pp_) C L™,

and,
L>® C M(pp ) C L>® + LP*,

where the constants of the first and last embedding are less than or equal to
Cp.

Proof: The proof follows the same pattern than Proposition 2.1. Also, it
can be deduced using duality in Proposition 2.1, since the associated space of
LP! is equal to LP™ and it was proved in [4] that A(pp_) is the associated
space of M (g, ) and M(ppg_) is the associated space of Llog L. O

Let us consider now, the general case A = (Ag, A1).



Theorem 2.1 Let A = (Ag, A1) be a pair. Then, for every 0 < 0 < 1,
Ao N Apo C App,; A) C A,

and, B B
Ao C M(pr,;A) C Ao+ Ap 1,

where the constants of the first and last embedding are less than or equal to

/.

Proof: The second and the third embeddings are trivial. The first embed-
ding follows from the fact that if a € AgNAg o, then k(.;a) € L*NLY 1000,
and, by Proposition 2.1, we have that k(.;a) € Llog L, which is equivalent
to

_ 00 1
lalla(op,; A) ~ / k(t: a)<1 +log*t t) dt < oo-
0

To prove the last embedding, we have to proceed as in Proposition 2.1.

Let a € M(¢Rr,;A). Then,

t
| kls.@)ds < lally g, 21+ log™ 1)

Then, if we define k(s, a) = k(s,a)x(0,1) and k(s, a) = k(s,a)x(1,00) We have
that

K(t,a) < /Otk(s,a)ds—l-/otk(s,a)ds

/Ot k(s,a)ds + /Ot (k(s,a) + k(1,a)x(0,1))ds,

IN

and since the last two functions are concave, we can use the K-divisibility
theorem (see [2], Theorem 3.2.7) to have that there exist ayp and a; such
that a = ag + aq,

t
K(t.a0) < [ F(s.a)ds,
0

and
t

K(t,a1) g/o (k(s,a) + k(1, @) x(o.1)) ds-

Now, if we define Ay as the set of elements in Ayg+A; such that sup, K (t,ap) <
oo then, using Holmstedt’s formula and Theorem 1.5 of [1] (p. 297), we have



that Ag + Ag1 = 1210 + Ap,1 with equivalent norms and, hence,

lallag+ao, =~ Nlall dgqa,, < llaoll 4, + llarllag,

o K(tval)
= sng(t,ao)—FH(l—@)/O ey dt

IN

o] 1
/ E@ﬂﬂk+9ﬂ—0ﬂﬂLaX/t4dt
0 0
> K(t,a)

vo(1-0) [ S ar

/01 k(s,a)ds + K(1,a)

PN

% (1 +log™t)
+HGHM(¢R+;A)9(1 - 9)/1 e dt

< 1 .
= §||GHM(¢R+;A)a

from which the result follows. O
And, similarly:

Theorem 2.2 Let A be a pair. Then, for every 0 < 0 < 1,
Al n Ae,oo C A(gODi;A) C Al,

and B -
A1 C M(QOR_;A) C A1 +A971,

where the constants of the first and last embeddings are less than or equal to

C/(1-9).
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