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Sobolev inequalities, rearrangements, isoperimetry and
interpolation spaces

Joaquim Mart́ın∗ and Mario Milman

Dedicated to our friends Björn Jawerth and Evgeniy Pustylnik on the ocassion of their 130th

birthday (57th and 73th birthdays, respectively).

Abstract. We characterize Poincaré inequalities in metric spaces using re-

arrangement inequalities.

1. Introduction

Our starting point is the classical Gagliardo-Nirenberg inequality which states
that, for n > 1, 1

n′ = 1− 1
n ,

(1.1) ‖f‖n′ ≤ τ
−1
n ‖|∇f |‖L1 , f ∈ Lip0(Rn),

where Lip0(Rn) denotes the set of Lipschitz function on Rn with compact support,
τn = nβ

1/n
n and βn = volume of the unit ball in Rn. It is well known (cf. [21] and

[11]), that (1.1) is equivalent to the isoperimetric inequality1: for all Borel sets A
with m(A) <∞, we have

(1.2) τn (m(A))1/n′ ≤ m+(A).

We argue that it is worthwhile to consider a slightly more general problem.
Let X = X(Rn) be a rearrangement invariant space2: We ask for necessary and
sufficient conditions such that

(1.3) ‖f‖X ≤ c ‖|∇f |‖L1 , f ∈ Lip0(Rn),

holds. Maz’ya’s classical method already shows that the problem has a remarkably
simple solution: (1.3) holds if and only if there exists a constant c = c(n) > 0 such
that for all Borel sets A with m(A) <∞,
(1.4) φX(m(A)) ≤ cm+(A),
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2 JOAQUIM MARTÍN∗ AND MARIO MILMAN

where φX(t) is the fundamental function3 of X :

φX(t) = ‖χA‖X , with m(A) = t.

Formally (abusing the notation), the implication (1.3) ⇒(1.4) follows inserting
“f = χA” in (1.3) and then computing ‖∇f‖L1

= m+(A), ‖f‖X = φX(m(A)).
We now consider the converse statement. Here it will become clear why we

insist to work within the class of rearrangement invariant spaces: Indeed, if we
fix before hand a specific subclass of rearrangement invariant spaces (e.g. Orlicz
spaces) we would miss a remarkable self-improving phenomenon.

Let f ∈ Lip0(Rn), and let At = {|f | > t}, m(At) = mf (t) (= the distribution
function of f), then, from (1.4), and the co-area formula, we find that∫ ∞

0

φX(mf (t))dt ≤ c
∫ ∞

0

m+(At)dt = c

∫
Rn
|∇ |f | (x)| dx

≤ c
∫
Rn
|∇f(x)| dx.

The integral on the left hand side is, by definition, the norm of f in the Lorentz
space Λ(X) associated with X,

‖f‖Λ(X) =
∫ ∞

0

φX(mf (t))dt.

Λ(X) is contained (and, in general, strictly contained) in X; in other words we have
(cf. [5])

(1.5) ‖f‖X ≤ ‖f‖Λ(X) .

Altogether, we have thus shown that

‖f‖X ≤ ‖f‖Λ(X) ≤ c ‖∇f‖L1 .

Therefore, for f ∈ Lip0(Rn), we have the remarkable self improvement

‖f‖X ≤ c ‖|∇f |‖L1 ⇔ ‖f‖Λ(X) ≤ c ‖|∇f |‖L1 .

But we are not quite done yet. We could have obtained the same result starting
from a much weaker inequality. Indeed, there is another natural rearrangement
invariant space (r.i. space) associated to X: the somewhat larger Marcinkiewicz
space M(X) (=Marcinkiewicz=weak type space) defined by the quasi-norm

‖f‖M(X) = sup
t>0

f∗(t)φX(t) = sup
t>0

tφX(mf (t)),

where f∗ is the non-increasing rearrangement4 of f. The fundamental functions of
these spaces satisfy

(1.6) φM(X)(t) = φΛ(X)(t) = φX(t).

It follows that for f ∈ Lip0(Rn),

‖f‖M(X) ≤ c ‖|∇f |‖L1 ⇔ ‖f‖Λ(X) ≤ c ‖|∇f |‖L1 .

3It is well known and easy to see that φX is continous, increasing and equivalent to a concave

function.
4f∗ is the generalized inverse of mf .
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These self-improving results are best possible since the spaces Λ(X), M(X) are
respectively the smallest and largest r.i. spaces with fundamental functions equal
to φX(t) (cf. (1.6)), and such that (cf. [5])

Λ(X) ⊂ X ⊂M(X).

A consequence of our discussion is that the optimal spaces X for the embedding
(1.3) must be Lorentz spaces.

We now develop a quantitative connection with Euclidean isoperimetry. For
this purpose it is important to consider the isoperimetric profile of Rn

I(t) = inf
m(A)=t

m+(A).

The isoperimetric inequality (1.2) is the statement that for n > 1, I(t) is given by

I(t) = τnt
1/n′ , n′ = n/(n− 1).

Note that Λ(Ln
′
) = L(n′, 1) :

‖f‖Λ(Ln′ ) =
∫ ∞

0

(mf (t))1/n′
dt =

∫ ∞
0

t1/n
′
df∗(t)

=
1
n′

∫ ∞
0

t1/n
′
f∗(t)

dt

t
=

1
n′
‖f‖L(n′,1) .

Therefore the previous analysis shows that the Gagliardo-Nirenberg inequality (1.1)
self improves to its sharper form

(1.7) ‖f‖L(n′,1) ≤ n
′τ−1
n ‖|∇f |‖L1 .

The results that underlie the narrative above, including the sharp Gagliardo-
Nirenberg inequality (1.7), are, of course, well known. But the added generality
becomes more illuminating when we move away from the classical Euclidean setting.
Indeed, the argument that gives the equivalence (1.3) ⇔ (1.4) is very general and
holds replacing Rn by fairly general metric measure spaces as long as we have a
suitable co-area formula (cf. Bobkov-Houdré [6], Coulhon [9] and the references
therein).

Consider a connected, metric, non-atomic measure space (Ω, d, µ). For a Lips-
chitz function f on Ω we let |∇f(x)| = lim supd(x,y)→0

|f(x)−f(y)|
d(x,y) , and let Lip0(Ω)

denote the Lipschitz functions with compact support. Let us further assume that
the equivalence between

(1.8) ‖f‖X ≤ c ‖|∇f |‖L1 , f ∈ Lip0(Ω)

and

(1.9) φX(µ(A)) ≤ cµ+(A),

holds5. We suppose, moreover, that the associated isoperimetric profile I = IΩ,
defined by

I(t) = inf
µ(A)=t

µ+(A)

is continuous, increasing and concave. The same analysis then shows that the best
possible r.i. space such that (1.8) holds is a Lorentz space and its corresponding
fundamental function φ, say, must be such that (1.9) holds. The optimal space

5here µ(A) <∞, µ+(A)=perimeter of A (see Section 2.1 below).
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corresponds to choosing the largest possible φ that satisfies (1.9), consequently the
best choice is φ = I = IΩ! Therefore we have

(1.10) ‖f‖Λ(I) ≤ ‖|∇f |‖L1 ,

where Λ(I) is “the isoperimetric Lorentz space” defined by

(1.11) ‖f‖Λ(I) =
∫ ∞

0

I(µf (t))dt.

General Sobolev inequalities, including Logarithmic Sobolev inequalities, fit
into this picture very naturally. Indeed, in this fashion we have a natural method
to construct best possible Sobolev inequalities if we understand the isoperimetry
associated with a given geometry.

It is worthwhile to discuss in some detail how this point of view applies to
Gaussian measure (cf. [18]). In the Gaussian world the isoperimetric function
I has the following properties: I is defined on [0, 1], it is increasing on [0, 1/2],
symmetric about 1/2, and I is concave. Since we are dealing with a probability
space, from the point of view of describing the underlying function spaces it is only
important to know the behavior of I near the origin. We actually have6

I(t) ' t
(

log
1
t

)1/2

, for t ∈ [0, 1/2].

In this case (1.11) is not a norm but nevertheless the set of all f with ‖f‖Λ(I) <∞
is equivalent to the Lorentz space L(LogL)1/2 : In other words, as sets,

Λ(I) = L(LogL)1/2.

In this setting the inequality (1.10), which is due to Ledoux [16], can be seen as
part of the usual family of Log Sobolev inequalities. Thus, in the Gaussian world,
Ledoux’s inequality plays the role of the classical (Euclidean) sharp Gagliardo-
Nirenberg inequality.

More generally, the “isoperimetric Lorentz spaces” can be used to construct
the corresponding Gagliardo-Nirenberg inequalities in other geometries.

Let us mention two obvious drawbacks of the previous discussion: (a) we only
considered Sobolev spaces where the gradient is in L1, (b) the analysis is *space
dependent*. On the other hand, already in the Euclidean case, Maz’ya showed that
“all Lp Sobolev” inequalities can be obtained from the isoperimetric inequality or,
equivalently, from (1.1). In our recent work we have considered the extension of
Maz’ya’s ideas to rearrangement invariant spaces.

Maz’ya’s smooth truncation method has been extensively studied in the liter-
ature (cf. [1], [13], and the references therein) but in our development we required
an extension that leads to pointwise rearrangement7 inequalities that depend on the
isoperimetric profile. For example, we showed in a very general setting (cf. [17],
[18], [19]) inequalities of the form

(1.12) f∗∗µ (t)− f∗µ(t) ≤ t

I(t)
|∇f |∗∗µ (t), f ∈ Lip(Ω) ∩ L1 (Ω) ,

6Here the symbol f ' g indicates the existence of a universal constant c > 0 (independent of
all parameters involved) such that (1/c)f ≤ g ≤ c f . Likewise the symbol f � g will mean that
there exists a universal constant c > 0 (independent of all parameters involved) such that f ≤ c g.

7also called “symmetrization” inequalities since they are often expressed in terms of “sym-
metric” rearrangements.
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where f∗∗µ (t) = 1
t

∫ t
0
f∗µ(s)ds, and f∗µ is the non increasing rearrangement of f with

respect to the measure µ on Ω (see Section 2.4 below). Let us now show in some
detail that (1.12) implies the isoperimetric inequality (cf. [19]). Following [6] we
select a sequence {fn}n∈N in Lip(Ω) ∩ L1 (Ω), such that fn →

L1
χA, and

(1.13) µ+(A) ≥ lim sup
n→∞

‖|∇fn|‖L1 .

Let t > µ(A) and apply (1.12) to this sequence. We have

(fn)∗∗µ (t)− (fn)∗µ (t) ≤ t

I(t)
|∇fn|∗∗µ (t), n ∈ N.

By definition

t |∇fn|∗∗µ (t) =
∫ t

0

|∇fn|∗µ (s)ds

≤ ‖|∇fn|‖L1 .

Therefore,
lim sup

n
t |∇fn|∗∗µ (t) ≤ lim sup

n→∞
‖|∇fn|‖L1 ≤ µ+(A).

On the other hand by [12] we have

I(t)
(

(fn)∗∗µ (t)− (fn)∗µ (t)
)
→ I(t) (χ∗∗A (t)− χ∗A(t)) .

Combining our findings we have

(1.14) I(t) (χ∗∗A (t)− χ∗A(t)) ≤ µ+(A), for all t > µ(A).

Now, since χ∗A = χ(0,µ(A)), we have that for t > µ(A),

χ∗A(t) = χ(0,µ(A))(t) = 0, χ∗∗A (t) =
1
t

∫ t

0

χ(0,µ(A))(s)ds =
µ(A)
t

.

Inserting this information in (1.14) we get

I(t)
µ(A)
t
≤ µ+(A).

Finally we let t → µ(A); then, by the continuity of I, we obtain the isoperimetric
inequality

I(µ(A)) ≤ µ+(A).

We now discuss the corresponding Sobolev inequalities with Lq, q > 1, replacing
the L1 norm on the right hand side of (1.8). Again we shall work on suitable metric
probability spaces (Ω, d, µ)8, and we consider Poincaré inequalities of the form

(1.15) ‖f −m(f)‖X ≤ c ‖|∇f |‖Lq , f ∈ Lip(Ω), q > 1,

where X is a r.i. space and m(f) is a median9 of f. As is well known, inequalities of
this type can be characterized using Maz’ya’s theory of capacities (cf. [23]). The
weak type version of (1.15) reads:

(1.16) ‖f −m(f)‖M(X) � ‖|∇f |‖Lq , f ∈ Lip(Ω), q > 1.

8for a list of the assumptions and further background information see Section 2.
9a real number m(f) such that µ {f ≥ m(f)} ≥ 1/2 and µ {f ≤ m(f)} ≥ 1/2.
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In this context a result of E. Milman [24, Proposition 3.8] can be rewritten in our
notation as saying that (1.16) is equivalent to

(1.17) (φX(t))1/q � capq(t, 1/2), 0 < t < 1/2,

where (using temporarily10 the definition of [7] rather than the one in [24])

capq(t, 1/2) = inf{‖|∇Φ|‖qLq : µ{Φ = 1} ≥ t, µ{Φ = 0} ≥ 1/2},
and the infimum is taken over all Φ : Ω→ [0, 1] that are Lipschitz on balls.

To relate (1.17) to X norm inequalities we use the Λq(X) Lorentz spaces defined
by

‖f‖Λq(X) =
(∫ ∞

0

φX(µf (t))dtq
)1/q

,

and the q−convexification X(q) of X:

X(q) = {f : |f |q ∈ X}, ‖f‖X(q) = ‖|f |q‖1/qX .

It is readily seen from the definitions that

(1.18) Λq(X) = (Λ(X))(q)
,

and, moreover, since φX(q)(t) = (φX(t))1/q
, (1.17) now reads

(1.19) φX(q)(t) � capq(t, 1/2), 0 < t < 1/2.

Thus, using the characterization of Sobolev norms in terms of capacities, due to
Maz’ya (in the form given by Bobkov and Zegarlinski for metric paces [7, Lemma
5.6]), we now show that (1.16) self improves to

(1.20) ‖f −m(f)‖Λq(X(q)) � ‖|∇f |‖Lq .

To see this we use (1.19) as follows. First we observe that it is enough to prove
(1.20) for positive functions that are Lipschitz on balls, such that ‖f‖∞ ≤ 1, and,
moreover, such that m(f) = 0 (see details of the argument that proves this assertion
in [24, page 331]). Let f be a function satisfying all these conditions, then, by
(1.19), we have

φX(q)(µf (t)) � capq(µf (t), 1/2).
Therefore

‖f − 0‖q
Λq(X(q))

=
∫ 1

0

φX(q)(µf (t))dtq �
∫ 1

0

capq(µf (t), 1/2)dtq

� ‖|∇f |‖qLq ,
where the last inequality follows from Bobkov and Zegarlinski [7, Lemma 5.6] chang-
ing 2 for q in the argument given there.

Finally, combining with (2.1) and (1.18), we obtain

‖f‖X(q) ≤ ‖f‖Λq(X(q)) � ‖|∇f |‖Lq .

Thus, we see that the Sobolev self improvement that we obtained in the case q = 1
extends to the case q > 1, but now it is expressed in terms of the X(q) scale of
spaces. More precisely, on Lip functions we have the following equivalences

‖f −m(f)‖M(X(q)) � ‖|∇f |‖Lq ⇔ ‖f −m(f)‖Λq(X(q)) � ‖|∇f |‖Lq
⇔ ‖f −m(f)‖X(q) � ‖|∇f |‖Lq .

10See Definition 1 below.
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After this lengthy introduction we now describe the purpose of this note. We
shall consider the analogues of the rearrangement inequalities (1.12) that correspond
to consider homogenous Sobolev norms with q > 1 on the right hand side. The
inequalities we shall obtain will be naturally formulated in terms of the X(q) scales.
We also pay close attention to the basic assumptions that one needs to place on
the isoperimetric profile, and the probability measure spaces, in order to develop
a meaningful theory with mild assumptions. In particular, we are able to extend
some results of [19] under weaker assumptions.

Finally in Section 3 we shall briefly discuss a connection with interpolation
theory, that was recently developed in [10], that shows a larger context for the
Sobolev oscillation inequalities and connects some aspects of our work with the
theory of extrapolation of martingale inequalities.

2. Capacitary Inequalities

2.1. Background. From now on “a metric probability space (Ω, d, µ)” will
be a connected separable metric space (Ω, d, µ) equipped with a non-atomic Borel
probability measure µ. For measurable functions u : Ω → R, the distribution
function of u is given by

µu(t) = µ{x ∈ Ω : |u(x)| > t} (t > 0).

The decreasing rearrangement u∗µ of u is the right-continuous non-increasing
function from (0, 1) to [0,∞] which is equimeasurable with u. Namely,

u∗µ(s) = inf{t ≥ 0 : µu(t) ≤ s}.
We have (cf. [5]),

(2.1) sup
µ(E)≤t

∫
E

|u(x)| dµ(x) =
∫ µ(E)

0

u∗µ(s)ds.

Since u∗µ is decreasing, the function u∗∗µ , defined for integrable functions by

u∗∗µ (t) =
1
t

∫ t

0

u∗µ(s)ds,

is also decreasing and, moreover,

u∗µ ≤ u∗∗µ .
As customary, if A ⊂ Ω is a Borel set, the perimeter or Minkowski content

of A is defined by

µ+(A) = lim inf
h→0

µ (Ah)− µ (A)
h

,

where Ah = {x ∈ Ω : d(x,A) < h} .
The isoperimetric profile I(Ω,d,µ) is defined as the pointwise maximal func-

tion I(Ω,d,µ) : [0, 1]→ [0,∞) such that

µ+(A) ≥ I(Ω,d,µ)(µ(A)),

holds for all Borel sets A.
For a Lipschitz function f on Ω (briefly f ∈ Lip(Ω)) we define, as usual, the

modulus of the gradient by

|∇f(x)| = lim sup
d(x,y)→0

|f(x)− f(y)|
d(x, y)

.
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One of the themes of our recent paper [19] was to characterize generalized
Gagliardo-Nirenberg inequalities and Poincaré inequalities using rearrangement in-
equalities. The setting of [19] were metric probability spaces (Ω, d, µ) that satisfy
the following conditions:

Condition 1: The isoperimetric profile I(Ω,d,µ) is a concave continuous func-
tion, increasing on (0, 1/2), symmetric about the point 1/2 such that, moreover,
vanishes at zero.

Remark 1. Condition 1 played an important role in the formulation of the
inequalities obtained in [19]. In this note we shall show that, suitably reformulated
(cf. 2.9 below), our inequalities remain true under the weaker Condition 1’ below.

Condition 2: For every f ∈ Lip(Ω) , and every c ∈ R, we have that |∇f(x)| =
0, µ−a.e. on the set {x : f(x) = c}.

Remark 2. Condition 2 is used to compare the gradients of Lip functions
that coincide on a given set, which is particularly useful to deal with truncations.
Moreover, it implies that

∫
{f=t} |∇f | dµ = 0, even on sets where may have µ{f =

t} > 0. Using an approximation argument of E. Milman [26, Remark 3.3] we will
show how to dispense with this condition as well (cf. Theorem 2 below).

In this paper, we consider Sobolev inequalities for q ≥ 1, moreover, following
a suggestion of Michel Ledoux, we shall impose weaker restrictions on the metric
spaces. More specifically, we will eliminate Condition 2 and replace Condition 1
with the following much weaker assumption

Condition 1’: The isoperimetric profile I(Ω,d,µ) is a positive continuous func-
tion that vanishes at zero.

Remark 3. Notice that the continuity assumption, and (2.4), (2.2) below, im-
ply that I is symmetric about the point 1/2 (see [25, Corollary 6.5]). Moreover, we
see that for q > 1 the function 1

(inft≤z≤1/2 I(z))
q
q−1

is locally integrable on (0, 1).

The notion of capacity plays a fundamental role in the theory developed by V.
G. Maz’ya and his school to study functional inequalities and embedding theorems
(see [23]). For the study of capacities in metric spaces we also refer to see [2], [7],
[24], and the references therein). Capacities will also play a decisive role in our
development in this note.

Definition 1. Let (Ω, d, µ) be a metric probability space, and let 1 ≤ q < ∞.
Given two Borel sets A ⊂ B ⊂ Ω, the q−capacity of A relative to B is defined by

Capq(A,B) = inf
{
‖|∇Φ|‖Lq : Φ|A = 1, Φ|Ω\B = 0

}
,

where the infimum is over all Φ :→ [0, 1] which are Lipschitz-on-balls.
Let 0 < a ≤ b < 1, the q−capacity profile is defined by

capq(a, b) = inf {Capq(A,B) : A ⊂ B, µ {A} ≥ a, µ {B} ≤ b}
= inf {‖|∇Φ|‖Lq : µ {Φ = 1} ≥ a, µ {Φ = 0} ≥ 1− b} ,

where the latter infimum is taken over all Φ :→ [0, 1] which are Lipschitz-on-balls.

Let us also recall some properties concerning capacities that will be useful in
what follows:
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(1) It is plain from the definition that

(2.2) capq(a, b) = capq(1− b, 1− a), (0 < a ≤ b < 1).

Moreover, the functional a→ capq(·, b) is increasing; and b→ capq(a, ·) is
decreasing.

(2) (See [23, p. 105] and [24]) Let 1 < q <∞, then

(2.3)
1

capq(a, b)
≤

(∫ b

a

ds

cap1(s, b)
q
q−1

) q−1
q

, (0 < a ≤ b < 1).

(3) (See [22], [11], [6], and the references therein) The connection between
the 1−capacity and the isoperimetric profile is given by:

inf
a≤t≤b

I(t) ≤ cap1(a, b) ≤ inf
a≤t<b

I(t); (0 < a < b < 1) .

Therefore, since we assume the continuity of the isoperimetric profile I,
we have

(2.4) inf
a≤t≤b

I(t) = cap1(a, b); (0 < a < b < 1) .

(4) Combining (2.3) and (2.4) we get

(2.5)
1

capq(a, b)
≤

(∫ b

a

ds

(infs≤t≤b I(t))
q
q−1

) q−1
q

.

Our main result will be formulated using following functions:

Definition 2. Let I = I(Ω,d,µ) be the isoperimetric profile of (Ω, d, µ) , and let
1 ≤ q <∞. We let

wq(t) =


(

1
t

∫ t
0

(
s
I(s)

) q
q−1

ds

) 1−q
q

if q > 1

inf0<s<t
I(s)
s if q = 1.

Remark 4. Notice that

(2.6) w1(t) ≤ wq1(t) ≤ wq2(t) (q1 ≤ q2).

Moreover, if I(t)/t is decreasing, then

(2.7)
I(t)
t

= w1(t).

2.2. Symmetrization inequalities under weak assumptions on the isoperi-
metric profiles.

Theorem 1. Let (Ω, d, µ) be a metric probability space that satisfies Conditions
1’ and 2, and let 1 ≤ q <∞. Then for f ∈ Lip(Ω) ∩ L1 (Ω) , and for all t ∈ (0, 1),
we have

(1)

(2.8)
∫ t

0

[((
−f∗µ

)′ (·)I(·)
)∗

(s)
]q
ds ≤

∫ t

0

(
|∇f |∗µ

)q
(s)ds.
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(2)

(2.9) (f∗∗µ (t)− f∗µ(t))wq(t) ≤
(

1
t

∫ t

0

(
|∇f |∗µ

)q
(s)ds

)1/q

.

Remark 5. Since w1(t) = inf0<s<t
I(s)
s ≤ I(t), it follows readily that, for

q = 1, the inequality (2.9) is weaker than (1.12). On the other hand, (1.12) was
proved in [19] under the stronger assumption that I(t) is concave. Now, if I(t) is
concave then I(t)

t is decreasing; therefore we have that w1(t) = I(t) (cf. (2.7)) and
consequently (2.9) coincides with (1.12).

Remark 6. We do not consider here the corresponding problem of character-
izing (2.9) (resp. (2.8)) for q > 1 in terms of isocapacitary inequalities.

Proof. Since f ∈ Lip(Ω) implies that |f | ∈ Lip(Ω), and, moreover,

|∇f(x)| ≥ |∇ |f | (x)| ,
we can assume without loss of generality that f ≥ 0.

Let us start by proving that f∗µ locally absolutely continuous. The proof here
follows very closely the one given in [19] under the assumption that Condition 1
above holds. Therefore, we will only indicate in detail the changes that are required.
Let 0 < t1 < t2 <∞, and define

f t2t1 (x) =

 t2 − t1 if f(x) ≥ t2,
f(x)− t1 if t1 < f(x) < t2,
0 if f(x) ≤ t1.

and let

N [f t2t1 (x)] =
f t2t1 (x)
t2 − t1

.

It follows that

(2.10) N [f t2t1 (x)] is

 = 1 if f(x) ≥ t2,
< 1 if t1 < f(x) < t2,
= 0 if f(x) ≤ t1.

By Condition 2, ∣∣∇N [f t2t1 (x)]
∣∣ =

1
t2 − t1

|∇f |χ{t1<|f |<t2} µ− a.e,

and we have

cap1 (µ{|f(x)| ≥ t2}, µ{|f(x)| > t1}) ≤ Cap1 ({|f(x)| ≥ t2}, {|f(x)| > t1})

≤
∫

Ω

∣∣∇N [f t2t1 (x)]
∣∣ dµ(x)

=
1

(t2 − t1)

∫
{t1<f<t2}

|∇f(x)| dµ(x).(2.11)

Let 0 < a < b, t1 = f∗µ(b), t2 = f∗µ(a), then (2.11) yields

cap1

(
µ
{
|f(x)| ≥ f∗µ(a)

}
, µ
{
|f(x)| > f∗µ(b)

})
[f∗µ(a)− f∗µ(b)]

≤
∫
{f∗µ(b)<|f |<f∗µ(a)}

|∇f(x)| dµ(x).
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Since
a ≤ µ

{
|f(x)| ≥ f∗µ(a)

}
and µ

{
|f(x)| > f∗µ(b)

}
< b,

and capq(., .) is increasing in the first variable and decreasing in the second, we see
that

(2.12) cap1 (a, b) [f∗µ(a)− f∗µ(b)] ≤
∫
{f∗µ(b)<|f |<f∗µ(a)}

|∇f(x)| dµ(x).

Let us see that f∗µ is locally absolutely continuous. Let us consider an interval
[a, b], 0 < a < b < 1. Let {(ak, bk)}rk=1 be any finite family of non-overlapping
sub-intervals of [a, b] such that

∑r
k=1 (bk − ak) ≤ δ. We have

µ
{
∪rk=1

{
f∗µ(bk) < |f | < f∗µ(ak)

}}
=

r∑
k=1

µ
{
f∗µ(bk) < |f | < f∗µ(ak)

}
≤

r∑
k=1

(bk − ak) ≤ δ.

On the other hand, by (2.12), we have
r∑

k=1

(
f∗µ(ak)− f∗µ(bk)

)
cap1(ak, bk) ≤

r∑
k=1

∫
{f∗µ(bk)<|f |<f∗µ(ak)}

|∇ |f | (x)| dµ(x)

=
∫
∪rk=1{f∗µ(bk)<|f |<f∗µ(ak)}

|∇ |f | (x)| dµ(x)

≤
∫ δ

0

|∇ |f ||∗µ (t)dt

≤
∫ δ

0

|∇f |∗µ (t)dt.

We also observe that

cap1(ak, bk) ≥ cap1(a, bk) = cap1(1− bk, 1− a) ≥ cap1(1− b, 1− a).

Thus, combining our estimates we see that

cap1(1− b, 1− a)
r∑

k=1

(
f∗µ(ak)− f∗µ(bk)

)
≤
∫ δ

0

|∇f |∗µ (t)dt.

The local absolute continuity of f∗µ follows.
In the course of the proof of this theorem we shall also need to know the local

absolute continuity of the function Ψ(t) =
∫
{|f |>f∗µ(t)} |∇f(x)|q dµ(x), under the

assumption that |∇f(x)|q ∈ L1(Ω). This fact can be easily seen with essentially with
the same argument we have just provided. Indeed, fix once again an interval [a, b] ⊂
(0, 1), and consider any finite family of non-overlapping sub-intervals {(ak, bk)}rk=1

of [a, b] such that
∑r
k=1 (bk − ak) ≤ δ. We can then estimate as before

r∑
k=1

|Ψ(bk)−Ψ(ak)| ≤
r∑

k=1

∫
{f∗µ(bk)<|f |<f∗µ(ak)}

|∇f(x)|q dµ(x)

≤
∫ δ

0

|∇f |∗qµ (t)dt,

and the local absolute continuity of Ψ follows.
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We now prove (2.8).
Case q > 1. Let 0 < h < t < 1. The same argument that shows (2.12) yields

with a = t− h, b = t.

capq (t− h, t) [f∗µ(t− h)− f∗µ(t)] ≤

(∫
{f∗µ(t)<|f |<f∗µ(t−h)}

|∇f(x)|q dµ(x)

)1/q

.

Combining with (2.5) we obtain,[
f∗µ(t− h)− f∗µ(t)

h

](
1
h

∫ t

t−h

ds

(infs≤z≤t I(z))
q
q−1

) 1−q
q

≤

(
1
h

∫
{f∗µ(t)<|f |<f∗µ(t−h)}

|∇f(x)|q dµ(x)

)1/q

.

Letting h→ 0 we find

(
−f∗µ

)′ (t)I(t) ≤

(
d

dt

∫
{|f |>f∗µ(t)}

|∇f(x)|q dµ(x)

)1/q

.

Consider a finite family of intervals (ai, bi) , i = 1, . . . ,m, with 0 < a1 < b1 ≤ a2 <
b2 ≤ · · · ≤ am < bm < 1. The previous inequality then yields∫
∪1≤i≤m(ai,bi)

((
−f∗µ

)′ (s)I(s)
)q
ds ≤

∫
∪1≤i≤m(ai,bi)

(
d

ds

∫
{|f |>f∗µ(s)}

|∇f(x)|q dµ(x)

)
ds

=
m∑
i=1

∫
{f∗µ(bi)<|f |≤f∗µ(ai)}

|∇f(x)|q dµ(x)

=
m∑
i=1

∫
{f∗µ(bi)<|f |<f∗µ(ai)}

|∇f(x)|q dµ(x) (by Condition 2)

=
∫
∪1≤i≤m{f∗µ(bi)<|f |<f∗µ(ai)}

|∇f(x)|q dµ(x)

≤
∫ Pm

i=1(bi−ai)

0

(
|∇f |∗µ (s)

)q
ds.

Now by a routine limiting process it follows that for any measurable set E ⊂ (0, 1)
we have ∫

E

((
−f∗µ

)′ (s)I(s)
)q
ds ≤

∫ |E|
0

|∇f |∗µ (s)ds.

Consequently (2.8) follows from (2.1).
Case q = 1. Using the same procedure we arrive at

lim
h→0

cap1 (t− h, t)
[f∗µ(t− h)− f∗µ(t)]

h
≤ lim
h→0

1
h

(∫
{f∗µ(t)<|f |<f∗µ(t−h)}

|∇f(x)| dµ(x)

)
which combined with

cap1 (t− h, t) ≥ inf
t−h≤z≤t

I(z)

yields (
−f∗µ

)′ (t)I(t) ≤ d

dt

∫
{|f |>f∗µ(t)}

|∇f(x)| dµ(x),

as desired.
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Finally to prove (2.9) we write

(2.13) f∗µ(s)− f∗µ(t) =
∫ t

s

(
−f∗µ

)′ (x)dx.

Since f ∈ Lip(Ω)∩L1 (Ω) , f∗∗µ (t) is finite for all 0 < t ≤ 1. Consequently, by (2.13)
and Fubini’s theorem, we get

f∗∗µ (t)− f∗µ(t) =
1
t

∫ t

0

(
f∗µ(s)− f∗µ(t)

)
ds =

1
t

∫ t

0

(∫ t

s

(
−f∗µ

)′ (x)dx
)
ds

=
1
t

∫ t

0

s
(
−f∗µ

)′ (s)ds.
By Hölder’s inequality and (2.8),∫ t

0

s
(
−f∗µ

)′ (s)ds ≤ (∫ t

0

((
−f∗µ

)′ (s)I(s)
)q
ds

)1/q
1

wq(t)

≤
(∫ t

0

[((
−f∗µ

)′ (·)I(·)
)∗

(s)
]q
ds

)1/q
1

wq(t)

≤
(∫ t

0

(
|∇f |∗µ

)q
(s)ds

)1/q
1

wq(t)
,

and (2.9) follows. �

2.3. A version of Theorem 1 without assuming Condition 2.

Theorem 2. Let (Ω, d, µ) be a metric probability space satisfying Condition 1’,
and let 1 ≤ q <∞. Then for f ∈ Lip(Ω) ∩ L1 (Ω) , we have

(2.14) (f∗∗µ (t)− f∗µ(t))wq(t) ≤
(

1
t

∫ t

0

(
|∇f |∗µ

)q
(s)ds

)1/q

, for t ∈ (0, 1).

Proof. We rely heavily on an argument by Emanuel Milman [26, Remark 3.3]
adapted to our setting. Let Ψ be the class of positive Lipschitz functions defined
on Ω that, moreover, satisfy

1) 0 ≤ Φ ≤ 1.
2) For every 0 ≤ t ≤ 1,

(2.15)
∫
{Φ=t}

|∇Φ|q dµ = 0.

Given Φ ∈ Ψ, the truncation N [Φt2t1 ] (cf. (2.10) above), satisfies

(t2 − t1)
∣∣∇ (N [Ψt2

t1(x)]
)∣∣ ≤ |∇Φ(x)| for all x ∈ Ω.

Moreover, since N [Ψt2
t1(x)] is constant on the open sets {Φ > t2} and {Φ < t1}, we

have
∣∣∇ (N [Φt2t1 ]

)∣∣ = 0 on these sets, and∫
Ω

∣∣∇ (N [Φt2t1(x)]
)∣∣ dµ(x) =

1
(t2 − t1)

∫
{t1≤f≤t2}

|∇Φ(x)| dµ(x)

=
1

(t2 − t1)

∫
{t1<f<t2}

|∇Φ(x)| dµ(x) (by (2.15)).
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Proceeding as in the proof of Theorem 1, we obtain

(Φ∗∗µ (t)− Φ∗µ(t))wq(t) ≤
(

1
t

∫ t

0

(
|∇Φ|∗µ

)q
(s)ds

)1/q

.

We shall now consider two cases:
Case 1: Suppose that f ∈ Lip(Ω), f ≥ 0 and f is bounded. Then, without

loss of generality, we may assume (dividing by a constant if it were necessary) that
‖f‖∞ ≤ 1. It follows from [26, Remark 3.3] that given ε > 0 there exists fε ∈ Ψ
such that

‖|∇fε|‖Lq ≤ (1 + ε) ‖|∇f |‖Lq .

Moreover, if we denote

Γ = {t ∈ [0, 1] : µ {{f = t} > 0} ,

the discrete countable set of atoms of f under µ, then

(2.16)
∫

Γ

|∇fε|q dµ(x) = 0.

Furthermore, let us write Γ = {γi}i=0,1,2···, with γi < γi+1, andGi = {x : γi < f(x) < γi+1} ,
i = 0, 1.. A perusal of the construction used by E. Milman, shows that on each
Gi, i = 0, 1.., we have

(2.17) |∇fε(x)| ≤ (1 + ε) |∇f(x)| .

Moreover, if we let ε = 1/n, then

(2.18) fn →
n→∞

f in L1.

Since fn ∈ Ψ, the truncation argument of Theorem 1 works, and we find

((fn)∗∗µ (t)− (fn)∗µ (t)) ≤

(
1
t

∫ t

0

(
s

I(s)

) q
q−1

ds

) q−1
q (

1
t

∫ t

0

(
|∇fn|∗µ

)q
(s)ds

)1/q

.

Therefore, for each n ∈ N and for any Borel set E ⊂ Ω with µ(E) ≤ t, we have∫
E

|∇fn|q dµ(x) =
∫

Γ∩E
|∇fn|q dµ(x) +

∫
E�Γ

|∇fn|q dµ(x)

=
∫
E�Γ

|∇fn|q dµ(x) (by 2.16)

=
∑
i

∫
Gi

|∇fn|q dµ(x)

≤
(

1 +
1
n

)q ∫
E�Γ

|∇f |q dµ(x) (by (2.17))

≤
(

1 +
1
n

)q ∫
E

|∇f |q dµ(x).
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Consequently, by (2.1), we obtain∫ t

0

(
|∇fn|∗µ

)q
(s)ds = sup

µ(E)≤t

∫
E

|∇fn|q dµ(x)

≤
(

1 +
1
n

)q
sup

µ(E)≤t

∫
E

|∇f |q dµ(x)

=
(

1 +
1
n

)q ∫ t

0

(
|∇f |∗µ

)q
(s)ds.

On the other hand from (2.18) we get (cf. [12, Lemma 2.1]):

(fn)∗∗µ (t)→ f∗∗µ (t), uniformly for t ∈ [0, 1], and

(fn)∗µ (t)→ f∗µ(t) at all points of continuity of f∗µ.

Thus, letting n→∞ we obtain (2.14).
Case 2: Suppose that f is a positive Lip function. Consider an increasing

sequence of positive number an such that limn an = ∞, and such that, moreover,
the sets Dn = {x : f(x) = an} have µ−measure 0, for all n. Let

hn =
{

an if f(x) ≥ an,
f(x) if f(x) < an.

Apply the result obtained in the first part of the proof to each of the h′ns. We obtain
(2.19)

((hn)∗∗µ (t)− (hn)∗µ (t)) ≤

(
1
t

∫ t

0

(
s

I(s)

) q
q−1

ds

) q−1
q (

1
t

∫ t

0

(
|∇hn|∗µ

)q
(s)ds

)1/q

.

Since for each n ∈ N the set An = {x : f(x) < an} is open, we have |∇hn(x)| =
|∇f(x)| , a.e. x ∈ An.

Given a measurable set E ⊂ Ω, with µ(E) ≤ t,∫
E

|∇hn|q dµ =
∫
E∩An

|∇hn|q dµ+
∫
E�An

|∇hn|q dµ

=
∫

Γ∩An
|∇hn|q dµ (since µ(Dn) = 0)

=
∫
E∩An

|∇f |q dµ

≤
∫
E

|∇f |q dµ.

Thus ∫ t

0

(
|∇hn|∗µ

)q
(s)ds ≤

∫ t

0

(
|∇f |∗µ

)q
(s)ds.

To take care of the left hand side of (2.19) we can use again [12, Lemma 2.1] noting
that, by monotone convergence,

hn →
n→∞

f in L1.

Combining our findings we can conclude the proof of (2.14). �
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2.4. Poincaré inequalities on r.i. spaces. From now on we will assume
that our metric probability spaces (Ω, d, µ) satisfy Condition 1’.

We consider Banach function spaces on (Ω, d, µ) with the property if g ∈ X and
f is a µ−measurable function on Ω such that f∗µ = g∗µ, then f ∈ X, and, moreover,
‖f‖X = ‖g‖X . We say that X = X(Ω) is a rearrangement-invariant (r.i.) space11.
It follows that

(2.20) L∞(Ω) ⊂ X(Ω) ⊂ L1(Ω),

with continuous embeddings.
An r.i. space X = X(Ω) can be represented by a r.i. space X̄ = X̄(0, 1) on the

interval (0, 1), with Lebesgue measure12 in the sense that for f ∈ X,

‖f‖X = ‖f∗µ‖X̄ .

Let us also record here the Hardy-Calderón property

(2.21) f∗∗µ ≤ g∗∗µ ⇒ ‖f‖X ≤ ‖g‖X .

Typical examples of r.i. spaces are the Lp-spaces, Lorentz spaces and Orlicz
spaces.

The Boyd indices, ᾱX , αX , of a r.i. space X (cf. [5] for details) are defined by

ᾱX = inf
s>1

lnhX(s)
ln s

and αX = sup
s<1

lnhX(s)
ln s

,

where hX(s) denotes the norm of the dilation operator Es, s > 0, on X̄, defined
by13

Esf(t) =
{
f∗( ts ) 0 < t < s,
0 s < t < 1.

For example, if X = Lp, then αLp = αLp = 1
p . Consider the Hardy operators

defined by

Pf(t) =
1
t

∫ t

0

f(s)ds; Qf(t) =
∫ ∞
t

f(s)
ds

s
.

It is well known that (cf. [5])

(2.22)
P is bounded on X̄ ⇔ αX < 1,
Qa is bounded on X̄ ⇔ αX > a.

The “q−capacitary” spaces LSq(X) associated with a r.i. space X are defined
by the condition

‖f‖LSq(X) :=
∥∥(f∗∗µ (t)− f∗µ(t)

)
wq(t)

∥∥
X̄
<∞.

It follows from (2.6) that these functionals increase with the parameter q.

11We refer the reader to [5] for a detailed treatment.
12A characterization of the norm ‖ · ‖X̄ is available (see [5, Theorem 4.10 and subsequent

remarks])
13The operator Es is bounded on X̄ for every r.i. space X(Ω) and for every s > 0. Moreover,

hX(s) ≤ max{1, s}.

.
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The q−capacitary Hardy operator Qwq is defined on positive measurable
positive functions on (0, 1) by

Qwqf(t) =
∫ 1

t

f(s)
ds

swq(s)
.

2.4.1. Poincaré inequalities and the capacitary Hardy operator Qwq .

Theorem 3. Let X(Ω), Y (Ω) be r.i. spaces such that ᾱX < 1. Let q ≥ 1, and
suppose that there exists a constant c = c(q) such that for every positive function
f ∈ X̄(q), with suppf ⊂ (0, 1/2), we have

(2.23)
∥∥Qwqf∥∥Ȳ (q) ≤ c ‖f‖X̄(q) .

Then there exists a constant C = C(c, ‖P‖X̄→X̄) such that for all g ∈ Lip(Ω) ∩
L1 (Ω) ,

(2.24)
∥∥∥∥g − ∫

Ω

gdµ

∥∥∥∥
Y (q)

≤ C
(
‖|∇g|‖X(q) +

∥∥∥∥g − ∫
Ω

gdµ

∥∥∥∥
L1

)
.

Moreover,

∥∥∥∥g − ∫
Ω

gdµ

∥∥∥∥
Y (q)

≤ C
∥∥∥∥g − ∫

Ω

gdµ

∥∥∥∥
LSq(X(q))

≤ C
(
‖|∇g|‖X(q) +

∥∥∥∥g − ∫
Ω

gdµ

∥∥∥∥
L1

)
.(2.25)

Proof. Since g ∈ Lip(Ω) ∩ L1 (Ω) , g∗∗µ (t) is finite for all 0 < t ≤ 1, thus

g∗µ(t)q ≤ g∗∗µ (t)q =

(∫ 1/2

t

(
−g∗∗µ

)′ (s)ds+ g∗∗µ (1/2)

)q

=

(∫ 1/2

t

(
g∗∗µ (s)− g∗µ(s)

) ds
s

+ g∗∗µ (1/2)

)q

=

(∫ 1/2

t

(
g∗∗µ (s)− g∗µ(s)

)
wq(s)

ds

wq(s)s
+ g∗∗µ (1/2)

)q
.
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Consequently,

‖g‖Y (q) =
∥∥(g∗µ)q∥∥1/q

Ȳ

≤

∥∥∥∥∥
(∫ 1/2

t

(
g∗∗µ (s)− g∗µ(s)

)
wq(s)

ds

wq(s)s
+ g∗∗µ (1/2)

)q∥∥∥∥∥
1/q

Ȳ

=

∥∥∥∥∥
∫ 1/2

t

(
g∗∗µ (s)− g∗µ(s)

)
w(s)

ds

wq(s)s
+ g∗∗µ (1/2)

∥∥∥∥∥
Ȳ (q)

�

∥∥∥∥∥
∫ 1/2

t

(
g∗∗µ (s)− g∗µ(s)

)
wq(s)

ds

wq(s)s

∥∥∥∥∥
Ȳ (q)

+ ‖g‖L1

�
∥∥(g∗∗µ (s)− g∗µ(s)

)
wq(s)

∥∥
X̄(q) + ‖g‖L1

=
∥∥[(g∗∗µ (s)− g∗µ(s)

)
wq(s)

]q∥∥1/q

X̄
+ ‖g‖L1

�
∥∥∥∥1
t

∫ t

0

(
|∇g|∗µ

)q
(s)ds

∥∥∥∥1/q

X̄

+ ‖g‖L1 (by (2.9))

�
∥∥∥(|∇g|∗µ)q∥∥∥1/q

X̄
+ ‖g‖L1 (since ᾱX < 1)

=
∥∥∥|∇g|∗µ∥∥∥

X̄(q)
+ ‖g‖L1

= ‖|∇g|‖X(q) + ‖g‖L1 .

Therefore, ∥∥∥∥g − ∫
Ω

gdµ

∥∥∥∥
Y (q)

� ‖|∇g|‖X(q) +
∥∥∥∥g − ∫

Ω

gdµ

∥∥∥∥
L1

.

Notice that (2.25) is implicit in the proof. �

Remark 7. If Cheeger’s inequality holds for (Ω, d, µ), i.e. if there exists Ce
such that ∥∥∥∥g − ∫

Ω

gdµ

∥∥∥∥
L1

≤ Ce ‖|∇g|‖L1 ,

then the extra L1 term that appears in (2.24) and (2.25) can be left out. Indeed,
combining Cheeger’s inequality with (2.20) yields∥∥∥∥g − ∫

Ω

gdµ

∥∥∥∥
L1

≤ Ce ‖|∇g|‖L1 ≤ Cec̄ ‖|∇g|‖X(q) ,

where c̄ denotes the embedding constant of X(q) ⊂ L1 (cf. (2.20)).

Remark 8. For q = 1, the condition (2.23) reads: there exists a constant C
such that for every positive function f ∈ X̄ with suppf ⊂ (0, 1/2), we have∥∥∥∥∥∥

∫ 1

t

f(s)
ds

s
(

inf0<z<t
I(z)
z

)
∥∥∥∥∥∥
Ȳ

≤ C ‖f‖X̄ .
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2.4.2. Poincaré inequalities: a limiting case. The limiting case where ᾱX = 1
is not covered by Theorem 3. For example, if X = L1 then the condition (2.25)
reads as ∥∥∥∥g − ∫

Ω

gdµ

∥∥∥∥
Lq
�
∥∥∥∥g − ∫

Ω

gdµ

∥∥∥∥
LS(Lq)

� ‖|∇g|‖Lq ,

but unfortunately we cannot apply the theorem since ᾱL1 = 1.
In this section we formulate conditions for the validity of Poincaré inequali-

ties in terms of ν(s) = cap1(s, 1/2)/s. Let q ∈ [1,∞), then we say that ν is a
q−Muckenhoupt weight iff there exists a constant c > 0 such that

(2.26) ‖Pf‖Lq(ν) ≤ c ‖f‖Lq(ν) .

Using the usual description of Muckenhoupt weights (cf. [27], [28]) we see that
ν(s) = cap1(s, 1/2)/s is a q−Muckenhoupt weight iff there exists a constant c > 0
such that for all 0 < t < 1/2,

(∫ 1/2

t

(
cap1(s,1/2)

s

)q
ds
sq

)1/q
(∫ t

0

(
s

cap1(s,1/2)

) q
q−1

ds

) q−1
q

≤ c if 1 < q,∫ 1/2

t
cap1(s,1/2)

s
ds
s ≤ c

cap1(t,1/2)
t if q = 1.

We now show that if ν is q−Muckenhoupt weight then Poincaré inequalities
can be described in terms of the Hardy isoperimetric operator

Qcap1f(t) =
∫ 1/2

t

f(s)
ds

cap1(s, 1/2)
.

Theorem 4. Let q ≥ 1, and suppose that cap1(t,1/2)
t is a q−Muckenhoupt

weight. Then, there exists a constant c > 0 such that for all f ∈ Lip(Ω) ∩ L1(Ω),
0 < t < 1/2, we have

(2.27)
∫ t

0

[(
f∗∗µ (s)− f∗µ(s)

) cap1(s, 1/2)
s

]q
ds ≤ c

∫ t

0

(
|∇f |∗µ

)q
(s)ds.

In particular, if X is a r.i. space with αX > 0, there exists an absolute constant
C (depending on c, the q−Muckenhoupt norm of cap1(t,1/2)

t , and the norms of the
Hardy operators P,Q) such that for all f ∈ Lip(Ω) ∩ L1(Ω),

(2.28)
∥∥∥∥[f∗∗µ (t)− f∗µ(t)]

cap1(t, 1/2)
t

∥∥∥∥
X̄(q)

≤ C
(
‖|∇f |‖X(q) +

∥∥∥∥f − ∫
Ω

fdµ

∥∥∥∥
L1

)
.

Moreover, suppose that there exists C̃ > 0 such that for every positive function
f ∈ X̄(q), we have

‖Qcap1f‖Ȳ (q) ≤ C̃ ‖f‖X̄(q) .

Then, there exist absolute constants C1, C2 (that depend on all the previous con-
stansts as well as C̃) such that for all g ∈ Lip(Ω) ∩ L1(Ω),

∥∥∥∥g − ∫
Ω

gdµ

∥∥∥∥
Y (q)

≤ C1

∥∥∥∥∥
[(

g −
∫

Ω

gdµ

)∗∗
µ

(t)−
(
g −

∫
Ω

gdµ

)∗
µ

(t)

]
cap1(t, 1/2)

t

∥∥∥∥∥
X̄(q)

(2.29)

≤ C2

(
‖|∇g|‖X(q) +

∥∥∥∥g − ∫
Ω

gdµ

∥∥∥∥
L1

)
.
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Proof. Suppose that 0 ≤ f ∈ Lip(Ω) ∩ L1 satisfies

(2.30) For every c ∈ R,we have that |∇f(x)| = 0, µ− a.e. on {x : f(x) = c}.
Then by the proof of Theorem 1, f∗µ is locally absolutely continuous, and

f∗∗µ (t)− f∗µ(t) =
1
t

∫ t

0

s
(
−f∗µ

)′ (s)ds.
Thus,∫ t

0

[(
f∗∗µ (s)− f∗µ(s)

) cap1(s, 1/2)
s

]q
ds =

∫ t

0

[(
1
s

∫ s

0

z
(
−f∗µ

)′ (z)dz) cap1(s, 1/2)
s

]q
ds

≤ c
∫ t

0

[((
−f∗µ

)′ (s)) cap1(s, 1/2)
]q
ds (by (2.26)

= c

∫ t

0

[((
−f∗µ

)′ (s)) inf
s≤z<1/2

I(z)
]q
ds (by (2.4))

≤ c
∫ t

0

[((
−f∗µ

)′ (s)) I(s)
]q
ds

≤ c
∫ t

0

(
|∇f |∗µ

)q
(s)ds (by (2.8).

Now, using a familiar limiting argument we can avoid the restriction (2.30) and
still achieve (2.28).

Applying the operator Q1/2f(s) =
∫ 1/2

s
f(z)dzz to the inequality (2.27), and

then combining with the fact that for 0 < t < 1/2 we have (see [4])

P (Q1/2f)(s)− 2
∫ 1/2

0

f = Q1/2(Pf)(s),

Pf(s) +Q1/2f(s) = P (Q1/2f)(s),(2.31)

we obtain
1
t

∫ t

0

Q1/2

[(
f∗∗µ (·)− f∗µ(·)

) cap(·, 1/2)
(·)

]q
(s)ds− 2

∫ 1/2

0

[(
f∗∗µ (s)− f∗µ(s)

) cap(·, 1/2)
s

]q
ds

≤ c

(
1
t

∫ t

0

Q1/2

((
|∇f |∗µ

)q
(s)
)
ds− 2

∫ 1/2

0

(
|∇f |∗µ

)q
(s)

)

≤ c

t

∫ t

0

Q1/2

((
|∇f |∗µ

)q
(s)
)
ds.

Moreover, since

1
1/2

∫ 1/2

0

[(
f∗∗µ (s)− f∗µ(s)

) cap1(s, 1/2)
s

]q
ds ≤ 1

t

∫ t

0

[(
f∗∗µ (s)− f∗µ(s)

) cap1/2(s, 1/2)
s

]q
ds

≤ c

t

∫ t

0

(
|∇f |∗µ

)q
(s)ds (by (2.27))

≤ c

t

∫ t

0

Q1/2

((
|∇f |∗µ

)q
(s)
)
ds (by (2.31)),

we obtain∫ t

0

Q1/2

[(
f∗∗µ (·)− f∗µ(·)

) cap1(·, 1/2)
(·)

]q
(s) ds ≤ 2c

∫ t

0

Q1/2

((
|∇f |∗µ

)q)
(s)ds.
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Observe that Q1/2h(s) is decreasing. Consequently,

∫ t

0

Q1/2

[(
f∗∗µ (·)− f∗µ(·)

) cap1(·, 1/2)
(·)

]q
(s)ds =

∫ t

0

(
Q1/2

[(
f∗∗µ (·)− f∗µ(·)

) cap1(·, 1/2)
(·)

]q)∗
(s)ds

≤ 2c
∫ t

0

Q1/2

((
|∇f |∗µ

)q)
(s)ds.

We may now apply (2.21)∥∥∥∥Q1/2

[(
f∗∗µ (·)− f∗µ(·)

) cap1(·, 1/2)
(·)

]q
(t)
∥∥∥∥
X

≤ C
∥∥∥Q1/2

((
|∇f |∗µ

)q)
(t)
∥∥∥
X
.

Whence, if αX > 0,∥∥∥∥Q1/2

[(
f∗∗µ (·)− f∗µ(·)

) cap1(·, 1/2)
(·)

]q
(t)
∥∥∥∥
X̄

≤ C ‖|∇f |q‖X .

Since both, t → t
(
f∗∗µ (t)− f∗µ(t)

)
and t → cap1(t, 1/2) are increasing, we see that

for 0 < t < 1/4

∫ 1/2

t

[(
f∗∗µ (s)− f∗µ(s)

) cap1(s, 1/2)
s

]q
ds

s

≥
(
t
(
f∗∗µ (t)− f∗µ(t)

)
cap1(t, 1/2)

)q ∫ 1/2

t

[
1
s2

]q
ds

s

�
((
f∗∗µ (t)− f∗µ(t)

) cap1(t, 1/2)
t

)q
.

Using the elementary estimation

‖h‖X̄ �
∥∥hχ(0,1/4)

∥∥
X̄
,

we find∥∥∥∥([f∗∗µ (t)− f∗µ(t)]
cap1(t, 1/2)

t

)q∥∥∥∥
X̄

�
∥∥∥∥([f∗∗µ (t)− f∗µ(t)]

cap1(t, 1/2)
t

)q
χ(0,1/4)(t)

∥∥∥∥
X̄

�
∥∥∥∥Q1/2

[(
f∗∗µ (·)− f∗µ(·)

) cap1(·, 1/2)
(·)

]q
(t)χ(0,1/4)(t)

∥∥∥∥
X̄

�
∥∥∥(|∇f |∗µ)q∥∥∥

X
.

Finally, to see (2.29), we proceed as in theorem 3,

f∗µ(t)q ≤ f∗∗µ (t)q =

(∫ 1/2

t

[f∗∗µ (t)− f∗µ(t)]
cap1(s, 1/2)

s

ds

cap1(s, 1/2)
+ f∗∗µ (1/2)

)q
.
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Consequently,∥∥f∗µ∥∥Y (q) =
∥∥(f∗∗µ )q∥∥1/q

Ȳ

≤

∥∥∥∥∥
(∫ 1/2

t

[f∗∗µ (t)− f∗µ(t)]
cap1(s, 1/2)

s

ds

cap1(s, 1/2)
+ f∗∗µ (1/2)

)q∥∥∥∥∥
1/q

Ȳ

�
∥∥∥∥(f∗∗µ (s)− f∗µ(s)

) cap1(s, 1/2)
s

∥∥∥∥
X̄(q)

+ ‖f‖L1

�
∥∥∥(|∇f |∗µ)q∥∥∥1/q

X̄
+ ‖f‖L1 (by (2.28)).

�

Remark 9. Observe that for 0 < t < 1/2,

cap1(t, 1/2)
t

=
inft≤z<1/2 I(z)

t
= inf

0<s<t

inft≤s<1/2 I(s)
s

≤ inf
0<s<t

I(s)
s

= w1(t).

Thus ∥∥∥∥[g∗∗µ (t)− g∗µ(t)]
cap1(t, 1/2)

t

∥∥∥∥
X̄(q)

�
∥∥[g∗∗µ (t)− g∗µ(t)]w1(t)

∥∥
X̄(q) .

Remark 10. As in Theorem 3, the extra L1−terms appearing in (2.28) and
(2.29) can be omitted if Cheeger’s inequality holds. Notice that Cheeger’s inequality
is equivalent to (cf. [25] and the references therein)

cap1(t, 1/2) ≥ ct (0 < t ≤ 1/2),

which in turn is equivalent to (cf. [19])

‖Qcap1f‖L1 ≤ C ‖f‖L1 ,

for all positive functions f ∈ L1, with suppf ⊂ (0, 1/2).

3. A connection with martingale inequalities via interpolation theory
and optimization

It was shown recently in [10] that using interpolation theory one can relate
the rearrangement inequalities for Sobolev functions we have obtained in our work
with the extrapolation theory of martingale inequalities of Burkholder and Gundy
[8] and Herz [14]. There are two key observations underlying these developments:
(i) the idea to treat truncations as part of the more general process of decomposing
elements. Here the appropriate setting is the real method of interpolation, where
decompositions are selected using penalty methods. From this point of view our
method is related to the fact that certain optimal splittings in interpolation theory
are given by truncations; (ii) the fact that gradients (and other related operations
in analysis, e.g. the martingale square functions!) commute, in suitable quantified
manners, with respect to these splittings.

We thought it would be worthwhile to present these ideas to this community
using a presentation that goes directly to the heart of the matter. Thus we will
focus our discussion here on Sobolev inequalities and refer the reader to [10] for
complete proofs and other developments. This topic will also be discussed in [20].
One reason we were originally interested in placing our results in a larger context
is that it may help to suggest a suitable substitute for the truncation method when
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we deal with higher order differential operators where truncations are obviously
inadequate.

We start by placing the truncation method within the larger context of inter-
polation theory. The basic modern ingredient of *real interpolation* is the study of
controlled splittings of elements using “penalty” methods (“Peetre’sK−functional).
The point of departure of this theory are pairs ~X = (X0, X1) of Banach spaces that
are “compatible” in the sense that both spaces Xi, i = 0, 1, are continuously em-
bedded in a common Hausdorff topological vector space14. For such pairs the sum
space Σ( ~X) = X0 +X1, makes sense and for t > 0 we can consider the parametrized
family of penalty problems given by

(3.1) K(t, x; ~X) = inf
{
‖x0‖X0

+ t ‖x1‖X1
: x = x0 + x1, xi ∈ Xi, i = 0, 1

}
.

To see the effect of the penalty t let us suppose, for example, that X1 ⊂ X0,
with ‖x‖X0

≤ ‖x‖X1
. If t is “very large”, say t > 1, then for every x ∈ X0 the

spliting x = x+ 0 “wins” and we see that K(t, x; ~X) = ‖x‖X0
, while on the other

hand, if x ∈ X1, we see that limt→0
K(t,x; ~X)

t = ‖x‖X1
. Intermediate spaces ~Xθ,q

are constructed by specifying suitable control on the decay of K(t, x; ~X). A typical
construction (Lions-Peetre) can be described as follows: for θ ∈ (0, 1), 1 ≤ q ≤ ∞,
let ~Xθ,q = {x ∈ Σ( ~X) : ‖x‖ ~Xθ,q <∞}, with

‖x‖ ~Xθ,q =


{∫∞

0
(t−θK(t, x; ~X))q dtt

}1/q

if q <∞,

supt>0

{
t−θK(t, x; ~X)

}
q =∞

.

Following [15] we see that if we write

x = D0(t)x+D1(t)x, Di(t)x ∈ Xi,

for an optimal decomposition of x for the calculation of (3.1), then

K(t, x; ~X) = ‖D0(t)x‖X0
+ t ‖D1(t)x‖X1

,

and with suitable interpretation for the derivatives

(3.2) ‖D0(t)x‖X0
= K(t, x)− t d

dt
K(t, x; ~X) a.e.;

(3.3) ‖D1(t)x‖X1
=

d

dt
K(t, x; ~X) a.e.

The pair (L1(Rn), L∞(Rn)) is well understood (cf. [5]). Without loss of gen-
erality we can assume that f = |f | . An optimal decomposition is then given by

D0(t) |f | = ff∗(t), D1(t) |f | = (|f | − ff∗(t)),
where for t > 0,

ff∗(t) =
{
|f(x)| − f∗(t) if f∗(t) < |f(x)| ,
0 if |f(x)| ≤ f∗(t).

Therefore the following elementary formulae holds (cf. [5])

K(t, f ;L1(Rn), L∞(Rn)) =
∫ t

0

f∗(s)ds = tf∗∗(t),

14For example, this will happen if X1 ⊂ X0, with a continuous embedding.
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d

dt
(K(t, f ;L1(Rn), L∞(Rn))) = f∗(t).

In this case (3.2) and (3.3) take the form

‖D0(t)f‖L1 = tf∗∗(t)− tf∗(t), t ‖D1(t)f‖L∞ = tf∗(t).

The interaction of gradients and truncation can be quantified here by∥∥∇ (ff∗(t))∥∥L1 =
∫
{|f |>f∗(t)}

|∇ |f || dx

≤
∫ t

0

(∇ |f |)∗(s)ds(3.4)

= K(t, |∇ |f || ;L1, L∞).

Using the optimality and the definition of the penalty method (3.1) we readily
get the following *reiteration* estimate (cf. [10])

(3.5) K(s,D0(t)f, ~X) ≥ K(s, f)− s d
ds
K(s, f), s ≤ t (a.e.).

As a consequence we find

(3.6)
∥∥∥D0, ~X(t)f

∥∥∥
~Xθ,q
≥
∫ t

0

[(
K(s, f ; ~X)− s d

ds
K(s, f ; ~X)

)
s−θ
]q
ds

s
, q <∞,

and

(3.7)
∥∥∥D0, ~X(t)f

∥∥∥
~Xθ,∞

≥ t−θ[K(t, f ; ~X)− t d
dt
K(t, f ; ~X)].

Let us see this method in action. We start by rewriting the weak Gagliardo-
Nirenberg inequality using

‖f‖M(Ln′ ) = sup
t>0
{f∗∗(t)t1/n

′
}

= ‖f‖(L1(Rn),L∞(Rn))1/n,∞
.

Therefore, for f ∈ Lip0, we have

‖f‖(L1(Rn),L∞(Rn))1/n,∞
� ‖∇f‖1 .

Inserting the optimal decomposition we get

(3.8) ‖D0(t)f‖(L1(Rn),L∞(Rn))1/n,∞
� ‖∇D0(t)f‖1 .

The left hand side of (3.8) can be estimated using (3.7) and we see that

‖D0(t)f‖(L1(Rn),L∞(Rn))1/n,∞
≥ t−1/n[tf∗∗(t)− tf∗(t)].

To estimate the right hand side of (3.8) we use (3.4) and we find

‖∇D0(t)f‖1 ≤ t |∇f |
∗∗ (t).

Altogether we have the familiar

t−1/n[f∗∗(t)− f∗(t)] � |∇f |∗∗ (t).

If we start with the strong form of the Gagliardo-Nirenberg inequality, which in
terms of interpolation norms we rewrite as,

‖f‖(L1(Rn),L∞(Rn))1/n,1
� ‖∇f‖1 ,
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we can then proceed as above. The only change is that the lower estimate is now
obtained using (3.6) and we find∫ t

0

[f∗∗(s)− f∗(s)]s−1/nds � t |∇f |∗∗ (t);

a result first derived in [17].
The corresponding inequalities for Log Sobolev inequalities can be obtained in

analogous manner (cf. [10]) but using as starting point

(3.9) ‖f‖L(LogL)1/2(Rn,γn) � ‖∇f‖L1(Rn,γn) .

Finally for the connection with the theory of Burkholder-Gundy [8] note that
the commutation of the gradient with truncations∣∣∇f t2t1 ∣∣ = |∇f |χ{t1<|f |<t2}
has the following analog in terms of Square martingale operators,

(3.10) S(νfτ ) ≤ I(ν < τ)S(f),

where ν, τ are stopping times, and where I stands for indicator function. This can
be implemented to show an analogue of (3.4). Consider now the known inequality

‖Mf‖1 � ‖Sf‖1 ,
where M is the maximal martingale operator. The method above then gives the
following inequality due to Herz [14]

(Mf)∗∗(t)− (Mf)∗(t) � (Sf)∗∗ (t).

We refer to [10] for more details.
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