

PD-sets for (nonlinear) Hadamard Z_4 -linear codes

R. D. Barrolleta¹, M. Villanueva¹

¹ Universitat Autònoma de Barcelona, Spain, {rolanddavid.barrolleta, merce.villanueva}@uab.cat
This work was partially supported by the Spanish MEC under Grant TIN2013-40524-P, and by the Catalan AGAUR under Grant 2014SGR-691.

Any nonempty subset C of \mathbb{Z}_2^n is a binary code and a subgroup of \mathbb{Z}_2^n is called a *binary linear code*. Equivalently, any nonempty subset \mathcal{C} of \mathbb{Z}_4^n is a quaternary code and a subgroup of \mathbb{Z}_4^n is called a *quaternary linear code*. Quaternary codes can be seen as binary codes under the usual Gray map $\Phi : \mathbb{Z}_4^n \rightarrow \mathbb{Z}_2^{2n}$ defined as $\Phi((y_1, \dots, y_n)) = (\phi(y_1), \dots, \phi(y_n))$, where $\phi(0) = (0, 0)$, $\phi(1) = (0, 1)$, $\phi(2) = (1, 1)$, $\phi(3) = (1, 0)$, for all $y = (y_1, \dots, y_n) \in \mathbb{Z}_4^n$. If \mathcal{C} is a quaternary linear code, the binary code $C = \Phi(\mathcal{C})$ is said to be a *Z_4 -linear code*.

A $\mathbb{Z}_2\mathbb{Z}_4$ -additive code \mathcal{C} is a subgroup of $\mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta$. We consider the extension of the Gray map $\Phi : \mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta \rightarrow \mathbb{Z}_2^{\alpha+2\beta}$ defined as $\Phi(x, y) = (x, \phi(y_1), \dots, \phi(y_\beta))$, for all $x \in \mathbb{Z}_2^\alpha$ and $y = (y_1, \dots, y_\beta) \in \mathbb{Z}_4^\beta$. This generalization allows us to consider $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes also as binary codes. If \mathcal{C} is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code, the binary code $C = \Phi(\mathcal{C})$ is said to be a *$\mathbb{Z}_2\mathbb{Z}_4$ -linear code*. Moreover, since the code \mathcal{C} is isomorphic to an abelian group $\mathbb{Z}_2^\gamma \times \mathbb{Z}_4^\delta$, we say that \mathcal{C} (or equivalently the corresponding $\mathbb{Z}_2\mathbb{Z}_4$ -linear code $C = \Phi(\mathcal{C})$) is of type $(\alpha, \beta; \gamma, \delta)$ [3]. Note that $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes can be seen as a generalization of binary (when $\beta = 0$) and quaternary (when $\alpha = 0$) linear codes. The *permutation automorphism group* of \mathcal{C} and $C = \Phi(\mathcal{C})$, denoted by $\text{PAut}(\mathcal{C})$ and $\text{PAut}(C)$, respectively, is the group generated by all permutations that let the set of codewords invariant.

A binary Hadamard code of length n has $2n$ codewords and minimum distance $n/2$. The $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes such that, under the Gray map, give a binary Hadamard code are called *$\mathbb{Z}_2\mathbb{Z}_4$ -additive Hadamard codes* and the corresponding $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes are called *Hadamard $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes*, or just *Hadamard Z_4 -linear codes* when $\alpha = 0$. The permutation automorphism group of $\mathbb{Z}_2\mathbb{Z}_4$ -additive Hadamard codes with $\alpha = 0$ was characterized in [9] and the permutation automorphism group of $\mathbb{Z}_2\mathbb{Z}_4$ -linear Hadamard codes was studied in [6].

Let C be a binary code of length n . For a vector $v \in \mathbb{Z}_2^n$ and a set $I \subseteq \{1, \dots, n\}$, we denote by v_I the restriction of v to the coordinates in I and by C_I the set $\{v_I : v \in C\}$. Suppose that $|C| = 2^k$. A set $I \subseteq \{1, \dots, n\}$ of k coordinate positions is an *information set* for C if $|C_I| = 2^k$. If such I exists, C is said to be a *systematic code*.

Permutation decoding is a technique, introduced by MacWilliams [8], which involves finding a subset S of the permutation automorphism group $\text{PAut}(C)$ of a code C in order to assist in decoding. Let C be a systematic t -error-correcting code

with information set I . A subset $S \subseteq \text{PAut}(C)$ is an s -PD-set for the code C if every s -set of coordinate positions is moved out of the information set I by at least one element of the set S , where $1 \leq s \leq t$. If $s = t$, S is said to be a PD-set.

In [4], it is shown how to find s -PD-sets of size $s + 1$ that satisfy the Gordon-Schönheim bound for partial permutation decoding for the binary simplex code S_m of length $2^m - 1$, for all $m \geq 4$ and $1 < s \leq \lfloor \frac{2^m - m - 1}{m} \rfloor$. In [1], similar results are established for the binary linear Hadamard code H_m (extended code of S_m) of length 2^m , for all $m \geq 4$ and $1 < s \leq \lfloor \frac{2^m - m - 1}{1+m} \rfloor$, following the techniques described in [4].

The paper is organized as follows. In Section 1, we show that the Gordon-Schönheim bound can be adapted to systematic codes, not necessarily linear. Moreover, we apply the bound of the minimum size of s -PD-sets for binary Hadamard codes obtained in [1] to Hadamard $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes, which are systematic [2] but not linear in general. In Section 2, we provide a criterion to obtain s -PD-sets of size $s + 1$ for \mathbb{Z}_4 -linear codes. Finally, in Section 3, we recall a recursive construction to obtain all $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes with $\alpha = 0$ [7] and we give a recursive method to obtain s -PD-sets for the corresponding Hadamard \mathbb{Z}_4 -linear codes.

1 Minimum size of s -PD-sets

There is a well-known bound on the minimum size of PD-sets for linear codes based on the length, dimension and minimum distance of such codes that can be adapted for systematic codes (not necessarily linear) easily:

Proposition 1. *Let C be a systematic t -error correcting code of length n , size $|C| = 2^k$ and minimum distance d . Let $r = n - k$ be the redundancy of C . If S is a PD-set for C , then*

$$|S| \geq \left\lceil \frac{n}{r} \left\lceil \frac{n-1}{r-1} \left\lceil \cdots \left\lceil \frac{n-t+1}{r-t+1} \cdots \right\rceil \right\rceil \right\rceil. \quad (1)$$

The above inequality (1) is often called the *Gordon-Schönheim bound*. This result is quoted and proved for linear codes in [5]. We can follow the same proof since the linearity of the code C is only used to guarantee that C is systematic. In [2], it is shown that $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes are systematic. Moreover, a systematic encoding is given for these codes.

The Gordon-Schönheim bound can be adapted to s -PD-sets for all s up to the error correcting capability of the code. Note that the error-correcting capability of any Hadamard $\mathbb{Z}_2\mathbb{Z}_4$ -linear code of length $n = 2^m$ is $t_m = \lfloor (d-1)/2 \rfloor = 2^{m-2} - 1$. Therefore, the right side of the bound given by (1), for Hadamard $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes of length 2^m and for all $1 \leq s \leq t_m$, becomes

$$g_m(s) = \left\lceil \frac{2^m}{2^m - m - 1} \left\lceil \frac{2^m - 1}{2^m - m - 2} \left\lceil \cdots \left\lceil \frac{2^m - s + 1}{2^m - m - s} \right\rceil \cdots \right\rceil \right\rceil. \quad (2)$$

For any $m \geq 4$ and $1 \leq s \leq t_m$, we have that $g_m(s) \geq s + 1$. The smaller the size of the PD-set is, the more efficient permutation decoding becomes. Because of this, we will focus on the case when $g_m(s) = s + 1$.

2 s -PD-sets of size $s + 1$ for \mathbb{Z}_4 -linear codes

Let \mathcal{C} be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code of type $(0, \beta; \gamma, \delta)$ and let $C = \Phi(\mathcal{C})$ be the corresponding \mathbb{Z}_4 -linear code. Let $\Phi : \text{PAut}(\mathcal{C}) \rightarrow \text{PAut}(C)$ be the map defined as

$$\Phi(\tau)(i) = \begin{cases} 2\tau(i/2), & \text{if } i \text{ is even,} \\ 2\tau(\frac{i+1}{2}) - 1 & \text{if } i \text{ is odd,} \end{cases}$$

for all $\tau \in \text{Sym}(\beta)$ and $i \in \{1, \dots, 2\beta\}$. The map Φ is a group monomorphism. Given a subset \mathcal{S} of $\text{PAut}(\mathcal{C}) \subseteq \text{Sym}(\beta)$, we define the set $S = \Phi(\mathcal{S}) = \{\Phi(\tau) : \tau \in \mathcal{S}\}$, which is a subset of $\text{PAut}(C) \subseteq \text{Sym}(2\beta)$.

A set $\mathcal{I} = \{i_1, \dots, i_{\gamma+\delta}\} \subseteq \{1, \dots, \beta\}$ of $\gamma + \delta$ coordinate positions is said to be a *quaternary information set* for the code \mathcal{C} if the set $\Phi(\mathcal{I})$, defined as $\Phi(\mathcal{I}) = \{2i_1 - 1, 2i_1, \dots, 2i_{\delta} - 1, 2i_{\delta}, 2i_{\delta+1} - 1, \dots, 2i_{\delta+\gamma} - 1\}$, is an information set for $C = \Phi(\mathcal{C})$ for some ordering of elements of \mathcal{I} .

Let S be an s -PD-set of size $s + 1$. The set S is a *nested* s -PD-set if there is an ordering of the elements of S , $S = \{\sigma_1, \dots, \sigma_{s+1}\}$, such that $S_i = \{\sigma_1, \dots, \sigma_{i+1}\} \subseteq S$ is an i -PD-set of size $i + 1$, for all $i \in \{1, \dots, s\}$.

Proposition 2. *Let \mathcal{C} be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code of type $(0, \beta; \gamma, \delta)$ with quaternary information set \mathcal{I} and let s be a positive integer. If $\tau \in \text{PAut}(\mathcal{C})$ has at least $\gamma + \delta$ disjoint cycles of length $s + 1$ such that there is exactly one quaternary information position per cycle of length $s + 1$, then $S = \{\Phi(\tau^i)\}_{i=1}^{s+1}$ is an s -PD-set of size $s + 1$ for the \mathbb{Z}_4 -linear code $C = \Phi(\mathcal{C})$ with information set $\Phi(\mathcal{I})$. Moreover, any ordering of the elements of S gives a nested r -PD-set for any $r \in \{1, \dots, s\}$.*

Example 3. *Let $\mathcal{C}_{0,3}$ be the $\mathbb{Z}_2\mathbb{Z}_4$ -additive Hadamard code of type $(0, 16; 0, 3)$ with generator matrix*

$$\mathcal{G}_{0,3} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \end{pmatrix}.$$

Let $\tau = (1, 16, 11, 6)(2, 7, 12, 13)(3, 14, 9, 8)(4, 5, 10, 15) \in \text{PAut}(\mathcal{C}_{0,3}) \subseteq \text{Sym}(16)$ [9]. It is straightforward to check that $\mathcal{I} = \{1, 2, 5\}$ is a quaternary information set for $\mathcal{C}_{0,3}$. Note that each information position in \mathcal{I} is in a different cycle of τ . Let $\sigma = \Phi(\tau) \in \text{PAut}(C_{0,3}) \subseteq \text{Sym}(32)$, where $C_{0,3} = \Phi(\mathcal{C}_{0,3})$. Thus, by Proposition

2, $S = \{\sigma, \sigma^2, \sigma^3, \sigma^4\}$ is a 3-PD-set of size 4 for $C_{0,3}$ with information set $I = \{1, 2, 3, 4, 9, 10\}$. Note that $C_{0,3}$ is the smallest Hadamard \mathbb{Z}_4 -linear code that is a binary nonlinear code.

3 s-PD-sets for Hadamard \mathbb{Z}_4 -linear codes

Let **0**, **1**, **2** and **3** be the repetition of symbol 0, 1, 2 and 3, respectively. Let $\mathcal{G}_{\gamma, \delta}$ be a generator matrix of the $\mathbb{Z}_2\mathbb{Z}_4$ -additive Hadamard code $\mathcal{C}_{\gamma, \delta}$ of length $\beta = 2^{m-1}$ and type $(0, \beta; \gamma, \delta)$, where $m = \gamma + 2\delta - 1$. A generator matrix for the $\mathbb{Z}_2\mathbb{Z}_4$ -additive Hadamard code $\mathcal{C}_{\gamma+1, \delta}$ of length $\beta' = 2\beta = 2^m$ and type $(0, \beta'; \gamma + 1, \delta)$ can be constructed as follows [7]:

$$\mathcal{G}_{\gamma+1, \delta} = \begin{pmatrix} \mathbf{0} & \mathbf{2} \\ \mathcal{G}_{\gamma, \delta} & \mathcal{G}_{\gamma, \delta} \end{pmatrix}. \quad (3)$$

Equivalently, a generator matrix for the $\mathbb{Z}_2\mathbb{Z}_4$ -additive Hadamard code $\mathcal{C}_{\gamma, \delta+1}$ of length $\beta'' = 4\beta = 2^{m+1}$ and type $(0, \beta''; \gamma, \delta + 1)$ can be constructed as [7]:

$$\mathcal{G}_{\gamma, \delta+1} = \begin{pmatrix} \mathcal{G}_{\gamma, \delta} & \mathcal{G}_{\gamma, \delta} & \mathcal{G}_{\gamma, \delta} & \mathcal{G}_{\gamma, \delta} \\ \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} \end{pmatrix}. \quad (4)$$

Note that a generator matrix for every code $\mathcal{C}_{\gamma, \delta}$ can be obtained by applying (3) and (4) recursively over the generator matrix $\mathcal{G}_{0,1} = (1)$ of the code $\mathcal{C}_{0,1}$. From now on, we assume that $\mathcal{C}_{\gamma, \delta}$ is obtained by using these constructions.

Proposition 4. *Let $\mathcal{C}_{\gamma, \delta}$ be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive Hadamard code of type $(0, \beta; \gamma, \delta)$ with quaternary information set \mathcal{I} . The set $\mathcal{I} \cup \{\beta + 1\}$ is a suitable quaternary information set for both codes $\mathcal{C}_{\gamma+1, \delta}$ and $\mathcal{C}_{\gamma, \delta+1}$ obtained from $\mathcal{C}_{\gamma, \delta}$ by applying constructions (3) and (4), respectively.*

Despite the fact that the quaternary information set is the same for $\mathcal{C}_{\gamma+1, \delta}$ and $\mathcal{C}_{\gamma, \delta+1}$, the information set for the corresponding binary codes $C_{\gamma+1, \delta}$ and $C_{\gamma, \delta+1}$ are $I' = \Phi(\mathcal{I}) \cup \{2\beta + 1\}$ and $I'' = \Phi(\mathcal{I}) \cup \{2\beta + 1, 2\beta + 2\}$, respectively.

Given two permutations $\sigma_1 \in \text{Sym}(n_1)$ and $\sigma_2 \in \text{Sym}(n_2)$, we define the permutation $(\sigma_1 | \sigma_2) \in \text{Sym}(n_1 + n_2)$, where σ_1 acts on the coordinates $\{1, \dots, n_1\}$ and σ_2 acts on the coordinates $\{n_1 + 1, \dots, n_1 + n_2\}$. Given $\sigma_i \in \text{Sym}(n_i)$, $i \in \{1, \dots, 4\}$, we define the permutation $(\sigma_1 | \sigma_2 | \sigma_3 | \sigma_4)$ in the same way.

Proposition 5. *Let S be an s-PD-set of size l for the Hadamard \mathbb{Z}_4 -linear code $C_{\gamma, \delta}$ of binary length $n = 2\beta$ and type $(0, \beta; \gamma, \delta)$ with respect to an information set I . Then the set $(S|S) = \{(\sigma | \sigma) : \sigma \in S\}$ is an s-PD-set of size l with respect to the information set $I' = I \cup \{n + 1\}$ for the Hadamard \mathbb{Z}_4 -linear code $C_{\gamma+1, \delta}$ of binary length $2n$ and type $(0, 2\beta; \gamma + 1, \delta)$ constructed from (3) and the Gray map.*

Example 6. Let S be the 3-PD-set of size 4 for $C_{0,3}$ of binary length 32 with respect to the information set $I = \{1, 2, 3, 4, 9, 10\}$, given in Example 3. By Propositions 4 and 5, the set $(S|S)$ is a 3-PD-set of size 4 for the Hadamard \mathbb{Z}_4 -linear code $C_{1,3}$ of binary length 64 with respect to the information set $I' = \{1, 2, 3, 4, 9, 10, 33\}$.

Proposition 5 can not be generalized directly for Hadamard \mathbb{Z}_4 -linear codes $C_{\gamma,\delta+1}$ constructed from (4). Note that if S is an s -PD-set for the Hadamard \mathbb{Z}_4 -linear code $C_{\gamma,\delta}$, then the set $(S|S|S|S) = \{(\sigma|\sigma|\sigma|\sigma) : \sigma \in S\}$ is not in general an s -PD-set for the Hadamard \mathbb{Z}_4 -linear code $C_{\gamma,\delta+1}$.

Proposition 7. Let $\mathcal{S} \subseteq \text{PAut}(\mathcal{C}_{\gamma,\delta})$ such that $\Phi(\mathcal{S})$ is an s -PD-set of size l for the Hadamard \mathbb{Z}_4 -linear code $C_{\gamma,\delta}$ of binary length $n = 2\beta$ and type $(0, \beta; \gamma, \delta)$ with respect to an information set I . Then the set $\Phi((\mathcal{S}|\mathcal{S}|\mathcal{S}|\mathcal{S})) = \{\Phi((\tau|\tau|\tau|\tau)) : \tau \in \mathcal{S}\}$ is an s -PD-set of size l with respect to the information set $I'' = I \cup \{n+1, n+2\}$ for the Hadamard \mathbb{Z}_4 -linear code $C_{\gamma,\delta+1}$ of binary length $4n$ and type $(0, 4\beta; \gamma, \delta+1)$ constructed from (4) and the Gray map.

Example 8. Let $\mathcal{S} = \{\tau, \tau^2, \tau^3, \tau^4\}$, where τ is defined as in Example 3. By Proposition 7, the set $\Phi((\mathcal{S}|\mathcal{S}|\mathcal{S}|\mathcal{S}))$ is a 3-PD-set of size 4 for the Hadamard \mathbb{Z}_4 -linear code $C_{0,4}$ of binary length 128 with respect to the information set $I' = \{1, 2, 3, 4, 9, 10, 33, 34\}$.

Propositions 5 and 7 can be applied recursively to acquire s -PD-sets for the infinite family of Hadamard \mathbb{Z}_4 -linear codes obtained (by using constructions (3) and (4)) from a given Hadamard \mathbb{Z}_4 -linear code where we already have such set.

References

- [1] R. Barrolleta and M. Villanueva, "Partial permutation decoding for binary linear Hadamard codes," *Electronic Notes in Discrete Mathematics*, 46 (2014) 35-42.
- [2] J. J. Bernal, J. Borges, C. Fernández-Cóboda, and M. Villanueva, "Permutation decoding of $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes," *Des. Codes and Cryptogr.*, DOI 10.1007/s10623-014-9946-4, 2014.
- [3] J. Borges, C. Fernández-Cóboda, J. Pujol, J. Rifà, and M. Villanueva, " $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes: generator matrices and duality," *Des. Codes and Cryptogr.*, vol. 54: 167–179, 2010.
- [4] W. Fish, J. D. Key, and E. Mwambene, "Partial permutation decoding for simplex codes," *Advances in Mathematics of Communications*, vol. 6(4): 505–516, 2012.
- [5] W. C. Huffman, *Codes and groups, Handbook of coding theory*, 1998.
- [6] D. S. Krotov and M. Villanueva "Classification of the $\mathbb{Z}_2\mathbb{Z}_4$ -linear Hadamard codes and their automorphism groups," *IEEE Trans. Inf. Theory*, vol. 61(2): 887–894, 2015.
- [7] D. S. Krotov, " \mathbb{Z}_4 -linear Hadamard and extended perfect codes," *Electronic Notes in Discrete Mathematics*, vol. 6 (2001), 107-112.
- [8] F. J. MacWilliams and N. J. A. Sloane, *The Theory of Error-Correcting Codes*, 1977.
- [9] J. Pernas, J. Pujol and M. Villanueva. "Characterization of the automorphism group of quaternary linear Hadamard Codes," *Des. Codes Cryptogr.*, 70(1-2), 105–115, 2014.