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INTRODUCCIÓN

En este trabajo, haré una panorámica del uso de leyes y modelos matemáticos en el
campo de la demografía, ciencia del estudio de la población. La demografía y la estadística
fueron desde su origen en el siglo XVII estrechamente asociadas con las ciencias matemáti-
cas y condicionadas por el estado de su desarrollo. En concreto, y a partir de los siglos XVII

y XVIII, fueron importantes para la demografía sobre todo la evolución del tratamiento mate-
mático de la progresión geométrica, la teoría de las probabilidades y la función exponencial,
que dieron a la demografía el impulso para desarrollar sus modelos fundadores, el modelo
de la tabla de mortalidad y luego los modelos de crecimiento en el tiempo y de composición
por edad, que presentaré en los puntos 1 y 2. Estos modelos consideran la población en su
conjunto, pensando normalmente en la población de un país entero. Se desarrollaron en
paralelo con la aparición de las monarquías absolutistas de Francia e Inglaterra y recibieron
un gran impulso en el siglo XIX y principios del XX con los modernos sistemas de adminis-
tración pública centralizada. El estado centralizado moderno encontró en la demografía la
ciencia que justificó el desarrollo de los sistemas de recuento de la población, tales como los
censos y los registros continuos de nacimientos, defunciones y migraciones. Pero esta ópti-
ca centralizada, considerando la población como un conjunto de individuos en un país, un
espacio político esencialmente unidimensional, ha frenado el desarrollo de métodos de aná-
lisis del grupo familiar y del parentesco, así como de las características del poblamiento,
que necesita como mínimo de las 2 dimensiones del plano geográfico. Es solamente de
forma muy reciente que la demografía se ha ocupado de desarrollar modelos de la familia y
de la variación de la densidad en el espacio, que presentaré en los puntos 3 y 4.

1. EL ANÁLISIS MATEMÁTICO DE LA MORTALIDAD

1.1. Orígenes de la tabla de mortalidad

El origen de la demografía y de la estadística modernas se remonta a un libro
publicado en el año 1662, Observaciones naturales y políticas sobre los boletines de
mortalidad de la ciudad de Londres. Después de una larga controversia, parece ahora
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probado que el autor principal de este libro fue una persona con formación científica,
William Petty, y que el autor único que aparece en la cubierta, el comerciante de telas
John Graunt, sólo lo fue de los capítulos más descriptivos.1 Este libro incluye la primera
tabla de mortalidad moderna, basada de hecho sobre un modelo matemático más que
sobre datos reales. Como lo vemos en la figura siguiente, que reproduce un gráfico ori-
ginal del siglo XVII construido por Christian Huygens, uno de los fundadores de la teoría
de las probabilidades, esta tabla de mortalidad está construida a partir de una hipótesis de
riesgo de morir constante entre 6 y 76 años. La curva indica para cada edad el número
de supervivientes a partir de una cifra inicial de 100 nacimientos. Para nosotros este
gráfico representa una curva exponencial, de razón positiva e inferior a 1. Pero en el
siglo XVII todavía no se conocía esta función.2 Los astrónomos utilizaban los resultados
de Lord Napier sobre la construcción de la función logarítmica, pero habría que esperar
al siglo XVIII para el estudio de su función inversa. De hecho, en la construcción de la
tabla, Petty no utilizó tampoco los logaritmos, sino una progresión geométrica de razón
0,64, con redondeo al entero inferior a cada paso del cálculo, tal como se indica en la
figura, un original del año 1669, dibujado por Christian Huygens, a partir de los datos
de supervivientes a cada edad de Petty.3
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1. Lo prueba de manera definitiva Hervé Le Bras, Naissance de la mortalité, Gallimard-Le Seuil, Paris, 2000.
William Petty es conocido como fundador de la «aritmética política», precursora de la economía política moderna.

2. Los primeros trabajos que abordan el problema de forma moderna se publican en los 10 últimos años del
siglo XVII (Bernoulli y Leibniz).

3. El proceso de construcción de esta tabla fue tan misterioso como su autoría. Grandes estadísticos como Karl
Pearson o epidemiólogos como el Major Greenwood no consiguieron reproducirlo. Hervé Le Bras, en el libro cita-
do, encuentra finalmente el algoritmo exacto, tan ciegamente sencillo y evidente, tal como lo hubiera hecho el
Caballero Dupin, de «La carta robada» de Edgar A. Poe.

Figura 1. Gráfica teórica de mortalidad
en el siglo XVII (número de supervivientes
en cada edad a partir de 100 nacimientos).



Regla de construcción de la función de superviviente de Petty: progresión geo-
métrica de razón 0,64, con redondeo a cada etapa del cálculo:

Nacimiento 6 años 16 años 26 años ...

A partir de esta tabla modelo, interpretada en un principio de manera probabilísti-
ca, Christian Huygens y su hermano Louis derivaron, en 1669, los conceptos de proba-
bilidad de sobrevivir entre 2 edades:

y la esperanza de vida a partir de una edad (la esperanza matemática de la función de
supervivencia reducida a un solo nacimiento inicial):

donde S(x) son los supervivientes a la edad x de la tabla de Petty.
Huygens utilizaba para la población el lenguaje de las apuestas en juegos de azar.

Esta interpretación probabilística domina todavía hoy en día, y se sigue utilizando por
ejemplo el término de «esperanza» en vez de «vida media».

Los progresos posteriores en la elaboración de tablas de mortalidad, por parte
sobre todo del astrónomo Edmund Halley y del estadístico Johann Süssmilch, se centra-
ron en utilizar datos reales y no un simple modelo matemático como lo hizo Petty, lo que
permitió mostrar que la hipótesis de riesgo constante con la edad no era correcta.

Otro aspecto interesante de este primer estudio de la mortalidad en los siglos XVII

y XVIII es la creencia en la existencia de un riesgo de mortalidad único, fuera de los años
de crisis, guerras o epidemias. Incluso después de reconocer que el riesgo de morir no es
constante con la edad, los primeros demógrafos asimilaban la mortalidad a un juego con
probabilidades iguales para todos y invariable en el tiempo. Buscaban regularidades que
podían ser útiles para las aplicaciones en el campo actuarial, de determinación de pagos
anuales en contratos de seguro de vida o rentas vitalicias. Esto explica por qué intenta-
ban construir una tabla universal, única, válida en cualquier lugar y momento. En este
sentido buscaban realmente una Ley de mortalidad, con mayúscula. Hoy en día, y muy
al contrario, los demógrafos calculan tablas para todos los lugares y en cada momento
posible, resaltando los aspectos diferenciales de cada una.
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En el siglo XIX, cuando la obtención de datos no representaba ya un problema, pero
también cuando se hizo evidente que el riesgo de morir no era igual, más alto por ejemplo
en las ciudades que en el campo, y también más bajo que a finales del siglo XVII, los
esfuerzos se centraron en la resolución de dos problemas: la modelización de la variación
del riesgo de morir con la edad, por una parte, y el análisis de los factores de variación del
nivel de este riesgo a cada edad, por otra.

1.2. Modelización de la mortalidad por edad

A partir del siglo XIX, el problema inicial de Petty y de Halley está formulado de
otra manera: la mortalidad por edad obedece a dos clases de parámetros: los que afectan
su nivel general y los de forma, que afectan a su progresión con la edad. Pero sigue la
preocupación por encontrar una Ley universal. Así, en 1825, el matemático Benjamin
Gompertz elaboró la primera función que respondía a este propósito de encontrar una
Ley universal de mortalidad capaz de tener en cuenta estos atributos de nivel y forma. Se
trata de una función exponencial de la edad, en la que de la manera más sencilla posible,
se multiplican los dos parámetros de nivel y de forma con la edad. La Ley de Gompertz
es válida a partir de los 30 años, es decir intenta describir el aumento del riesgo de morir
con la edad como resultado del proceso de envejecimiento. Vemos en la figura para
Estados Unidos, donde está representado este riesgo en una escala logarítmica, que la
fórmula es bastante razonable, puesto que el aumento con la edad de este riesgo es casi
log-lineal. Pero la Ley de Gompertz tiene la misma ambición que la Ley de la gravita-
ción de Newton: describir totalmente un fenómeno sin explicarlo. A partir del momento
en el que se utiliza para buscar explicaciones, demuestra sus limitaciones. Con dos ejem-
plos vamos a ver que cuando se empieza con esta Ley como instrumento para el estudio
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Figura 2. Logaritmo del riesgo de morir por edad, Estados Unidos, 1997.



de la mortalidad, podemos llegar a problemas o paradojas que muestran sus limitacio-
nes, fuerzan un replanteamiento de las hipótesis de partida y nos permiten mejorar nues-
tro conocimiento de los determinantes biológicos de la mortalidad.

El primer problema es saber si la forma y el nivel del riesgo de morir a edades
muy avanzadas están correctamente aproximados con la fórmula exponencial de
Gompertz. Con el aumento del tamaño de las poblaciones, y sobre todo el perfecciona-
miento de los métodos de recogida de datos, podemos ahora calcular los valores del
riesgo de morir a edades superiores a 80 años4. En general se constata que la progresión
de este riesgo deja de ser log-lineal y el crecimiento se reduce con la edad (Figura 3).
Entonces la fórmula de Gompertz no es satisfactoria. Se han buscado muchas fórmulas
alternativas a la de Gompertz, basadas o bien en el aumento del número de parámetros, o
bien en modelos tan parsimoniosos como el de Gompertz, que hacen generalmente uso de
hipótesis nacidas en el campo de las ciencias biológicas o de campos más alejados (teo-
rías físicas del movimiento de las moléculas en un gas, teoría de la fiabilidad de los siste-
mas físicos, etc.). Pero una solución aceptable, que tiene el interés de conservar la senci-
llez de la fórmula de Gompertz, es buscar una formulación de tipo logística.

De las muchas fórmulas probadas que dan un mejor ajuste a partir de 80 años, las
más sencillas y más utilizadas son las logísticas5. La forma general es la siguiente:
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4. Una revisión reciente de modelos y resultados en A. R. Thatcher, V. Kannisto, y J. W. Vaupel, The Force of
Mortality at Ages 80 to 120, Odense, 1998, Odense University Press.

5. Perks, W. «On some experiments in the graduation of mortality statistics». Journal of the Institute of
Actuaries, 63:12.

Figura 3. Mortalidad a edades avanzadas, Estados Unidos, 1997.



Esta nueva formulación presenta también el interés de poner un límite de tipo
tendencial al valor del riesgo de morir, puesto que, tratándose de una probabilidad, no
puede exceder 1, cuando en la fórmula de Gompertz los valores del riesgo tienden hacia
el infinito con la edad6. Pero la introducción de una logística no fue solamente una solu-
ción formal. El hecho mismo de la disminución de la tasa de crecimiento de la mortali-
dad con la edad encuentra una explicación razonable si consideramos que las personas
no son iguales delante del riesgo de morir y que hay diferencias debido a factores gené-
ticos. La forma logística parece dar cuenta de un proceso de selección, en el cual hay
distintos grupos de personas, cada uno con una ley de mortalidad tipo Gompertz, pero
con un nivel distinto a cada edad. El cambio de forma de la curva y la reducción de la tasa
de crecimiento de este riesgo con la edad probablemente se explican porque a edades
avanzadas disminuye el peso de los grupos con mayor riesgo genético de mortalidad y
aumenta de forma inversa el peso de los grupos con bajo riesgo genético de mortalidad.

Un segundo problema, la paradoja de Gumbel7, viene a confirmar esta conclu-
sión. Este autor predijo, en base al ajuste de la ley de Gompertz, que en poblaciones con
una alta mortalidad general, el riesgo de morir a edades avanzadas tendía a igualar o
incluso a estar por debajo de este riesgo en poblaciones con una baja mortalidad general.
Es lo que se puede hoy en día constatar con las tablas de mortalidad, con los datos del
cuadro siguiente. Debido al crecimiento más lento del riesgo de morir con la edad, en
poblaciones con una mortalidad general más alta llegan incluso en vida más personas a
edades muy avanzadas que en poblaciones con una mortalidad general baja.

País Hombres supervivientes Esperanza de vida
a los 85 años (por 100.000) al nacimiento (años)

Austria 9.947 66,6
Japón 10.287 67,7
Colombia 12.588 58,2
El Salvador 16.525 56,4
Argelia 28.546 63,2
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6. El riesgo de morir, llamado en demografía cociente instantáneo o fuerza de mortalidad, no puede sobrepasar
1, pero tampoco puede lógicamente tomar el valor de 1 en una edad finita, puesto que si una persona llega a esta
edad menos un segundo, ¡no tendría ya derecho a vivir!

7. Gumbel, E. J., La durée extrême de la vie humaine, Paris, 1937. Ver Le Bras, H., «Lois de mortalité et âge
limite», Population, 3, 1976.
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La explicación de esta paradoja utiliza el mismo tipo de argumento basado sobre un
efecto de selección en el cual mueren antes los individuos con el riesgo de morir más ele-
vado, debido a las diferencias intrínsecas o genéticas. Pero incluso en este caso, se tendría
que admitir que los ancianos de los países con una mortalidad general más alta son más
resistentes o tienen un riesgo de morir más bajo a edades avanzadas que los ancianos de los
países con una mortalidad general más baja. La explicación más probable estaría en el
nivel de la respuesta inmunológica de los organismos en relación inversa con el grado de
uso de antibióticos, en general mayor en los países de baja mortalidad general.

Tanto la forma de la mortalidad a edades avanzadas como la paradoja de Gumbel
se explicarían entonces por la heterogeneidad de la mortalidad entre individuos, debido
seguramente a factores genéticos. Una parte importante de la investigación en mortali-
dad está actualmente dedicada al estudio de esta heterogeneidad, tanto para entenderla
como para tenerla en cuenta en los estudios comparativos. El uso de una modelización
matemática de la forma de la curva de riesgos por edad ha permitido, pues, plantear este
problema y dar pistas sobre las causas de la inflexión de la curva normalmente log-line-
al a partir de los 80 años.

1.3. Mortalidad normal y accidental. Mortalidad endógena-exógena

Para los autores de los siglos XVII y XVIII, la mortalidad tenía solamente dos nive-
les: el de los años normales, tal como la recogían sus tablas de mortalidad, y el nivel de
crisis, por ejemplo debido a la peste bubónica. Hoy en día se suelen distinguir también
otros dos tipos de mortalidad: la mortalidad debida a factores endógenos o genéticos y
la mortalidad exógena, que se explica por factores del entorno, como las enfermedades
infecciosas. La separación entre estos dos tipos puede basarse sobre el análisis de las
causas de muerte. Pero aquí de nuevo el análisis matemático permite ordenar los datos y
modelizar los procesos subyacentes. Jean Bourgeois-Pichat elaboró el primer método
de este tipo, que permitió separar el nivel de la mortalidad infantil (del primer año)
entre el componente endógeno (principalmente malformaciones genéticas difícilmente
curables) y el componente exógeno o evitable. El razonamiento de Bourgeois-Pichat es
muy interesante, y aunque el modelo está ahora superado, sigue siendo un buen ejem-
plo de los procedimientos que se utilizan hoy en día en las modelizaciones bio-
médicas8.
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8. Bourgeois-Pichat, J., «De la mesure de la mortalité infantile», Population, 1946. Un trabajo actual es
Manton, K. G. y Yashin, A. Mechanisms of Aging and Mortality: Searches for New Paradigms, Odense, 2000,
Odense University Press.



2. MODELOS DE POBLACIÓN, EN EL TIEMPO Y POR EDAD

2.1. Modelo exponencial de Euler

Leonard Euler se adelantó un siglo y medio a su tiempo, publicando un trabajo
redescubierto en el siglo XX en el cual anticipaba resultados importantes de los modelos
modernos de las poblaciones9. A partir de una hipótesis de mortalidad constante en el
tiempo y suponiendo que los nacimientos siguen una progresión geométrica de razón
constante, mostró por ejemplo que la estructura por edad de la población (la proporción
de población en cada grupo de edad) es constante en el tiempo. Estableció también otros
resultados acerca de las poblaciones exponenciales que fueron redescubiertos en el siglo XX.

2.2. Modelo de las poblaciones estables de Lotka

Alfred Lotka, un matemático norteamericano, no conocía los resultados de Euler
cuando fundó entre los años 1910 y 1930 la teoría matemática de las poblaciones, estable-
ciendo los principales resultados de lo que llamó la teoría de las poblaciones estables10.
Lotka empezó con el mismo modelo de población exponencial desarrollado por Euler,
llamándolas «poblaciones maltusianas», haciendo referencia en esto a la oposición que
hacía Malthus entre las poblaciones humanas que tienden a crecer de forma geométrica
y los alimentos que lo hacen de forma aritmética. Pero Lotka introdujo una hipótesis
nueva que le permitió ir más allá que el simple modelo exponencial. Sustituyó la hipóte-
sis de nacimientos en progresión geométrica de Euler por una hipótesis de fecundidad
por edad constante en el tiempo. Este cambio pequeño en apariencia fue decisivo a la
hora de estudiar los procesos de convergencia de las poblaciones reales hacía poblacio-
nes modelo. Las poblaciones modelo con fecundidad constante en el tiempo son lo que
Lotka llamó las poblaciones estables. Forman un subconjunto de la clase de las pobla-
ciones maltusianas o exponenciales.

Lotka estableció fórmulas muy útiles para el demógrafo. Por ejemplo, para el
conjunto maltusiano redescubre la fórmula de Euler acerca de la proporción de personas
de edad x en relación con la población total, proporción constante en el tiempo:

120

DANIEL DEVOLDER Matemáticas y demografía. Del tiempo al espacio

9. Euler, L. A general investigation into the mortality and multiplication of the human species, Académie
Royale des Sciences et Belles-Lettres, 1760.

10. Lotka, A. J., «Relation between birth rates and death rates», Science, N.S., 26:21-22 es el primer trabajo.
Tratamiento completo en: Lotka, A. J., Théorie analytique des associations biologiques, Paris, Herman, 1936.

c(x) = be−rxS(x)



donde c(x) es esta proporción a la edad x, b es la tasa de natalidad, r la tasa de creci-
miento de los nacimientos y S(x) la proporción de sobrevivientes a la edad x en la tabla
de mortalidad.

Pero sobre todo muestra cómo calcular el valor de la tasa de crecimiento r de la
población en el subconjunto de las poblaciones estables, resolviendo una ecuación fun-
damental, llamada desde entonces ecuación de Lotka:

con α y β los límites del intervalo de edad fértil (15 a 49 años para las mujeres) y m(x) la
tasa (o riesgo) de fecundidad a la edad de x años, que se calcula dividiendo los naci-
mientos de madres de edad x por el efectivo de mujeres de edad x. Esta ecuación tiene
una única raíz real, la tasa r de crecimiento intrínseca de la población estable. Lotka
mostró también que las raíces complejas de esta ecuación describían las condiciones del
proceso de convergencia de una población real hacia la población estable definida a par-
tir de niveles constantes en el tiempo de la mortalidad y la fecundidad. Lotka desarrolló
el estudio de este proceso de convergencia a partir de una ecuación de recurrencia sobre los
nacimientos que Euler también había considerado:

donde B(t) son los nacimientos en el momento t. Lotka estableció los principales teore-
mas de la convergencia, pero sin llegar a probarlos de forma rigurosa. Habrá que esperar
los trabajos de Feller sobre los conjuntos auto-renovados11, poblaciones humanas entre
otras, y el estudio general de las condiciones de convergencia de Lopez12 para establecer
de forma definitiva estos teoremas.

2.3. La población estable como población equilibrada

El modelo matemático de la población exponencial de Euler y su extensión en el
siglo XX, a partir de los trabajos de Lotka sobre las poblaciones estables, proporciona un
instrumento de análisis que aplican de forma habitual los demógrafos. Se utiliza por
ejemplo para completar y rectificar datos defectuosos o parciales, sobre todo en los paí-
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B(t) = B(t � x) m(x) S(x) dx

11. Feller, W., «On the integral equation of renewal theory», Annals of Mathematical Statistics.
12. Lopez, A., Problems in Stable Population Theory, Princeton, 1961.
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ses desarrollados. Pero las poblaciones modelo proporcionan una medida para los des-
equilibrios de las poblaciones humanas reales. Desde el siglo XVIII, la mortalidad y la
fecundidad no se han mantenido nunca constantes, dividiéndose por tres hasta la segun-
da guerra mundial. También la fecundidad tiene tendencia a oscilar en el tiempo desde la
segunda guerra mundial. Entonces las poblaciones estables son un modelo muy aproxi-
mado de las poblaciones reales contemporáneas. Pero pueden servir para definir lo que
podría ser la población en condiciones de equilibrio, en el sentido de un crecimiento en
el tiempo a una tasa constante, ¡lo que sería el ideal de todo planificador!

Así a cada población real podemos asociarle una población estable que tiene la
misma tabla de mortalidad y una serie de nacimientos en progresión geométrica, con una
razón igual a la de la tasa de crecimiento tendencial de la serie real. La población real se
puede comparar a la estable asociada, lo que permite visualizar los desequilibrios calcu-
lando las desviaciones relativas a cada edad, como está hecho con el gráfico para
Estados Unidos13.

2.4. La convergencia débil y fuerte

El proceso de convergencia de una población real hacia una población estable
supone que a partir de un momento los riesgos por edad de la mortalidad y de la fecun-
didad son constantes en el tiempo. En estas condiciones, la estructura por edad de una
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Figura 4. Estados Unidos, 1991. Comparación de la población femenina con una población
estable próxima.

13. Devolder, D., «Les types d’instabilités des populations du passé», Cahiers des Annales de Démographie
Historique, 2, 2000.



población real se acerca cada vez más a la estructura de la población estable definida por
estos niveles constantes de la mortalidad y la fecundidad. Este proceso de convergencia,
al que se refería Lotka, se conoce ahora como convergencia débil. Sus características
dependen de la estructura por edad inicial de la población real y de la forma de las cur-
vas de riesgo por edad de la mortalidad y la fecundidad (el análisis de estos factores de
forma se conduce a partir del estudio de las raíces complejas de la ecuación de Lotka).
En general se observa que bastaría con unos 150 años de constancia de la mortalidad y
la fecundidad para que una población real «olvidara» su estructura por edad inicial y se
volviera estable. Pero este proceso de convergencia débil supone que se cumplan estas
hipótesis irrealistas de constancia en el tiempo. Para llegar a resultados más generales, se
estudia también el llamado proceso de convergencia fuerte, en el que se elimina la hipó-
tesis de constancia en el tiempo de la fecundidad y la mortalidad. Por ejemplo, Coale14

formuló una conjetura según la cual si a partir de un momento sometemos dos poblacio-
nes distintas a la misma serie de valores de los riesgos por edad de mortalidad y fecun-
didad, variable en el tiempo, estas dos poblaciones tenderán al cabo de un cierto tiempo
hacia la misma estructura por edad (proporción de las personas a cada edad en relación
con la población total). Esta conjetura fue demostrada por Lopez15. Es un resultado
importante en la medida en la que establece de forma definitiva esta tendencia de las
poblaciones a «olvidar» las estructuras por edad del pasado.

Pero a la inversa, como este proceso de convergencia es largo (un siglo o más),
subraya también la fuerza de inercia contenida en la estructura por edad, que determina
durante largo tiempo la tendencia de la evolución. Este factor de inercia se estudia bajo
el nombre de momentum de la población16.

2.5. El proceso de la convergencia como restricción al crecimiento

El proceso de convergencia, y sobre todo de convergencia débil, se puede inter-
pretar como la imposición de una restricción a una población17. Así la hipótesis de
fecundidad constante de las poblaciones estables significa que se impone una relación
constante en el tiempo entre el efectivo de los nacimientos y el efectivo de las mujeres
en edad de tener hijos. En el marco más amplio de las poblaciones exponenciales de
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14. Coale, A. J., «How the age distribution of a human population is determined». Cold Spring Harbor
Symposia on Quantitative Biology, 22, 1957.

15. op. cit. También una demostración más sencilla, a partir de la idea de procesos de media móviles, en
Arthur, W. B., «The ergodic theorems of demography: a simple proof», Demography, 1982.

16. Keyfitz, N., «On the momentum of population growth», Demography, 8. También Li, N. y Tuljapurkar, S.,
«Population momentum for gradual demographic transitions», Population Studies, 53, 1999.

17. Le Bras, H., «Fluctuations et croissance des populations soumises à une contrainte», Population, 2, 1983.



Euler, la hipótesis de evolución exponencial de los nacimientos es también una restric-
ción en el sentido que los nacimientos de dos años consecutivos tienen que estar en una
relación constante. Otro tipo de restricción que se ha estudiado es la de forzar una pobla-
ción a tener un crecimiento nulo, es decir, que se igualen los nacimientos con las de-
funciones, un objetivo aparentemente razonable para una política demográfica. Ob-
viamente estas restricciones son difíciles de hacer cumplir para la población de un país
entero, pero en algunos casos se pueden aplicar, por ejemplo para la población de un
cuerpo profesional (maestros, policías, ...) o la plantilla de una gran empresa. El proble-
ma que plantean estas restricciones es que la relación de constancia que se tiene que
cumplir fuerza el ajuste de otros componentes de la evolución, y este ajuste puede tener
consecuencias imprevistas y en algunos casos peores que la situación a la que se pensa-
ba remediar con la restricción. En el gráfico siguiente se aprecia como una fecundidad
constante, y aun más una tasa de crecimiento constante, son restricciones que provocan
un ajuste de la población en forma de fluctuaciones en el tiempo de los nacimientos.

En este contexto el estudio matemático de la convergencia tiene un especial interés,
sobre todo en la medida en la que puede orientar a un planificador hacia el tipo de restric-
ción que sea menos peligroso o más suave en términos de estos ajustes dinámicos.

2.6. Modelo de población estable generalizado

El modelo de Lotka es una aproximación: las poblaciones estables son siempre
hipotéticas, y solamente en casos muy peculiares se podría llegar a las condiciones de
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Figura 5. Evolución comparada de los nacimientos en el caso de crecimiento nulo y en el
caso de fecundidad constante.



constancia necesarias. Esto explica por qué de forma más reciente se han establecido
fórmulas más generales que las del modelo estable, que permiten conducir cálculos
directos, sin aproximaciones, a partir de datos de poblaciones reales18. En este senti-
do, más que un modelo, basado normalmente sobre hipótesis simplificadoras, tene-
mos que hablar de una contabilidad, puesto que las nuevas relaciones son siempre
exactas.

La idea de partida de esta generalización es considerar las tres dimensiones de
edad, tiempo y generación de las poblaciones como caminos que recorren los grupos
de personas de la misma edad. Y la relación entre variables se puede deducir de la velo-
cidad de los desplazamientos sobre estas tres dimensiones demográficas, sin privilegiar
ninguna de ellas. Esto se puede apreciar a partir del gráfico siguiente, que representa lo
que llaman los demógrafos una superficie de Lexis. El tamaño de la población por edad
en cada momento es la elevación de la superficie en este gráfico, pero los desplazamien-
tos se producen sobre esta última. Este tamaño se reduce a medida que pasa el tiempo, la
primera dimensión. Pero el paso del tiempo es también un aumento según la dimensión
de la edad para las personas. Este aumento conjunto del tiempo y de la edad son las dos
fuerzas elementales que, combinadas, dan como resultado un desplazamiento en diago-
nal sobre la dimensión de generación (aumento a la vez del tiempo y de la edad para per-
sonas nacidas el mismo año).
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Figura 6. Un desplazamiento sobre una superficie de Lexis.

18. Preston S. H. y Coale, A. J., «Age structure, growth, attrition and accession: a new synthesis», Population
Index, 1982. También Arthur, W. B. y Vaupel, J. W., «Some general relationships in population dynamics»,
Population Index, 1984.
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Este razonamiento conduce a la definición de tres tasas de cambio fundamentales
que permiten «viajar» sobre el gráfico de tres dimensiones de la población:

la tasa de crecimiento en el tiempo de la población de edad x,

la tasa de crecimiento con la edad de la población de edad x,

la tasa de crecimiento con la edad y el tiempo, que a su vez es el riesgo o la fuerza de la
mortalidad de la generación a la edad x, si no hay migraciones.

Estas tres tasas están unidas por la identidad fundamental de este modelo genera-
lizado:

Sobre esta base se pueden reformular todas las fórmulas del modelo estable a par-
tir de estas tasas. Por ejemplo, la proporción de población a la edad x,

la ecuación de Lotka,

Esta formulación generalizada permite también establecer nuevas relaciones, que no
podían aparecer en el modelo estable, por ejemplo relativas a los factores del envejecimien-
to19, las relaciones entre tablas de mortalidad del momento y tablas de generación20, etc.
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19. Preston, S. H., Himes, C. y Eggers, M., «Demographic conditions responsible for population aging»,
Demography, 1989.

20. Horiuchi S. y Preston, S., «Age-specific growth rates: the legacy of past population dynamics»,
Demography, 1988.
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3. MODELOS DE LA REPRODUCCIÓN Y DEL PARENTESCO

Los modelos demográficos tradicionales empiezan con la población como objeto
de estudio. Pero son los individuos los elementos generadores del cambio de las pobla-
ciones, porque tienen determinados comportamientos de procreación y están sujetos a
riesgos de morir o de migrar. La demografía desde sus orígenes se define toda como una
transición incesante entre estos dos niveles, macro para la población y micro para los
individuos. Esto explica por qué hay una verdadera dificultad de la demografía para
situarse a niveles intermedios, como son el nivel familiar y en general el de las redes que
relacionan los individuos entre sí, tanto el parentesco como los grupos sociales. Para
conseguir estudiar esta dimensión nueva, las relaciones entre personas, se han desarro-
llado de forma mucho más reciente modelos de la reproducción y del parentesco que
empiezan con los individuos en vez de con la población en su conjunto. La idea es
reconstruir poco a poco el nivel familiar elemental (pareja, hijos) y luego llegar hasta
todo el parentesco, y eventualmente hasta el nivel de las redes de sociabilidad. Hay
varios tipos de modelos de la familia y del parentesco. Pero los más comunes y útiles son
modelos que empiezan con un individuo central (ego), permiten construir genealogías y
también calcular las probabilidades de tener familiares en vida, a cada edad del ego.

Los modelos de parentesco más utilizados hoy en día son micro-simulaciones.
Complementan y reemplazan los modelos matemáticos iniciales que llevaban a fórmu-
las para el cálculo de relaciones de parentesco que incorporaban integrales múltiples, lo
que hace difícil el cálculo de resultados. Como ejemplo de fórmula matemática para
determinar el número esperado de primas hermanas, se tiene que calcular el valor de
fórmulas con integrales múltiples como:

Se necesitan métodos de cálculo numérico, en los cuales es necesario utilizar
números aleatorios. Entonces es más rápido y más interesante incorporar los factores
estocásticos al principio mismo de la modelización, lo que es el planteamiento de una
micro-simulación. Éstas ofrecen además la ventaja de permitir incorporar de forma sen-
cilla nuevas hipótesis sobre los comportamientos, sin aumento del nivel de complejidad
de los cálculos.

La micro-simulación empieza normalmente con un individuo en vida a cada edad y
calcula a partir de distribuciones de probabilidad el número de parientes en vida, progre-
sando paso a paso a partir de la madre, el padre, el cónyuge, etc. Estas micro-simulaciones
se llaman a menudo de Monte-Carlo porque utilizan procedimientos de tiraje de números
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al azar que sirven para seleccionar el valor de una probabilidad dentro de distribuciones
preestablecidas (de mortalidad, fecundidad, nupcialidad, migración, etc.)21.

4. MODELOS ESPACIALES: SIMULACIÓN DE AGENTE Y DENSIDAD
FRACTAL

El estudio de la difusión de la población en el espacio o el problema general de
los tipos de poblamiento son temas que tradicionalmente los demógrafos no han consi-
derado como suyos sino del dominio de la geografía. La única dimensión territorial rele-
vante que se toma en cuenta en demografía son las migraciones. Pero las migraciones se
definen en relación con el espacio político unidimensional de un país u otras unidades
administrativas. Para estudiar los movimientos humanos dentro de un espacio continuo
y bidimensional, y no segmentado desde una visión política, es necesario abandonar el
concepto mismo de migración y interesarse por la dinámica de la difusión en el espacio.
Hay dos formas de estudiar esta dinámica: desde una visión de los procesos individuos
elementales o bien a partir de la distribución espacial en un momento dado.

4.1. El juego de la difusión

La modelización de los procesos de difusión en el espacio encuentra un forma-
lismo cómodo en lo que se conoce como el «juego de la vida». Lo que empezó como
una curiosidad matemática se ha convertido hoy en día en algo muy útil para la expe-
rimentación en biología, en física o en informática22. La idea es trabajar con una
estructura de celdas, normalmente en dos dimensiones, ocupadas por individuos de
una población. En la versión original del juego, introducido por el matemático John
Conway, la reglas son relativas a la ocupación de las celdas por nacimiento o defun-
ción, en función de la presencia de individuos en las celdas vecinas. Se pueden adap-
tar estas reglas al caso de las migraciones, con una población en este espacio de celdas
que se desplazan de una celda libre a otra en función de un parámetro de atracción (los
hombres aborrecen la soledad) y otro de repulsión (una densidad local demasiado alta
puede ser un problema). Como ejemplo de resultados, podemos tomar dos poblaciones
distribuidas inicialmente al azar a las que se le han aplicado dos series distintas de
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21. Una síntesis y resultados en Devolder, D. Effects of the European late marriage pattern on kinship. A study
using a microsimulation model, en prensa, 2001. Disponible en la web en la dirección: http://www.ced.uab.es/pdfs
/paperspdf/text135.pdf.

22. Por ejemplo Sigmund, K., Games of Life. Explorations in ecology, evolution and behaviour, Oxford, 1993.



valores de estos parámetros de atracción y repulsión23. La aplicación iterativa de estas
reglas conduce a la situación de equilibrio representada en los dos dibujos de Conway
siguientes:

Estas dos formas de ocupación del territorio son representativas de la división
histórica de las zonas rurales en Europa occidental, entre poblaciones dispersas y pobla-
ciones agrupadas. Este tipo de modelización sugiere que esta oposición entre dos tipos
fundamentales de poblamiento se puede explicar por pequeñas alteraciones de las reglas
básicas de atracción y repulsión.

4.2. La densidad fractal

Otro procedimiento para estudiar estas reglas elementales es empezar con el
tipo de poblamiento observado en vez de intentar reconstruirlo, como en el enfoque
anterior24. La ocupación humana del territorio normalmente no es continua y se sue-
len encontrar repeticiones de las conformaciones espaciales. Estas repeticiones se
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23. Le Bras, H., Essai de géométrie sociale, Paris, 2000.
24. Frankhauser, P., «The fractal approach. A new tool for the spatial analysis of urban agglomerations»,

Population: An English Selection, 1998.

Figura 7. Dos situaciones de equilibrio en el juego de la vida, según Conway.
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producen en varias partes del territorio, pero también en una misma zona, pasando de
una escala a otra más pequeña. Esta ocupación del territorio con un patrón repetido
sugiere una analogía con las figuras de la geometría fractal, como lo podemos ver con
el mapa de la ciudad francesa de Besançon, comparado con una alfombra de
Sierpinski.

Este objeto matemático podría ser un modelo de las reglas de segmentación del
territorio, seguidas por la población de esta ciudad. La alfombra se genera en base a una
cuadrícula inicial con un perímetro de longitud l, según una regla de partición en 8 cua-
drículas de perímetro l r = l / 3. Esta operación se reproduce a la escala siguiente y el
efecto de invariancia de escala se puede medir a través de la dimensión fractal, el pará-
metro D del gráfico calculado por:

donde N es el número de cuadrículas creadas a partir de una anterior.
Este parámetro de invariancia de escala es una medida más adecuada que la densi-

dad de la población (efectivo por unidad de superficie). Toma valores entre 1 (desierto) y
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Figura 8. El centro de Besançon (Dr = 1,81) comparado con un fractal (D = 1,73). La distri-
bución de los espacios libres en el fractal se ha ajustado a las condiciones reales, que parecen carac-
terizarse por la presencia de bloques amplios construidos alrededor de patios interiores.

D =
lnN

ln(1/r)
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2 (superficie totalmente ocupada) y permite una cuantificación basada sobre la observa-
ción de que la ocupación del territorio es un fenómeno discreto (en cada punto hay pobla-
ción o no la hay) y no continuo, como lo sugiere una métrica como la densidad.

Queda entonces como problema la estimación de la dimensión fractal asociada
con cada territorio, lo que en general se puede resolver con procedimientos de trata-
miento informático de imágenes. La dimensión fractal observada puede servir entonces
para construir un modelo del proceso elemental de fragmentación del espacio seguido
por la población del territorio analizado.
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