PD-sets for (nonlinear) Hadamard \mathbb{Z}_4-linear codes

R. D. Barrolleta1, M. Villanueva1

1Universitat Autònoma de Barcelona, Spain, \{rolanddavid.barrolleta, merce.villanueva\}@uab.cat
This work was partially supported by the Spanish MEC under Grant TIN2013-40524-P, and by the Catalan AGAUR under Grant 2014SGR-691.

Any nonempty subset C of \mathbb{Z}_4^n is a binary code and a subgroup of \mathbb{Z}_4^n is called a binary linear code. Equivalently, any nonempty subset \mathcal{C} of \mathbb{Z}_4^n is a quaternary code and a subgroup of \mathbb{Z}_4^n is called a quaternary linear code. Quaternary codes can be seen as binary codes under the usual Gray map $\Phi : \mathbb{Z}_4^n \to \mathbb{Z}_2^{2n}$ defined as $\Phi((y_1, \ldots, y_n)) = (\phi(1) = (0, 0), \phi(1) = (0, 1), \phi(2) = (1, 1), \phi(3) = (1, 0)$, for all $y = (y_1, \ldots, y_n) \in \mathbb{Z}_4^n$. If \mathcal{C} is a quaternary linear code, the binary code $C = \Phi(\mathcal{C})$ is said to be a \mathbb{Z}_4-linear code.

A $\mathbb{Z}_2\mathbb{Z}_4$-additive code \mathcal{C} is a subgroup of $\mathbb{Z}_2^a \times \mathbb{Z}_4^b$. We consider the extension of the Gray map $\Phi : \mathbb{Z}_2^a \times \mathbb{Z}_4^b \to \mathbb{Z}_2^{2a+2b}$ defined as $\Phi(x, y) = (x, \phi(y_1), \ldots, \phi(y_b))$, for all $x \in \mathbb{Z}_2^a$ and $y = (y_1, \ldots, y_b) \in \mathbb{Z}_4^b$. This generalization allows us to consider $\mathbb{Z}_2\mathbb{Z}_4$-additive codes also as binary codes. If \mathcal{C} is a $\mathbb{Z}_2\mathbb{Z}_4$-additive code, the binary code $C = \Phi(\mathcal{C})$ is said to be a $\mathbb{Z}_2\mathbb{Z}_4$-linear code. Moreover, since the code \mathcal{C} is isomorphic to an abelian group $\mathbb{Z}_2^a \times \mathbb{Z}_4^b$, we say that \mathcal{C} (or equivalently the corresponding $\mathbb{Z}_2\mathbb{Z}_4$-linear code $C = \Phi(\mathcal{C})$) is of type $(\alpha, \beta; \gamma, \delta)$ [3]. Note that $\mathbb{Z}_2\mathbb{Z}_4$-additive codes can be seen as a generalization of binary (when $\beta = 0$) and quaternary (when $\alpha = 0$) linear codes. The permutation automorphism group of \mathcal{C} and $C = \Phi(\mathcal{C})$, denoted by $P\text{Aut}(\mathcal{C})$ and $P\text{Aut}(C)$, respectively, is the group generated by all permutations that let the set of codewords invariant.

A binary Hadamard code of length n has $2n$ codewords and minimum distance $n/2$. The $\mathbb{Z}_2\mathbb{Z}_4$-additive codes such that, under the Gray map, give a binary Hadamard code are called $\mathbb{Z}_2\mathbb{Z}_4$-additive Hadamard codes and the corresponding $\mathbb{Z}_2\mathbb{Z}_4$-linear codes are called Hadamard $\mathbb{Z}_2\mathbb{Z}_4$-linear codes, or just Hadamard \mathbb{Z}_4-linear codes when $\alpha = 0$. The permutation automorphism group of $\mathbb{Z}_2\mathbb{Z}_4$-additive Hadamard codes with $\alpha = 0$ was characterized in [9] and the permutation automorphism group of $\mathbb{Z}_2\mathbb{Z}_4$-linear Hadamard codes was studied in [6].

Let C be a binary code of length n. For a vector $\nu \in \mathbb{Z}_2^n$ and a set $I \subseteq \{1, \ldots, n\}$, we denote by ν_I the restriction of ν to the coordinates in I and by G_I the set $\{\nu_I : \nu \in C\}$. Suppose that $|C| = 2^k$. A set $I \subseteq \{1, \ldots, n\}$ of k coordinate positions is an information set for C if $|G_I| = 2^k$. If such I exists, C is said to be a systematic code.

Permutation decoding is a technique, introduced by MacWilliams [8], which involves finding a subset S of the permutation automorphism group $P\text{Aut}(C)$ of a code C in order to assist in decoding. Let C be a systematic t-error-correcting code
with information set I. A subset $S \subseteq \text{PAut}(C)$ is an s-PD-set for the code C if every s-set of coordinate positions is moved out of the information set I by at least one element of the set S, where $1 \leq s \leq t$. If $s = t$, S is said to be a PD-set.

In [4], it is shown how to find s-PD-sets of size $s + 1$ that satisfy the Gordon-Schönheim bound for partial permutation decoding for the binary simplex code S_m of length $2^m - 1$, for all $m \geq 4$ and $1 < s \leq \left\lfloor \frac{2^m - m - 1}{m} \right\rfloor$. In [1], similar results are establish for the binary linear Hadamard code H_m (extended code of S_m) of length 2^m, for all $m \geq 4$ and $1 < s \leq \left\lfloor \frac{2^m - m - 1}{m} \right\rfloor$, following the techniques described in [4].

The paper is organized as follows. In Section 1, we show that the Gordon-Schönheim bound can be adapted to systematic codes, not necessarily linear. Moreover, we apply the bound of the minimum size of s-PD-sets for binary Hadamard codes obtained in [1] to Hadamard $\mathbb{Z}_2\mathbb{Z}_4$-linear codes, which are systematic [2] but not linear in general. In Section 2, we provide a criterion to obtain s-PD-sets of size $s + 1$ for \mathbb{Z}_4-linear codes. Finally, in Section 3, we recall a recursive construction to obtain all $\mathbb{Z}_2\mathbb{Z}_4$-additive codes with $\alpha = 0$ [7] and we give a recursive method to obtain s-PD-sets for the corresponding Hadamard \mathbb{Z}_4-linear codes.

1 Minimum size of s-PD-sets

There is a well-known bound on the minimum size of PD-sets for linear codes based on the length, dimension and minimum distance of such codes that can be adapted for systematic codes (not necessarily linear) easily:

Proposition 1. Let C be a systematic t-error correcting code of length n, size $|C| = 2^k$ and minimum distance d. Let $r = n - k$ be the redundancy of C. If S is a PD-set for C, then

$$|S| \geq \left\lceil \frac{n}{r} \left[\frac{n - 1}{r - 1} \left[\frac{n - t + 1}{r - t + 1} \right] \cdots \right] \right\rceil. \quad (1)$$

The above inequality (1) is often called the Gordon-Schönheim bound. This result is quoted and proved for linear codes in [5]. We can follow the same proof since the linearity of the code C is only used to guarantee that C is systematic. In [2], it is shown that $\mathbb{Z}_2\mathbb{Z}_4$-linear codes are systematic. Moreover, a systematic encoding is given for these codes.

The Gordon-Schönheim bound can be adapted to s-PD-sets for all s up to the error correcting capability of the code. Note that the error-correcting capability of any Hadamard $\mathbb{Z}_2\mathbb{Z}_4$-linear code of length $n = 2^m$ is $t_m = \lfloor (d - 1)/2 \rfloor = 2^{m-2} - 1$. Therefore, the right side of the bound given by (1), for Hadamard $\mathbb{Z}_2\mathbb{Z}_4$-linear codes of length 2^m and for all $1 \leq s \leq t_m$, becomes

$$g_m(s) = \left\lceil \frac{2^m}{2^m - m - 1} \left[\frac{2^m - 1}{2^m - m - 2} \left[\frac{2^m - s + 1}{2^m - m - s} \right] \cdots \right] \right\rceil. \quad (2)$$
For any $m \geq 4$ and $1 \leq s \leq t_m$, we have that $g_m(s) \geq s + 1$. The smaller the size of the PD-set is, the more efficient permutation decoding becomes. Because of this, we will focus on the case when $g_m(s) = s + 1$.

2 s-PD-sets of size $s + 1$ for \mathbb{Z}_4-linear codes

Let \mathcal{C} be a $\mathbb{Z}_2\mathbb{Z}_4$-additive code of type $(0, \beta; \gamma, \delta)$ and let $C = \Phi(\mathcal{C})$ be the corresponding \mathbb{Z}_4-linear code. Let $\Phi : \text{PAut}(\mathcal{C}) \to \text{PAut}(C)$ be the map defined as

$$\Phi(\tau)(i) = \begin{cases} 2\tau(i/2), & \text{if } i \text{ is even}, \\ 2\tau((i+1)/2) - 1 & \text{if } i \text{ is odd}, \end{cases}$$

for all $\tau \in \text{Sym}(\beta)$ and $i \in \{1, \ldots, 2\beta\}$. The map Φ is a group monomorphism. Given a subset \mathcal{S} of $\text{PAut}(\mathcal{C}) \subseteq \text{Sym}(\beta)$, we define the set $S = \Phi(\mathcal{S}) = \{\Phi(\tau) : \tau \in \mathcal{S}\}$, which is a subset of $\text{PAut}(C) \subseteq \text{Sym}(2\beta)$.

A set $\mathcal{S} = \{i_1, \ldots, i_{\gamma+\delta}\} \subseteq \{1, \ldots, \beta\}$ of $\gamma + \delta$ coordinate positions is said to be a quaternary information set for the code \mathcal{C} if the set $\Phi(\mathcal{S})$, defined as $\Phi(\mathcal{S}) = \{2i_1 - 1, 2i_1, \ldots, 2i_\delta - 1, 2i_\delta, 2i_\delta+1 - 1, \ldots, 2i_\delta+\gamma-1\}$, is an information set for $C = \Phi(\mathcal{C})$ for some ordering of elements of \mathcal{S}.

Let S be an s-PD-set of size $s + 1$. The set S is a nested s-PD-set if there is an ordering of the elements of S, $S = \{\sigma_1, \ldots, \sigma_{s+1}\}$, such that $S_i = \{\sigma_1, \ldots, \sigma_i\} \subseteq S$ is an i-PD-set of size $i + 1$, for all $i \in \{1, \ldots, s\}$.

Proposition 2. Let \mathcal{C} be a $\mathbb{Z}_2\mathbb{Z}_4$-additive code of type $(0, \beta; \gamma, \delta)$ with quaternary information set \mathcal{S} and let s be a positive integer. If $\tau \in \text{PAut}(\mathcal{C})$ has at least $\gamma + \delta$ disjoint cycles of length $s + 1$ such that there is exactly one quaternary information position per cycle of length $s + 1$, then $S = \{\Phi(\tau^i)_{i=1}^{s+1}\}$ is an s-PD-set of size $s + 1$ for the \mathbb{Z}_4-linear code $C = \Phi(\mathcal{C})$ with information set $\Phi(\mathcal{S})$. Moreover, any ordering of the elements of S gives a nested r-PD-set for any $r \in \{1, \ldots, s\}$.

Example 3. Let $\mathcal{C}_{0.3}$ be the $\mathbb{Z}_2\mathbb{Z}_4$-additive Hadamard code of type $(0, 16; 0, 3)$ with generator matrix

$$\mathcal{G}_{0.3} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \end{pmatrix}. $$

Let $\tau = (1, 16, 11, 6)(2, 7, 12, 13)(3, 14, 9, 8)(4, 5, 10, 15) \in \text{PAut}(\mathcal{C}_{0.3}) \subseteq \text{Sym}(16)$ [9]. It is straightforward to check that $\mathcal{S} = \{1, 2, 5\}$ is a quaternary information set for $\mathcal{C}_{0.3}$. Note that each information position in \mathcal{S} is in a different cycle of τ. Let $\sigma = \Phi(\tau) \in \text{PAut}(\mathcal{C}_{0.3}) \subseteq \text{Sym}(32)$, where $\mathcal{C}_{0.3} = \Phi(\mathcal{C}_{0.3})$. Thus, by Proposition
2. \(S = \{ \sigma, \sigma^2, \sigma^3, \sigma^4 \} \) is a 3-PD-set of size 4 for \(C_{0,3} \) with information set \(I = \{1, 2, 3, 4, 9, 10\} \). Note that \(C_{0,3} \) is the smallest Hadamard \(\mathbb{Z}_4 \)-linear code that is a binary nonlinear code.

3 \(s \)-PD-sets for Hadamard \(\mathbb{Z}_4 \)-linear codes

Let 0, 1, 2 and 3 be the repetition of symbol 0, 1, 2 and 3, respectively. Let \(\mathcal{G}_{\gamma,\delta} \) be a generator matrix of the \(\mathbb{Z}_2 \mathbb{Z}_4 \)-additive Hadamard code \(\mathcal{C}_{\gamma,\delta} \) of length \(\beta = 2^{m-1} \) and type \((0, \beta; \gamma, \delta) \), where \(m = \gamma + 2\delta - 1 \). A generator matrix for the \(\mathbb{Z}_2 \mathbb{Z}_4 \)-additive Hadamard code \(\mathcal{C}_{\gamma+1,\delta} \) of length \(\beta' = 2\beta = 2^m \) and type \((0, \beta'; \gamma + 1, \delta) \) can be constructed as follows [7]:

\[
\mathcal{G}_{\gamma+1,\delta} = \begin{pmatrix}
0 & 2 \\
1 & 3
\end{pmatrix}.
\]

Equivalently, a generator matrix for the \(\mathbb{Z}_2 \mathbb{Z}_4 \)-additive Hadamard code \(\mathcal{C}_{\gamma,\delta+1} \) of length \(\beta'' = 4\beta = 2^{m+1} \) and type \((0, \beta''; \gamma, \delta + 1) \) can be constructed as [7]:

\[
\mathcal{G}_{\gamma,\delta+1} = \begin{pmatrix}
0 & 2 \\
1 & 3
\end{pmatrix}.
\]

Despite the fact that the quaternary information set is the same for \(\mathcal{C}_{\gamma+1,\delta} \) and \(\mathcal{C}_{\gamma,\delta+1} \), the information set for the corresponding binary codes \(C_{\gamma+1,\delta} \) and \(C_{\gamma,\delta+1} \) are \(I' = \Phi(\mathcal{I}) \cup \{2\beta + 1\} \) and \(I'' = \Phi(\mathcal{I}) \cup \{2\beta + 1, 2\beta + 2\} \), respectively.

Given two permutations \(\sigma_1 \in \text{Sym}(n_1) \) and \(\sigma_2 \in \text{Sym}(n_2) \), we define the permutation \((\sigma_1 | \sigma_2) \in \text{Sym}(n_1 + n_2) \), where \(\sigma_1 \) acts on the coordinates \(\{1, \ldots, n_1\} \) and \(\sigma_2 \) acts on the coordinates \(\{n_1 + 1, \ldots, n_1 + n_2\} \). Given \(\sigma_i \in \text{Sym}(n_i), i \in \{1, \ldots, 4\} \), we define the permutation \((\sigma_1 | \sigma_2 | \sigma_3 | \sigma_4) \) in the same way.

Proposition 5. Let \(S \) be an \(s \)-PD-set of size 1 for the Hadamard \(\mathbb{Z}_4 \)-linear code \(\mathcal{C}_{\gamma,\delta} \) of binary length \(n = 2\beta \) and type \((0, \beta; \gamma, \delta) \) with respect to an information set \(I \). Then the set \((S | S) = \{(\sigma | \sigma) : \sigma \in S\} \) is an \(s \)-PD-set of size 1 with respect to the information set \(I' = I \cup \{n + 1\} \) for the Hadamard \(\mathbb{Z}_4 \)-linear code \(\mathcal{C}_{\gamma+1,\delta} \) of binary length \(2n \) and type \((0, 2\beta; \gamma + 1, \delta) \) constructed from (3) and the Gray map.
Example 6. Let S be the 3-PD-set of size 4 for $C_{0,3}$ of binary length 32 with respect to the information set $I = \{1, 2, 3, 4, 9, 10\}$, given in Example 3. By Propositions 4 and 5, the set $(S|S)$ is a 3-PD-set of size 4 for the Hadamard \mathbb{Z}_4-linear code $C_{1,3}$ of binary length 64 with respect to the information set $I' = \{1, 2, 3, 4, 9, 10, 33\}$.

Proposition 5 can not be generalized directly for Hadamard \mathbb{Z}_4-linear codes $C_{\gamma, \delta}$ constructed from (4). Note that if S is an s-PD-set for the Hadamard \mathbb{Z}_4-linear code $C_{\gamma, \delta}$, then the set $(S|S|S) = \{(\sigma|\sigma|\sigma|\sigma) : \sigma \in S\}$ is not in general an s-PD-set for the Hadamard \mathbb{Z}_4-linear code $C_{\gamma, \delta+1}$.

Proposition 7. Let $\mathcal{S} \subseteq \mathrm{PAut}(\mathcal{C}_{\gamma, \delta})$ such that $\Phi(\mathcal{S})$ is an s-PD-set of size l for the Hadamard \mathbb{Z}_4-linear code $C_{\gamma, \delta}$ of binary length $n = 2\beta$ and type $(0, \beta; \gamma, \delta)$ with respect to an information set I. Then the set $\Phi((\mathcal{S} \setminus \mathcal{S}) \setminus \mathcal{S}) = \{(\tau|\tau|\tau|\tau) : \tau \in \mathcal{S}\}$ is an s-PD-set of size l with respect to the information set $I'' = I \cup \{n+1, n+2\}$ for the Hadamard \mathbb{Z}_4-linear code $C_{\gamma, \delta+1}$ of binary length $4n$ and type $(0, 4\beta; \gamma, \delta+1)$ constructed from (4) and the Gray map.

Example 8. Let $\mathcal{S} = \{\tau, \tau^2, \tau^3, \tau^4\}$, where τ is defined as in Example 3. By Proposition 7, the set $\Phi((\mathcal{S} \setminus \mathcal{S}) \setminus \mathcal{S})$ is a 3-PD-set of size 4 for the Hadamard \mathbb{Z}_4-linear code $C_{0,4}$ of binary length 128 with respect to the information set $I' = \{1, 2, 3, 4, 9, 10, 33, 34\}$.

Propositions 5 and 7 can be applied recursively to acquire s-PD-sets for the infinite family of Hadamard \mathbb{Z}_4-linear codes obtained (by using constructions (3) and (4)) from a given Hadamard \mathbb{Z}_4-linear code where we already have such set.

References