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spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Joaquim Mart́ın and Mario Milman

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Hardy isoperimetric type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Model Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 E. Milman’s equivalence theorems . . . . . . . . . . . . . . . . . . . . . . . 9
6 Some spaces that are not of isoperimetric Hardy type . . . . . . 10
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1





Isoperimetric Hardy type and
Poincaré inequalities on metric spaces

Joaquim Mart́ın and Mario Milman

Abstract We give a general construction of manifolds for which Hardy type
operators characterize Poincaré inequalities. We also show a class of spaces
where this property fails. As an application we extend recent results of E.
Milman to our setting.

1 Introduction

While working on sharp Sobolev-Poincaré inequalities in the classical Eu-
clidean setting (cf. [17]) as well as the Gaussian setting (cf. [14]), we ob-
served that the symmetrization methods we were developing could be readily
extended to the more general setting of metric spaces (cf. [6], [14], [15], [16]).
However, in the metric setting we found that we could not always decide if
the results we had obtained were “sharp” or best possible.

Indeed, generally speaking, the methods that we use to show sharpness
require the construction of special rearrangements and thus our spaces need to
exhibit sufficient symmetries. In fact, in all the examples where we know how
to prove sharpness, the “winning” rearrangements are those that are somehow
connected with the solution of the underlying isoperimetric problems (e.g.
the symmetric decreasing rearrangements in the Euclidean case, which are
associated with balls (cf. [17]), while in the Gaussian case one uses special
rearrangements associated with half spaces (cf. [8], [14]) and, likewise, in the

Joaquim Mart́ın
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more general model cases of log concave measures (cf. [5], [7] and the more
recent [1], [15], [16]). In particular, these special rearrangements allow us to
show that there exist “special symmetrizations that do not increase the norm
of the gradient”, i.e. that a suitable version of the Pólya-Szegö principle holds.

In preparation for a systematic study we observed that, in all the model
cases we could treat, a key role was played by the boundedness of certain
Hardy operators, which we termed “isoperimetric Hardy operators”. This led
us to isolate the concept of “isoperimetric Hardy type spaces”. This property
can be formulated in very general metric spaces and can be applied, if we
have estimates on the isoperimetric profiles. By formulating the problem in
this fashion, while we may lose information about best constants, we gain
the possibility of obtaining positive results that would be hard to obtain by
other methods.

In this note we continue this program and we address the question: which
metric spaces are of “Hardy isoperimetric type”? On the positive side we
show, using ideas of Ros [26], how to construct a class of metric spaces of
“Hardy isoperimetric type” that contains all the model cases mentioned be-
fore. Therefore this construction provides us with a large class of spaces where
our inequalities are sharp.

As another application we continue the discussion of the connection be-
tween our results and the recent work of E. Milman ([23], [22], [24]), who has
shown the equivalence, under convexity assumptions, of certain estimates for
isoperimetric profiles. In [16] we extended and simplified E. Milman’s results
to the setting of metric spaces of isoperimetric Hardy type. The construction
presented in this paper thus gives a general concrete class of model spaces
where Milman’s equivalences hold.

Finally on the negative side we also construct spaces that do not satisfy
the “isoperimetric Hardy type condition.”

In the spirit of this book we now comment briefly on the influence of
Maz’ya’s work in our development. Underlying the equivalences of Theorem
0.1 below are two deep insights due to Maz’ya: Maz’ya’s fundamental result
showing the equivalence between the Gagliardo-Nirenberg inequality and the
isoperimetric inequality (cf. [18] and also [9]), and Maz’ya’s technique of show-
ing self improvement of Sobolev’s inequality via smooth cut-offs (cf. [20]). In-
deed, one of the themes of Theorem 0.1 is to develop the explicit connection of
these two ideas using pointwise symmetrization inequalities (“symmetrization
by truncation” cf. [17], [14]). Another theme of our method is that we for-
mulate our inequalities incorporating directly geometric information, an idea
that one can also already find in Maz’ya’s fundamental work characterizing
Sobolev inequalities in rough domains [20] as well as in Maz’ya’s method
characterizing Sobolev-Poincaré inequalities via isocapacitory inequalities1

(cf. [21]).

1 A detailed discussion of the connection between Maz’ya’s isocapacitory inequalities and
symmetrization inequalities is given in [16].
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As this outline shows, and we hope the rest of the paper proves, our meth-
ods owe a great deal to the pioneering work of Professor Maz’ya and we are
grateful and honored by the opportunity to contribute to this book.

2 Background

Let (Ω, d, µ) be a metric probability space equipped with a separable Borel
probability measure µ. Let A ⊂ Ω be a Borel set, then the boundary measure
or Minkowski content of A is by definition

µ+(A) = lim inf
h→0

µ (Ah)− µ (A)
h

,

where Ah = {x ∈ Ω : d(x, y) < h} denotes the h-neighborhood of A.
The isoperimetric profile I(Ω,d,µ) is defined as the pointwise maximal

function I(Ω,d,µ) : [0, 1] → [0,∞) such that

µ+(A) > I(Ω,d,µ)(µ(A)),

holds for all Borel sets A.

Condition: We shall assume throughout that our metric spaces have
isoperimetric profile functions I(Ω,d,µ) which are: continuous, concave, in-
creasing on (0, 1/2), symmetric about the point 1/2, and vanish at cero2.

A continuous function I : [0, 1] → [0,∞) , with I(0) = 0, concave, increas-
ing on (0, 1/2) and symmetric about the point 1/2, and such that

I > I(Ω,d,µ),

will be called an isoperimetric estimator on (Ω, d, µ).
For measurable functions u : Ω → R, the distribution function of u is

given by
λu(t) = µ{x ∈ Ω : |u(x)| > t} (t > 0).

The decreasing rearrangement u∗ of u is defined, as usual, by

u∗µ(s) = inf{t > 0 : λu(t) 6 s} (t ∈ (0, µ(Ω)]),

and we let

u∗∗µ (t) =
1
t

∫ t

0

u∗µ(s)ds.

2 For a large class of examples where these assumptions are satisfied we refer to [6] [23],
and the references therein.



4 Joaquim Mart́ın and Mario Milman

Given a a locally Lipschitz real function, f defined on (Ω, d) (we shall
write in what follows f ∈ Lip(Ω)), the modulus of the gradient of f is
defined, by

|∇f(x)| = lim sup
d(x,y)→0

|f(x)− f(y)|
d(x, y)

,

and zero at isolated points3.
A Banach function space X = X(Ω) on (Ω, d, µ) is called a rearrangement-

invariant (r.i.) space, if g ∈ X implies that all µ−measurable functions f with
the same rearrangement function with respect to the measure µ, i.e. such that
f∗µ = g∗µ, also belong to X, and, moreover, ‖f‖X = ‖g‖X . An r.i. space X(Ω)
can be represented by a r.i. space X = X(0, 1) on the interval (0, 1), with
Lebesgue measure, such that

‖f‖X = ‖f∗µ‖X ,

for every f ∈ X. Typical examples of r.i. spaces are the Lp-spaces, Lorentz
spaces and Orlicz spaces. For more information we refer to [4].

In our recent work on symmetrization of Sobolev inequalities we showed
the following general theorem (cf. [15], [16] and the references therein)

Theorem 0.1. Let I : [0, 1] → [0,∞) be an isoperimetric estimator on
(Ω, d, µ). The following statements hold and are in fact equivalent:

1. Isoperimetric inequality:

∀A ⊂ Ω, Borel set, µ+(A) > I(µ(A)).

2. Ledoux’s inequality:

∀f ∈ Lip(Ω),
∫ ∞

0

I(λf (s))ds 6
∫

Ω

|∇f(x)| dµ(x).

3. Maz’ya’s inequality4:

∀f ∈ Lip(Ω), (−f∗µ)′(s)I(s) 6
d

ds

∫
{|f |>f∗µ(s)}

|∇f(x)| dµ(x).

4. Pólya-Szegö’s inequality

∀f ∈ Lip(Ω),
∫ t

0

((−f∗µ)′(.)I(.))∗(s)ds 6
∫ t

0

|∇f |∗µ (s)ds.

(The second rearrangement on the left hand side is with respect to the
Lebesgue measure).

3 In fact it is enough in order to define |∇f | that f will be Lipschitz on every ball in (Ω, d)
cf. [6, pp. 184,189] for more details.
4 See [19], one can also find this inequality in [27], [28].
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5. Oscillation inequality:

∀f ∈ Lip(Ω), (f∗∗µ (t)− f∗µ(t)) 6
t

I(t)
|∇f |∗∗µ (t). (2.1)

Given any rearrangement invariant space X(Ω), it follows readily from
(2.1) that for all f ∈ Lip(Ω), we have

‖f‖LS(X) :=
∥∥∥∥(

f∗∗µ (t)− f∗µ(t)
) I(t)

t

∥∥∥∥
X

� ‖∇f‖X .

One salient characteristic of these spaces is that they explicitly incorporate
in their definition the isoperimetric profiles associated with the geometry in
question and thus they can automatically select the correct optimal spaces
for different geometries (for more on this see [14], [15], [16]). While the LS(X)
spaces are not necessarily normed, often they are equivalent to normed spaces
(cf. [25]), and, in the classical cases, lead to optimal Sobolev-Poincaré in-
equalities and embeddings (cf. [17], [13], [14] as well as [3], [2], [29] and the
references therein).

3 Hardy isoperimetric type

Let QI be the operator defined on measurable functions on (0, 1) by

QIf(t) =
∫ 1

t

f(s)
ds

I(s)
,

where I is an isoperimetric estimator. We consider the possibility of com-
pletely characterizing Poincaré inequalities in terms of the of the boundedness
of QI as an operator from X to Y .

In order to motivate what follows we recall the following result, obtained
in [15], [16], for classical settings see [14].

Theorem 0.2. Let X, Y be two r.i. spaces on Ω. Suppose that there exists
a constant c = c(X, Y ) such that for every positive function f ∈ X, with
suppf ⊂ (0, 1/2),

‖QIf(t)‖Y 6 c
∥∥f∗µ

∥∥
X

.

Then, for all g ∈ Lip(Ω)5∥∥∥∥g −
∫

Ω

gdµ

∥∥∥∥
Y

� ‖∇g‖X . (3.1)

5 We note for future use that Poincaré inequalities can be equivalently formulated replacing∫
Ω gdµ by a median value m of g, i.e. µ (g > m) > 1/2 and µ (g 6 m) > 1/2.
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Furthermore, if the space X is such that
∥∥f∗µ

∥∥
X
'

∥∥f∗∗µ

∥∥
X

, then,

‖f‖Y � ‖f‖LS(X) + ‖f‖L1 .

In fact, LS(X) is an optimal space in the sense that if (3.1) holds, then for
all g ∈ Lip(Ω) we have∥∥∥∥g −

∫
Ω

gdµ

∥∥∥∥
Y

�
∥∥∥∥g −

∫
Ω

gdµ

∥∥∥∥
LS(X)

� ‖∇g‖X .

We give a simple, but non trivial example, that illustrates how the pre-
ceeding developments allow us to transplant Sobolev-Poincaré inequalities to
the metric setting.

Example 0.1. Suppose that (Ω, µ) has an isoperimetric estimator

I(s) ' s1−1/n, (0 < s < 1/2).

It follows that on functions supported on (0, 1/2),

QIf(t) '
∫ 1/2

t

s1/nf(t)
ds

s
.

Since the conditions for the boundedness QI on r.i. spaces are well under-
stood, we can transplant the classical Sobolev inequalities to (Ω,µ). Further-
more, we note that in the borderline case q = n, the corresponding result
using the optimal LS(Ln) spaces is sharper than the classical Sobolev theo-
rems (cf. [2]).

As mentioned before it is known that the converse to Theorem 0.2 is true
in a number of important classical cases, in other words the operator QI in
those cases gives a complete characterization of the Poincaré inequalities (for
the most recent results cf. [15], [16]).

This led us to introduce the following condition

Definition 0.1. We shall say that a probability metric space (Ω, d, µ) is of
isoperimetric Hardy type if for any given isoperimetric estimator I, the fol-
lowing are equivalent for all r.i. spaces X = X(Ω), Y = Y (Ω) :
1. There exists c = c(X, Y ) such that

∀f ∈ Lip(Ω),
∥∥∥∥f −

∫
Ω

fdµ

∥∥∥∥
Y

6 c ‖∇f‖X . (3.2)

2. There exists c = c(X, Y ) such that

‖QIf‖Y � ‖f‖X , f ∈ X, with supp(f) ⊂ (0, 1/2).
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4 Model Riemannian manifolds

In this section we construct a class of spaces of isoperimetric Hardy type
spaces that includes the n−sphere Sn, (Rn, γn) (Rn with Gaussian measure)
and symmetric log-concave probability measures on R.

We follow a construction of Ros (cf. [26]). Let M0 a complete smooth
oriented n0-dimensional Riemannian manifold with distance d. An absolutely
continuous probability measure µ0 w.r. to dV in M0, will be called a model
measure, if there exists a continuous family (in the sense of the Hausdorff
distance on compact subsets) D = {Dt : 0 6 t 6 1} of closed subsets of M0

satisfying the following conditions:

1. µ0(Dt) = t and Ds ⊂ Dt, for 0 6 s < t 6 1,
2. Dt is a smooth isoperimetric domain of µ0 and Iµ0(t) = µ+

0 (Dt) is positive
and smooth for 0 < t < 1, where Iµ0 denotes the isoperimetric profile of
M0,

3. The r-enlargement of Dt, defined by (Dt)r = {x ∈ M0 : d(x, Dt) 6 r}
verifies (Dt)r = Ds for some s = s(t, r), 0 6 t 6 1, and

4. D1 = M0 and D0 is either a point or the empty set.

Theorem 0.3. Let (M0, d) be an n0-dimensional Riemannian manifold en-
dowed with a model measure µ0. Then (M0, d) is of isoperimetric Hardy type.

Proof. Consider the function defined by

p : M0 → [0, 1]
x ∈ ∂Dt → t.

Let x, y ∈ M0 be such that 0 < p(y) < p(x). Let D ∈ D such that y /∈ D.
Consider the function h(r) = µ0(Dr), which is continuous and smooth for
0 < h(r) < 1 and, in this range (see [26]),

h′(r) = Iµ0(h(r)). (4.1)

From the definition of p, it follows that p(x) = h(d(x,D)) and p(y) =
h(d(y, D)). Since d(x,D)− d(y, D) 6 d(x, y), we see that

p(x)− p(y)
d(x, y)

6
h(d(x, D))− h(d(y, D))

d(x,D)− d(y, D)
6 sup

s
h′(s)

i.e. p ∈ Lip(M0),and |∇p(x)| = lim supy→x

∣∣∣p(x)−p(y)
d(x,y)

∣∣∣ is finite, it follows that
|∇p(x)| exists a.e. w.r. to dV (cf. [6, page 2]) and hence a.e. w.r. µ0. Let us
now compute |∇p|. Given x ∈ M0 such that p(x) = t < 1, let D ∈ D so that
x /∈ D, and as before consider the function h(r) = µ0(Dr). Let z(x) ∈ M0 be
such that

d(x,D) = d(x, z(x)).
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Select yn on the geodesic that joints z(x) and x such that yn → x, then

lim
n→∞

∣∣∣∣p(x)− p(yn)
d(x, yn)

∣∣∣∣ = lim
n→∞

∣∣∣∣h(d(x, D))− h(d(yn, D))
d(x,D)− d(yn, D)

∣∣∣∣ = h′(d(x,D)) (4.2)

= Iµ0(h(d(x, D))) (by (4.1))
= Iµ0(p(x)).

Let f ∈ X, be a positive function with suppf ⊂ (0, 1/2), and define

F (x) =
∫ 1

p(x)

f(s)
ds

Iµ0(s)
.

Obviously, F ∈ Lip(M0) and by (4.2),

|∇F (x)| = f(p(x))
1

Iµ0(p(x))
|∇p(x)| = f(p(x)), a.e..

We claim that the map p : (M0, µ0) → ([0, 1], ds) is a measure-preserving
transformation. To prove this claim we need to see that for any measurable
subset R ⊂ [0, 1],

µ0

(
p−1(R)

)
=

∫
R

ds. (4.3)

It is enough to see (4.3) for a closed interval. Let [a, b] ⊂ [0, 1] (0 6 a < b 6 1)
then

µ0

(
p−1([a, b])

)
= µ0(Db)− µ0(Da) = b− a,

Using this claim (see [4, Proposition 7.2, page 80]) then a.e. we have

|F |∗µ0
(s) =

∫ 1

t

f(s)
ds

Iµ0(s)
and |∇F |∗µ0

(s) = f∗(s).

Obviously, condition (3.2) is equivalent to

‖u−m‖Y � ‖∇u‖X ,

where m is a median6 of f, now since µ0 (F = 0) > 1/2, 0 is a median of F ,
and from

‖F − 0‖Y � ‖∇F‖X

we obtain ∥∥∥∥∫ 1

t

f(s)
ds

Iµ0(s)

∥∥∥∥
Y

� ‖f‖X

as we wished to show. ut

6 i.e. µ0 (f > m) > 1/2 and µ0 (f 6 m) > 1/2.
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5 E. Milman’s equivalence theorems

In the next result we have a list of progressively weaker statements that nev-
ertheless have been shown by E. Milman (cf. [23], [22], [24]) to be equivalent
under certain convexity assumptions. Likewise E. Milman also has formulated
similar results in the context of Orlicz spaces.

In [16] we have simplified and extended Milman’s results to the context of
metric spaces with Hardy isoperimetric type, as well as considering general
r.i. spaces.

Theorem 0.4. Let (Ω, d, µ) be a space of Hardy isoperimetric type. Then the
following statements are equivalent
(E1) Cheeger’s inequality

∃C > 0 s.t. I(Ω,d,µ) > Ct, t ∈ (0, 1/2].

(E2) Poincaré inequality

∃P > 0 s.t. ‖f −m‖L2(Ω) 6 P ‖f‖L2(Ω) .

(E3) Exponential concentration: for all f ∈ Lip(Ω) with ‖f‖Lip(Ω) 6 1,

∃c1, c2 > 0 s.t. µ{|f −m| > t} 6 c1e
−c2t, t ∈ (0, 1).

(E4) First moment inequality: for all f ∈ Lip(Ω) with ‖f‖Lip(Ω) 6 1,

∃F > 0 s.t. ‖f −m‖L1(Ω) 6 F.

Theorem 0.5. Let (Ω, d, µ) be a space of isoperimetric Hardy type. Let 1 6

q 6 ∞, and let N be a Young’s function such that N(t)1/q

t is non-decreasing
and there exists α > max{ 1

q −
1
2 , 0}, such that N(tα)

t non-increasing. Then
the following statements are equivalent,
(E5) (LN , Lq) Poincaré inequality holds

∃P > 0 s.t. ‖f −m‖LN (Ω) 6 P ‖f‖Lq(Ω) .

(E6) Any isoperimetric profile estimator I satisfies: there exists a constant
c > 0 such that

I(t) > c
t1−1/q

N−1(1/t)
, t ∈ (0, 1/2].

The construction of the previous section thus provides a class of spaces
were the previous theorems apply.
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6 Some spaces that are not of isoperimetric Hardy type

In this section we show that, unfortunately, not all metric spaces are of
isoperimetric Hardy type.

Let I : [0, 1] → [0,∞) be concave, continuous, increasing on (0, 1/2),
symmetric about the point 1/2, and such that such that I(0) = 0. Let 0 6 β 6
1. We shall say that I has β−asymptotic behavior if the limit lims→0+

I(s)
s1−β

exists and lies on (0,∞).

Theorem 0.6. Suppose that I is of β−asymptotic behavior. Then:
(i) Given 0 < β < 1/2, there is a metric space (Ω0, d, µ) with I(s) '

I(Ω0,d0,µ0)(s), and a pair of r.i. spaces X, Y on Ω0, and a constant c = c(X, Y )
such that ∥∥∥∥g −

∫
Ω0

gdµ0

∥∥∥∥
Y

6 c ‖∇g‖X , g ∈ Lip(Ω0),

but QI : X → Y is not bounded.
(ii) Given 0 < β < 1, there is a metric space (Ω1, d1, µ1) such that

I(s) ' I(Ω1,d1,µ1)(s)

and (Ω1, d, µ) is of isoperimetric Hardy type.

Proof. (i) (see [13] for a more general result) Let 1 < α < 2, and let Ω be an
α−John domain on R2, (|Ω| = 1). Then (cf. [11]),

IΩ(s) ' sα/2 = s1−(1−α/2), 0 6 s 6 1/2.

Let t > 1 be such that α > t−1, and let r = 2t
α+(1−t) . Note that 1 < t < r.

Then (cf. [12]) ∥∥∥∥g −
∫

Ω

g

∥∥∥∥
Lr

� ‖∇g‖Lt .

In this case the operator QIΩ
is given by

QIΩ
f(t) =

∫ 1

t

u−α/2f(u)du.

QIΩ
is not bounded from Lt to Lr. Indeed, the boundedness of QIΩ

can be
reformulated as a weighted norm inequality for the operator g →

∫ 1

x
g(u)du,

namely ∥∥∥∥∫ 1

x

g(u)du

∥∥∥∥
Lr

6 c
∥∥∥g(x)xα/2

∥∥∥
Lt

. (6.1)

It is well known that (6.1) holds iff (cf. [20])

sup
a>0

(∫ a

0

1
)1/r (∫ 1

a

(
uαt/2

) −1
t−1

du

) t−1
t

< ∞. (6.2)
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Now, since α < 2, it follows that −αt
2(t−1) + 1 < 0, and for a near zero we have

(∫ a

0

1
)1/r (∫ 1

a

(
uαt/2

) −1
t−1

du

) t−1
t

' a1/r
(
a
−αt+2(t−1)

2(t−1) − 1
) t−1

t

' a
(1−t)(α−1)

2t .

Consequently, since (1−t)(α−1)
2t < 0, (6.2) cannot hold.

(ii) We shall follow Gallot’s method (see [10]) in order to build (Ω1, d1, µ1) .
Let

B(r) =
∫ 1

r

ds

I(s)
, 0 6 r 6 1.

Since I is of β−asymptotic behavior we see that L = B(0) < ∞. Since B is
decreasing it has an inverse which we denote by A. Consider the revolution
surface M = (0, L)× S1 (compactified by adjoining the points {0} × S1 and
{L} × S1)) provided with the Riemannian metric

g = dr2 + I(A(r))2dθ2,

where θ ∈ S1 and dθ2 is the canonical Riemannian metric on
(
S1, can

)
.

Notice that I(A(0)) = I(A(L)) = 0. We denote the volume of (M, g) by
V olM , and multiplying the metric g by a constant, we can and will assume
without loss that V olM (M) = 1. Let us denote by IM the isoperimetric
profile of (M, g, V olM ), then (cf. [10, Appendix A.1.]), we can find a constant
c, depending only on I, such that

cI(s) 6 IM (s) 6 I(s).

Let X, Y be two r.i. spaces on M, such that.∥∥∥∥g −
∫

M

gdV olM

∥∥∥∥
Y

� ‖∇g‖X , g ∈ Lip(M).

Let f be a positive Lebesgue measurable function on (0, 1) with suppf
⊂ (0, 1/2). Define

u(r, θ1, θ2) =
∫ 1

A(r)

f(s)
ds

I(s)
, (r, θ1, θ2) ∈ M.

It is plain that u is a Lipschitz function on M such that V olM {u = 0} > 1/2.
Hence 0 is a median of u.

On the other hand, recall that (cf. [10, Page 57]) for any domain of revo-
lution Ω(λ) = (0, λ)× S1 ⊂ M we have that

V ol+M (∂Ω(λ)) = I (V olM (Ω(λ))) .
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In other words,
A′(r) = I(A(r)).

Therefore,

|∇u(r, θ1, θ2)| =
∣∣∣∣ ∂

∂r
u(r)

∣∣∣∣ =
∣∣∣∣−f(A(r))

A′(r)
I(A(r))

∣∣∣∣ = f(A(r)).

Now, since

u∗V olM (t) =
∫ 1

t

f(s)
ds

I(s)
and |∇u|∗V olM

(t) = f∗(t),

from
‖u− 0‖Y � ‖∇u‖X

we deduce that ∥∥∥∥∫ 1

t

f(s)
ds

I(s)

∥∥∥∥
Y

� ‖f‖X ,

as we wished to show. ut

By Theorem 0.6 the verification of a Sobolev-Poincaré inequality cannot
be reduced, in general, to establish the boundedness of the associated isoperi-
metric Hardy operator. However, if the profiles are of β−asymptotic behavior,
we have the following weaker positive result:

Theorem 0.7. Let I be of β−asymptotic behavior (0 < β < 1). Let MI be
the set of metric probability spaces (Ω, d, µ) such that

I(Ω,d,µ) > I.

Let X, Y be two r.i. spaces on [0, 1]. Then, the following statements are
equivalent

1.

inf
(Ω,d,µ)∈Mh

inf
g∈Lip(Ω)

∥∥∥|∇g|∗µ
∥∥∥

X∥∥∥(
g −

∫
Ω

gdµ
)∗
µ

∥∥∥
Y

= c > 0

2.
QI : X → Y is bounded. (6.3)

Proof. 1 → 2) Given I of β−asymptotic behavior, consider the revolution
surface M constructed in part (ii) of the previous Theorem. Since M ∈MI ,
by hypothesis:∥∥∥∥∥

(
g −

∫
Ω

gdµ

)∗
µ

∥∥∥∥∥
Y

6 c
∥∥∥(∇g)∗µ

∥∥∥
X

, g ∈ Lip(M),
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which is equivalent to (6.3) since M is of Hardy isoperimetric type.
2 → 1) Is a direct consequence of Theorem 0.2. ut
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10. Gallot, S.: Inégalités isopérimétriques et analytiques sur les variétés riemanniennes.
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