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Some applications of the extended
Bendixson-Dulac Theorem

Armengol Gasull and Hector Giacomini

Abstract During the last years the authors have studied the numbénifdycles
of several families of planar vector fields. The common tcad been the use of
an extended version of the celebrated Bendixson-DulacEneoThe aim of this
work is to present an unified approach of some of these resogdfsther with their
corresponding proofs. We also provide several application

1 The Bendixson-Dulac Theorem

Ivar Bendixson and Henri Dulac are the fathers of the todaykmas Bendixson-
Dulac Theorem. The classical version of this theorem app@amost textbooks
on differential equations; see [14, 37, 38] with many agglans. Let us recall it.
Consider &*-planar differential system

X= P(X7 y)7 y: Q(va)v (1)

defined in some open simply connected sukiget R?, and seX = (P,Q). Assume
that there exists @ functionD : % — R, such that

~ I(D(xY)P(x,y)) . Id(D(x,y)Q(x,y))

div(DX)l|, = ox dy Lo
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vanishing only on a set of zero Lebesgue measure . Then sysjdras no periodic
orbits contained inZ% . This functionD is usually called &ulac functionof the
system.

This theorem has been extended to multiple connected regase for in-
stance [5, 17, 27, 36] obtaining then a method for determginipper bounds of
the number of limit cycles irz. In the next section we recall this extension and
present the proof given in [17].

As we will see this extension can be used if it is possible td &irsuitable func-
tionV, a real numbes, and a domair?/ ¢ R? such that

oP 0Q
aﬂa—y)v

ov ov

w

does not change sign and vanishes on a set of zero LeshesgsarmeMoreover,
the upper bound given by the method for the number of limiteydepends on the
number and distribution of the ovals §¥ (x,y) = 0} in % .

When all the involved functionR Q andV are polynomials this approach relates
both parts of Hilbert's Sixteenth Problem. Recall that thstfpart deals with the
number and distribution of ovals of a real algebraic curvéeims of its degree
while the second part asks to find an uniform bound of the numianit cycles of
systems of the form (1) when both polynomials have a givemetegee [24, 35].

Notice that the importance of the use of the Bedixson-Duéstllts is that in
many cases they translate the problem of knowing the nunflparmdic solutions
of a planar polynomial differential equation to a problensemi-algebraic nature:
the control of the sign of a polynomial in a suitable domain.

Analogously to Lyapunov functions, the first difficulty togyp these results is to
find a suitable Dulac function. The problem of its existemaéhe basin of attraction
of critical points, is treated in [3]. A second difficulty dfi¢ method is to find a
suitable regior?/ .

The aim of this paper is to present an unified point of view ofis@f the results
obtained by the authorsin [17, 18, 19, 20], together withespnoofs. These results
give methods to find Dulac functiori3, or equivalently function¥ and valuess,
for which the corresponding expressibhis simple and so its sign can be easily
studied. We also apply the method to give an upper bound ofidiheber of limit
cycles for several families of planar systems.

The Bendixson-Dulac approach has been extended in seve@ions: to prove
non-existence of periodic orbits in higher dimensions, [4&e 26]; to control the
number of isolated periodic solutions of some non-autongsmbel differential
equations, see for instance [1, 10]; to prove non-existefiqeeriodic orbits for
some difference equations, see [29].

We can not end this introduction without talking about thatcbutions on the
use of Dulac functions of our friend and colleague Leonidi®as, sadly recently
deceased. His important work in this subject started maaysye@go and arrives until
the actuality, continued by his collaborators, see foransé [4, 5, 6, 7, 8, 9, 10]
and the reference therein. In fact, one of the main motinatfor the fist author to
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work in this direction were the pleasant conversations With walking around the
beautiful gardens of the Beijing University in the summef890.

1.1 The Bendixson-Dulac Theorem for multiple connected regions

An open subse® of R? with smooth boundary, is said to econnectedif its

fundamental groupit (% ) is Zx o xZ, or in other words ifZ has/ holes. We
will say that/(% ) = ¢. We state and prove, following [17], the extension of the
Bendixson-Dulac Theorem to more general domains; see pthefsin [5, 27, 36].
As usual,(-,-) denotes the scalar producti?.

Extended Bendixson-Dulac TheoremLet% be an/-connected open subseti®?
with smooth boundary. Let D% — R be a%™* function such that

o oD ob JP 0Q .
M :=div(DX) = ox P+ ayQ+ D( o 0y) = (0D, X) +Ddiv(X) (2)
does not change sign i¥ and vanishes only on a null measure Lebesgue set, such
that{M = 0} N {D = 0} does not contain periodic orbits of (1). Then the maximum
number of periodic orbits of (1) contained# is ¢. Furthermore each one of them
is a hyperbolic limit cycle that does not c{ib = 0} and its stability is given by the
sign of DM over it.

Proof. Observe thaM|p_gy = (0D, X)|;p—gy > O does not change sign i .
Since, by hypothesis, there are no periodic orbits of (1jaioed in{M =0}N{D =
0}, we have that the periodic orbits of (1) do not ¢t = 0}.

If % is simply connected/(= 0) then by the Bendixson-Dulac Theorem we have
that (1) has no periodic orbits itx . We give now a proof for an arbitray Assume
that system (1) haé+ 1 different periodic orbitss, included in%Z . These orbits
inducel + 1 elements; in the first homology group o% ,H1(% ) = Z® o YA
Since this group has at moétinearly independent elements it follows that there
is a non trivial linear combination of them givingeOH1 (% ). Thenzfjllmvi =0,
with (m]_, ey mg+1) 75 0.

This last fact means that the cury :fm ¥ is the boundary of a two ce@ for
which Stokes Theorem can be applied. Then

-/-/CdiV(DX):/zfz}mM(DX’m'

Note that the right hand term in this equality is zero becddXds tangent to the
curvesy, and that the left one is non-zero by our hypothesis. This l&ads to a
contradiction. Sd is the maximum number of periodic orbits of (1)4#.

Let us prove their hyperbolicity. Fix one periodic orlyit= {(x(t),y(t)),t €
[0,T]} C %, whereT is its period. Remember tha {D = 0} = 0. In order to
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study its hyperbolicity and stability we have to compy@edivx(x(m y(t))dt, and
to prove that it is not zero. This fact follows by integratihg equality

divX—E_‘_aiQ_div(Dx)_%Eer%Q
S ox dy D 57

because the last term of the right hand side of the above igqualncides with
&I Dx(t)y(t)]. ©

To apply the above theorem, we consider a funciiéx y) of the form|V (x,y)|™
whereV is a smooth function in two variables B? andmis a real number.

Before giving the result for this particular choice\wfwe introduce some more
notation. Given an open subs#t with smooth boundary and a smooth function
V : % — R we denote by/(#,V) the sum oft(% ) whereZ ranges over all the
connected components #f \ {V = 0}. Finally, we denote bg(#,V) the number
of closed ovals of V = 0} contained in#’. See Figure 1 for an illustration of these
definitions.

Fig. 1 Open set#” with
(') = 3. The grey cercles
are holes ir#” and the thick
lines correspond t§V = 0}.
The numbers displayed are
the values((% ) for each
connected componer#

of # \ {V = 0}. For this
examplec(#,V) = 6 and
Ly \N)=9.

Corollary 1. Assume that there exist a real number s and an analytic fom&tiin
RR? such that
ov

oV

P 0Qy, .
=t a—y)v = (OV, X) + sVdiv(X)

does not change sign in an open regighc R? with regular boundary and vanishes
only in a null measure Lebesgue set. Then the limit cyclegstém (1) are either
totally contained in¥p := {V = 0}, or do not intersect/.

Moreover the number of limit cycles contained/is at most ¢#,V) and the
number N of limit cycles that do not interseg satisfies

L) if s>0,
N<<O0 if s=0,
LW N) if s<0,

Furthermore for any s# 0 the limit cycles of this second type are hyperbolic.
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Proof. First observe that sindds does not change sign we have that on the analytic
curvesyp, (OV, X) does not change sign. Therefore these curves are eithéosslu

of (1) or curves crossed by the flow generated by (1) in justdirection. Hence

all limit cycles in# are either contained in the connected component af 7

or in ¥. This fact implies the first assertions of the Theorem. Ireotd bound the
number of limit cycles of (1) we apply the extended Bendix§ardac Theorem to
each one of the connected componeitef # \ %. The fact that whe = |[V|™,

div(DX) = (0D, X) + Ddiv(X) = sign(V)m|V|™1 | (OV, X) + %Vdiv(x) ,

gives the theorem by taking= 1/s. Observe that the difference between the cases
s> 0 ands < 0 comes from the fact that in the first case the funcfiois well
defined in the whole plane. For the case 0 the proof is easier becaubk =
dv/dt=(0V,X). O

The above corollary shows that the study of the functions

v
© ox

P+ Z—\;Q+ s,(f + d—Q)v

Ms ox ' dy

®)

gives a tool for controlling the number of limit cycles of g (1). As we will see
this approach turns out to be useful for many families of atarector fields. This
function is also often used in the quoted works of Cherkastesmdoauthors.

1.2 Some simple examples

As paradigmatic examples we will give short and easy proftfssonon-existence of
limit cycles for a generalization of the Lotka-Volterra sy and of the uniqueness
of the limit cycle of the van der Pol system. The first one islklé@e prove and the
second one is given by Cherkas, see [11, p. 105]. We will patsea more general
non-existence result for Kolmogorov systems.

1.2.1 Non-existence of limit cycles for some predator-pregystems

Consider the following extension of the celebrated Lotkdt&fra system
x=Xx(ax+by+c), y=y(dx+ey+ f), (4)

where all the parameters are real numbers. It appears intexistbooks of math-
ematical ecology. By uniqueness of solutions it is cleat ihtthas periodic orbits
then they do not intersect the coordinate axes. By makinghla@ge of variables
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X — +X, y — vy, if necessary, we can restrict our attention to the first qaaiciz/
and prove that the system has no periodic orbit in it. To d® ¢binsider the Dulac
function D(x,y) = x*y®, where the real numbe#s and B have to be determined.
Then the functioM appearing in (2) is

M(xy) = (OD(xy), X(x,y)) +D(xy) divX(x,y)
=x%® ((aA+dB+2a+d)x+ (bA+eB+2e+b)y+ (CA+ fB+c+ f)).

Whenae— bd # 0 we can solve the linear system obtained vanishing the ceefts
of x andy with unknownsA andB. Call the solutiomlA = a andB = 3. Then

abf+ ced—aef—ace
M(x,y) = 26 bd XAyP = REYP.

WhenR # 0 we can apply the Bendixson-Dulac Theorem and sifcés simply
connected{(% ) = 0) the system has no limit cycles. WhBn= 0 then itx@y? is
an integrating factor. Hence the system is integrable anfir#t integral is smooth
in 7/. Thus it can not have isolated periodic orbits, i.e. it hadimé cycles. This
case includes the famous Lotka-Volterra system. Recdlitteas a center irv/,
surrounded by periodic orbits.

Whenae— bd = 0 then either the linear systeam+ by+c= 0, dx+ey+ f =0,
with unknownsx andy has no solutions or its solutions are either the full plane or
a whole line. In the first case the only critical points of syst(4) are on the axes,
so the system can not have periodic orbits. Otherwise itlieethe trivial system
x=0,y= 0 oris a reparameterization of the simple systemgx, y = hy, for some
real numberg, h, which clearly can not have periodic orbits either.

1.2.2 Non-existence of limit cycles for a class of Kolmogovsystems

Following [2] we give a non-existence criterion for a fanilfiiKolmogorov systems.
This result can be applied to the Gause-type systems coedidte [30] or to the
systems studied in [23].

Proposition 1. Consider theg't-system
x=x(go() +a1(¥)y), ¥ =Y (ho(x)+hi(X)y+ha(x)y?), (5)
forx>0,y> 0. For anyA € R define the functions:
Si (%) = X[go(X¥)g1.(X) — Go(X)g1(X)] +Aho(x)g1(X) — (1+A)go(x) 1 (x),
TA(X) = (2+A)h2(X)91(X).
Let.# C R be an open interval. Assume that there exists a value sidich that

S\ (X)Ty(x) > 0, for all x € .#, and all its zeroes are isolated. Then sys{@&ydoes
not have periodic orbits in the strig/ = .7 x (0, +).
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Proof. First, let us prove that if the system has a limit cycle therait not intersect
the set{(x,y) |x > 0,91(x) = 0}. This holds because ¥> 0 is such thag;(x) =0
then eithex = xis an invariantline (i.e. alsgy(x) = 0) or itis a line without contact,
i.e X|x=x = Xgo(X) # 0. Hence, in the region where (5) can have periodic orbits we
can always assume thgt does not vanish.

Consider now the family of Dulac functiol¥x,y) = y* ~*Z(x), whereA is given
in the statement and is an unknown function. Computing the function (2),

M(xy) = div (D(x,y)X(x.y))
= [(xg(¥)Z(x))" + Aho(X)Z(x) + ((xg1(})Z(x))" + (A + 1)1 (X)Z(x)) y
+ (A +2)ha(x)Z(x))y?]y L.

The solutions of the differential equation

(x@1(})Z(x)" + (A + Dhy(x)Z(x) = 0 (6)

ool 103 2

Xg1(X)
wherexp > 0 is an arbitrary contant. By taking the Dulac functixix,y) =
y’\*lzxo(x), for a givenxo > 0, and taking into account thak,(x) satisfies (6),
we obtain after some computations that

are

Zy,(X) =

’

M(xy) = ngf—((xx)) (S0 + Ty (0y2) Y L

Since on.#, S, (X)T, (x) > 0 we have proved tha¥l does not change sign in
U =1x(0,+00), WhICh is simply connected, and vanishes on a set of zerodgelee
measure given by some vertical straight lines. Hence, bémalixson-Dulac The-
orem, the result is proved.O

Observe that the functio®, (x) of Proposition 1 can also be written as
" ho(x) Yo(x)h1(x)
S (x) = GB(x [x(g”) FADOBI (g 4 )G9I
700 =9109 X g0 ) T aato ~ YT @i

Whenhy(x) = 0, it essentially coincides with the one given in the norseerice
criterion presented in [25, Thm 4.1].
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1.2.3 Uniqueness of the limit cycle for the van der Pol equatin

The second order van der Pol equation£(x? — 1)x+x = 0, can be written as the
planar system
Xx=y, y=-eX-1y—x

TakingV (x,y) = x* +y? — 1 we obtain that the associated functidg given in (3)
is
Ms(X,y) = —€(x* = 1)(s¥@ + (2+9)y*—9).

Choosings= —2 we get thaM_,(x,y) = 2¢(x*> — 1)2. So, fore # 0, this function
does not change sign and vanishes on two straight lines.eHgince /(R? V) =

1 ands < 0, by Corollary 1, we obtain the van der Pol system has at most o
limit cycle, which when exists is hyperbolic, and lies odtsithe unit circle. This
approach does not provide the existence of the limit cydie. xistence, fog # 0,
can be obtained studying the behavior of the flow at infinity.

2 Control of the function Mg

To apply the Dulac method to concrete examples the main uliffiés to find a
suitable couples € R andV and then control the sign of the functidvs given
in (3). Many times a good trick consists in trying to reduce tfuestion to a one
variable problem. This approach is developed in Subsegtibifollowing [17, 18].
Another point of view is to work in polar coordinates. Ther tontrol of the
corresponding functioMs takes advantage of writing the functions as polynomials
of the radial component with coefficients depending pedallly on the angle. This
approach has been followed in [19] and some results arenqesbim Subsection 2.2.

2.1 Thefunction Mg isreduced to a one variable function

2.1.1 Afirst method
Proposition 2. Consider a&’* system of the form

X = po(X) + p1(X)y =P(X,y), ¥=0o(X)+aq(X)y+RXy =QXxY), (7)

with p1(x) # 0. For each s= R and for each re N it is possible to associate to it a
(n+ 1)-parameter family of functions\{k, y; Co,C1, ..., Cn) := Vn(X,y) of the form

Vi(X,Y) = Vo(X) +V1(X)Y +V2(X)Y + - -+ Va(X)Y",

such that for each one of them the funct{8y
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Msn(X) = (OVi, (P.Q)) + s\ div(P,Q)
is a function only of the x-variable.
Proof. Direct computations give
(OVh, (P,Q)) +s\ndiv(P.Q) =
= [{(SPL+250+NtR) Vo + P2V } Y+ Fin(Vn, Vo 1)y

+ {0 1(Va_1,Vn_2) + NG(X)Va (X) } Y"1+ -+
+ {Z1(V1, Vo) + 200(X)V2(X) } y + { (SFh + Sch)Vo + PoVp + dova } ] »

where foreachj =1,2...,n,
Fj(Vj:Vj-1,V|,Vj_1) =(SFh+ St + jd)Vj () +
PoVj (X) + (SPL + 285G + (] — 1)02))Vj—1.(X) + P1Vj_1(X).

From the above expressions we can obtain a 1-parameteryfamflinctions
Vi (X; Cn) = Vi (X) such that the coefficient 9f't1 vanishes, by solving a linear first
order ordinary differential equation. Once we h&§gfrom .7, (v}, vn—1) = 0 we get
Vi_1(X;Cn,Cn—1) :=V;_1(X) and so on until we have foung,v;,_;,...,v{. Finally,
we obtain

(OVh, (P.Q)) + s\ div(P,Q) = [(sHh+Sa)Vp + Po(Vp)' + Govi] = Msn(X),
as we wanted to prove.O
Corollary 2. Consider the generalizedémard system
X:y_F(X) = P(Xay)» y:_g(x) = Q(Xay)
If we take

Va(x,y) = (S(S; Y (F ()2 4 cisF(x) + 26() +Co> +(SF(X) +cL)y + Y2,

where Gx) = [39(2)dz then
Ms2(x) = (OV2, (P,Q)) + s\div(P,Q)
_ _Ssr1)(s+2) 1;(S+ 2) (F(x))2F' (%) — s(s+ 1)&iF (OF' (%
— (s+2)g(X)F (x) — 2sF (X)G(X) — S@F’ (X) — c19(X).
In particular, for s= —1 we have
Va(%Y) = (=C1F (X) + 2G(X) + o) + (~F (X) + o)y + ¥,

and
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M_1.2(X) = 2F(X)G(x) + CoF(x) — g(X)F (X) — C1g(x).

As an application of the above results we prove here the enigss and hyper-
bolicity of the limit cycle of a Liénard system with a ratianF. The uniqueness
(without proving the hyperbolicity) for this system wasesldy proved in [13]; see
also [21]. Other applications are given in [17].

Proposition 3. The LEnard system

x=y-F(x), y=-x with F(X)m @

and c a real positive constant, has at most one limit cycletharmore, when it
exists it is hyperbolic and unstable.

Proof. We apply Proposition 2 and Corollary 2 wish= —1, n= 2 andV (X, y) given
by the rational function:

V(xy) =y —F(x)y+x*.

Then

—4cxt
5 <0 forall x#0.

M_12(x) = AT o2

The functionV (x,y) = 0 is a second degree polynomial in the variapleith dis-
criminant

_ 2 2
s ((52) o) - P o o

Hence the sefV = 0} reduces to the origin. TherefocéR?,V) = 0 and/(R?,V) =
1. From Corollary B we conclude that system (8) has at most anit &iycle. The
origin is the only critical point of this system and it is stabThen, when the limit
cycle exists it is hyperbolic and unstabled

2.1.2 A second method
Proposition 4. Consider a&* system of the form

X=y=P(xYy), ¥=ho(X)+hi(x)y+h(x)y*+y*=Q(xy),

and fix a positive integer number fihere is a constructive procedure to obtain an
(n+ 1)-th order linear differential equation

YD (X) + ()Y (X) + -+ a1 ()Y (X) + Fno(X) y(X) =0, 9)

such that if yx) = vn(x) is any of its solutions, we can define a function
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VH(X7 y) = Vn,O(X) + Vn,l(x)y‘|‘ Vn,Z(X)yz +ot Vn,n(X)Y”,
where Vi n(X) = Vn(X) and wj(x),i = 0...n—1, are obtained from given expressions
involving h(x),i = 0,1,2,vs(x) and their derivatives, such that the corresponding
function M given in(3) with s= —n/3,
M =My = (Vi (P.Q)) — SVndiv(P.Q).
is a function only of the x-variable.
Proof. For sake of simplicity we present the details of the proofydolt the case
n= 2. Also, for sake of brevity and during this proof, when it apeafunction of
thex variable that we do not want to specify we simply will write
TakeVa(X,Y) = V2,0(X) + V2.1(X)Y + V2 2(X)y? := Vo(X) + V1 (X)y + V2(X)y?. Then
2 _ 2 i _
M =(Cvh, (P.Q)) — 5 div(P.QV, =
2
<\/z(x)+—Vz()hz >y3+
1
( X)+ z V2 (x) = z3v1 () h2(x) 2v0(x)y2+
4
<\/0 X)+ 3 V1 () e (%) = 5 2 (x) Vo (X) +2v2 () ho (X)) y+

Vi X)ho ——hl(X)Vo( ))

By choosing the following expressions fay andvy

Vo(X) = % (\/1 (x) + gvz (X) ha (x) — %vl (X) hy (x)) ,
V1(X) = V5 (X) + %vz (X) ha (X)),

we get that the coefficients o andy® in M@ vanish. Observe that;(x) =

Vo (X) + *V2(X) and thatvp(x) = V5(X)/2 + #V5(X) 4 *V2(x). Hence if we substi-
tute these equalities in the coefficientyoin the expression o112 we get that it
writes asvy’ (X) /24 # Vi (X) + % V5 (X) +* Vo(X). By imposing that this last expression
be identically zero we get the linear ordinary differengguation (9) given in the
statement of the lemma. Hence for these values of the furstioi = 0,1,2 the
expression o is the function of one variable

M2 () = vi () o () — 2 (x)vo ),
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as we wanted to prove.Ol

The advantage of the above result is that for eanlyives the freedom to choose
any solution of a linear ordinary differential equation eflern-+ 1. Then using it
we have to prove that the correspondM§’ does not change sign. This approach
is used in [19] to study the particular case- e = 0 of the challenging question
proposed in [12]:

Question.Consider the planar semi-homogeneous system
x=ax+by y=ol+dxy+exy+ fy.

Is two its maximum number of limit cycles?

2.2 Computationsin polar coordinates

To work in polar coordinates we will need the expressioriMafin terms of the
expression of the vector field (1) in polar coordinates,

=R(r,0) := P(rcosb,rsinf)cosd + Q(r cosh, rsinb)sinod, (20)
6=0(r0) = %(Q(rcose, rsinf)cosd — P(rcosf,rsinf)sin 9).

Lemma 1. Letf =R(r,0), 6= O(r, 0) be the expressiofi0) of systen{l) in polar
coordinates. Then the functionsMiven in(3) writes as

B 0V P 0Q
Ms = W Q+S( y)V
ov 0V

0R 79 R

Theorem 1.Consider the planar differential syste(h),
=P(xy), y=Q(xy),

where P and Q are real polynomials of degree n ar{@,B) = Q(0,0) = 0. Define
the polynomial

1 27T
p(r?) = ﬁ/0 R(r,6)d6

where R is given if10) and set Wr) = r?p/(r2). Denote by d the degree of w and
by Nt its number of non-negative roots. For each fixed R consider the function
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V) RO () 45 <0R((7rr, 0, aed(;, 0, R(rr,e))w(r)

n+d—1

= ; m(s,0)r',

and, for any i> 1, let 1ii(s) be such thamaxge (g 2 Mi(S,0) < Li(S).
Then, if the polynomial

n+d—1

)=y

is negative for all re (0,), system(1) has at most N limit cycles and all of them
are hyperbolic.

Proof. We want to apply Corollary 1 to system (1) wkt{x,y) = w(r) and the value
sgiven in the statement of the Theorem. By hypothesis, we have

for all r € (0,). Notice that by the proof of Corollary 1 and becaude does
no vanish there are no limit cycles fw(r) = 0}. Hence the maximum number
of limit cycles is/(R?) = 0 whens > 0 and/(R?,w) if s < 0. In fact notice that
{w(r) = 0} is formed by the origin andl™ — 1 disjoint concentric cercles. Therefore
¢(R?,w) = N* and again by Corollary 1 the theorem follows

Remark 1(i) The choice of the functioW (x,y) = w(r) in Theorem 1 is motivated
by the following fact: for the simple system that in polar odioates writes as
i =rp(r?), 8 = q(r?), whereq is any arbitrary polynomial, it holds that the cor-
respondingvl_1, given in (3), is always negative.

(ii) Following the proof of Corollary 1 it is not difficult to ee that under the
hypotheses of the Theorem 1, if the system has only the oaigjia critical point
then it has at leas™ — 2 limit cycles, with alternating stability. The reason is
that two consecutive circles ¢fv(r) = 0} always are the boundaries of positive or
negative invariant regions.

We end this subsection with a concrete application of Thadréo a 3-parameter
family of planar vector fields. Consider the system

Xx=X(1— (C+y?)(2— (C+Y?)) —y+ay+ bdy?,
Y =X+Y(1—(C+Y))(2— (C+Y?)) +cxy. (11)

We will prove that ifa, b andc are such that

9 9
Wape(r) := —10+ Z(|a| +c|) + Z|b|r +(12+|al +|c))r2+ |bjr¥—4r* <0
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for all r > 0, then system (11) has at most two (hyperbolic) limit cyclesrébver,
when they exist, one is included in the digc= {x*>+y? < 3/2} and is stable and
the other one is outside the disc and it is unstable.

To apply Theorem 2 we computg(s) = 2 — 3s+s>. Then takingw(r) =
r2p'(r?) = r2(—3+2r?) ands = —1, we obtain

M_1(r, 0) :% (—40+a(6sin(20) — 3sin48)) + c(6sin(26) + 3sin(40)))r*
+ gb(z cog ) —3cog30) + cog50))r°

+ (12+ asin(48) — csin(40))r® — g (—cog36) +cog50))r’ — ard.

Hence, for the values of the parameters considered, we o&e firat
M_1(r,8) < r*4¥hpc(r) <O

for all r > 0. Thus we can apply Theorem 2. Sink€ = 2 we have proved that
system (11) has at most two (hyperbolic) limit cycles.

For instance the condition 0#,p ¢ holds fora=1/8,b = 1/15 andc = 1/20.
Moreover for these parameters it is not difficult to prove,usyng resultants and
the Sturm’s theorem, that the origin is the unique criticaihp which is unstable.
Finally, by studying the flow ofx?+y? = R?}, for Rbig enough, and ofix* +y? =
3/2}, we prove the existence of both limit cycles.

3 More applications

This section contains an extension of a Massera’s resuti@ed from [20] and a
study of an extension of the van der Pol system introduce84h [

3.1 A generalization of aresult of Massera

Consider the generalized smooth second order Liénardiequa
X+ f(x)x+9g(x) =0,
with f andg smooth functions. It can be written as the planar system
x=y, y=—-f(x¥y—-g(x). 12)
We defineG(x) = [§d(z)dz

Using once more the extended Bendixson-Dulac Theorem si@bitollary 1 we
can prove the following result.



Some applications of the extended Bendixson-Dulac Theorem 15

Fig. 2 Example of sefV = 0}, under the hypotheses of Proposition 5.

Proposition 5. Let # = .# x R be a vertical strip of R?, where.# is an open
interval containing the origin. Assume that the functionand g are of clas&™,
that g only vanishes at the origin and that+f2(f /g)’G does not change sign on
# vanishing only at x= 0. Then systerfil2) has at most one periodic orbit which
entirely lies in7’, and when it exists it is a hyperbolic limit cycle.

Proof. By takingV (x,y) = y? + (2Gf)y/g+ 2G ands = —1 we can computils
given in (3), obtaining that

M1 = (f+2G(f/g))y>.

Notice thatG/g and (f/g)'G are well-defined at the origin. By the hypotheses,
M_1 does not change sign off and{M_; = 0} = {xy = 0}. Moreover this set
does not contain periodic orbits. Hence we can apply CagollaSinces < 0 we
have to computé(#,V). The functionV has degree 2 igand wherx = 0 the only
point in %5 := {V = 0} is (0,0). Therefore the sety has no oval surrounding the
origin. Moreover, since the origin is the only critical pbof the system andj is
without contact by the flow of the system, thgf does not contain ovals at all. In
Figure 2 we illustrate a possible s, taking f(x) = —4+x2 +x* andg(x) = x.
ThenV (x,y) =y + (=4 +x2 +x*xy+x% andM_1(x,y) = 2(1+ 2x%)x?y?. Hence,

in general, all the connected regions#f\ ¥y are simply connected but one and
L(#',V) = 1. Thus we have proved the uniqueness of the limit cycle.

We remark that Proposition 5 wheyix) = x, contains the following classical
result, which was proved by Massera [28] and Sansone [32].

Massera’s Theorem.Consider the L&nard differential syster{lL2) with g(x) = X,
f(0) < 0and f(x)x > 0if x # 0. Then systertlL2) has at most one limit cycle
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3.2 A generalization of van der Pol equation

The system
x=y, y=—x+ (0> )(y+y), (13)

is introduced and studied in [34] as a generalization of treder Pol equation. In
the papers [22, 34] it is proved that it has at most one (hyg&)dimit cycle and
that it exists if and only ib € (0,b*) for some 0< b* < {/912/16) ~ 1.33. This
bifurcation value is refined in [16], proving thit € (0.79,0.817). In fact, numer-
ically it can be seen thdt* =~ 0.80629. In this section we will prove the unique-
ness of the limit cycle wheh € (0, 0.6] using a suitable Bendixson-Dulac function.
This idea is developed in [16] where the authors prove, wiithgame method, the
uniqueness and hyperbolicity of the limit cycle holds wites (0,0.817) and its
non-existence whel € [0.817,).

To give an idea of how we have found the functddrand the values to find
the functionMs that we will use in our proof we first study again the van der Pol
system. As we will see the main difficulty of this example iattthe functiorMs is
a function of two variables.

3.2.1 The van der Pol equation (a second approach)

The van der Pol equation studied in Subsection 1.2.3, aftes@aling of variables,
is equivalent to the system

Xx=y, y=-x+(b%>—x)y. (14)
Arguing like in Section 2.1.1 it is natural to start considgrfunctions of the form
V(xY) = Vay? +Vi(X)y+ Vo(X),

with s= —1. Then the correspondind_; given in (3) is a polynomial of degree 2
in y, with coefficients being functions of In particular the coefficient of is

VA(X) + Va(b% = XP).

Taking v1(x) = (x> — 3b%)vox/3 we get that this coefficient vanishes. Next, fixing
Vv, = 6, and imposing to the coefficient pto be zero we obtain thag(x) = 6x° +-c,
for any constant. Finally, takingc = b?(3b? — 4), we arrive to

V(x,y) = 6y? + 2(x? — 30%)xy+ 6x%+ b?(3b% — 4). (15)

Then
M_1(x,y) = 4x* + b?(30% — 4) (x* — b?).

It is easy to see that fdre (0,2/+/3) ~ (0,1.15), M_1(x,y) > 0. Hence we can
apply Corollary 1. AsV(x,y) is quadratic iny, V(x,y) = 0 has at most one oval,
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see Figure 3 fob = 1. Hence/(R?V) = 1 and we have proved the uniqueness
and hyperbolicity of the limit cycle wheh < 2/+/3. Recall that the proof given
in Subsection 1.2.3 is simpler and valid for all values of pagameter. We have
included this one as a motivation for the construction offteetionV (x,y) used to
study system (13).

Fig. 3 The algebraic curv¥ (x,y) = 0 withb = 1.

3.3 System (13)with b < 0.6

By making some modifications to the functidhgiven by (15), we propose the
following functionV,

V(xy) = (23 + 6b%(1 — b?)X)y* + 6(1 — b?)y? + 2(x* — 3b?)xy
+6(1— b?)x? + b?(30” — 4) (16)

and agairs = —1. Some computations give that

M_1(x,y) = 6((2—30?)x*y? — 20%(2 — b?)x3y® + (2 — b?)x?y*) + 2(2 — 3b?)x*
—30%(14— 150%)x%y? 4 120%(2 — b?)xy® — b?(4 — 9b?)x?
+3b*(2 - 30%)y? + b*(4 — 30?).

Then we need to study the shape of the connected compones&tRst\ {V =
0} and the sign oM_1(x,y). It can be seen that the algebraic cuk,y) = 0,
with V(x,y) given by (16), has no singular points and at most one closeatfor
b € (0.0.85]. MoreoverM_;(x,y) does not vanish fob € (0,0.651). Hence we can
apply again Corollary 1. Sinc§R?,V) = 1 we have proved the uniqueness and
hyperbolicity of the limit cycle foib < 0.6 (in fact forb < 0.651).

The tools used to prove the above assertions are given in ft6bng other
methods the authors use discriminants, double discrinsn&turm sequences and
the study of the points at infinity of the algebraic curves.
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