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INTRODUCCION

En este trabajo, haré una panoramica del uso de leyes y modelos matematicos en el
campo de la demografia, ciencia del estudio de la poblacion. La demografia y la estadistica
fueron desde su origen en el siglo xviI estrechamente asociadas con las ciencias matemati-
cas y condicionadas por el estado de su desarrollo. En concreto, y a partir de los siglos xvii
y xviI, fueron importantes para la demografia sobre todo la evolucion del tratamiento mate-
matico de la progresion geométrica, la teoria de las probabilidades y la funciéon exponencial,
que dieron a la demografia el impulso para desarrollar sus modelos fundadores, el modelo
de la tabla de mortalidad y luego los modelos de crecimiento en el tiempo y de composicién
por edad, que presentaré en los puntos 1 y 2. Estos modelos consideran la poblacion en su
conjunto, pensando normalmente en la poblacion de un pais entero. Se desarrollaron en
paralelo con la aparicion de las monarquias absolutistas de Francia e Inglaterra y recibieron
un gran impulso en el siglo X1x y principios del xX con los modernos sistemas de adminis-
tracion publica centralizada. El estado centralizado moderno encontré en la demografia la
ciencia que justifico el desarrollo de los sistemas de recuento de la poblacion, tales como los
censos y los registros continuos de nacimientos, defunciones y migraciones. Pero esta opti-
ca centralizada, considerando la poblacion como un conjunto de individuos en un pais, un
espacio politico esencialmente unidimensional, ha frenado el desarrollo de métodos de ana-
lisis del grupo familiar y del parentesco, asi como de las caracteristicas del poblamiento,
que necesita como minimo de las 2 dimensiones del plano geografico. Es solamente de
forma muy reciente que la demografia se ha ocupado de desarrollar modelos de la familia y
de la variacion de la densidad en el espacio, que presentaré en los puntos 3 y 4.

1. EL ANALISIS MATEMATICO DE LA MORTALIDAD
1.1. Origenes de la tabla de mortalidad
El origen de la demografia y de la estadistica modernas se remonta a un libro

publicado en el afio 1662, Observaciones naturales y politicas sobre los boletines de
mortalidad de la ciudad de Londres. Después de una larga controversia, parece ahora
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probado que el autor principal de este libro fue una persona con formacion cientifica,
William Petty, y que el autor Gnico que aparece en la cubierta, el comerciante de telas
John Graunt, sé6lo lo fue de los capitulos mas descriptivos.! Este libro incluye la primera
tabla de mortalidad moderna, basada de hecho sobre un modelo matematico mas que
sobre datos reales. Como lo vemos en la figura siguiente, que reproduce un gréfico ori-
ginal del siglo xvi construido por Christian Huygens, uno de los fundadores de la teoria
de las probabilidades, esta tabla de mortalidad est4 construida a partir de una hipdtesis de
riesgo de morir constante entre 6 y 76 afios. La curva indica para cada edad el nimero
de supervivientes a partir de una cifra inicial de 100 nacimientos. Para nosotros este
grafico representa una curva exponencial, de razon positiva e inferior a 1. Pero en el
siglo xviI todavia no se conocia esta funcién.? Los astronomos utilizaban los resultados
de Lord Napier sobre la construccion de la funcion logaritmica, pero habria que esperar
al siglo xvii para el estudio de su funcion inversa. De hecho, en la construccion de la
tabla, Petty no utilizé tampoco los logaritmos, sino una progresion geométrica de razén
0,64, con redondeo al entero inferior a cada paso del calculo, tal como se indica en la
figura, un original del afio 1669, dibujado por Christian Huygens, a partir de los datos
de supervivientes a cada edad de Petty.?

Figura 1. Grafica tedérica de mortalidad
en el siglo xviI (nimero de supervivientes
en cada edad a partir de 100 nacimientos).

1. Lo prueba de manera definitiva Hervé Le Bras, Naissance de la mortalité, Gallimard-Le Seuil, Paris, 2000.
William Petty es conocido como fundador de la «aritmética politica», precursora de la economia politica moderna.

2. Los primeros trabajos que abordan el problema de forma moderna se publican en los 10 tltimos afios del
siglo XVII (Bernoulli y Leibniz).

3. El proceso de construccion de esta tabla fue tan misterioso como su autoria. Grandes estadisticos como Karl
Pearson o epidemidlogos como el Major Greenwood no consiguieron reproducirlo. Hervé Le Bras, en el libro cita-
do, encuentra finalmente el algoritmo exacto, tan ciegamente sencillo y evidente, tal como lo hubiera hecho el
Caballero Dupin, de «La carta robada» de Edgar A. Poe.
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Regla de construccion de la funcidon de superviviente de Petty: progresion geo-
métrica de razon 0,64, con redondeo a cada etapa del célculo:

Nacimiento 6 afios 16 afios 26 afios

[64]0 [64]1 [64]2 [64]3
100 100 100 100

A partir de esta tabla modelo, interpretada en un principio de manera probabilisti-

ca, Christian Huygens y su hermano Louis derivaron, en 1669, los conceptos de proba-
bilidad de sobrevivir entre 2 edades:

S(x + n)
X, x+tn)= ——/———
»( ) S0
y la esperanza de vida a partir de una edad (la esperanza matematica de la funcion de
supervivencia reducida a un solo nacimiento inicial):

e = 5 ] 500 v

donde S(x) son los supervivientes a la edad x de la tabla de Petty.

Huygens utilizaba para la poblacion el lenguaje de las apuestas en juegos de azar.
Esta interpretacion probabilistica domina todavia hoy en dia, y se sigue utilizando por
ejemplo el término de «esperanza» en vez de «vida mediay.

Los progresos posteriores en la elaboracion de tablas de mortalidad, por parte
sobre todo del astronomo Edmund Halley y del estadistico Johann Siissmilch, se centra-
ron en utilizar datos reales y no un simple modelo matematico como lo hizo Petty, lo que
permitié mostrar que la hipotesis de riesgo constante con la edad no era correcta.

Otro aspecto interesante de este primer estudio de la mortalidad en los siglos xvii
y XVl es la creencia en la existencia de un riesgo de mortalidad unico, fuera de los afios
de crisis, guerras o epidemias. Incluso después de reconocer que el riesgo de morir no es
constante con la edad, los primeros demdgrafos asimilaban la mortalidad a un juego con
probabilidades iguales para todos y invariable en el tiempo. Buscaban regularidades que
podian ser utiles para las aplicaciones en el campo actuarial, de determinacion de pagos
anuales en contratos de seguro de vida o rentas vitalicias. Esto explica por qué intenta-
ban construir una tabla universal, Gnica, valida en cualquier lugar y momento. En este
sentido buscaban realmente una Ley de mortalidad, con mayuscula. Hoy en dia, y muy
al contrario, los demografos calculan tablas para todos los lugares y en cada momento
posible, resaltando los aspectos diferenciales de cada una.
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En el siglo x1x, cuando la obtencion de datos no representaba ya un problema, pero
también cuando se hizo evidente que el riesgo de morir no era igual, mas alto por ejemplo
en las ciudades que en el campo, y también mas bajo que a finales del siglo xvii, los
esfuerzos se centraron en la resolucion de dos problemas: la modelizacion de la variacion
del riesgo de morir con la edad, por una parte, y el analisis de los factores de variacion del
nivel de este riesgo a cada edad, por otra.

1.2. Modelizacion de la mortalidad por edad

A partir del siglo x1X, el problema inicial de Petty y de Halley estd formulado de
otra manera: la mortalidad por edad obedece a dos clases de parametros: los que afectan
su nivel general y los de forma, que afectan a su progresion con la edad. Pero sigue la
preocupacion por encontrar una Ley universal. Asi, en 1825, el matematico Benjamin
Gompertz elaboro la primera funcidon que respondia a este proposito de encontrar una
Ley universal de mortalidad capaz de tener en cuenta estos atributos de nivel y forma. Se
trata de una funcion exponencial de la edad, en la que de la manera mas sencilla posible,
se multiplican los dos parametros de nivel y de forma con la edad. La Ley de Gompertz
es valida a partir de los 30 afios, es decir intenta describir el aumento del riesgo de morir
con la edad como resultado del proceso de envejecimiento. Vemos en la figura para
Estados Unidos, donde esta representado este riesgo en una escala logaritmica, que la
férmula es bastante razonable, puesto que el aumento con la edad de este riesgo es casi
log-lineal. Pero la Ley de Gompertz tiene la misma ambicion que la Ley de la gravita-
cion de Newton: describir totalmente un fenomeno sin explicarlo. A partir del momento
en el que se utiliza para buscar explicaciones, demuestra sus limitaciones. Con dos ejem-
plos vamos a ver que cuando se empieza con esta Ley como instrumento para el estudio

ac

aa

PR

Figura 2. Logaritmo del riesgo de morir por edad, Estados Unidos, 1997.
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de la mortalidad, podemos llegar a problemas o paradojas que muestran sus limitacio-
nes, fuerzan un replanteamiento de las hipdtesis de partida y nos permiten mejorar nues-
tro conocimiento de los determinantes biologicos de la mortalidad.

El primer problema es saber si la forma y el nivel del riesgo de morir a edades
muy avanzadas estan correctamente aproximados con la formula exponencial de
Gompertz. Con el aumento del tamafio de las poblaciones, y sobre todo el perfecciona-
miento de los métodos de recogida de datos, podemos ahora calcular los valores del
riesgo de morir a edades superiores a 80 afios*. En general se constata que la progresion
de este riesgo deja de ser log-lineal y el crecimiento se reduce con la edad (Figura 3).
Entonces la formula de Gompertz no es satisfactoria. Se han buscado muchas férmulas
alternativas a la de Gompertz, basadas o bien en el aumento del nimero de parametros, o
bien en modelos tan parsimoniosos como el de Gompertz, que hacen generalmente uso de
hipoétesis nacidas en el campo de las ciencias bioldgicas o de campos mas alejados (teo-
rias fisicas del movimiento de las moléculas en un gas, teoria de la fiabilidad de los siste-
mas fisicos, etc.). Pero una solucion aceptable, que tiene el interés de conservar la senci-
llez de la formula de Gompertz, es buscar una formulacion de tipo logistica.

. ——— Gy — — — g |

Figura 3. Mortalidad a edades avanzadas, Estados Unidos, 1997.

De las muchas formulas probadas que dan un mejor ajuste a partir de 80 afios, las
mas sencillas y mas utilizadas son las logisticas’. La forma general es la siguiente:

4. Una revision reciente de modelos y resultados en A. R. Thatcher, V. Kannisto, y J. W. Vaupel, The Force of
Mortality at Ages 80 to 120, Odense, 1998, Odense University Press.

5. Perks, W. «On some experiments in the graduation of mortality statistics». Journal of the Institute of
Actuaries, 63:12.
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p(x) ) Ae™
D e S
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Esta nueva formulacion presenta también el interés de poner un limite de tipo
tendencial al valor del riesgo de morir, puesto que, tratdndose de una probabilidad, no
puede exceder 1, cuando en la formula de Gompertz los valores del riesgo tienden hacia
el infinito con la edad®. Pero la introduccién de una logistica no fue solamente una solu-
cion formal. El hecho mismo de la disminucion de la tasa de crecimiento de la mortali-
dad con la edad encuentra una explicacidon razonable si consideramos que las personas
no son iguales delante del riesgo de morir y que hay diferencias debido a factores gené-
ticos. La forma logistica parece dar cuenta de un proceso de seleccion, en el cual hay
distintos grupos de personas, cada uno con una ley de mortalidad tipo Gompertz, pero
con un nivel distinto a cada edad. El cambio de forma de la curva y la reduccion de la tasa
de crecimiento de este riesgo con la edad probablemente se explican porque a edades
avanzadas disminuye el peso de los grupos con mayor riesgo genético de mortalidad y
aumenta de forma inversa el peso de los grupos con bajo riesgo genético de mortalidad.

Un segundo problema, la paradoja de Gumbel’, viene a confirmar esta conclu-
sion. Este autor predijo, en base al ajuste de la ley de Gompertz, que en poblaciones con
una alta mortalidad general, el riesgo de morir a edades avanzadas tendia a igualar o
incluso a estar por debajo de este riesgo en poblaciones con una baja mortalidad general.
Es lo que se puede hoy en dia constatar con las tablas de mortalidad, con los datos del
cuadro siguiente. Debido al crecimiento mas lento del riesgo de morir con la edad, en
poblaciones con una mortalidad general més alta llegan incluso en vida mas personas a
edades muy avanzadas que en poblaciones con una mortalidad general baja.

Pais Hombres supervivientes Esperanza de vida
a los 85 afios (por 100.000)  al nacimiento (afios)

Austria 9.947 66,6
Japon 10.287 67,7
Colombia 12.588 58,2
El Salvador 16.525 56,4
Argelia 28.546 63,2

6. El riesgo de morir, llamado en demografia cociente instantaneo o fuerza de mortalidad, no puede sobrepasar
1, pero tampoco puede logicamente tomar el valor de 1 en una edad finita, puesto que si una persona llega a esta
edad menos un segundo, jno tendria ya derecho a vivir!

7. Gumbel, E. J., La durée extréme de la vie humaine, Paris, 1937. Ver Le Bras, H., «Lois de mortalité et age
limite», Population, 3, 1976.
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La explicacion de esta paradoja utiliza el mismo tipo de argumento basado sobre un
efecto de seleccion en el cual mueren antes los individuos con el riesgo de morir mas ele-
vado, debido a las diferencias intrinsecas o genéticas. Pero incluso en este caso, se tendria
que admitir que los ancianos de los paises con una mortalidad general mas alta son mas
resistentes o tienen un riesgo de morir mas bajo a edades avanzadas que los ancianos de los
paises con una mortalidad general mas baja. La explicacion mds probable estaria en el
nivel de la respuesta inmunoldgica de los organismos en relacion inversa con el grado de
uso de antibidticos, en general mayor en los paises de baja mortalidad general.

Tanto la forma de la mortalidad a edades avanzadas como la paradoja de Gumbel
se explicarian entonces por la heterogeneidad de la mortalidad entre individuos, debido
seguramente a factores genéticos. Una parte importante de la investigacion en mortali-
dad esta actualmente dedicada al estudio de esta heterogeneidad, tanto para entenderla
como para tenerla en cuenta en los estudios comparativos. El uso de una modelizacion
matematica de la forma de la curva de riesgos por edad ha permitido, pues, plantear este
problema y dar pistas sobre las causas de la inflexion de la curva normalmente log-line-
al a partir de los 80 afios.

1.3. Mortalidad normal y accidental. Mortalidad endogena-exogena

Para los autores de los siglos xvir y xviil, la mortalidad tenia solamente dos nive-
les: el de los afios normales, tal como la recogian sus tablas de mortalidad, y el nivel de
crisis, por ejemplo debido a la peste bubonica. Hoy en dia se suelen distinguir también
otros dos tipos de mortalidad: la mortalidad debida a factores endogenos o genéticos y
la mortalidad exdgena, que se explica por factores del entorno, como las enfermedades
infecciosas. La separacion entre estos dos tipos puede basarse sobre el analisis de las
causas de muerte. Pero aqui de nuevo el analisis matematico permite ordenar los datos y
modelizar los procesos subyacentes. Jean Bourgeois-Pichat elaboré el primer método
de este tipo, que permitid separar el nivel de la mortalidad infantil (del primer afio)
entre el componente enddgeno (principalmente malformaciones genéticas dificilmente
curables) y el componente exdgeno o evitable. El razonamiento de Bourgeois-Pichat es
muy interesante, y aunque el modelo esta ahora superado, sigue siendo un buen ejem-
plo de los procedimientos que se utilizan hoy en dia en las modelizaciones bio-
médicas®.

8. Bourgeois-Pichat, J., «De la mesure de la mortalité infantile», Population, 1946. Un trabajo actual es
Manton, K. G. y Yashin, A. Mechanisms of Aging and Mortality: Searches for New Paradigms, Odense, 2000,
Odense University Press.
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2. MODELOS DE POBLACION, EN EL TIEMPO Y POR EDAD

2.1. Modelo exponencial de Euler

Leonard Euler se adelanté un siglo y medio a su tiempo, publicando un trabajo
redescubierto en el siglo xx en el cual anticipaba resultados importantes de los modelos
modernos de las poblaciones®. A partir de una hipétesis de mortalidad constante en el
tiempo y suponiendo que los nacimientos siguen una progresion geométrica de razén
constante, mostr6 por ejemplo que la estructura por edad de la poblacion (la proporcion
de poblacion en cada grupo de edad) es constante en el tiempo. Establecié también otros
resultados acerca de las poblaciones exponenciales que fueron redescubiertos en el siglo xXx.

2.2. Modelo de las poblaciones estables de Lotka

Alfred Lotka, un matematico norteamericano, no conocia los resultados de Euler
cuando fundo entre los afios 1910 y 1930 la teoria matematica de las poblaciones, estable-
ciendo los principales resultados de lo que llamé la teoria de las poblaciones estables!©.
Lotka empez6 con el mismo modelo de poblacion exponencial desarrollado por Euler,
llamandolas «poblaciones maltusianasy», haciendo referencia en esto a la oposicion que
hacia Malthus entre las poblaciones humanas que tienden a crecer de forma geométrica
y los alimentos que lo hacen de forma aritmética. Pero Lotka introdujo una hipotesis
nueva que le permiti6 ir mas alla que el simple modelo exponencial. Sustituy¢ la hipote-
sis de nacimientos en progresion geométrica de Euler por una hipdtesis de fecundidad
por edad constante en el tiempo. Este cambio pequefio en apariencia fue decisivo a la
hora de estudiar los procesos de convergencia de las poblaciones reales hacia poblacio-
nes modelo. Las poblaciones modelo con fecundidad constante en el tiempo son lo que
Lotka llamé las poblaciones estables. Forman un subconjunto de la clase de las pobla-
ciones maltusianas o exponenciales.

Lotka establecié formulas muy utiles para el demdgrafo. Por ejemplo, para el
conjunto maltusiano redescubre la formula de Euler acerca de la proporcion de personas
de edad x en relacion con la poblacion total, proporcion constante en el tiempo:

c(x) = be™S(x)
9. Euler, L. 4 general investigation into the mortality and multiplication of the human species, Académie
Royale des Sciences et Belles-Lettres, 1760.

10. Lotka, A. J., «Relation between birth rates and death rates», Science, N.S., 26:21-22 es el primer trabajo.
Tratamiento completo en: Lotka, A. J., Théorie analytique des associations biologiques, Paris, Herman, 1936.
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donde c¢(x) es esta proporcion a la edad x, b es la tasa de natalidad, r la tasa de creci-
miento de los nacimientos y S(x) la proporcion de sobrevivientes a la edad x en la tabla
de mortalidad.

Pero sobre todo muestra como calcular el valor de la tasa de crecimiento » de la
poblacion en el subconjunto de las poblaciones estables, resolviendo una ecuacion fun-
damental, llamada desde entonces ecuacion de Lotka:

B
L e "m(x)S(x) dx =1

con oy f3los limites del intervalo de edad fértil (15 a 49 afios para las mujeres) y m(x) la
tasa (o riesgo) de fecundidad a la edad de x afios, que se calcula dividiendo los naci-
mientos de madres de edad x por el efectivo de mujeres de edad x. Esta ecuacion tiene
una Unica raiz real, la fasa r de crecimiento intrinseca de la poblacion estable. Lotka
mostro también que las raices complejas de esta ecuacion describian las condiciones del
proceso de convergencia de una poblacion real hacia la poblacion estable definida a par-
tir de niveles constantes en el tiempo de la mortalidad y la fecundidad. Lotka desarrollo
el estudio de este proceso de convergencia a partir de una ecuacion de recurrencia sobre los
nacimientos que Euler también habia considerado:

B
B(%) :fa B(t — x) m(x) S(x) dx

donde B(¥) son los nacimientos en el momento 7. Lotka establecid los principales teore-
mas de la convergencia, pero sin llegar a probarlos de forma rigurosa. Habra que esperar
los trabajos de Feller sobre los conjuntos auto-renovados!!, poblaciones humanas entre
otras, y el estudio general de las condiciones de convergencia de Lopez!2 para establecer
de forma definitiva estos teoremas.

2.3. La poblacion estable como poblacion equilibrada
El modelo matematico de la poblacion exponencial de Euler y su extension en el
siglo xx, a partir de los trabajos de Lotka sobre las poblaciones estables, proporciona un

instrumento de andlisis que aplican de forma habitual los demégrafos. Se utiliza por
ejemplo para completar y rectificar datos defectuosos o parciales, sobre todo en los pai-

11. Feller, W., «On the integral equation of renewal theory», Annals of Mathematical Statistics.
12. Lopez, A., Problems in Stable Population Theory, Princeton, 1961.
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ses desarrollados. Pero las poblaciones modelo proporcionan una medida para los des-
equilibrios de las poblaciones humanas reales. Desde el siglo xvii, la mortalidad y la
fecundidad no se han mantenido nunca constantes, dividiéndose por tres hasta la segun-
da guerra mundial. También la fecundidad tiene tendencia a oscilar en el tiempo desde la
segunda guerra mundial. Entonces las poblaciones estables son un modelo muy aproxi-
mado de las poblaciones reales contemporaneas. Pero pueden servir para definir lo que
podria ser la poblacion en condiciones de equilibrio, en el sentido de un crecimiento en
el tiempo a una tasa constante, jlo que seria el ideal de todo planificador!

Asi a cada poblacion real podemos asociarle una poblacion estable que tiene la
misma tabla de mortalidad y una serie de nacimientos en progresion geométrica, con una
razdn igual a la de la tasa de crecimiento tendencial de la serie real. La poblacion real se
puede comparar a la estable asociada, lo que permite visualizar los desequilibrios calcu-
lando las desviaciones relativas a cada edad, como estd hecho con el grafico para
Estados Unidos!3.

10
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Desviackin en % can respaclo de
la poblaciin establa

Figura 4. Estados Unidos, 1991. Comparacion de la poblacion femenina con una poblacion
estable proxima.

2.4. La convergencia débil y fuerte
El proceso de convergencia de una poblacion real hacia una poblacion estable

supone que a partir de un momento los riesgos por edad de la mortalidad y de la fecun-
didad son constantes en el tiempo. En estas condiciones, la estructura por edad de una

13. Devolder, D., «Les types d’instabilités des populations du passé», Cahiers des Annales de Démographie
Historique, 2, 2000.
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poblacién real se acerca cada vez mas a la estructura de la poblacion estable definida por
estos niveles constantes de la mortalidad y la fecundidad. Este proceso de convergencia,
al que se referia Lotka, se conoce ahora como convergencia débil. Sus caracteristicas
dependen de la estructura por edad inicial de la poblacion real y de la forma de las cur-
vas de riesgo por edad de la mortalidad y la fecundidad (el analisis de estos factores de
forma se conduce a partir del estudio de las raices complejas de la ecuacion de Lotka).
En general se observa que bastaria con unos 150 afios de constancia de la mortalidad y
la fecundidad para que una poblacién real «olvidaray su estructura por edad inicial y se
volviera estable. Pero este proceso de convergencia débil supone que se cumplan estas
hipotesis irrealistas de constancia en el tiempo. Para llegar a resultados méas generales, se
estudia también el llamado proceso de convergencia fuerte, en el que se elimina la hipo-
tesis de constancia en el tiempo de la fecundidad y la mortalidad. Por ejemplo, Coale!'4
formuld una conjetura segun la cual si a partir de un momento sometemos dos poblacio-
nes distintas a la misma serie de valores de los riesgos por edad de mortalidad y fecun-
didad, variable en el tiempo, estas dos poblaciones tenderan al cabo de un cierto tiempo
hacia la misma estructura por edad (proporcion de las personas a cada edad en relacion
con la poblacién total). Esta conjetura fue demostrada por Lopez!. Es un resultado
importante en la medida en la que establece de forma definitiva esta tendencia de las
poblaciones a «olvidar» las estructuras por edad del pasado.

Pero a la inversa, como este proceso de convergencia es largo (un siglo o mas),
subraya también la fuerza de inercia contenida en la estructura por edad, que determina
durante largo tiempo la tendencia de la evolucion. Este factor de inercia se estudia bajo
el nombre de momentum de la poblacién!®.

2.5. El proceso de la convergencia como restriccion al crecimiento

El proceso de convergencia, y sobre todo de convergencia débil, se puede inter-
pretar como la imposicion de una restriccion a una poblacion!”. Asi la hipotesis de
fecundidad constante de las poblaciones estables significa que se impone una relacion
constante en el tiempo entre el efectivo de los nacimientos y el efectivo de las mujeres
en edad de tener hijos. En el marco mas amplio de las poblaciones exponenciales de

14. Coale, A. J., «<How the age distribution of a human population is determined». Cold Spring Harbor
Symposia on Quantitative Biology, 22, 1957.

15. op. cit. También una demostracion mas sencilla, a partir de la idea de procesos de media moviles, en
Arthur, W. B., «The ergodic theorems of demography: a simple proof», Demography, 1982.

16. Keyfitz, N., «On the momentum of population growthy», Demography, 8. También Li, N. y Tuljapurkar, S.,
«Population momentum for gradual demographic transitions», Population Studies, 53, 1999.

17. Le Bras, H., «Fluctuations et croissance des populations soumises a une contraintey», Population, 2, 1983.
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Euler, la hipdtesis de evolucion exponencial de los nacimientos es también una restric-
cién en el sentido que los nacimientos de dos afios consecutivos tienen que estar en una
relacion constante. Otro tipo de restriccion que se ha estudiado es la de forzar una pobla-
cion a tener un crecimiento nulo, es decir, que se igualen los nacimientos con las de-
funciones, un objetivo aparentemente razonable para una politica demografica. Ob-
viamente estas restricciones son dificiles de hacer cumplir para la poblacion de un pais
entero, pero en algunos casos se pueden aplicar, por ejemplo para la poblacion de un
cuerpo profesional (maestros, policias, ...) o la plantilla de una gran empresa. El proble-
ma que plantean estas restricciones es que la relacion de constancia que se tiene que
cumplir fuerza el ajuste de otros componentes de la evolucion, y este ajuste puede tener
consecuencias imprevistas y en algunos casos peores que la situacion a la que se pensa-
ba remediar con la restriccion. En el grafico siguiente se aprecia como una fecundidad
constante, y aun mas una tasa de crecimiento constante, son restricciones que provocan
un ajuste de la poblacion en forma de fluctuaciones en el tiempo de los nacimientos.
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Figura 5. Evolucion comparada de los nacimientos en el caso de crecimiento nulo y en el
caso de fecundidad constante.

En este contexto el estudio matematico de la convergencia tiene un especial interés,
sobre todo en la medida en la que puede orientar a un planificador hacia el tipo de restric-
cidén que sea menos peligroso o mas suave en términos de estos ajustes dindmicos.

2.6. Modelo de poblacion estable generalizado

El modelo de Lotka es una aproximacion: las poblaciones estables son siempre
hipotéticas, y solamente en casos muy peculiares se podria llegar a las condiciones de
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constancia necesarias. Esto explica por qué de forma mas reciente se han establecido
formulas mas generales que las del modelo estable, que permiten conducir calculos
directos, sin aproximaciones, a partir de datos de poblaciones reales!8. En este senti-
do, mas que un modelo, basado normalmente sobre hipdtesis simplificadoras, tene-
mos que hablar de una contabilidad, puesto que las nuevas relaciones son siempre
exactas.

La idea de partida de esta generalizacion es considerar las tres dimensiones de
edad, tiempo y generacion de las poblaciones como caminos que recorren los grupos
de personas de la misma edad. Y la relacion entre variables se puede deducir de la velo-
cidad de los desplazamientos sobre estas tres dimensiones demograficas, sin privilegiar
ninguna de ellas. Esto se puede apreciar a partir del grafico siguiente, que representa lo
que llaman los demdgrafos una superficie de Lexis. El tamafio de la poblacion por edad
en cada momento es la elevacion de la superficie en este grafico, pero los desplazamien-
tos se producen sobre esta ultima. Este tamafio se reduce a medida que pasa el tiempo, la
primera dimension. Pero el paso del tiempo es también un aumento seglin la dimension
de la edad para las personas. Este aumento conjunto del tiempo y de la edad son las dos
fuerzas elementales que, combinadas, dan como resultado un desplazamiento en diago-
nal sobre la dimension de generacion (aumento a la vez del tiempo y de la edad para per-
sonas nacidas el mismo afio).

Nla,. 1) LT PR

Age

Iy Time

Figura 6. Un desplazamiento sobre una superficie de Lexis.

18. Preston S. H. y Coale, A. J., «Age structure, growth, attrition and accession: a new synthesis», Population
Index, 1982. También Arthur, W. B. y Vaupel, J. W., «Some general relationships in population dynamicsy,
Population Index, 1984.
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Este razonamiento conduce a la definicion de tres tasas de cambio fundamentales
que permiten «viajar» sobre el grafico de tres dimensiones de la poblacion:

dlnN(x, f)

r(a9 t): at >

la tasa de crecimiento en el tiempo de la poblacion de edad x,

v(a, t) = _aln];#,

la tasa de crecimiento con la edad de la poblacion de edad x,

OlnN(x +y, t+y)
,u(a, t) == P >
y
la tasa de crecimiento con la edad y el tiempo, que a su vez es el riesgo o la fuerza de la
mortalidad de la generacion a la edad x, si no hay migraciones.
Estas tres tasas estan unidas por la identidad fundamental de este modelo genera-

lizado:

ux, t)y =v(x, t) — r(x, t).

Sobre esta base se pueden reformular todas las formulas del modelo estable a par-
tir de estas tasas. Por ejemplo, la proporcion de poblacion a la edad x,

X
c(x) = be O M5y,

la ecuacion de Lotka,

B o
L e_for(y’ t)dym(x)S(x) dx = 1.

Esta formulacion generalizada permite también establecer nuevas relaciones, que no
podian aparecer en el modelo estable, por ejemplo relativas a los factores del envejecimien-
to!?, las relaciones entre tablas de mortalidad del momento y tablas de generacion?Y, etc.

19. Preston, S. H., Himes, C. y Eggers, M., «Demographic conditions responsible for population agingy,
Demography, 1989.

20. Horiuchi S. y Preston, S., «Age-specific growth rates: the legacy of past population dynamicsy,
Demography, 1988.
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3. MODELOS DE LA REPRODUCCION Y DEL PARENTESCO

Los modelos demograficos tradicionales empiezan con la poblacién como objeto
de estudio. Pero son los individuos los elementos generadores del cambio de las pobla-
ciones, porque tienen determinados comportamientos de procreacion y estan sujetos a
riesgos de morir o de migrar. La demografia desde sus origenes se define toda como una
transicion incesante entre estos dos niveles, macro para la poblacion y micro para los
individuos. Esto explica por qué hay una verdadera dificultad de la demografia para
situarse a niveles intermedios, como son el nivel familiar y en general el de las redes que
relacionan los individuos entre si, tanto el parentesco como los grupos sociales. Para
conseguir estudiar esta dimension nueva, las relaciones entre personas, se han desarro-
llado de forma mucho mas reciente modelos de la reproduccion y del parentesco que
empiezan con los individuos en vez de con la poblacién en su conjunto. La idea es
reconstruir poco a poco el nivel familiar elemental (pareja, hijos) y luego llegar hasta
todo el parentesco, y eventualmente hasta el nivel de las redes de sociabilidad. Hay
varios tipos de modelos de la familia y del parentesco. Pero los mas comunes y utiles son
modelos que empiezan con un individuo central (ego), permiten construir genealogias y
también calcular las probabilidades de tener familiares en vida, a cada edad del ego.

Los modelos de parentesco mas utilizados hoy en dia son micro-simulaciones.
Complementan y reemplazan los modelos matematicos iniciales que llevaban a formu-
las para el calculo de relaciones de parentesco que incorporaban integrales multiples, lo
que hace dificil el calculo de resultados. Como ejemplo de férmula matematica para
determinar el nimero esperado de primas hermanas, se tiene que calcular el valor de
férmulas con integrales multiples como:

) ﬁ U ﬁ{f . y(fa TSmOt tx by -z w)dw) % (=W W)

Se necesitan métodos de calculo numérico, en los cuales es necesario utilizar
nimeros aleatorios. Entonces es mas rapido y mds interesante incorporar los factores
estocasticos al principio mismo de la modelizacion, lo que es el planteamiento de una
micro-simulacion. Estas ofrecen ademas la ventaja de permitir incorporar de forma sen-
cilla nuevas hipdtesis sobre los comportamientos, sin aumento del nivel de complejidad
de los calculos.

La micro-simulacién empieza normalmente con un individuo en vida a cada edad y
calcula a partir de distribuciones de probabilidad el nimero de parientes en vida, progre-
sando paso a paso a partir de la madre, el padre, el conyuge, etc. Estas micro-simulaciones
se llaman a menudo de Monte-Carlo porque utilizan procedimientos de tiraje de numeros
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al azar que sirven para seleccionar el valor de una probabilidad dentro de distribuciones
preestablecidas (de mortalidad, fecundidad, nupcialidad, migracion, etc.)?2!.

4. MODELOS ESPACIALES: SIMULACION DE AGENTE Y DENSIDAD
FRACTAL

El estudio de la difusion de la poblacion en el espacio o el problema general de
los tipos de poblamiento son temas que tradicionalmente los demdgrafos no han consi-
derado como suyos sino del dominio de la geografia. La Ginica dimension territorial rele-
vante que se toma en cuenta en demografia son las migraciones. Pero las migraciones se
definen en relacion con el espacio politico unidimensional de un pais u otras unidades
administrativas. Para estudiar los movimientos humanos dentro de un espacio continuo
y bidimensional, y no segmentado desde una vision politica, es necesario abandonar el
concepto mismo de migracion y interesarse por la dindmica de la difusion en el espacio.
Hay dos formas de estudiar esta dinamica: desde una vision de los procesos individuos
elementales o bien a partir de la distribucion espacial en un momento dado.

4.1. El juego de la difusion

La modelizacion de los procesos de difusion en el espacio encuentra un forma-
lismo cémodo en lo que se conoce como el «juego de la vida». Lo que empezd como
una curiosidad matematica se ha convertido hoy en dia en algo muy util para la expe-
rimentacion en biologia, en fisica o en informética?2. La idea es trabajar con una
estructura de celdas, normalmente en dos dimensiones, ocupadas por individuos de
una poblaciéon. En la version original del juego, introducido por el matematico John
Conway, la reglas son relativas a la ocupacion de las celdas por nacimiento o defun-
cion, en funcion de la presencia de individuos en las celdas vecinas. Se pueden adap-
tar estas reglas al caso de las migraciones, con una poblacion en este espacio de celdas
que se desplazan de una celda libre a otra en funcion de un parametro de atraccion (los
hombres aborrecen la soledad) y otro de repulsion (una densidad local demasiado alta
puede ser un problema). Como ejemplo de resultados, podemos tomar dos poblaciones
distribuidas inicialmente al azar a las que se le han aplicado dos series distintas de

21. Una sintesis y resultados en Devolder, D. Effects of the European late marriage pattern on kinship. A study
using a microsimulation model, en prensa, 2001. Disponible en la web en la direccion: http://www.ced.uab.es/pdfs
/paperspdf/text135.pdf.

22. Por ejemplo Sigmund, K., Games of Life. Explorations in ecology, evolution and behaviour, Oxford, 1993.
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valores de estos parametros de atraccion y repulsion?3. La aplicacion iterativa de estas
reglas conduce a la situacion de equilibrio representada en los dos dibujos de Conway
siguientes:

Figura 7. Dos situaciones de equilibrio en el juego de la vida, segiin Conway.

Estas dos formas de ocupacion del territorio son representativas de la division
historica de las zonas rurales en Europa occidental, entre poblaciones dispersas y pobla-
ciones agrupadas. Este tipo de modelizacion sugiere que esta oposicion entre dos tipos
fundamentales de poblamiento se puede explicar por pequefas alteraciones de las reglas
basicas de atraccion y repulsion.

4.2. La densidad fractal

Otro procedimiento para estudiar estas reglas elementales es empezar con el
tipo de poblamiento observado en vez de intentar reconstruirlo, como en el enfoque
anterior?4. La ocupacion humana del territorio normalmente no es continua y se sue-
len encontrar repeticiones de las conformaciones espaciales. Estas repeticiones se

23. Le Bras, H., Essai de géométrie sociale, Paris, 2000.
24. Frankhauser, P., «The fractal approach. A new tool for the spatial analysis of urban agglomerationsy,
Population: An English Selection, 1998.
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producen en varias partes del territorio, pero también en una misma zona, pasando de
una escala a otra mas pequefa. Esta ocupacion del territorio con un patrdn repetido
sugiere una analogia con las figuras de la geometria fractal, como lo podemos ver con

el mapa de la ciudad francesa de Besangon, comparado con una alfombra de
Sierpinski.
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O,=1.81

HED D00 ool
B OO 00 1o
(minfzQuintufiojuin
I:II:IE s

ﬂﬂl:l [wjmin; Eﬂﬂ
B U0 00
(mi{n(nfulnis] I:II:II:I
consinicled Iractal

O=1,73

Figura 8. El centro de Besangon (D, = 1,81) comparado con un fractal (D = 1,73). La distri-
bucion de los espacios libres en el fractal se ha ajustado a las condiciones reales, que parecen carac-
terizarse por la presencia de bloques amplios construidos alrededor de patios interiores.

Este objeto matematico podria ser un modelo de las reglas de segmentacion del
territorio, seguidas por la poblacion de esta ciudad. La alfombra se genera en base a una
cuadricula inicial con un perimetro de longitud /, segin una regla de particion en 8 cua-
driculas de perimetro /7 =/ / 3. Esta operacion se reproduce a la escala siguiente y el
efecto de invariancia de escala se puede medir a través de la dimension fractal, el para-
metro D del grafico calculado por:

InN

D= am

donde N es el nimero de cuadriculas creadas a partir de una anterior.
Este parametro de invariancia de escala es una medida més adecuada que la densi-
dad de la poblacion (efectivo por unidad de superficie). Toma valores entre 1 (desierto) y
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2 (superficie totalmente ocupada) y permite una cuantificacion basada sobre la observa-
cion de que la ocupacion del territorio es un fenémeno discreto (en cada punto hay pobla-
cion o no la hay) y no continuo, como lo sugiere una métrica como la densidad.

Queda entonces como problema la estimacion de la dimension fractal asociada
con cada territorio, lo que en general se puede resolver con procedimientos de trata-
miento informatico de imagenes. La dimension fractal observada puede servir entonces
para construir un modelo del proceso elemental de fragmentacion del espacio seguido
por la poblacién del territorio analizado.
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