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Abstract. The perceived colour of a stimulus is dependent on multi-
ple factors stemming out either from the context of the stimulus or id-
iosyncrasies of the observer. The complexity involved in combining these
multiple effects is the main reason for the gap between classical cali-
brated colour spaces from colour science and colour representations used
in computer vision, where colour is just one more visual cue immersed in
a digital image where surfaces, shadows and illuminants interact seem-
ingly out of control.
With the aim to advance a few steps towards bridging this gap we present
some results on computational representations of colour for computer vi-
sion. They have been developed by introducing perceptual considerations
derived from the interaction of the colour of a point with its context. We
show some techniques to represent the colour of a point influenced by
assimilation and contrast effects due to the image surround and we show
some results on how colour saliency can be derived in real images. We
outline a model for automatic assignment of colour names to image points
directly trained on psychophysical data. We show how colour segments
can be perceptually grouped in the image by imposing shading coherence
in the colour space.

Keywords: colour perception, psychophysical data, induction, saliency,
naming, segmentation

1 Introduction

Colour science has focused mainly on the study of colour representations, namely
colour spaces, that allow to precisely describe the colour of a point. Its usual
goal has been to define perceptual spaces where distance correlate with perceived
dissimilarities. The dependency of colour with its surroundings has been partially
introduced in the procedures to generate these colour spaces albeit in controlled
conditions.

This approach is not very useful in computer vision where the inputs are
digital images of unknown origin and therefore no information about the real
scene and the acquisition sensor exists. For example, it is usually assumed that
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the RGB vector component of each image pixel is the integration of three com-
ponents over the visible wavelengths, that is

R =

∫
R(λ), E(λ), Si(λ)dλ where i : R,G,B (1)

where R(λ) is the reflectance of the surface in the scene, E(λ) is the scene il-
luminant and Si are the corresponding RGB sensitivities of the camera. This
formulation is a simplification of Shafer’s dichromatic reflection model [26], af-
ter assuming that surfaces in the scene are Lambertian and that there are no
reflection components (specularities), two assumptions that in general do not
hold resulting in images usually full of shadows, highlights and specularities,
unlike the actual appearance of real scenes.

The visual system has a tendency to keep its perceptions invariant to unim-
portant changes (i.e. illumination changes) and much effort was invested in re-
searching for stable colour representations. Key contributions to this field were
concerned with finding colour constancy algorithms capable of placing the image
under the effects of a canonical illuminant [6, 7], or invariant colour representa-
tions where the effects of the illuminant changes were removed from the image
[8]. Although some of these approaches have been proven successful in controlled
(calibrated) conditions, they are not widely used in common computer vision ap-
plications. In the last decade, some of the main advances in the computer vision
field were based on the use of powerful machine learning techniques trained on
large annotated image datasets. This general approach allowed computer vision
scientists to achieve important results in real applications of automatic under-
standing of visual contents. The main contribution of colour research to this
field has been to provide local features to be combined with shape descriptors
in recognition tasks [10, 9], or features to recover general scene shading [11] or
the 3D shape of image objects [12].

2 Perception based representations

In this work we present several methods to deal with colour vision problems
based on simple bottom-up approaches. The common point of these proposals
is that they are not based on any previous learning step on large image-labelled
datasets (supervised or unsupervised). Other than using such learning frame-
works, we propose to solve a group of vision problems by inserting strong per-
ceptual assumptions. This can be done by training the model (i.e. setting the
parameters of the model) based on perceptual data acquired from psychophys-
ical experiments. In this way, the data informs the model about the general
behaviour of the underlying visual processes which are involved in performing
the corresponding visual task. According to this, our ideas are articulated as
follows:

First, we show how the data extracted from psychophysical experiments
(based on setting a colour patch immersed in grating backgrounds with dif-
ferent spatial frequency configuration and under different colour combinations)
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has allowed us to define a mathematical model of colour induction. This model
uses the psychophysical data to fit the ECSF function that modulates the per-
ception of colour in its surround and can form the basis of a general colour space
that goes further than the colour of a point.

Secondly, we hypothesise that the modulation weights obtained in the induc-
tion model could form the basis of a bottom-up attention mechanism. We proved
that building a saliency map just recovering the weights obtained by the induc-
tion model, we are able to correlate the obtained maps with the fixation data
collected over a large image dataset. Sharing the low-level mechanisms trained
on psychophysical data with induction effects, we achieve state-of-art results in
saliency estimation.

Thridly, we present a general fuzzy set based model for colour naming. Sim-
ilarly, as we do for induction, we fit specific functions based on a sigmoid basis
to model colour naming judgements. The model can be fitted to different sets of
naming data that can allow to introduce different perceptual conditions in the
naming experiments. Some steps have been done in this direction by fitting the
model with different backgrounds conditions [13].

Finally, we present an approach to segment image colour surfaces by mod-
elling the ability of grouping colour on irregular surfaces by estimating the ridges
of the colour distribution. In this case we hypothesise that the continuity of the
perceived colour space form the basis to recover colour image segments. In this
case the model is not based on a parametric function however, the computation
of the distribution ridge is shown as a strong visual cue for segments which form
the basis for higher level visual processes.

With these examples we try to sustain the view that robust visual cues in
colour can be defined based on strong perceptual assumptions. Finding under-
lying processes of colour perception and inserting them in robust computational
approaches may prove to be a valid approach to achieve powerful colour repre-
sentations. This is the aim of this paper, which has been organised as follows. In
section 3 we outline the induction model already developed in [2] and in section
4 we show how the model can be extended to be used for saliency estimation.
In section 5 we show how membership functions for eleven basic colour terms
have been fitted to a sigmoid based parametric model. Finally, in section 6 we
explain how the colour distribution can represent the perceived coherence of the
colour shading of a surface.

3 Colour induction

Colour induction refers to the perceptual change in the colour of a stimulus due
to the interactions with its surrounding region. When the perceived colour of
a stimulus shifts towards the colour of its surround it is termed ”assimilation”.
Conversely, contrast occurs when the perceived colour of the stimulus diverges
from that of its surroundings. These two well-known effects are illustrated in
Figure 1, which also shows the dependency of the effects on the local spatial
frequency of the stimulus surround.
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Fig. 1. Examples on induction effects, assimilation (on the left), contrast (on the right).

In a previous work [1, 2] we showed that a multi-resolution framework was
capable to predict both effects in a unified manner. Our model consisted of
four stages in which different image representations were built. The final stage
recovers a new image (referred here as the perceived image). The pipeline of the
model can be summarised as follows:

Ic
WT−→ {ωs,o}

CS−→ {zs,o}
ECSF−→ {αs,o · ωs,o}

WT−1

−→ Ipc (2)

where Ic represents a colour channel of the input image, I, in an opponent colour
space. The f stages of the model are:

– WT : a multi-resolution wavelet decomposition;
– CS: a center-surround mechanism developed as a divisive normalization [14];
– ECSF : a weighting with the extended contrast sensitivity function which

was fitted to predict psychophysical data from assimilation and contrast
experiments;

– WT−1: an inverse wavelet transform that recovers the corresponding per-
ceived image of the c channel, Ipc .

In the next paragraphs we give a more detailed explanation of the model
stages.

First stage (WT). The input image is convolved with a bank of filters using
a multi-resolution wavelet transform. The resulting spatial pyramid contains
wavelet planes oriented either horizontally (h), vertically (v) or diagonally (d).
The coefficients of the spatial pyramid obtained using the wavelet transform can
be considered as an estimation of the local oriented contrast. For an image I,
the wavelet transform is denoted as:

WT (Ic) = {ws,o}s=1,2,...,n ; o=h,v,d (3)

where ws,o is the wavelet plane at spatial scale s and orientation o. This wavelet
transform contains Gabor-like basis functions and the number of scales used in
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the decomposition is given by n = log2D for an image whose largest dimension
is size D.

Second stage (CS). At this level we simulate a center-surround mechanism
based on computing a local contrast energy around each wavelet coefficient ωx,y

centered at position x, y. It is computed by convolving the coefficients with two
filters, one for the center energy (small neighbourhood) and another for the
surround (larger neighbourhood). By dividing the energy of the center by the
energy of the surround window we obtain a measure of the surround contrast
(denoted here as rx,y). A non-linear scaling of rx,y is performed to produce the
final center-surround energy measure zx,y:

zx,y = r2x,y/(1 + r2x,y). (4)

As such, zx,y denotes the output of the second stage of the model or the center-
surround energy.

Third stage (ECSF). In this stage the induction effects (assimilation and
contrast) are introduced into the model using the ECSF function which was
defined using psychophysical data. With this function we introduce a blurring
effect to simulate assimilation, and a sharpening effect to simulate contrast. Both
these effects are achieved simultaneously by using ECSF as a weighting function
that is parameterized by the z coefficients and the spatial frequency. ECSF is
defined as

ECSF (z, s) = z · g(s) + k(s). (5)

the function g(s) is the combination of two exponential functions

g(s) =

βe
− s2

2σ2
1 s ≤ sg0

βe
− s2

2σ2
2 otherwise

(6)

where s represents the spatial scale of the wavelet plane being processed, β is
a scaling constant, and σ1 and σ2 define the spread of the spatial sensitivity of
g(s). The sg0 parameter defines the peak spatial frequency sensitivity of g(s). In
Equation 5, the center-surround activity z of wavelet coefficients are modulated
by g(s). This ECSF functions is used to weight the center-surround energy zx,y
at a location, producing the final response of this stage αx,y:

αx,y = ECSF (zx,y, sx,y). (7)

Param. σ1 σ2 σ3 β sg0 sk0
Intensity 1.021 1.048 0.212 4.982 4.000 4.531

Colour 1.361 0.796 0.349 3.612 4.724 5.059

Table 1. Parameters for ECSF (z, s) obtained using least square regression.
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Fig. 2. ECSF (z, s) function profile (left). 2D-plots of ECSF (z, s) for chromaticity
channels (center) and for intensity channel (right) (bluer colours represent lower values
while redder colours indicate higher values).

Fourth stage (WT−1). This last stage uses the output of the previous stage,
αx,y, as the weights that modulate the initial wavelet coefficient ωx,y. The per-
ceived image channel Iperceivedc is obtained by performing an inverse wavelet
transform on the wavelet coefficients ωx,y at each location, scale and orientation,
after the coefficients have been weighted by the αx,y response at that location:

Iperceivedc (x, y) =
∑
s

∑
o

αx,y,s,o · ωx,y,s,o + Cr. (8)

here o represents the orientation of the wavelet plane of ωx,y,s,o and Cr represents
the residual image plane obtained from WT .

The parameters of the ECSF function (given in table 1) were estimated
to predict psychophysical data obtained from two separate experiments. In the
first experiment, by Blakeslee et al [15], observers performed asymmetric bright-
ness matching tasks in order to match the illusions present in regions of the
stimuli to a test patch. The second experiment was performed by Otazu et al.
[2] in an analogous fashion, but with observers performing asymmetric colour
and brightness matching tasks rather than tasks involving only brightness. The
experiments were performed on stimuli such as those shown in figure 1. The
resulting ECSF functions are plotted in figure 2.

4 Colour saliency

A great deal of research in computer vision is devoted to modelling attention
mechanisms. To this end, models of bottom-up attention in image stimuli which
construct saliency maps are popular. Given an image, the corresponding saliency
map at each location estimates the probability of attracting the observer’s gaze.
There have been different approaches to create saliency maps that match the
corresponding psychophysically-measured eye-fixation data [18, 16, 17]. Our con-
tribution has been to extend the induction model defined in the previous section
to produce a bottom-up, low-level image representation from which we can build
saliency maps.
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In the previous section we built a new image channel, Ipc , that is a modified
version of the original channel in which image locations may have been modified
by the α weight, either by a blurring or an enhancing effect. The colours of
modified locations have either been assimilated (averaged) to be more similar
to the surrounding colour or contrasted (sharpened) to be less similar to the
surround.

Fig. 3. Original image with fixation points (left). Our recovered saliency map (right).

To obtain predictions of saliency using this colour representation, we hypoth-
esize that image locations undergoing enhancement are salient, while locations
undergoing blurring are non-salient. In this sense we can directly define the
saliency map of an specific image channel by the inverse wavelet transform of
the α weight. Thus the saliency map, Sc, of the image channel Ic at the location
x, y can be easily estimated as

Ic
WT−→ {ωs,o}

CS−→ {zs,o}
ECSF−→ {αs,o}

WT−1

−→ Sc (9)

where Sc denotes the saliency map of the image I. In figure 3(c) we show an
example of one such saliency map. To evaluate the performance of a saliency
estimation method, the predictions of the model are compared to eye fixation
data. These psychophysical data are provided in large datasets that include
image stimuli and eye-fixations, measured using eye-tracking hardware data, for
multiple human observers.

We have assessed the accuracy of our model using the well-known receiver
operating characteristic (ROC) and Kullback-Leibler (KL) divergence as quanti-
tative metrics. The ROC curve indicates how well the saliency map discriminates
between fixated and non-fixated locations for different binary saliency thresholds
while the KL divergence indicates how well the method distinguishes between the
histograms of saliency values at fixated and non-fixated locations in the image.
For both of these metrics, a higher value indicates better performance.

The dataset we used was provided by Bruce and Tsotsos in [16]. This popular
dataset is commonly used as the benchmark for comparing eye-fixation predic-
tions between methods. The dataset contains 120 colour images of indoor and
outdoor scenes, along with eye-fixation data for 20 different subjects. The mean
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Model KL (SE) AROC (SE)

Bruce & Tsotsos [16] 0.2029 (0.0017) 0.6727 (0.0008)

Seo & Milanfar [17] 0.3432 (0.0029) 0.6769 (0.0008)

Our method 0.4265 (0.0030) 0.7013 (0.0008)
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Table 2. Performance in predicting human eye fixations from the Bruce and Tsotsos
dataset (a) KL divergence and ROC Area (SE: Standard Error). (b) ROC curves for
Bruce and Tsotsos, Seo and Milanfar, and the proposed method.

Fig. 4. Qualitative analysis of results for Bruce and Tsotsos dataset: Column A con-
tains original image. Columns B, C, and D contain thresholded saliency maps obtained
from Bruce and Tsotsos, Seo and Milanfar and our method, respectively. The saliency
maps have each been thresholded to their top 10% most salient locations. Yellow mark-
ers indicate eye fixations. Our method is seen to be less sensitive to low-frequency edges
such as street curbs and skylights, which is in line with human eye fixations.
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and the standard error of each metric are reported in Table 2. We performed
this evaluation on two state-of-the-art methods as well as our proposed method
and as Table 2 shows, our method exceeds the state-of-the-art performance as
measured by both metrics.

5 Colour naming

Colour naming relies on the assignment of a colour name label either to a point
or to an image segment. This visual task has been studied from very different
points of view. The anthropological study of Berlin and Kay [19] was a starting
point that derived a lot of research about the topic in the subsequent decades.
They studied colour naming in different languages and stated the existence of
universal colour categories. They also defined the set of 11 basic colour categories
that have the most evolved languages. These are white, black, red, green, yellow,
blue, brown, purple, pink, orange and grey. Since then, several studies have
confirmed and extended their results [20, 21].

A computational model of colour naming can be very useful for several tasks
such as segmentation, retrieval, tracking, or human-machine interaction. Al-
though some models based on a pure tessellation of a colour space have been
proposed [22, 23], the most accepted framework has been to consider colour nam-
ing as a fuzzy process, that is, any colour stimulus has a membership value be-
tween 0 and 1 to each colour category. Kay and McDaniel [24] were the first in
proposing a theoretical fuzzy model for colour naming. Later, some approaches
from the computer vision field have adopted this point of view.

Fig. 5. Psychophysical naming data in CIELab space for a fixed L. Properties of the
membership functions of a chromatic category (in this case, blue)(left). TSE function
coping with expected properties.

We proposed in [4] a fuzzy colour-naming model based on a family of member-
ship functions that were fitted to psychophysical naming data. We worked on the
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CIELab space due to its perceptual properties. Likewise, other spaces could be
suitable whenever one of the dimensions correlates with colour lightness and the
other two with chromaticity components. Considering the psychophysical data
on a chromaticity plane (see figure 5), we proposed to fit colour membership for
the eight basic chromatic categories using a triple-Sigmoid function. With this
function we are able to fit the configuration of the naming data obtained in a
psychophysical experiments such as [25]. Data implied a set of necessary prop-
erties that membership functions for the chromatic categories should fulfil: a
triangular basis, two different slopes on both sides of the category, and a central
notch to cope with the transition to the central achromatic category. To achieve
these properties we defined the TSE function that for a given colour point p is
defined as

TSE(p, θ) = DS(p, t, θDS)ES(p, t, θES) (10)

where θ = (t, θDS , θES) is the set of parameters of the TSE function, which
is defined as the product of a Double-Sigmoid function DS and an Elliptical-
Sigmoid function ES. The DS function is defined as

DS(p, t, θDS) = S1(p, t, αy, βy)S2(p, t, αx, βx) (11)

where θDS = (αx, αy, βx, βy) is the set of parameters of the Double-Sigmoid
function and function Si is a sigmoid function defined as

Si(p, t, α, β) =
1

1 + exp(−βuiRαTtp)
, i = 1, 2 (12)

where Tt and Rα are a translation matrix and a rotation matrix respectively, and
ui is a vector defining the axis on which the function is oriented. This function
introduce the triangular basis of the function with two different slopes on both
sides.

On the other hand, the ES function introduce the central notch allows to fit
the boundary with the achromatic center. It is given by

ES(p, t, θES) =
1

1 + exp
{
− βe

[(u1RϕTtp
ex

)2
+

(u2RϕTtp
ey

)2 − 1
]} (13)

where θES = (ex, ey, ϕ, βe) is the set of parameters, ex and ey are the semiminor
and semimajor axis respectively, ϕ is the rotation angle of the ellipse, and βe

is the slope of the Sigmoid curve that forms the ellipse boundary. The function
obtained is an elliptic plateau if βe is negative and an elliptic valley if βe is
positive.

In figure 5(right) we can see how the TSE function adapts to the mentioned
properties. By fitting the naming data of each chromatic category with this TSE
function we can obtain the memberships of any colour sample in the CIELab
space to the basic colour categories.
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6 Colour segmentation

Colour segmentation aims to partition an image into a set of non-overlapped
regions corresponding to surfaces of a specific material. A robust and efficient
colour segmentation is required as a preprocessing step in several computer vision
tasks such as image classification or object detection and recognition. In real
images changes due to illumination, shadow, shading and highlights provoke
image measurements to vary significantly. These effects, are one of the main
difficulties that have to be solved to yield a correct segmentation.

We proposed in [5] a pure bottom-up approach to recover a model of the
material reflectance of the image objects by hypothesizing that our ability to
perceive continuity of a coloured surface even the changes due to shading or
highlights is a perceptual grouping mechanism that can be modelled by comput-
ing the connected ridges of the distribution in the colour space, we refer to it as
RAD (Ridge-based Analysis of distributions).

Continuity of the material reflectance (MR) in the colour distribution is sup-
ported by the physical model defined by Shafer in [26]. A MR generates many
image values due to geometrical and photometric variations that are likely to
form a continous set in the histogram space. For this purpose, consider the
distribution of a single MR as described by the dichromatic reflection model
(DCM)[26] as

f (x) = mb (x) cb +mi (x) ci (14)

where f = {R,G,B}, x is the spatial image coordinate, cb is the body re-
flectance, ci the surface reflectance, mb and mi are geometry dependent scalars
representing the magnitude of body and surface reflectance. Bold notation is
used to indicate vectors. For one MR we expect both cb and ci to be almost
constant, whereas mb (x) and mi (x) are expected to vary significantly. Hence,
as for this definition, a MR, is formed by a single body reflectance cb and a
surface reflectance ci.

(a) (b) (c)

Fig. 6. (a) Original image (b) Colour Distribution. (c) Ridges extracted by RAD.

The two parts of the dichromatic reflection model are clearly visible in the
histogram of figure 6(b). Firstly, due to the shading variations the distribution
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of the red pepper traces an elongated shape in histogram-space. Secondly, the
surface reflectance forms a branch which points in the direction of the reflected
illuminant. In conclusion, the distribution of a single MR forms a ridge-like
structure in histogram space.

To extract this perceived MR, we used the multilocal creaseness MLSEC-ST
operator introduced by Lopez et al. in [27] to enhance ridge points. Afterwards,
the structure tensor computes the dominant gradient orientation in a neighbour-
hood of size proportional to σd. Basically, this calculus enhances those situations
where either a big attraction or repulsion exists in the gradient direction vec-
tors. Thus, it assigns the higher values when a ridge or valley occurs. Given a
distribution Ω(x), (colour histogram in the current context), and a symmetric
neighbourhood of size σi centered at point x, namely, N(x, σi) the structure
tensor field S is defined as:

S(x, σ) = N(x, σi) ∗ (∇Ω(x, σd) · ∇Ωt(x, σd)) (15)

where σ = {σi, σd}, and the calculus of the gradient vector field ∇Ω(x, σd) has
been done with a gaussian kernel with standard deviation σd.

(a) (b) (c)

Fig. 7. Example of MR extraction (a) Original image. (b) Result of the creassenes
operator on a RG/BY chromaticity space. Extracted ridge points are given in black on
top of the distribution. (c) Segmented image

This operator assigns high values to those point of the distributions more
likely to belong to a ridge. This scores comes from the divergence of the main
orientation of the gradient in a given neighbourhood against the normal vector
in it. The main orientation is extracted using the egeinvectors of the structure
tensor (S(x, σ)). An example of this resultant distribution is shown in figure 7(b)
projected on a chromaticity space.

Once the ridge structure of the distribution has been enhanced with crease-
ness operator, next step is to extract the exact ridge points that describe the
different MRs. As a result only those points necessary to maintain the connec-
tivity of a MR remain. These points form the ridges of Ωσ. The extraction is
essentially based on a zero-crossing detection onto the MLSECT-ST output that
maintains the spatial coherence, the whole ridge point detection is given by
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Fig. 8. Original image. Columns from 2 to 4: RAD-based segmentation on RGB with
(σd,σi)={(1.5,0.05),(2.5,0.05),(2.5,1.5)}.

RP (Ωσ) = LMP (Ωσ) ∪ TRP (Ωσ) ∪ SP (Ωσ) (16)

that is the union of all different characteristic points found in the ridge of the
distribution, these are the local maxima (LMP ), the transitional ridge points
(TRP ) and the saddle points (SP ). The final output of this set of point is
depicted in figure 7(b) as black dots. The final segmentation is obtained assigning
each point in the image to the closest ridge in the colour distribution (figure 7c).
The details are explained in [5].

human RAD seed fow mean-shift

GCE index 0.080 0.2048 0.209 0.214 0.2598

Table 3. Global Constancy Error: seed [28], fow [30], and mean-shift [31].

To evaluate quantitatively the performance the method it is compared to
four state of art segmentation algorithms using the Berkeley image database
(Table 6). Figure 8 shows qualitative results of the method applying different
parameters to obtain from fine to coarse segmentation. In all cases the segments
behave consistently.

7 Conclusion

As we already mentioned in the introduction this paper reviews a methodological
approach to tackle the problem of defining useful computational representations
of colour. Our aim is to propose colour representations that go further from
the basic three-dimensional spaces by exploring the perceptual processes that
underly the role of colour in general visual tasks. To sustain the methodologi-
cal proposal we have shown some examples of colour representations based on
specific perceptual hypothesis.
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References
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