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Any nonempty subset C of Z is a binary code and a subgroup of ZJ is called
a binary linear code. Equivalently, any nonempty subset ¢" of Zj is a quaternary
code and a subgroup of Zj is called a quaternary linear code. Quaternary codes
can be seen as binary codes under the usual Gray map & : Zj — Z%” defined as
B((31,-19a)) = (9(31); -, (vn)). where 9(0) = (0,0), ¢(1) = (0,1), $(2) =
(1,1), ¢(3) = (1,0), for all y = (y1,...,yn) € Z}. If € is a quaternary linear code,
the binary code C = ®(%) is said to be a Zg4-linear code.

A ZZ4-additive code € is a subgroup of Z§ x ZE. We consider the extension
of the Gray map @ : Z§ x ZE — Zg‘”ﬁ defined as ®(x,y) = (x,0(y1),..-,0(yp)),

forall x € Z$ and y = (y1,...,yp) € ZE . This generalization allows us to consider
Z,7.4-additive codes also as binary codes. If € is a Z,Z4-additive code, the binary
code C = ®(¥) is said to be a Z,Za-linear code. Moreover, since the code ¢
is isomorphic to an abelian group Zg X Zf, we say that € (or equivalently the
corresponding Z,Zs-linear code C = ®(%)) is of type (a,B;7,8) [3]. Note that
Z,7.4-additive codes can be seen as a generalization of binary (when = 0) and
quaternary (when o = 0) linear codes. The permutation automorphism group of
% and C = ®(¥), denoted by PAut(%) and PAut(C), respectively, is the group
generated by all permutations that let the set of codewords invariant.

A binary Hadamard code of length n has 2n codewords and minimum dis-
tance n/2. The Z,Z4-additive codes such that, under the Gray map, give a binary
Hadamard code are called Z,Z4-additive Hadamard codes and the corresponding
ZoZ.4-linear codes are called Hadamard Z,7Z.4-linear codes, or just Hadamard 7.4-
linear codes when o = 0. The permutation automorphism group of Z,Z4-additive
Hadamard codes with ¢ = 0 was characterized in [9] and the permutation auto-
morphism group of Z;,Z4-linear Hadamard codes was studied in [6].

Let C be a binary code of length n. For a vector v € Z5 andaset I C {1,...,n},
we denote by v; the restriction of v to the coordinates in I and by C; the set {v; :
v € C}. Suppose that |C| = 2. A 'set I C {1,...,n} of k coordinate positions is an
information set for C if |Cy| = 2*. If such I exists, C is said to be a systematic code.

Permutation decoding is a technique, introduced by MacWilliams [8], which
involves finding a subset S of the permutation automorphism group PAut(C) of a
code C in order to assist in decoding. Let C be a systematic ¢-error-correcting code
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with information set /. A subset S C PAut(C) is an s-PD-set for the code C if every
s-set of coordinate positions is moved out of the information set / by at least one
element of the set S, where 1 <s <t. If s =1, S is said to be a PD-set.

In [4], it is shown how to find s-PD-sets of size s+ 1 that satisfy the Gordon-
Schonheim bound for partial permutation decoding for the binary simplex code S,
of length 2" — 1, forallm >4 and 1 < s < L%J In [1], similar results are
establish for the binary linear Hadamard code H,, (extended code of S,,) of length
2™ forallm>4and 1 <s< L%J, following the techniques described in [4].

The paper is organized as follows. In Section 1, we show that the Gordon-
Schonheim bound can be adapted to systematic codes, not necessarily linear. More-
over, we apply the bound of the minimum size of s-PD-sets for binary Hadamard
codes obtained in [1] to Hadamard Z,7Z4-linear codes, which are systematic [2] but
not linear in general. In Section 2, we provide a criterion to obtain s-PD-sets of size
s+ 1 for Z4-linear codes. Finally, in Section 3, we recall a recursive construction
to obtain all Z,Z4-additive codes with oo = 0 [7] and we give a recursive method to
obtain s-PD-sets for the corresponding Hadamard Z,-linear codes.

1 Minimum size of s-PD-sets

There is a well-known bound on the minimum size of PD-sets for linear codes
based on the length, dimension and minimum distance of such codes that can be
adapted for systematic codes (not necessarily linear) easily:

Proposition 1. Let C be a systematic t-error correcting code of length n, size |C| =
2% and minimum distance d. Let r = n— k be the redundancy of C. If S is a PD-set

for C, then
n|in—1 n—t+1
= [2 [z L[] "

The above inequality (1) is often called the Gordon-Schonheim bound. This
result is quoted and proved for linear codes in [5]. We can follow the same proof
since the linearity of the code C is only used to guarantee that C is systematic.
In [2], it is shown that Z,Z4-linear codes are systematic. Moreover, a systematic
encoding is given for these codes.

The Gordon-Schonheim bound can be adapted to s-PD-sets for all s up to the
error correcting capability of the code. Note that the error-correcting capability of
any Hadamard Z,Z4-linear code of length n =2"is t,, = | (d —1)/2] =22 — 1.
Therefore, the right side of the bound given by (1), for Hadamard Z,7Z4-linear
codes of length 2™ and for all 1 < s <1, becomes

2m 2" —1 2" —s+1
gm“):{zm_m_l{zm_m_zﬁ'[w-wwﬂ- @
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For any m > 4 and 1 < s <t,,, we have that g,,(s) > s+ 1. The smaller the size of
the PD-set is, the more efficient permutation decoding becomes. Because of this,
we will focus on the case when g,,(s) = s+ 1.

2 s-PD-sets of size s + 1 for Z,-linear codes

Let € be a Z,Z4-additive code of type (0, 3;7,6) and let C = ®(%) be the corre-
sponding Zs-linear code. Let ® : PAut(¢’) — PAut(C) be the map defined as

N[ 2t(i/2), if i is even,
<I>(T)(l)—{ 20(H)— 1 ifiis odd,

for all 7 € Sym(B) and i € {1,...,28}. The map P is a group monomorphism.
Given a subset .7 of PAut(%) C Sym(f), we define the set S = ®(.) = {P(7) :
T € .}, which is a subset of PAut(C) C Sym(2f3).

A set . = {i1,...,iy15} € {l,...,B} of y+ & coordinate positions is said
to be a quaternary information set for the code € if the set ®(.#), defined as
() = {2i1 —1,2iy,...,2i5 — 1,2i5,2is1 — 1,...,2i5,,— 1}, is an information
set for C = ®(%’) for some ordering of elements of ..

Let S be an s-PD-set of size s+ 1. The set S is a nested s-PD-set if there is an
ordering of the elements of S, S = {0y,...,044+1}, such that S; = {oy,...,014+1} C S
is an i-PD-set of size i+ 1, forall i € {1,...,s}.

Proposition 2. Let € be a Z,Z4-additive code of type (0,B;7,8) with quaternary
information set .% and let s be a positive integer. If T € PAut(¢) has at least Y+ &
disjoint cycles of length s+ 1 such that there is exactly one quaternary information
position per cycle of length s+ 1, then S = {®(1) :ill is an s-PD-set of size s +
1 for the Zs-linear code C = ®(€) with information set (7). Moreover, any
ordering of the elements of S gives a nested r-PD-set for any r € {1,...,s}.

Example 3. Let 63 be the Z,Z4-additive Hadamard code of type (0, 16;0,3) with
generator matrix

1111111
Gas=(0123012
0000111

O

1 1 11
0123
2 2 2 2

w O =

1 11
1 2 3
3 33
Let T=(1,16,11,6)(2,7,12,13)(3,14,9,8)(4,5,10,15) € PAut(%53) < Sym(16)
[9]. It is straightforward to check that % = {1,2,5} is a quaternary information

set for 6 3. Note that each information position in .% is in a different cycle of T. Let
o = ®(1) € PAut(Cp3) C Sym(32), where Cy3 = ®(6o3). Thus, by Proposition
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2, S ={0,02,06% 6%} is a 3-PD-set of size 4 for Co3 with information set I =
{1,2,3,4,9,10}. Note that Cy3 is the smallest Hadamard Z4-linear code that is a
binary nonlinear code.

3 s-PD-sets for Hadamard Z,-linear codes

Let 0,1,2 and 3 be the repetition of symbol 0, 1, 2 and 3, respectively. Let &, s be a
generator matrix of the Z,Z4-additive Hadamard code €, 5 of length 8 = 21 and
type (0,B;7,8), where m = y+28 — 1. A generator matrix for the Z,Z4-additive
Hadamard code 4, 5 of length B’ = 28 = 2™ and type (0,B';7+1,8) can be
constructed as follows [7]:

0 2
Yyr16 = ( G5 s ) 3)

)

Equivalently, a generator matrix for the Z,Z4-additive Hadamard code €7 5
of length B” = 4 = 2"+! and type (0, 8";7,8 + 1) can be constructed as [7]:

Ybs Ys Ds 9
gan= (% T N ). @

Note that a generator matrix for every code %, s can be obtained by applying
(3) and (4) recursively over the generator matrix % ; = (1) of the code %p,;. From
now on, we assume that ¢, 5 is obtained by using these constructions.

Proposition 4. Let 6,5 be a 7,74-additive Hadamard code of type (0,B;7,0)
with quaternary information set .%. The set % U{B + 1} is a suitable quaternary
information set for both codes €., s and €y s, obtained from €, s by applying
constructions (3) and (4), respectively.

Despite the fact that the quaternary information set is the same for €., s and
©y,5+1, the information set for the corresponding binary codes Cy, s and Cy 5,
are ' =®(S)U{2B+1}and I" = D(#)U{2B + 1,23 + 2}, respectively.

Given two permutations o] € Sym(n;) and 0, € Sym(n;), we define the per-
mutation (o1|02) € Sym(n; +ny), where o) acts on the coordinates {1,...,n; } and
0 acts on the coordinates {n;+1,...,n; +ny}. Given 0; € Sym(n;), i € {1,...,4},
we define the permutation (0;|02|03|04) in the same way.

Proposition 5. Let S be an s-PD-set of size | for the Hadamard Z4-linear code
Cy s of binary length n =23 and type (0, B; 7, &) with respect to an information set
I. Then the set (S|S) = {(c|o) : 0 € S} is an s-PD-set of size | with respect to the
information set I' = IU{n+ 1} for the Hadamard Zy-linear code Cy. | s of binary
length 2n and type (0,2;7+ 1,8) constructed from (3) and the Gray map.
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Example 6. Let S be the 3-PD-set of size 4 for Cy 3 of binary length 32 with respect
to the information set I = {1,2,3,4,9,10}, given in Example 3. By Propositions 4
and 5, the set (S|S) is a 3-PD-set of size 4 for the Hadamard Z4-linear code C\ 3 of
binary length 64 with respect to the information set I' = {1,2,3,4,9,10,33}.

Proposition 5 can not be generalized directly for Hadamard Zy-linear codes
Cy 541 constructed from (4). Note that if S is an s-PD-set for the Hadamard Z4-
linear code C, 5, then the set (S|S|S|S) = {(o|c|o|0) : 6 € S} is not in general an
s-PD-set for the Hadamard Z4-linear code Cy 5.

Proposition 7. Let .7 C PAut(%), 5) such that ®(.7) is an s-PD-set of size | for the
Hadamard Zy-linear code Cy 5 of binary length n = 23 and type (0, B:7,8) with
respect to an information set I. Then the set ®((.7|.|.7|)) = {®((7|7|7|7)) :
T € S} is an s-PD-set of size | with respect to the information set I” = 1U{n+
1,n+ 2} for the Hadamard Z4-linear code Cy 541 of binary length 4n and type
(0,4B;7,8 + 1) constructed from (4) and the Gray map.

Example 8. Let . = {1,7%,73,7%}, where T is defined as in Example 3. By
Proposition 7, the set ®((.7|.|.|.7)) is a 3-PD-set of size 4 for the Hadamard
Za-linear code Cy 4 of binary length 128 with respect to the information set I' =
{1,2,3,4,9,10,33,34}.

Propositions 5 and 7 can be applied recursively to acquire s-PD-sets for the
infinite family of Hadamard Z4-linear codes obtained (by using constructions (3)
and (4)) from a given Hadamard Z,-linear code where we already have such set.
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