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Vicenç Torra1 Guillermo Navarro-Arribas2

1 School of Informatics,
University of Skövde, Sweden
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Abstract. When considering data provenance some problems arise from the need
to safely handle provenance related functionality. If some modifications have to
be performed in a data set due to provenance related requirements, e.g. remove
data from a given user or source, this will affect not only the data itself but also
all related models and aggregated information obtained from the data. This is
specially aggravated when the data are protected using a privacy method (e.g.
masking method), since modification in the data and the model can leak infor-
mation originally protected by the privacy method. To be able to evaluate privacy
related problems in data provenance we introduce the notion of integral privacy
as compared to the well known definition of differential privacy.

1 Introduction

Data provenance permits to track where data come from and how these data have been
combined in order to produce new data elements. Data provenance is used to improve
data quality, and have been used in a quite number of different areas including scientific
data, e-science, accounting (financial data), and medical data [3, 9, 1].

Data privacy is the area that studies methods and techniques to avoid the involuntary
release of sensitive data [5, 11, 10]. Methods are used because of companies own inter-
est to keep their information private, but also because of existing regulations. In 2016
the new EU General Data Protection Regulation was entered into force, a regulation
that shall apply from 25 May 2018. This regulation consolidates two rights: the right to
be forgotten and the right to amend.

Companies need appropriate software so that they can guarantee these two rights to
their customers. Note that the right to be forgotten does not only imply that customers
can force the deletion of records with their data, but also that aggregated data and infer-
ences extracted from their data need to be reconsidered and eventually modified or also
deleted.

Data provenance has a tight relation with data privacy. On the one hand, data prove-
nance is essential to implement these two rights. We need to keep track of how data
is processed and aggregated in order to know what needs to be deleted, amended or
reconsidered when records are deleted or amended. Otherwise, we will need to delete
all what follows from a record once there is a requirement to delete such record.

On the other hand, data provenance poses specific questions to data privacy. Note
that provenance information may be confidential, provenance information cannot be
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modified at will, etc. See e.g. [7, 2], for a review of problems and solutions related to
data provenance and data privacy.

In this paper we discuss privacy models. We present a new privacy model insipired
on data provenance, on the two mentioned rights, and how all these aspects relate to
data privacy.

We call this model integral privacy, to compare it with differential privacy [6]. As
we will see later, while differential privacy focus on the output of a function from the
data (a computation), this model focus on the input. While differential privacy computes
differences between outputs, here we consider a set of modifications of the input.

The structure of the paper is as follows. In Section 2 we review the notation we use
in the paper. In Section 3 we present our definition and in Section 4 we compare integral
privacy with differential privacy. The paper finishes with a summary and a discussion
of future work.

2 Notation and problem set up

We will consider a set X (a file or a database) to which we have applied some modifi-
cations µ to reach a data set X ′. We will denote the fact that X ′ is constructed from X
with some modifications µ by the expression X ′ = X +µ .

Then, using algorithm A we extract knowledge G and G′ from X and X ′, respec-
tively. If we apply a masking method ρ to X and X ′ we get χ and χ ′ from which we
obtain knowledge Γ and Γ ′ using algorithm A. Figure 1 represents these data sets,
methods and algorithms. This conforms the full picture of our scenario. Provenance
data are included in all the data sets and the figure shows all possible cases one can find
in processing the original data set X .
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Fig. 1. Original file X with protected file χ and knowledge/models G and Γ extracted from X and
χ , respectively. Updated file X ′ and protected file χ ′ with knowledge/models G′ and Γ ′ extracted
from X and χ ′, respectively. Protection method ρ and knowledge discovery algorithm A.



3 Integral privacy

In this section we propose our definition for privacy. It focuses on the modification
µ that apply to the original dataset X following the notation introduced in Section 2.
We make explicit our assumptions on what an intruder may know. We then state the
intruders goal. We consider that the intruder can be a person that is working outside the
data holder (the company with the database X) or an insider with partial access to the
data and the knowledge extracted (either from the database or possibly also using some
information obtained from other sources).

3.1 Specific scenario #1

To introduce the notion of integral privacy we first consider an scenario where the in-
truder knows: S⊂ X , G, G′. That is, the intruder has partial knowledge of the data in the
database (the worst case scenario is when S = X , the best case scenario is when S = /0).

The privacy requirements are that intruders cannot be able to determine µ and S′ ⊆
X \ S with certainty. That is, that the intruder cannot find neither records from the file,
nor information about the modifications.

3.2 Intruder’s goal

The main goal of the intruder can be summarized as follows. Given S ⊂ X , G, G′, find
the set of possible modifications µ that are consistent with data S ⊆ X and knowledge
G and G′, and find elements in X \S. Under the transparency principle, we may assume
that the intruder knows the algorithm A used to generate G.

We illustrate this problem with an example. The example uses ID3, one of the sim-
plest decision tree learning algorithms for categorical data and with no pruning. In the
worst case scenario (i.e., when S = X), and assuming that G is obtained by means of the
application of the ID3 algorithm to X , this problem is to find the modifications µ such
that G = ID3(X) and G′ = ID3(X +µ). In the general setting, the problem is to find the
following set of modifications, for a given algorithm A

M = {µ|G = A(X) and G′ = A(X +µ)}.

On the set of modifications For a large number of machine learning algorithms, the
set of modifications M is not a singleton. To support this statement, let us consider
Gen and Gen′ the set of generators of G and G′, respectively. That is, the set of data
that lead to G and G′ when we apply to them the algorithm A. Then, note that when
there are several generators Gen and Gen′, the set of possible transformations µ is not
a singleton. Note that

∪g∈Gen,g∈Gen′{g′−g} ⊆M .

Now we consider a few cases in which algorithms ensure that a model has different
generators. In all these cases, due to the result above, we will have sets M that are not
a singleton.



Fig. 2. Three Voronoi maps. The first one (left) containing only open regions, the second one
(center) with the same regions but with the original generators and a new set of generators. The
third one (right) with a closed region.

We first consider that A is the algorithm for 1-nearest neighbor. It is known that the
model built can be represented with a Voronoi tesselation. Let X be defined in a domain
D. When all regions are open (i.e., as in Figure 2 (left)), then we can construct sets X̂
with X̂ ∩X = /0 and such that generate the same map. They consist of displacing the
points in X out of the map. See Figure 2 (center). When there are closed regions (i.e.,
as in Figure 2 (right)), the points of closed regions cannot be changed. So, in case that
another set X̂ can generate the same map, there will be points that cannot be changed
X̂ ∩X 6= /0.

In these constructions, we were considering that X and X̂ had the same number of
points (records). We will consider a more general case now in which X and X̂ have a
different number of records. This causes that the model from X and the model from X̂
have a different number of regions.

In a classification problem, what is rellevant for our model is the class associated
to each element. In the case of Voronoi tesselations for a 1-nearest neighbor this can be
modeled with colors (or assignments) to each region. Let Gc(p) be the color assigned
to position p in the map. We say that two Voronoi tesselations G and G′ are color-
equivalent if Gc(p) = G′c(p) for all p even in the case that the number of regions is
different.

Let us consider the case of a Voronoi tesselation in which the color of adjacent
regions is all different. Then, the question is whether there exist a set X̂ (with more
records than X) such that the Voronoi tesselation generated from X̂ is color-equivalent
to the one in X .

Let x be the points in X . Let a,c be two points of X such that they generate a border
in G. Let z be the point, z = (a+ c)/2. Then, the points ac = (a+ z)/2 and the point
ca = (c+ z)/2 are included in X̂ .

We can prove that all p that are at the same distance from a and c, they are also at
the same distance from ac and ca. This can be proven as the two right triangles defined
by the points (ac,z, p) and (ca,z, p) have two sides with the same length. So, the third
should also have the same length. This implies that, at least for some examples, the bor-
der of the regions we have in X are also border of regions in X̂ . In such cases the proce-
dure results into another set X̂ (with a different number of elements) that represents the
same map. That is, the model built from X and X̂ is the same: G = A(X) = Ĝ = A(X̂).



Decision tree learning returns a decision tree from a data set. In the case of ID3,
the tree is built for categorical data recursively selecting at each point the attribute that
maximizes the information gain (or minimizes the entropy). Data sets that lead to the
same entropy will produce the same trees. Nevertheless, even in the case of different
entropies, the trees will be the same if the set of attributes that maximize the entropy
are the same.

For any linear regression model, the number of sets that can generate the model is
infinite. However, when constraints exist for the generators (e.g. integer data in a given
domain) this may not be the case.

We have shown that when different datasets can generate the same knowledge, M
is not a singleton. In addition to that, for some algorithms, when µ is a set of valid
modifications, then there is another set µ ⊆ µ ′ that is also a valid set of modifications.
The following example illustrates this case.

Example 1. Let X be a set of n records where n−1 of them are of class + and 1 is of
class −. Then, let G = A(X) be a decision tree with two branches and one question. Let
G′ = A(X ′) be a decision tree with a single node and no question assigning always the
class +. Then, it is clear that all modifications in M include the deletion of the record
in class −.

Therefore, if µ corresponds to the deletion of the record in class − and µ ′ are all
other possible modifications, then µ ′ includes µ . In this framework, we can consider
the set (or sets) of possible transformations, and the lattice defined from this set of
transformations and the subset inclusion. Note that it is also rellevant to consider the
intersection of all m ∈M . In the example, this intersection corresponds to the deletion
of the record of class−. Similarly, it is relevant to consider the minimal elements of the
lattice. That is, the modifications that are minimal with respect to the set inclusion. The
minimal modifications are rellevant for an intruder.

We finish this discussion with the following remarks.

– When we only allow deletions, the number of modifications is finite (for a finite
database). Therefore, the set of minimal modifications is also finite.

– The set of generators of a real data set is smaller than the set of possible gener-
ators. In real applications, not all modifications are possible, and not all possible
modifications are equally plausible.

3.3 Privacy problem

In order to take into account the intruder goal described in Section 3.2 we consider the
following privacy problem.

Find algorithms A that maximize the uncertainty of the intruder (with respect to the
set of possible modifications). That is, we are interested in machine learning methods A
such that the set

M = {µ|G = A(X) and G′ = A(X +µ)}. (1)

is large, and such that
∩m∈M m = /0. (2)



The rational of this definition is that intruders cannot use their knowledge on the
set of possible modifications to infer that a particular modification has taken place. The
larger the set of modifications, the larger the uncertainty of the intruder. In addition, we
do not want that even in the case of a large set, all modifications agree on a small set.
This is to avoid situations as the one in Example 1.

3.4 Integral privacy definitions
On the basis of the previous discussion we introduce some definitions for privacy.

We define i-integral privacy when M defined according to Equation 1 is large and
such that the intersection in Equation 2 is empty.

We define integral privacy à la k-anonymity, when the set M contains at least k
alternatives.

We define k-anonymous integral privacy when the set M has at least k minimal
elements.

With these definitions, we can consider solving the privacy problem above (for in-
tegral privacy) combining machine learning algorithms with data privacy algorithms. In
this case, we define Â(X) = A(ρ(X)). Then, the scenario is similar to the one above but
permits us to find good masking methods for a given algorithm A. The formulation is
as follows.

Given X , G, G′, and an algorithm A, a good masking method ρ is the one that makes
the set

M = {µ|G = A(ρ(X))andG′ = A(ρ(X +µ))}
large and such that ∩m∈M m = /0.

We can consider additional restrictions for the set M as above.

3.5 Other specific scenarios
Section 3.1 introduced the main scenario that motivates the definition of integral pri-
vacy, but one can find other cases and possible scenarios. Here we provide a brief
description of 4 more cases that can arise from the main problem description from
Section 2.

– Scenario #2. Known by the intruder: χ , χ ′. Intruders should not determine neither
S ⊆ X nor µ with certainty. That is, the intruder cannot find neither records from
the file, nor information about the modifications.

– Scenario #3. Known by the intruder: X ′, G, G′. Similar to the first scenario from
Section 3.1 but with X ′ instead of X .

– Scenario #4 and #5. Similar to cases #1 and #3 but knowledge is generated from
ρ(X). That is, we are considering Γ and Γ ′. Under the transparency principle, we
can also presume that the intruder is aware of methods ρ and A.

These three scenarios complement the one introduced previously and can contribute
with more examples of the utility of our definition of integral privacy. It is important
to note that some of these scenarios are equivalent to already existing problems in data
privacy. For instance, scenario #2 can be considered as the problem of publishing pro-
tected dynamic data. Note also that when in scenario #1 we have that the algorithm A is
a masking method ρ , it can be seen as equivalent to the second scenario.



4 Integral privacy and differential privacy

Our model can be considered as related to differential privacy. Nevertheless, the focus
of our model differs to the focus in differential privacy.

In differential privacy, the main issue is to compute a query in a way that the out-
put is insensitive to addition (or removal) of a single element of the database. This is
achieved considering this computation as randomized and requiring that the distribu-
tions of the two outputs (the output of the computation on the original data set and the
one of adding an element to it) are approximately the same. That is, for all X and x,

Distr(G(X))∼ Distr(G(X + x)).

Note that this is for all databases X and for all possible elements that can be added
into a database. Algorithms exist for achieving this goal, although for some type of data
the noise required to ensure enough similarity may be very large. See e.g. [8].

Let us consider this problem from a different perspective. Let us assume that we
know G(X) and G(X + x) (or their distribution) and that we know X . Consider for
example the case of applying a decision tree learning algorithm to a data set. So G(X)
is a decision tree obtained from X using the algorithm. Then, G(X +x) is also a decision
tree. It can be the case that this other decision tree is quite different to G(X) but that the
set of possible records x that have generated G(X + x) is very large.

For example, let X be a set with all records in the same class + and then any record
in class − expands the tree. Alternatively, let X + µ be a set of records with classes +
and − but with most of the records in + and only a few in − (so few that the deletion
of one by a decision tree learning with pruning removes the − class). For this example,
we can consider that privacy is guaranteed at an appropriate level. Note that, in general,
differential privacy (on G(X) vs. G(X + x)) would not consider the process safe.

If we are interested in both types of privacy, we can define the concept of differin-
tegral privacy that forces the data to satisfy differential privacy and integral privacy at
appropriate levels. The term differintegral is borrowed from fractional calculus [4].

5 Conclusions

In this paper we have introduced the definition of integral privacy. The main goal is to
provide tools for researchers to study data privacy when provenance data is present. We
have provided a motivating scenario that yields the concept of integral privacy. This def-
inition can be further developed in future works to comprise a framework for evaluating
privacy in data provenance. Further work is needed to compute the set of modifications
in different scenarios. This will permit us to evaluate methods with respect to disclosure
risk and utility. Another line of future research corresponds to the case when instead of
a single method A for extracting knowledge, we apply several of them A1,A2, . . . ,An
and thus we need to consider G1 and G′1, G2 and G′2, . . . , Gn and G′n.
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