
Canard cycles with three breaking mechanisms.

M. Caubergh and R. Roussarie

May 12, 2015

Abstract

This article deals with relaxation oscillations from a generic balanced
canard cycle Γ subject to three breaking parameters of Hopf or jump type.
We prove that in a rescaled layer of Γ there bifurcate at most 5 relaxation
oscillations.

1 Introduction

We consider slow-fast systems of the form

Xλ,ε :

{
ẋ = f(x, y, λ, ε)

ẏ = εg(x, y, λ, ε),
(1)

where f, g are smooth functions. In the study of relaxation oscillations we follow
the general framework as introduced in [2, 4].

Each canard cycle is associated with one or more breaking mechanisms.
As in [5] we consider only canard cycles with n generic breaking mechanisms,
that may be Hopf breaking mechanisms and jump breaking mechanisms. Each
mechanism depends on a so-called breaking parameter, in fact a function a(λ) of
the parameter λ. The assumed genericity is that the map λ → (a1(λ), . . . , an(λ))
is a local diffeomorphism. Then, we will suppose that λ = a = (a1, . . . , an). The
canard cycle exists when a = 0 ∈ IRn and we want to study the system for
a ∼ 0 ∈ IRn. A canard cycle with n breaking mechanisms is associated with n
(horizontal fast) layers. For this reason we call such a canard cycle, indifferently:
n-multi-layer canard cycle or canard cycle with n breaking mechanisms.

Canard cycles with one breaking mechanism were largely investigated and
a general result in finite codimension was obtained in [4]. Canard cycles with
two breaking mechanisms were introduced in [3] and their study was completed
in [7]. Canard cycles with an arbitrarily large number n of mechanisms were
introduced in [5]. There it is shown that bounding the limit cycles bifurcating
from a generic balanced canard cycle Γ with n canard mechanisms in a rescaled
layer is reduced to investigate the fixed points of a composition of translated
power functions of the form

φr
α(ξ) = φrn

αn
◦ φrn−1

αn−1
◦ . . . ◦ φr1

α1
(ξ), (2)

1

This is a preprint of: “Canard cycles with three breaking mechanisms”, Magdalena Caubergh,
Robert Roussarie, Interdisciplinary Mathematical Research and Applications, vol. 157, 61–77,
Springer Proceedings in Mathematics and Statistics, 2016.
DOI: [10.1007/978-3-319-31323-8_4]

10.1007/978-3-319-31323-8_4


where r = (r1, . . . , rn), with ri ∈ IR \ {0} defined in terms of divergence quanti-
ties and α = (α1, . . . , αn), with αi ∈ R obtained by rescaling ai. The φri

αi
in (2)

are translated power functions given by:

φri
αi
(ξ) = αi + ξri , i = 1, . . . , n.

The maximal number of limit cycles bifurcating from Γ, i.e its cyclicity, in
a rescaled layer, is equal to the maximal number of fixed points of φr

α(ξ). For
n = 1 respectively n = 2, the cyclicity is equal to 2 respectively 3. This is the
bound expected for an elementary catastrophe (fold resp. cusp catastrophes),
although the catastrophe theory does not apply here. For n = 3 an example by
Panazzolo exhibits on generic sections in parameter space a bifurcation with 3
cusp points (see Figure 1; this example was reported in [5]).

Figure 1: A planar section of the bifurcation diagram of a 3-layer canard cycle;
in the bounded region 5 limit cycles are found.

In this example one finds values of the parameter with 5 fixed points for
φr
α(ξ). Therefore, although this family of maps depends on a mere three dimen-

sional parameter, its bifurcation diagram does not globally reduce to a unique
elementary catastrophe. On the other hand, the cyclicity of Γ was not obtained
for n = 3 in [5]. We obtain such a bound in this paper:

Theorem 1. Let Γ be a balanced canard cycle with 3 breaking mechanisms,
verifying the generic condition (G). Then there bifurcate at most 5 limit cycles
in any rescaled layer of Γ.

What is a balanced canard cycle Γ is explained in Definition 4, in terms of
the slow divergence integrals (4) associated to this canard cycle. The generic
condition (G) needed in Theorem 1 is specified below in (11) in terms of the
divergence quantities (6). What is a rescaled layer is explained in Definition 5.
Such a layer is a neighborhood of order ε in the layer variables. These layer vari-
ables are used to parameterize the canard cycles near Γ as well as the bifurcating
limit cycles. Clearly, a rescaled layer does not cover a whole neighborhood of
Γ; in Section 4 we further discuss this restriction.

Taking into account the Panazzolo’s example, we see that the bound obtained
in Theorem 1 is optimal. During the preparation of this paper, Panazzolo
communicates us an article in preparation [8], where he announces that the
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equation (2), for n = 3, has at most 5 roots. This implies of course Theorem 1.
Nevertheless, the method which is used in our paper seems to be more simple.
The method of [8], using the Khovanskii theory of fewnomials [6], allows to
obtain for an arbitrary n the following bound:

Mn = 2n(2n−1)(n+ 1)2n.

Notice that this general formula does not give the accurate bound M3 = 5, that
is obtained in [8] by a direct study.

2 General setting

Here we recall briefly the general setting for slow fast systems and canard cycles
with an arbitrary number n of breaking mechanisms (see [5]).

2.1 Some basic definitions

The following assumptions are made on (1):

∂f

∂y
(x, y, λ, 0) 6= 0, ∀(x, y, λ),

and

if f(x, y, λ, 0) =
∂f

∂x
(x, y, λ, 0) = 0, then

∂2f

∂x2
(x, y, λ, 0) 6= 0.

For ε = 0 we obtain the layer equation Xλ,0. The set Lλ = {f(x, y, λ, 0) = 0} is
referred to as the slow curve (of the layer equation). By the assumptions above
it follows that the slow curve is a regular curve. Contact points are points where
the slow curve is tangent to the horizontal direction. Let Cλ be the set of these
contact points. The set Lλ \Cλ is the union of normally hyperbolic arcs which
may be of attracting type or of repelling type. Limit periodic sets appearing
for ε → 0 and not reduced to a singular point, are called slow fast cycles (as
they are the union of slow arcs on Lλ and fast orbits). They are compact
invariant sets of Xλ,0. Periodic orbits bifurcating from these slow fast cycles are
called relaxation oscillations. A distinction is made between canard and common
relaxation oscillations. The one we are interested in are the canard relaxation
oscillations, which bifurcate from a slow fast cycle containing attracting as well
as repelling slow arcs. Such a slow fast cycle is called canard cycle.

2.2 Multi-layer canard cycles

A multi-layer canard cycle is a canard cycle on which operate simultaneously
n breaking parameters, for some number n ≥ 1. We suppose that the slow
dynamics has no zeros on the slow arcs contained in Γ.

We have two different types of breaking mechanism:
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1. The Hopf mechanism, occurring at degenerate contact point (x0, y0) where
g(x0, y0, 0, 0) = 0 but ∂g

∂x (x0, y0, 0, 0) 6= 0. The breaking parameter is the
displacement of this root of g.

2. The jump mechanism where a fast orbit contained in Γ jumps from a non-
degenerate contact point to another one. The breaking parameter is the
vertical distance between the two contact points after perturbation.

More details about these two mechanisms can be found in [5].

Figure 2: Canards with 1 breaking parameter; Hopf breaking mechanism on the
left, jump breaking mechanism on the right.

Now, let T1, · · · , Tn be the n breaking mechanisms which are labeled in
the order compatible with the orientation of Γ (each Ti is situated either at a
degenerate contact point or at a fast orbit between two jump points). To each
Ti is associated a breaking function ai(λ), i = 1, . . . , n. We suppose the generic
condition:

The map λ → (a1(λ), · · · , an(λ)) is a local diffeomorphism at λ = λ0.
From now on we will assume that λ = (a1, . . . , an).
The orientation of Γ induces a cyclic order on the breaking mechanisms and

related loci; we denote them: T1, · · · , Ti, · · · , Tn, where i is a cyclic index which
belongs to ZZ/nZZ.

In between two breaking mechanisms we suppose to have exactly one fast
orbit (in the positive direction) having both as α-limit and as ω-limit a point
in L0 \C0. Of course such a fast orbit has to belong to a 1-parameter family of
fast orbits having both as α-limit and as ω-limit a point in L0−C0; we can call
it a layer of fast orbits or fast layer.

In between a fast layer and a breaking mechanism we admit that Γ consists
of a union of attracting slow curves and fast orbits, called attracting sequence.

A fast orbit in an attracting sequence necessarily has as α-limit a (jump)
point in C0, while we require that the ω-limit be situated in L0 \C0.

We also require the same on Γ when we reverse time, implying similar con-
ditions on a succession of repelling slow arcs, as we have on a succession of
attracting slow arcs. The related succession of repelling slow curves and inter-
mediate fast orbits will be called a repelling sequence.

We return now to the layer orbits. As described before, one has a unique layer
orbit li in Γ, for each i ∈ ZZ/nZZ. This layer orbit links the repelling sequence
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Ri to the attracting sequence Ai+1. As already observed, each li belongs to a
1-parameter family of such fast orbits (a fast layer), and as a consequence the
canard cycle is a member of an n-parameter family of similar canard cycles. To
make this point more precise, we consider a transverse section Σi to li, transverse
to the field X0,0, for each i ∈ ZZ/nZZ. Let ui be a smooth regular parametrization
of Σi, such that Σi∩li corresponds to u0

i .We can replace li by li(ui), the fast orbit
passing through the point ui ∈ Σi (li = li(u

0
i )). So, we have an n-parameter

family of canard cycles Γu, parameterized by u = (u1, · · · , un) ∈ ∏
i Σi. The

canard Γu is the one containing the fast layer orbits li(ui), for i ∈ ZZ/nZZ. To
emphasize the dependence on ui, we will write ni(ui),mi(ui) for the end points
of the layer orbit li(ui), and also Ai(ui−1), Ri(ui) for the attracting and repelling
sequences associated to the transition Ti. We can assume that our canard cycle
Γ is just Γu0 with u0 = (u0

1, . . . , u
0
n). Parameters ui are called the layer variables.

2.3 Equation of bifurcating limit cycles

Let us consider an open connected arc σ ⊂ L0 \ C0. Along such an arc one can
consider the slow divergence integral Int(σ), as defined in [1] for instance. For
the system (1) and for an arc σ, above an interval [x1, x2] without zero of g nor
contact point in its interior, we have that

Int(σ) = Int(x1, x2) = −
∫ x2

x1

1

g(x, y(x), 0, 0)

(∂f
∂x

(x, y(x), 0, 0)
)2

dx, (3)

where y(x) is the implicit function defined by f(x, y(x), 0, 0) = 0 along σ. The
end points x1 and x2 may be contact points.

Let us consider now the 2n integrals Ii,j(uj), defined for i ∈ ZZ/nZZ, j =
i, i− 1 :

Ii,i−1(ui−1) = Int(σ(Ai(ui−1)), Ii,i(ui) = −Int(σ(Ri(ui)) (4)

where σ(Ai(ui−1)) is the union of the slow arcs which constitute the attracting
sequence Ai(ui−1) and σ(Ri(ui)) is the union of the slow arcs which constitute
the repelling sequence Ri(ui).

Remark 2. For each breaking mechanism Ti we choose one section Ti. For
the Hopf mechanisms, we have to introduce as breaking parameter a rescaled
parameter: āi = ε−δai for some δ > 0, in consequence of the blow-up needed
at this point. To keep the notations homogeneous, we will also write āi for the
breaking parameter at a jump breaking mechanism (i.e. we write ai = āi for
a jump breaking parameter). We globally write : ā = (ā1, · · · , ān) (See [5] for
more details).

We recall now an important definition:

Definition 3. We say that a function f(z, ε), with z ∈ IRp for some p, is ε-
regularly smooth in z (or ε-regularly C∞ in z) if f is continuous and all partial
derivatives of f with respect to z exist and are continuous in (z, ε).
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We want to recall now from [5] expressions for the transition maps for ε > 0,
from the section Σi−1 to the section Ti, along the flow of Xa,ε, and from Σi to

Ti along the flow of −Xa,ε (reversing time). There exist functions Ĩi,j(uj, ā, ε)
which are ε-regularly C∞ in (uj , ā), such that

Ĩi,j(uj , 0, 0) = Ii,j(uj) for i ∈ ZZ/nZZ, j = i− 1, i

and such that the transition maps have the following expressions:

1. From Σi−1 to Ti : ui−1 → exp
Ĩi,i−1(ui−1,ā,ε)

ε + fi,i−1(ā, ε),

2. From Σi to Ti : ui → exp
Ĩi,i(ui,ā,ε)

ε + fi,i(ā, ε),

with fi,j functions that are ε-regularly smooth in ā, and
∂fi,j
∂āi

(0, 0) > 0. One
deduces in [5] the following system of n equations for the limit cycles:

exp
Ĩi,i−1(ui−1, ā, ε)

ε
− exp

Ĩi,i(ui, ā, ε)

ε
= āi for i = 1, · · · , n (5)

with new functions Ĩi,j which differ from the previous ones by terms of order
O(ε), which are ε-regularly C∞ in (u, ā).
In Figures 2 and 3 the transition maps are indicated by dotted lines.

Figure 3: On the left a canard cycle with 1 breaking mechanism (jump) and
exhibiting an attracting sequence. On the right a canard cycle with 3 breaking
mechanisms (1 jump and 2 Hopf).

2.4 Rescaling generic balanced canard cycles

Recall Γ is the canard cycle Γu associated to u = u0.

Definition 4. The canard cycle Γ is said to be balanced if the integrals Ii,j
verify the following conditions

Ii,i(u
0
i ) = Ii,i−1(u

0
i−1) for i ∈ ZZ/nZZ.
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Let us suppose that Γ is a balanced canard cycle. Then Γ is said to be generic
if it verifies the generic condition

(G) :

n∏

i=1

I ′i,i(u
0
i ) 6=

n∏

i=1

I ′i,i−1(u
0
i−1) (6)

We assume from now on that Γ is a generic balanced canard cycle. It is
proven in [5] that there exists an ε-regularly function ui(ā, ε) such that

Ĩi,i(ui(ā, ε), ā, ε) = Ĩi,i−1(ui−1(ā, ε), ā, ε),

for all ε > 0, small enough. We write u(ā, ε) = (u1(ā, ε), . . . , un(ā, ε)).
We can introduce now the rescaled layer variables:

Definition 5. Let us suppose that Γ is a generic balanced canard cycle and
let u(ā, ε) = (u1(ā, ε), . . . , un(ā, ε)) the application defined above. For each i =
1, · · · , n, the rescaled layer variable Ui is defined by

ui = ui(ā, ε) + εUi.

Taking Ki > 0, for i = 1, . . . , n arbitrarily large constants, we define a rescaled
layer by taking Ui ∈ [−Ki,Ki], for i = 1, . . . , n, and ε small enough.

Introduce:

I0i (ā, ε) = Ĩi,i(ui(ā, ε), ā, ε) = Ĩi,i−1(ui−1(ā, ε), ā, ε) and I1i,j = I ′i,j(u
0
i ),

then we have that:

Ĩi,j(uj , ā, ε) = I0i (ā, ε) + εI1i,jUj(1 +O(ε)), (7)

where O(ε) is ε-regularly smooth in Uj .

Substituting (7) in the equations (5) we obtain, for i = 1, . . . , n, the rescaled
equations:

exp
(
I1i,iUi(1 +O(ε))

)
− exp

(
I1i,i−1Ui−1(1 +O(ε))

)
= αi, (8)

for rescaled parameter variables αi = āi exp(−I0i (ā, ε)/ε). To simplify the nota-
tion further, we also write: I1i,i(u

0
i ) = τi, I1i,i−1(u

0
i−1) = νi−1 and ri =

νi−1

τi−1
for

i ∈ ZZ/nZZ. At the parameter (α, r) one associates in [5] the translated power
function:

Φr
α(ξ) = α+ ξr.

Now, putting ξ = expUn, it is proven in [5] that the system of equations (8)
reduces to a one-dimensional fixed point equation for a map: ξ → ϕr

α(ξ) +O(ε)
where

ϕr
α = φrn

αn
◦ · · · ◦ φr1

α1
,

and O(ε) is ε-regularly smooth in (ξ, α, r).
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3 System with three breaking parameters

In this section we particularize the general setting to systems with three breaking
parameter mechanisms. Each of these mechanisms may be of Hopf or jump type.
Figures 3 and 4 present examples of such system.

We will denote by u, v, w the layer variables, by I(u), J(v),K(u), L(w),M(v)
and N(w) the 6 involved slow fast integrals and by a, b, c the three breaking pa-
rameters. As above, we change the parameter (a, b, c) for the new parameter
(ā, b̄, c̄) to take into account the possibility of Hopf type mechanisms (see Re-
mark 2). We assume that λ = (ā, b̄, c̄) is the whole parameter of Xλ,ε.

As consequence of their basic properties, the slow divergence integrals are
strictly negative and with strictly non-zero derivative:

I ′(u) 6= 0, K ′(u) 6= 0, J ′(v) 6= 0, M ′(v) 6= 0, L′(w) 6= 0, N ′(w) 6= 0.

We consider the canard cycle Γ = Γ(u0,v0,w0). It is supposed to be balanced,
which here reads as

I(u0) = J(v0), K(u0) = L(w0) and M(v0) = N(w0). (9)

Definition 6. The divergence quantities are the derivatives of the 6 divergence
integrals, computed along the canard cycle:

{
I1 = I ′(u0), J1 = J ′(v0),K1 = K ′(u0),

L1 = L′(w0),M1 = M ′(v0), N1 = N ′(w0).
(10)

The canard cycle Γ is also supposed to be generic. This means that it verifies
the property (G) in (6), which here reads as

G =
I1L1M1

J1K1N1
6= 1, (11)

3.1 An example

Consider the slow fast system in the Liénard plane

{
ẋ = y + 1

2x
2 − 1

4x
4

ẏ = εgdδ1δ2(x, a, b, c),
(12)

with

gdδ1δ2(x, a, b, c) =
(x− a)(x + 1− b)(x− 1− c)(x− d− δ1)(x + d)

1 + δ2x
. (13)

We see that the slow curve has two minima at x = −1 and x = 1 and
one maximum at x = 0. The values of the minima is equal to − 1

4 and the
value of the maximum is equal to 0. The breaking parameters are (a, b, c) and
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Σ0

Σ− Σ+

u

v
w

− 1
4

0

0−1 1−d d+ δ1

J

I

L

K

M N

Figure 4: Canard cycle Γ(u,v,w) for (12) with 3 Hopf breaking parameters.

for (a, b, c) = (0, 0, 0) we have three Hopf mechanisms of canard cycles. The
parameters (d, δ1, δ2) are constants that have to be chosen such that there exists
a generic balanced canard cycle. We will not give a complete proof of this claim.
We content ourselves in giving some indications which support it.

We write F (x) = − 1
2x

2+ 1
4x

4.We will choose d ∈]0, 1[ and δ1, δ2 small enough
such that d + δ1 ∈]0, 1[ and |δ2| < 1. There are two singularities of the slow
dynamics at points (−d, F (d)) and (d + δ1, F (d+ δ1)) on the interior branches
of the slow curve. The orientation of the slow dynamics is shown in Figure 4.
We choose the three layer sections to be Σ0 = {x = 0},Σ−1 = {x = −1}
and Σ+ = {x = 1}, with parametrization u, v, w respectively, being equal to
the coordinate y. We take u ∈] − 1

4 , Inf{F (d), F (d + δ1)}[, v ∈]F (d), 0[ and
w ∈]F (d + δ1), 0[. Then, for any convenient value (u, v, w) we have a canard
cycle Γ(u,v,w).

We write gdδ1δ2(x) = gdδ1δ2(x, 0, 0, 0). If f(x) =
∂F
∂x , we have that

gdδ1δ2(x) = f(x)
(x− d+ δ1)(x + d)

1 + δ2x

and from (3) we obtain the following expression for the slow divergence integral:

Int(x1, x2) =

∫ x2

x1

1 + δ2x

(x− d+ δ1)(x + d)
f(x)dx. (14)

For any y ∈]− 1
4 , 0[ we let −x+(y) < −x0(y) < x0(y) < x+(y) be the four roots

of the equation {F (x) = y}. The six slow divergence integrals are given by (see
Figure 4):

I(u) = Int(−x0(u),−1), K(u) = Int(x0(u), 1), J(v) = Int(−x+(v),−1)

and

M(v) = Int(−x0(v), 0), L(w) = Int(x+(w), 1), N(w) = Int(x0(w), 0).
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We now explain how to find a generic balanced canard cycle. First, for δ1 =
δ2 = 0, the system is symmetric with respect to the Oy-axis. Then the integrals
I,K are identical and also the pairs J, L and M,N. Moreover the four integrals
I,K,M,N vary from −∞ to 0 and the two integrals J, L have a bounded varia-
tion. Taking for instance any value for v we have a unique value u(v) such that
the symmetric canard cycle Γu(v)vv is balanced. Of course, as this canard cycle
belongs to a 1-parameter family of balanced canard cycles, it cannot verify the
condition (G). However, it seems reasonable to think that there exist choices of
the constants (d, δ1, δ2) which break this symmetry and for which there exists a
generic balanced canard cycle.

3.2 System of equations for relaxation oscillations

The system of governing equations for relaxation oscillations is given by





exp(Ĩ(u, λ, ε)/ε)− exp(J̃(v, λ, ε)/ε) = ā,

exp(K̃(u, λ, ε)/ε) − exp(L̃(w, λ, ε)/ε) = b̄,

exp(M̃(v, λ, ε)/ε)− exp(Ñ(w, λ, ε)/ε) = c̄,

(15)

where λ = (ā, b̄, c̄) is near (0, 0, 0) and the solutions (u, v, w) that we are looking
for are near (u0, v0, w0). Since Γ is a generic balanced canard cycle (i.e. we have
(9) and (11)), there exist ε-regularly smooth functions u(λ, ε), v(λ, ε), w(λ, ε),
with u(λ, 0) = u0, v(λ, 0) = v0 and w(λ, 0) = w0, such that:

Ĩ(u(λ, ε), λ, ε) ≡ J̃(v(λ, ε), λ, ε)

K̃(u(λ, ε), λ, ε) ≡ L̃(w(λ, ε), λ, ε)

M̃(v(λ, ε), λ, ε) ≡ Ñ(w(λ, ε), λ, ε).

We introduce the translated layer variables:

ū = u− u(λ, ε), v̄ = v − v(λ, ε), w̄ = w − w(λ, ε),

and we can expand:

Ĩ(u, λ, ε) = Ĩ0(λ, ε) + Ĩ1(λ, ε)ū(1 + ū2),

and also the other functions J̃ , K̃, . . . . Let us notice that we have

Ĩ0(λ, 0) ≡ I(u0), Ĩ1(λ, 0) ≡ I1 (16)

and similar ε-limits for the other functions J̃ , K̃, . . . . Next we introduce the
rescaled parameter variables

α = ā exp(−Ĩ(0, λ, ε)/ε), β = b̄ exp(−K̃(0, λ, ε)/ε), γ = c̄ exp(−M̃(0, λ, ε)/ε),

and we write Ĩ1(λ, ε) = Ĩ ′(0, λ, ε), J̃1(λ, ε) = J̃ ′(0, λ, ε), . . . ; to simplify reading,
in the sequel we shortly write Ĩ1 = Ĩ1(λ, ε), J̃1 = J̃1(λ, ε), . . . although they do
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depend on (λ, ε). Then the system of governing equations for limit cycles (15)
for (ū, v̄, w̄) near (0, 0, 0), is reduced to





exp
(
Ĩ1ū(1 +O(ū))/ε

)
− exp

(
J̃1v̄(1 +O(v̄))/ε

)
= α,

exp
(
K̃1ū(1 +O(ū))/ε

)
− exp

(
L̃1w̄(1 +O(v̄))/ε

)
= β,

exp
(
M̃1v̄(1 +O(v̄))/ε

)
− exp

(
Ñ1w̄(1 +O(w̄))/ε) = γ,

(17)

3.3 Khovanskii’s reduction of the system of equations

To control the number of solutions of (17) we use a Khovanskii’s method. This
approach is quite similar to the first step of the method used in [7] for canard
cycles with 2 breaking parameters. In the system (17) we replace one equa-
tion by an equation equivalent to D(ū, v̄, w̄, λ, ε) = 0, where D is the Jacobian
determinant of the left-hand side of (17) with respect to (ū, v̄, w̄). Since we have

∂

∂ū
exp

Ĩ1ū(1 +O(ū))

ε
=

Ĩ1(1 +O(ū))

ε
exp

Ĩ1ū(1 +O(ū))

ε
=

Ĩ1
ε
exp

Ĩ1ũ(1 +O(ū))

ε
,

and analogous expressions for the other derivatives, we obtain that

D =
Ĩ1L̃1M̃1

ε3
exp

[ Ĩ1ū(1 +O(ū)) + M̃1v̄(1 +O(v̄)) + L̃1w̄(1 +O(w̄))

ε

]

− J̃1K̃1Ñ1

ε3
exp

[K̃1ū(1 +O(ū)) + J̃1v̄(1 +O(v̄)) + Ñ1w̄(1 +O(w̄))

ε

]
.

We write G̃ = Ĩ1L̃1M̃1

J̃1K̃1Ñ1
= G+O(ε), with a term O(ε) which is ε-regularly smooth

in λ and with G as defined in (11). If G < 0, the Jacobian determinant is locally
non-zero. Then, the system (17) has locally at most one solution. From now on
we will suppose that G > 0. In this case, the equation D = 0 is equivalent to

(Ĩ1 − K̃1)ū+ (M̃1 − J̃1)v̄ + (L̃1 − Ñ1)w̄ + ε ln G̃+O
(
‖(ū, v̄, w̄)‖2

)
= 0. (18)

Under the generic condition (G), as given in (11), at least one of the three
coefficients I1 − K1, J1 − M1 or L1 − N1 is different from 0. Without loss of
generality, we can assume that L1 − N1 6= 0. Then, using Implicit Function
Theorem, (18) can be solved for w̄. We thus obtain a function w̄, that is ε-
regularly smooth in (ū, v̄, λ) and from (18) we find:

w̄(ū, v̄, λ, ε) = − Ĩ1 − K̃1

L̃1 − Ñ1

ū− M̃1 − J̃1

L̃1 − Ñ1

v̄ − ε ln G̃+O
(
‖(ū, v̄)‖2

)
, (19)

In order to simplify the system of equations, we consider a coordinate transfor-
mation of the layer variables

(ū, v̄) 7→ (ũ, ṽ),

11



where ũ = Ĩ1ū(1+O(ū)), ṽ = J̃1v̄(1+O(v̄)), are the arguments of the exponential
functions appearing in the first equation in (17). After this change of variables,
the function (19) is replaced by the function w̃ with

w̃(ũ, ṽ, λ, ε) = − Ĩ1 − K̃1

L̃1 − Ñ1

ũ

Ĩ1
− M̃1 − J̃1

L̃1 − Ñ1

ṽ

J̃1
− ε ln G̃+O

(
‖(ũ, ṽ)‖2

)
.

The Khovanskii’s method consists in replacing one of the three equations in
(17), we choose the last one, by the equation D = 0, which for ‖(ū, v̄, w̄)‖ → 0
is equivalent to the equation w̄ = w̃(ũ, ṽ, λ, ε). In this way, we can eliminate w̄
in the two first equations of (17) to obtain the following system of two equations
in (ũ, ṽ)





exp
ũ

ε
− exp

ṽ

ε
= α,

exp
σ̃ũ(1 +O(ũ))

ε
− exp

σ̃1ũ+ σ̃2ṽ − ε ln G̃+O(‖(ũ, ṽ)‖2)
ε

= β,

(20)

where σ̃, σ̃1, σ̃2 are ε-regularly functions in λ given by

σ̃ =
K̃1

Ĩ1
, σ̃1 = − L̃1(Ĩ1 − K̃1)

Ĩ1(L̃1 − Ñ1)
, σ̃2 = − L̃1(M̃1 − J̃1)

J̃1(L̃1 − Ñ1)
.

The system of equations (20) counts the number of contact points between the
foliation defined by the last equation in (17) and the curves defined by the two
first equations of (17). Therefore, for a given value of the parameter (λ, ε), the
maximal number of solutions (u, v, w) of (17) is bounded by 1 + the number of
solutions (ũ, ṽ) of (20).

Notice that system (20) is very similar to the one encountered in [7] for the
case of two breaking parameters. The only difference is that the second term in
the second equation of (20) depends on two variables ũ and ṽ and not just on
the single variable ṽ. This simple fact prevents us to proceed to further steps of
Khovanskii’s method as it was possible in [7]. For this reason we now have to
restrict the study to a rescaled layer.

3.4 Rescaled system of equations

As we announced in Section 1, the rescaling of equation (17) reduces the question
of bounding the number of limit cycles bifurcating in a rescaled layer of Γ to
the question of the number of fixed points for a fewnomial type map, here the
composition of three translation power functions:

ξ 7→ −α+ (β + (−γ + ξr1)r2)r3 , (21)

where r1 = M1

J1
, r2 = L1

N1
, r3 = I1

K1
. As we commented in Section 1 a direct

approach of this question is announced in [8], to obtain 5 as bound. In the
present paper we will obtain this bound by rescaling system (20). As this system
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is much simpler than (17), we believe that our proof is also much simpler than
a direct study of (21).

We now enter in the proof of Theorem 1. To this end, we rescale the variables
ũ, ṽ by

ũ = εU, ṽ = εV,

with U, V in arbitrarily large compact intervals. Next, we make the change of
variables

ξ = expU, η = expV,

where now ξ, η are to be considered in arbitrarily compact intervals in ]0,+∞[.
Recalling the notation of the divergence quantities in (10) and (16) we write

σ =
K1

I1
, σ1 = −L1(I1 −K1)

I1(L1 −N1)
, σ2 = −L1(M1 − J1)

J1(L1 −N1)
;

then system (20) reads as

{
ξ − η = α

ξσ −G−1ξσ1ησ2 +O(ε) = β,
(22)

where the uniformity of the term O(ε) is relative to the choice of the compact
domain for (ξ, η, α, β). Moreover this term is ε-regularly smooth in (ξ, η, α, β).
Hence, by substitution of η = ξ − α in the second equation we obtain a one-
dimensional equation:

ξσ −G−1ξσ1(ξ − α)σ2 − β +O(ε) = 0, (23)

where again the term O(ε) is uniform with respect to the choice of the compact
domain for (ξ, α, β) and it is ε-regularly smooth in (ξ, α, β).

Theorem 1 follows from next claim:

Proposition 7. For any fixed (σ, σ1, σ2) and (α, β) ∈ R2, the fewnomial type
function

ϕσ,σ1,σ2(ξ, α, β) = ξσ −G−1ξσ1(ξ − α)σ2 − β, (24)

has at most 4 roots in ξ counted with their multiplicities in ]α,∞[∩]0,∞[.

Before proving Proposition 7 we first show how to deduce Theorem 1 from
it. As we are looking for solutions (ξ, η) for system (22), in some compact set,
we see that we can also restrict (α, β) to some compact set of IR2. Now the term
O(ε) in (23) is uniform in compact sets for (ξ, α, β) and ε-regularly smooth.

Let A be a compact interval in ]0,+∞[. As the property to have at most 4
roots in ξ counted with their multiplicities is stable under smooth perturbations
on compact domains, it follows that the left-hand side of (23) is a function with
less than 4 roots in A for ε small enough. This implies that system (22) has
less than 4 solutions on a given compact domain for ε small enough, from which
Theorem 1 is proven.
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Proof of Proposition 7 First we consider the case α = 0. Then

ϕσ,σ1,σ2(ξ, α, β) = ξσ −G−1ξσ1+σ2 − β.

This function has at most two roots counted with their multiplicities if σ 6=
σ1 + σ2, and, as G 6= 1, has at most a simple root if σ = σ1 + σ2.

Next we suppose that α 6= 0. To study the zeroes ξ of (24) in function of
(α, β), we distinguish the case α > 0 and α < 0. As (σ, σ1, σ2) is fixed, we denote
the function ϕσ,σ1,σ2 simply by ϕ.

1. Case α > 0. We introduce the variable µ by ξ = α(1 + µ) with µ > 0
(since aµ = ξ − α > 0). Then ϕ transforms into

ϕ+(µ) ≡ ϕ(α(1+µ), α, β) = ασ(1+µ)σ−G−1ασ1+σ2µσ2(1+µ)σ1−β. (25)

To bound the zeroes of ϕ+ we apply a division-derivation algorithm.
Hence,

∂ϕ+

∂µ
(µ) = σασ(1+µ)σ−1−G−1ασ1+σ2 [σ1(1+µ)σ1−1µσ2+σ2(1+µ)σ1µσ2−1]

and so

(1 + µ)1−σ ∂ϕ+

∂µ
(µ) = σασ −G−1ασ1+σ2ϕ1

+(µ),

where ϕ1
+(µ) = (1 + µ)1−σ[σ1(1 + µ)σ1−1µσ2 + σ2(1 + µ)σ1µσ2−1]. Then

∂ϕ1
+

∂µ
(µ) = (1 + µ)σ1−σ−1µσ2−2ϕ2

+(µ), where

ϕ2
+(µ) = σ2(σ−2σ1−1)(1+µ)µ+σ1(σ−σ1)µ

2+σ2(1−σ2)(1+µ)2. (26)

This last function is a polynomial of degree 2 in µ, more precisely:

ϕ2
+(µ) = (σ1 + σ2)(σ1 + σ2 − σ)µ2 + σ2(2σ1 +2σ2 − σ − 1)µ+ σ2(σ2 − 1).

The number of positive zeroes µ for ϕ2
+ corresponds to the one for ∂2ϕ+

∂µ2 .
A direct and easy analysis shows that this polynomial is identically to zero
if and only if the triple (σ, σ1, σ2) is equal to (σ, 0, 0), (1, 0, 1) or to (σ, σ, 0)
for some σ ∈ IR. In the case (σ, 0, 0), we have that ϕ+(µ) = ασ(1 + µ)σ −
G−1 −β. In the case (1, 0, 1), we have that ϕ+(µ) = α(1−G−1)µ+α−β.
In the case (σ, σ, 0), we have that ϕ+(µ) = (1 − G−1)ασ(1 + µ)σ − β. In
all three cases the function ϕ+ has at most a single root, which is simple.
As a consequence ϕ for α > 0 and β ∈ R has at most 4 zeroes, counted
with their multiplicity.

2. Case α < 0. Consider now the case α < 0 and introduce the variable
ξ = −αµ = |α|µ. We have that µ > 0 for ξ > 0. Then ϕ transforms into

ϕ−(µ) = ϕ(|α|µ, α, β) = |α|σµσ −G−1|α|σ1+σ2(1 + µ)σ2 − β.
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The expression for ϕ−(µ) is similar as the one for ϕ+(µ) in (25), up to
permutation of µ with 1+µ, and replacing α in ϕ+ by |α|. Then applying
to ϕ− two steps of division-derivation procedure as we did to ϕ+ in the
case α > 0, leads to the quadratic polynomial ϕ2

−, defined by ϕ−
2 (µ) =

σ2(σ − 2σ1 − 1)µ(1 + µ) + σ1(σ − σ1)(1 + µ)2 + σ2(1 − σ2)µ
2, which is

similar to (26), up the permutation of µ with 1 + µ. Therefore, also for
α < 0, β ∈ IR, there are at most 4 zeroes ξ for ϕ, counted with their
multiplicity.

4 Open questions

(1) Theorem 1 computes the cyclicity of a generic balanced canard cycle Γ in
restriction to rescaled layers. Such a rescaled layer does not define a whole
neighborhood of Γ. It remains to compute the true cyclicity of Γ, i.e. to find
a bound of the number of bifurcating limit cycles in a whole neighborhood
of Γ. A method for achieving this result would be to blow up the system of
equations (17). In such blowing up the rescaled domain may be seen as a chart
of the blown-up space (the so-called family chart). To complete the study of
the cyclicity it thus would remain to study the blown-up system in the other
charts (the parameter charts). This does not seem to be a too difficult task.

(2) In [7], the genericity is not assumed and a result was obtained for any finite
codimension for canard cycles with two breaking mechanisms (besides the two
breaking parameters one considers other parameters to unfold the situation).
Moreover the result was obtained in a whole neighborhood (and not just in
rescaled layers), by using the Khovanskii’s method directly for the non-rescaled
system. The idea was to “reduce the number of exponentials”. Using this pro-
cedure for canard cycles with any number of breaking mechanisms, the first
step works, as it produces an equation, Det = 0, without exponentials. Unfor-
tunately, the number of exponentials does not decrease at the second step, as
soon as there are more than 3 breaking mechanisms. It would be very interest-
ing to find a general method to tackle the system of equations (5) in non-generic
cases and for an arbitrarily number of equations.
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