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Computational Methods for Color vision. 

Synonyms: Color Computational vision, computational neuroscience of color. 

Definition 

The study of color vision has been aided by a whole battery of computational 

methods that attempt to describe the mechanisms that lead to our perception of 

colors in terms of the information processing properties of the visual system. 

Their scope is highly interdisciplinary, linking apparently dissimilar disciplines 

such as mathematics, physics, computer science, neuroscience, cognitive 

science, and psychology. Since the sensation of color is a feature of our brains, 

computational approaches usually include biological features of neural systems 

in their descriptions, from retinal light-receptor interaction to sub cortical color 

opponency, cortical signal decoding and color categorization. They produce 

hypotheses that are usually tested by behavioral or psychophysical 

experiments. 

 

Detailed Description 

Although the sensation of hue is an invention of our brains, it nevertheless 

allows us to identify objects by one of their key physical features: their color. 

Our cortical neurons receive information about the world “out there” and 

process it in highly non-linear ways to make sense of the environment, 

highlighting and grouping important items over the rest. In the case of color, this 

information is carried by the distribution of energy in the photons (wavelength 

distribution) of the light reflected by objects. Our visual system captures these 

photons through a very sophisticated mechanism in our retinas, one that 

converts wavelength information into neural spikes, and ultimately into the vivid 

sensation we experience. However, the result of this process bares only a small 

resemblance to the physical characteristics of the light originally falling on our 

retinas. For instance two objects whose reflected light may differ by only a few 

more energetic photons may be assigned completely different color categories 

by our brain. The opposite may also occur: two objects reflecting remarkably 

different photon/energy distributions may look as having the same color to us. 

Our perception of color at a point in space may depend not only on the physical 

characteristics of the light reflected from that point but also on that of the points 

surrounding it. The origins of these mechanisms are deeply rooted in the 

lifestyles of our primate ancestors and their need to avoid predators, find 



suitable mates and forage for nutritious fruits and leaves in the African forest. 

These tasks and a changing visual environment may have determined the 

properties of our color vision and its drive to collect information about the part of 

the environment that changes the least: the surfaces of objects. This knowledge 

may help categorize the objects (edible? dangerous?) and therefore improve 

our chances of survival. In view of this it is easy to understand why our brain 

has evolved its non-linearities to favor a representation of the world that 

enhances and improves on the mere physics of the visual environment. 

The very properties that aid survival also make the problem of predicting color 

sensation from the wavelength patterns of light stimulating our retinas very 

complex and mathematically difficult to address. Color vision scientists have 

made a great deal of advance, making sense of what is in essence a complex 

non-linear problem. Each sub-discipline studies the phenomenon from its own 

unique perspective, with computational approaches contributing to our 

understanding at every level, from neurophysiology to behavior. 

The retina. 

The retina is perhaps the best known part of our visual system. It contains three 

types of photoreceptors or cones that are selectively stimulated by photons 

according to their energy (wavelength). These receptors (named L, M and S 

because of their preferences for long, medium and short wavelengths) are light 

sensitive neurons which fire electrical impulses when exposed to light of 

wavelengths near their preferred value. Their sensitivity has been quantified [1] 

in the form of three spectral sensitivities functions (see Figure 1). Notice that 

since each of the cones could be stimulated by photons with energies within a 

wide range, long-wavelength preferring cones could be stimulated by medium-

wavelength light, etc. Given that cones also respond to light intensity, intense 

light of sub-optimal wavelength can produce the same firing rate as low intensity 

light of optimal wavelength. This is the reason why many (in fact infinite) 

wavelength distributions can produce similar outputs from the cones. Two lights 

of different wavelength distributions that produce the same retinal output are 

called metamers. 



 

Figure 1. Schematics of the chromatic signal processing in the retina. The figure on the left shows the three 
human photoreceptors and how they connect to form the three post-receptoral mechanisms by addition and 
subtraction. Chromatic information is obtained by sampling the spectrum around different wavelengths and 
comparing the output of at least two different types of photosensitive neurons. Two of the post-receptoral 
mechanisms are chromatically opponent and one (L+M) is achromatic. Panels on the right show the spectral 
sensitivity of each chromatic mechanism. The terms L+M, L-M, etc. refer to the sign of the operation and do not 
represent the weight of each mechanism in the sum. 

Receptoral and post-receptoral mechanisms were anticipated in the nineteenth 

century (well before any physiological observation) in the form of a trichromatic 

theory by Young [2] and Helmholtz [3] and a color opponent theory by Hering 

[4]. The first, postulates that color vision is based on three fundamental 

mechanisms as illustrated at the top of Figure 1 and the second postulates that 

color vision arises from the workings of three opposed mechanisms: red-green, 

blue-yellow and light-dark (see bottom of Figure 1). Each theory was an attempt 

to explain different phenomena such as how mixtures of colored light create a 

different color or the observation that some opposing pairs of sensations cannot 

be simultaneously experienced (e.g. there is no reddish-green color), and 

afterimages (illusory colors that appear after our retinas have been 

overexposed to colored stimuli) [5]. Our current knowledge of the interaction 

between cone photoreceptors and light can be expressed mathematically as the 

integral of the product between the electromagnetic power distribution of the 



light and each of the cones’ spectral sensitivity functions (L, M and S curves 

shown in Figure 1). 

𝜀𝑖 =  ∫ 𝑆𝑖(𝜆)
𝜆

 𝑃(𝜆) 𝑑𝜆 (1) 

 

In equation 1 𝜀𝑖 represents the excitations of the three classes of cones (i = L, 

M, S), 𝑆𝑖(𝜆)  is their corresponding spectral sensitivity and 𝑃(𝜆) is the spectral 

power distribution of the light falling on them. Since in real life, light 

measurements are only available at a series of finite wavelengths, the integral 

in equation 1 is generally approximated to a finite sum over the visible spectrum 

(400 – 700 nm). 

Computational methods for the retina.  

In practice, it is unlikely that we know the full spectrum of the light falling on the 

retina. It is more common to operate retinal models based on images obtained 

by commercial cameras. These are also modeled by equation 1, but their 

sensor sensitivities are usually unknown. Some devices are capable of 

producing images in standard, device-independent color spaces such as the 

CIE1931 XYZ system or the sRGB color standard, which are easily convertible 

following a simple set of formulae [6, 7]. Once we know the XYZ coordinates we 

can obtain the chromaticity coordinates x, y using the following: 

𝑥 =
𝑋

𝑋 + 𝑌 + 𝑍
 

𝑦 =
𝑌

𝑋 + 𝑌 + 𝑍
 

(2) 

 

From there, it is possible to obtain the cone excitations using Y (luminance) and 

the following transformation [8]: 

𝜀𝐿 = 𝑌[0.15514 𝑥 𝑦⁄ + 0.54312 − 0.03286(1 − 𝑥 − 𝑦) 𝑦⁄ ] 
𝜀𝑀 = 𝑌[−0.15514 𝑥 𝑦⁄ + 0.45684 + 0.03286(1 − 𝑥 − 𝑦) 𝑦⁄ ] 
𝜀𝑆 = 𝑌[0.00801 (1 − 𝑥 − 𝑦)/𝑦] 

(3) 

 

In the case of equation 3, i  values correspond to the Smith and Pokorny cone 

fundamentals [9] and the chromaticities ought to be derived from the Judd-

modified CIE1931 standard color matching functions [10]. The plot at the top of 

Figure 1 shows an example of cone fundamentals, with the sensitivity of each 

cone plotted as a function of wavelength. Color matching functions are obtained 

from psychophysical experiments where subjects have to visually match the 

sensation produced by spectrally narrowband stimuli to a mixture of three 

spectrally broadband lights. It is possible to mathematically obtain cone 



fundamentals from such experiments, given certain assumptions [11]. Although 

Smith and Pokorny did not specify the coefficient necessary to obtain s, the 

value of 0.00801 was chosen to take into account the relative strengths of the 

two postreceptoral neural opponent mechanisms (see below). 

Equation 3 provides a good approximation for transforming the output of 

cameras and monitors once we can express it in the CIE1931 XYZ system. 

However, in most cases this is not possible and devices such as cameras and 

monitors need to be characterized to convert their outputs to cone excitations. 

There are several methods for characterizing cameras which include gamut 

mapping between a known target and the camera output [12, 13], estimation of 

the camera’s sensor sensitivities [14, 15], and mixtures [13] etc. They transform 

the output of a commercial digital camera into a device-independent color space 

such as the CIE1931 XYZ. 

Receptoral gain control mechanisms. 

In the retina, there is a non-linear relationship between the input and the output 

of the cone photoreceptors, which is often characterized as a gain control 

mechanism (output signals are modified by signals from the same or different 

cones). This mechanism converts cone excitations into a contrast 

representation such as: 

𝐶𝑖 =
∆𝜀𝑖

𝜀𝑖
𝑏 − 𝜀𝑖

0  ;         𝑖 = 𝐿, 𝑀, 𝑆 (4) 

 

where 𝜀𝑖
𝑏 represents the cone excitation produced by the background (the 

adaptation state), 𝜀𝑖
0 is a constant and ∆𝜀𝑖 represents the excitation difference 

between the cone considered and the background [16]. The i sub index 

discriminates between the three types of photoreceptors. 

One of the reasons for this normalization is to reduce the massive intensity 

range present in the visual environment (in a typical sunny day variations in 

intensity between shaded and illuminated objects can reach 9 orders of 

magnitude), which cannot be encoded directly by the output of single neurons 

(e.g. retinal neurons can encode ranges of approx. 50 to 1) [17]. 

Post-receptoral color processing 

The signals transmitted by cones are combined and encoded in a series of 

steps by neurons in the retina (the last processing layer is formed by neurons 

called ganglion cells) and transmitted to an area inside the thalamus called the 

lateral geniculate nucleus (LGN). The majority of these signals (80% of the 

fibers reaching the LGN) passes through a layer of ganglion cells called 

parvocellular (or parvo) [17]. At this stage, the information is organized both 

spatially and chromatically in opponent signals. For example, a parvo cell in the 



central retina may receive input from a single L or M cone and weight it against 

input from a small group of surrounding cones (see Figure 2). 

 

Figure 2: Schematics of the spatiochromatic opponent processing in the retina. Parvocellular ganglion cells collect 
input from a single cone and compare it with a pool of surrounding cones. In the case of L-M opponency, this 
leads to four possible combinations, as illustrated in the figure. The right part of the figure shows an example of 
how the same cell can carry information about both intensity and color. If the light falling on the cell’s receptive 
field changes its intensity, both centre and surround are stimulated, therefore increasing their antagonism. If the 
same light changes its color towards red, the centre is stimulated and the surround is depressed, contributing less 
to reduce the ganglion cell output signal (therefore the + sign). 

Each ganglion cell is stimulated by light falling on a physical part of the retina 

that contains the cones to which it is connected (its receptive field). As a result 

of the wiring shown in Figure 2, parvo cells output a signal that is spatially and 

chromatically opponent and conveys both intensity (i.e. brightness) and 

wavelength information (i.e. color) from the light falling on its receptive field. 

Thus parvo cells perform a 'double-duty', carrying information about both 

intensity and color. The right part of Figure 2 shows how intensity changes in 

light increase the cell’s antagonism, conveying information about the smallest 

possible unit (a cone) while chromatic changes produce a synergistic response 

in the center and surround, thus increasing the number of cones contributing to 

the signal. For this reason, parvo cells in Figure 2 convey finer detail information 

(higher spatial frequencies) about intensity than for color. In other words, when 

light varies spatially in color, the same cells can only carry information about its 

coarse spatial distribution (lower spatial frequencies). This imbalance has been 

confirmed psychophysically by our greater ability to detect fine patterns of 

achromatic light and coarse patterns of colored light [18], and matches the 

information content of natural scenes [19]. This combination of spatial and 



chromatic opponency in parvo cells appears to be a sophisticated mechanism 

to optimally extract information from the visual environment, carrying both 

chromatic and achromatic signals over different spatial frequency bands 

(multiplexing). 

Computationally, it is common to model the centre-surround receptive field 

structure by convolving the color opponent representations with Gaussians 

kernels of opposite sign and different standard deviations (difference of 

Gaussians). For example, one kernel is applied to the L cone representation 

and another (of greater standard deviation) to the M cone representation and 

the results subtracted from each other. This process is equivalent to subtracting 

a blurred version of the M-cone excitation image (the surround) from another, 

slightly blurred version of the L-cone excitation (the centre). A similar algorithm 

can be applied to obtain S-(L+M) opponency. Similarly to parvo, there exist in 

the retina two other types of ganglion cells. The Koniocellular (or konio) cells 

that carry information about S cones excitation relative to their surrounds (S-

(L+M) and –S+(L+M)) and the Magnocellular (or magno) that receive excitatory 

output from all three types of cones, therefore is insensitive to color [17]. Figure 

1 illustrates this opponency from a spectral point of view.  

Sub cortical color representations 

The three types of ganglion cells described above connect to specialized layers 

of neurons in the LGN. The presence of these LGN cells representing different 

aspects of the light captured by cones has inspired the creation of color spaces 

based on the properties of these neurons. The best known is the MacLeod-

Boynton cone excitation space [20] which is based on the coefficients of 

equation 3 plus an arbitrary condition that the relationships among the 

sensitivities of the three receptoral mechanisms at 400 nm (see Figure 1) will be 

given by equation 5: 

𝑆𝐿(400) + 𝑆𝑀(400) = 𝑆𝑆(400) (5) 
 

where 𝑆𝑖(400) is the sensitivity of each cone photoreceptor at 400 nm. To 

obtain the coordinates of the MacLeod-Boynton receptor space it is necessary 

to convert the L, M, S cone excitations to coordinates l, m, s using the following 

transformation:  

𝑙 =
𝐿

𝐿 + 𝑀
;    𝑚 =

𝑀

𝐿 + 𝑀
 ;    𝑠 =

𝑆

𝐿 + 𝑀
 (6) 

 

The normalization provided by equation 5 constrains the value of s in equation 6 

between 0 and 1. 



An extension of cone-excitation spaces are cone-contrast spaces, which 

address the issues posed by the receptoral gain control mechanisms described 

in equation 4. Two popular cone-contrast spaces were created by Derrington et 

al [21] and Boynton [22] following different assumptions about the neutral points 

(crossings of the L-M and S-(L+M) functions of Figure 1). Cone-contrast 

representations take into account the cone excitation produced by the 

background, and re-scale the signal accordingly. The new coordinates become: 

Ci =
Δ𝜀𝑖

εi
b

;        i = L, M, S (7) 

 

where Δ𝜀𝑖 is the cone-excitation difference between the signal and a given 

reference level (the background). εi
b is the cone excitation produced by the 

background. In this new representation, the background excitation becomes the 

origin of the new system. Cone contrast spaces provide a representation of the 

input signal arriving at later stages in the visual pathway. 

Cortical color processing 

LGN neurons project to the primary visual cortex in the occipital part of the brain 

(also known as striate cortex or area V1). From there, visual information is sent 

to the so called extrastriate visual cortical areas (named V2, V3, V4, and V5). 

Each part of the retina is mapped into V1 with a very precise correspondence 

between the visual field and its related location in the primary visual cortex. A 

large portion of V1 is dedicated to the center of the retina, where the abundance 

of cones is highest and the receptive field smallest. In contrast to the well 

defined, opponent-color information carrying neurons found in the retina and 

LGN, color sensitive cortical neurons respond to many other properties of the 

visual stimulus such as contrast, object orientation, shape, etc. This is thought 

to be the reason behind many illusory phenomena where the color of the area 

we gaze is influenced by patterns of the surrounding area (chromatic induction, 

see Figure 3) and color constancy [23]. 



 

Figure 3 shows the influence of surrounding patterns on the perceived color of a central area. In both figures, the 
inverted “U” bar has the same RGB values but it is perceived differently according to its surroundings. This 
phenomenon is called “chromatic induction”. 

Originally, color processing in the visual cortex was thought to be modular and 

separated from other forms of perception. This view was supported by studies 

in cerebral achromatopsia (a lesion in the brain that causes loss of the ability to 

recognize colors without loss of form and motion perception) and others [24]. 

Today’s prevalent view is that V1 is strongly stimulated by color, with about 50% 

of its neurons responsive to some kind of chromatic stimulus, with L-M being 

the preferred direction [25]. Areas V2 and V4 also respond to color, however, 

many of their neurons respond equally to achromatic patterns. Two intriguing 

classes of color processing neurons were found in the primary visual cortex: 

single- and double-opponent cells [25, 26] (see Figure 4). The former respond 

best to large areas of color while the later have preference for color boundaries, 

patterns and textures. Both types of neurons have been linked to the perceptual 

phenomena shown in Figure 3. 

There have been reports in the literature about a spatial segregation of color-

selective neurons in V1 and V2. A number of optical imaging 

electrophysiological and microelectrode studies have found the presence of 

clusters of color selective neurons, although there are still negative results and 

the issue has not been definitively resolved [25]. 



 

Figure 4: Cartoon examples of single-opponent and double-opponent color processing cells. Single-opponent cells 
are insensitive to edges and do not prefer any oriented stimuli. They respond strongly to colored patches. On the 
other hand, double-opponent cells are strongly selective for chromatic edges and have a preferred orientation. 

Computational models of color processing in the visual cortex. 

Computational models of cortical processing can be categorized as either 

primarily phenomenological, i.e. trying to capture the observed phenomena in a 

convenient mathematical form, or mechanistic, i.e. trying to show how observed 

phenomena arise from biologically grounded neural mechanisms. A typical color 

vision model contains a pre-processing stage where the input image is 

converted to a L, M, S cone excitation representation, a cone opponency stage 

that weights the output of cones to produce opponent signals and other post-

receptoral stages which may include normalizations by neighboring units and 

weighting parameters. The centre-surround receptive field interaction is usually 

modeled via a pyramid of 2-dimensional Gaussians or Gabor operators that 

convolve the image to obtain chromatic and achromatic information at different 

spatial scales and orientations. A final layer can also be implemented to 

account for single- and double-opponent cell processing. 

Chromatic induction demonstrations like those shown in Figure 3 have inspired 

some computational attempts to model color processing in the visual cortex, 

trying to predict the effects of surround stimuli on the perceived color of a 

central patch. Examples of these are the models of Singer & D’Zmura [27], 

Spitzer and Barkan’s model [28] and Otazu et al’s CIWaM [29]. The later 

consists of a cone receptor stage that separates the input into two chromatic 

and one achromatic channel, a wavelet pyramid to model spatiochromatic 

processing in the cortex, including normalization effects by neighboring neurons 



(divisive normalization) [30], and a weighting function to mimic the spatial 

filtering of the human visual system. A later version of CIWaM was capable of 

predicting unconstrained eye movements in human subjects [31]. 

A family of computational approaches to color processing takes advantage of 

the tools currently available in computer science for tasks such as object 

recognition. For example, one approach consists of applying shape-based 

descriptors such as Scale-invariant feature transform (Sift) on the post-

receptoral color representations. Sift will learn “interesting features” of an object 

in a set of training images which can be later used to identify the object in the 

dataset. Other approaches involve a set of shape-based descriptors computed 

from grayscale pixel intensities, which are in turn concatenated with hue 

histograms. An improvement has been proposed by Van de Weijer and Schmid 

who concatenated a hue histogram with grayscale Sift image descriptors [32] 

while Zhang et al [33] described a hierarchical model of color processing 

inspired in the primate visual cortex. They produced chromatically opponent 

channels using operators that resemble single- and double- opponent cells and 

outperformed the object recognition previous approaches. 

Color constancy  

The human visual system has the ability to perceive objects as having a well 

defined color despite the fact that they reflect light according to their own 

pigmentation, geometry and the wavelength content of the illumination. During a 

typical day, natural daylight changes its color quite dramatically but we are 

mostly unaware of its full effect on the surfaces of objects. As we have seen 

before, the distribution of power as a function of wavelength in the light reaching 

our retinas determines how we perceive color. In the case of light reflected from 

objects, this power distribution depends of several factors. Equation 8 provides 

a simplified description of the problem [23]: 

C(λ) =  E(λ)R(λ) (8) 
 

Here C(λ) is the spectral power distribution of the light reaching our retina, E(λ) 

is the spectral power distribution of the illumination and R(λ) is the spectral 

reflectance of the surface. Equation 8 assumes that the illumination is spatially 

uniform and surfaces are Lambertian (diffusely reflective, with no specularities). 

Of these factors, only R(λ) is intrinsic to the objects while E(λ) changes 

according to the type of illumination, physical location, time of the day, etc. In 

summary, to produce a stable scene in terms of color, the human visual system 

disentangles the two factors at the right side of the Equation 8. This is a 

mathematically ill-posed problem, given that there are infinite possible 

combinations of illumination and reflectance that produce the same reflected 

light. To solve it, the human visual system may resort to information from 



previous experience, scene features such as specular reflections and 

interreflexions and memory of colors, etc. 

The problem of illumination removal is ubiquitous. For example, in computer 

vision there are applications that require illumination stability in order for 

algorithms to work. In photography, users expect the image to represent the 

scene “as they saw it” not the actual physical values. Many popular 

computational approaches try to solve this problem by taking into account the 

information intrinsic to the image, rather than the physiological or anatomical 

mechanisms of the visual system. For practical reasons, methods were 

developed to return an image that approximately represents the intrinsic color of 

objects, discounting the effects of the illumination (canonical image). This image 

can be then “reilluminated” to create conditions close to the observer’s 

perception. Illuminant-removal methods contain different statistical hypothesis, 

being the most popular the “grey world” assumption, which states that the 

average reflectance of a scene is achromatic. Another popular hypothesis 

(called “MAX-RGB”) takes advantage of some properties of white surfaces and 

specular reflections, and is based on the assumption that the maximum 

reflectance of a scene is achromatic. Once a hypothesis is introduced, the 

computational algorithm returns an image that meets the hypothesis. Many of 

these solutions are strongly dependent on whether the input image complies 

with the hypothesis and are prone to fail in particular cases. For example, a 

“grey world” algorithm may fail when the average color of the scene is not grey. 

The main drawback of this family of computational approaches is that they do 

not provide much insight about the mechanisms that are behind color 

constancy. See Gevers et al [32] for a comparison of illuminant-removal 

methods. 

Color appearance 

The models and the physiologically-based color spaces described above have 

been created to handle the perception of colors viewed in isolation and in 

controlled, fully adapted conditions. However, the perceptual appearance of 

colors in naturalistic viewing conditions depends of so many external factors 

(surround, background, illuminant, etc.) that a series of sophisticated models 

have been created to account for them. These so called color appearance 

models are not constrained by attempts to incorporate elements of the 

physiology [34]. 
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