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Chapter 1

Preface

The Combinatoric, Coding and Security Group (CCSG) is a research group
in the Department of Information and Communications Engineering (DEIC)
at the Universitat Autònoma de Barcelona (UAB).

The research group CCSG has been uninterruptedly working since 1987
in several projects and research activities on Information Theory, Commu-
nications, Coding Theory, Source Coding, Cryptography, Electronic Voting,
Network Coding, etc. The members of the group have been producing mainly
results on optimal coding. Specifically, the research has been focused on
uniformly-packed codes; perfect codes in the Hamming space; perfect codes in
distance-regular graphs; the classification of optimal codes of a given length;
and codes which are close to optimal codes by some properties, for example,
Reed-Muller codes, Preparata codes, Kerdock codes and Hadamard codes.

Part of the research developed by CCSG deals with codes over Z4. Some
members of CCSG have been developing this new package that expands the
current functionality for codes over Z4 in Magma. Magma is a software
package designed to solve computationally hard problems in algebra, num-
ber theory, geometry and combinatorics. The latest version of this package
for codes over Z4 and this manual with the description of all developed func-
tions can be downloaded from the web page http://ccsg.uab.cat. For any
comment or further information about this package, you can send an e-mail
to support-ccsg@deic.uab.cat.

The authors would like to thank Lorena Ronquillo and Bernat Gastón
for their contributions developing part of this Magma package. Functions
described in Sections 2.2, 2.3, 2.4, 2.5 and 2.9 have been developed mainly
by the PhD student Jaume Pernas, and the ones in Sections 2.6, 2.7, 2.8 and
3.1 by the PhD student Roland D. Barrolleta, both under the supervision of
Jaume Pujol and Mercè Villanueva.
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Chapter 2

Codes over Z4

2.1 Introduction

Magma currently supports the basic facilities for linear codes over integer
residue rings and galois rings (see [7, Chapter 130]), including additional
functionality for the special case of codes over Z4 (or equivalently, quaternary
linear codes). A code over Z4 is a subgroup of Zn4 , so it is isomorphic to an
abelian structure Zγ2 × Zδ4 and we will say that it is of type 2γ4δ, or simply
that it has 2γ+2δ codewords. As general references on the available functions
in Magma for codes over Z4, the reader is referred to [13, 24].

The functions described in this chapter expand the current functionality
for codes over Z4 in Magma. Specifically, there are functions to construct
some families of codes over Z4 and new codes over Z4 from given codes over
Z4 (Sections 2.2 and 2.3). Moreover, efficient functions for computing the
rank and dimension of the kernel of any code over Z4 are also included (Sec-
tion 2.4), as well as general functions for computing coset representatives for
a subcode in a code over Z4 (Section 2.5). There are also functions for com-
puting the permutation automorphism group for Hadamard and extended
perfect codes over Z4, and their orders (Section 2.9). Functions related to
the information space, information sets, syndrome space and coset leaders for
codes over Z4 can also be found (Sections 2.6 and 2.7). Finally, functions to
decode codes over Z4 by using different methods are also provided (Section
2.8). As general references on these new functions, the reader is referred to
the bibliography included at the end of this document.

In this chapter the term “code” will refer to a code over Z4, unless oth-
erwise specified.
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2.2 Families of Codes over Z4

These functions give some constructions for some families of codes over Z4.

HadamardCodeZ4(δ, m)

Given an integer m ≥ 1 and an integer δ such that 1 ≤ δ ≤ b(m +
1)/2c, return a Hadamard code over Z4 of length 2m−1 and type 2γ4δ,
where γ = m + 1 − 2δ. Moreover, return a generator matrix with γ + δ
rows constructed in a recursive way from the Plotkin and BQPlotkin
constructions defined in Section 2.3.

A Hadamard code over Z4 of length 2m−1 is a code over Z4 such that,
after the Gray map, give a binary (not necessarily linear) code with the
same parameters as the binary Hadamard code of length 2m.

ExtendedPerfectCodeZ4(δ, m)

Given an integer m ≥ 2 and an integer δ such that 1 ≤ δ ≤ b(m+ 1)/2c,
return an extended perfect code over Z4 of length 2m−1, such that its dual
code is of type 2γ4δ, where γ = m+ 1− 2δ. Moreover, return a generator
matrix constructed in a recursive way from the Plotkin and BQPlotkin
constructions defined in Section 2.3.

An extended perfect code over Z4 of length 2m−1 is a code over Z4 such
that, after the Gray map, give a binary (not necessarily linear) code with
the same parameters as the binary extended perfect code of length 2m.

Example H2E1
Some codes over Z4 whose images under the Gray map are binary codes having the same
parameters as some well-known families of binary linear codes are explored.

First, a Hadamard code C over Z4 of length 8 and type 2142 is defined. The matrix Gc
is the quaternary matrix used to generate C and obtained by a recursive method from
Plotkin and BQPlotkin constructions.

> C, Gc := HadamardCodeZ4(2,4);

> C;

((8, 4^2 2^1)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 3 2 1 0 3 2]

[0 1 2 3 0 1 2 3]

[0 0 0 0 2 2 2 2]

> Gc;

[1 1 1 1 1 1 1 1]

[0 1 2 3 0 1 2 3]

[0 0 0 0 2 2 2 2]

> HasLinearGrayMapImage(C);

true [16, 5, 8] Linear Code over GF(2)
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Generator matrix:

[1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0]

[0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1]

[0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1]

[0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0]

[0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1]

Mapping from: CodeLinRng: C to [16, 5, 8] Linear Code over GF(2) given by a rule

Then, an extended perfect code D over Z4 of length 8 is defined, such that its dual code
is of type 2142. The matrix Gd is the quaternary matrix which is used to generate D and
obtained by a recursive method from Plotkin and BQPlotkin constructions. Note that
the code D is the Kronecker dual code of C.

> D, Gd := ExtendedPerfectCodeZ4(2,4);

> D;

((8, 4^5 2^1)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 0 1 0 0 1 3]

[0 1 0 1 0 0 2 2]

[0 0 1 1 0 0 1 1]

[0 0 0 2 0 0 0 2]

[0 0 0 0 1 0 3 2]

[0 0 0 0 0 1 2 3]

> Gd;

[1 1 1 1 1 1 1 1]

[0 1 2 3 0 1 2 3]

[0 0 1 1 0 0 1 1]

[0 0 0 2 0 0 0 2]

[0 0 0 0 1 1 1 1]

[0 0 0 0 0 1 2 3]

> DualKroneckerZ4(C) eq D;

true

ReedMullerCodeZ4(r, m)

ReedMullerCodeQRMZ4(r, m)

Given an integer m ≥ 2 and an integer r such that 0 ≤ r ≤ m, return
the r-th order Reed-Muller code over Z4 of length 2m.

The binary image under the modulo 2 map is the binary linear r-th order
Reed-Muller code of length 2m. For r = 1 and r = m − 2, the function
returns the quaternary linear Kerdock and Preparata code, respectively.
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ReedMullerCodesLRMZ4(r, m)

Given an integer m ≥ 1 and an integer r such that 0 ≤ r ≤ m, return a
set of r-th order Reed-Muller codes over Z4 of length 2m−1.

The binary image under the Gray map of any of these codes is a binary
(not necessarily linear) code with the same parameters as the binary
linear r-th order Reed-Muller code of length 2m. Note that for these
codes neither the usual inclusion nor duality properties of the binary
linear Reed-Muller family are satisfied.

ReedMullerCodeRMZ4(s, r, m)

Given an integer m ≥ 1, an integer r such that 0 ≤ r ≤ m, and an integer
s such that 0 ≤ s ≤ b(m − 1)/2c, return a r-th order Reed-Muller code
over Z4 of length 2m−1, denoted by RMs(r,m), as well as the generator
matrix used in the recursive construction.

The binary image under the Gray map is a binary (not necessarily linear)
code with the same parameters as the binary linear r-th order Reed-
Muller code of length 2m. Note that the inclusion and duality proper-
ties are also satisfied, that is, the code RMs(r − 1,m) is a subcode of
RMs(r,m), r > 0, and the code RMs(r,m) is the Kronecker dual code of
RMs(m− r − 1,m), r < m.

Example H2E2
Taking the Reed-Muller codes RM1(1, 4) and RM1(2, 4), it can be seen that the former
is a subcode of the latter. Note that RM1(1, 4) and RM1(2, 4) are the same as the ones
given in Example H2E1 by HadamardCodeZ4(2,4) and ExtendedPerfectCodeZ4(2,4),
respectively.

> C1, G1 := ReedMullerCodeRMZ4(1,1,4);

> C2, G2 := ReedMullerCodeRMZ4(1,2,4);

> C1;

((8, 4^2 2^1)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 3 2 1 0 3 2]

[0 1 2 3 0 1 2 3]

[0 0 0 0 2 2 2 2]

> C2;

((8, 4^5 2^1)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 0 1 0 0 1 3]

[0 1 0 1 0 0 2 2]

[0 0 1 1 0 0 1 1]

[0 0 0 2 0 0 0 2]

[0 0 0 0 1 0 3 2]
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[0 0 0 0 0 1 2 3]

> C1 subset C2;

true

> DualKroneckerZ4(C2) eq C1;

true

ReedMullerCodesRMZ4(s, m)

Given an integer m ≥ 1, and an integer s such that 0 ≤ s ≤ b(m− 1)/2c,
return a sequence containing the family of Reed-Muller codes over Z4 of
length 2m−1, that is, the codes RMs(r,m), for all 0 ≤ r ≤ m.

The binary image of these codes under the Gray map gives a family of
binary (not necessarily linear) codes with the same parameters as the
binary linear Reed-Muller family of codes of length 2m. Note that

RMs(0,m) ⊂ RMs(1,m) ⊂ · · · ⊂ RMs(m,m).

Example H2E3
The family of Reed-Muller codes over Z4 of length 22 given by s = 0 is constructed.

> F := ReedMullerCodesRMZ4(0,3);

> F;

[((4, 4^0 2^1)) Cyclic Linear Code over IntegerRing(4)

Generator matrix:

[2 2 2 2],

((4, 4^1 2^2)) Cyclic Linear Code over IntegerRing(4)

Generator matrix:

[1 1 1 1]

[0 2 0 2]

[0 0 2 2],

((4, 4^3 2^1)) Cyclic Linear Code over IntegerRing(4)

Generator matrix:

[1 0 0 1]

[0 1 0 1]

[0 0 1 1]

[0 0 0 2],

((4, 4^4 2^0)) Cyclic Linear Code over IntegerRing(4)

Generator matrix:

[1 0 0 0]

[0 1 0 0]

[0 0 1 0]

[0 0 0 1]]

> F[1] subset F[2] and F[2] subset F[3] and F[3] subset F[4];

true
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2.3 New Codes from Old

The functions described in this section produce a new code over Z4 by mod-
ifying in some way the codewords of some given codes over Z4.

PlotkinSum(A, B)

Given matrices A and B both over the same ring and with the same
number of columns, return the PAB matrix over the same ring of A and
B, where

PAB =

(
A A
0 B

)
.

PlotkinSum(C, D)

Given codes C and D both over the same ring and of the same length,
construct the Plotkin sum of C and D. The Plotkin sum consists of all
vectors of the form (u|u+ v), where u ∈ C and v ∈ D.

Note that the Plotkin sum is computed using generator matrices for C
and D and the PlotkinSum function for matrices. Thus, this function
returns the code over Z4 generated by the matrix PAB defined above,
where A and B are generators matrices for C and D, respectively.

QuaternaryPlotkinSum(A, B)

Given two matrices A and B over Z4, both with the same number of
columns, return the QPAB matrix over Z4, where

QPAB =

(
A A A A
0 B 2B 3B

)
.

QuaternaryPlotkinSum(C, D)

Given two codes C and D over Z4, both of the same length, construct the
Quaternary Plotkin sum of C and D. The Quaternary Plotkin sum is a
code over Z4 that consists of all vectors of the form (u, u+v, u+2v, u+3v),
where u ∈ C and v ∈ D.

Note that the Quaternary Plotkin sum is computed using generator matri-
ces for C and D and the QuaternaryPlotkinSum function for matrices.
Thus, this function returns the code over Z4 generated by the matrix
QPAB defined above, where A and B are generators matrices for C and
D, respectively.

9



BQPlotkinSum(A, B, C)

Given three matrices A, B, and C over Z4, all with the same number of
columns, return the BQPABC matrix over Z4, where

BQPABC =


A A A A
0 B′ 2B′ 3B′

0 0 B̂ B̂
0 0 0 C

 ,

B′ is obtained from B replacing the twos with ones in the rows of order
two, and B̂ is obtained from B removing the rows of order two.

BQPlotkinSum(D, E, F)

Given three codes D, E and F over Z4, all of the same length, construct
the BQ Plotkin sum of D, E and F . Let Ge be a generator matrix for E
of type 2γ4δ. The code E ′ over Z4 is obtained from E by replacing the
twos with ones in the γ rows of order two of Ge, and the code Ê over Z4

is obtained from E removing the γ rows of order two of Ge.
The BQ Plotkin sum is a code over Z4 that consists of all vectors of the
form (u, u+v′, u+2v′+ v̂, u+3v′+ v̂+z), where u ∈ Gd, v′ ∈ Ge′ v̂ ∈ Ĝe,
and z ∈ Gf , where Gd, Ge′, Ĝe and Gf are generators matrices for D,
E ′, Ê and F , respectively.

Note that the BQPlotkin sum is computed using generator matrices for
D, E and F and the BQPlotkinSum function for matrices. However,
this function does not necessarily return the same code over Z4 as that
generated by the matrix BQPABC defined above, where A, B and C are
generators matrices for D, E and F , respectively, as shown in Example
H2E4.

DoublePlotkinSum(A, B, C, D)

Given four matrices A, B, C, and D over Z4, all with the same number
of columns, return the DPABC matrix over Z4, where

DPABCD =


A A A A
0 B 2B 3B
0 0 C C
0 0 0 D

 .
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DoublePlotkinSum(E, F, G, H)

Given four codes E, F , G and H over Z4, all of the same length, construct
the Double Plotkin sum of E, F , G and H. The Double Plotkin sum is
a code over Z4 that consists of all vectors of the form (u, u+ v, u+ 2v +
z, u+ 3v + z + t), where u ∈ E, v ∈ F , z ∈ G and t ∈ H.

Note that the Double Plotkin sum is computed using generator matrices
of E, F , G and H and the DoublePlotkinSum function for matrices,
that is, this function returns the code over Z4 generated by the matrix
DPABCD defined above, where A, B, C and D are generators matrices
for E, F , G and H, respectively.

DualKroneckerZ4(C)

Given a code C over Z4 of length 2m, return its Kronecker dual code. The
Kronecker dual code of C is C⊥⊗ = {x ∈ Z2m

4 : x ·K2m · yt = 0,∀y ∈ C},

where K2m = ⊗mj=1K2, K2 =

(
1 0
0 3

)
and ⊗ denotes the Kronecker

product of matrices. Equivalently, K2m is a quaternary matrix of length
2m with the vector (1, 3, 3, 1, 3, 1, 1, 3, . . .) in the main diagonal and zeros
elsewhere.

Example H2E4
The purpose of this example is to show that the codes over Z4 constructed from the
BQPlotkinSum function for matrices are not necessarily the same as the ones constructed
from the BQPlotkinSum function for codes.

> Z4 := IntegerRing(4);

> Ga := Matrix(Z4,1,2,[1,1]);

> Gb := Matrix(Z4,2,2,[1,2,0,2]);

> Gc := Matrix(Z4,1,2,[2,2]);

> Ca := LinearCode(Ga);

> Cb := LinearCode(Gb);

> Cc := LinearCode(Gc);

> C := LinearCode(BQPlotkinSum(Ga, Gb, Gc));

> D := BQPlotkinSum(Ca, Cb, Cc);

> C eq D;

false

Example H2E5

> Ga := GeneratorMatrix(ReedMullerCodeRMZ4(1,2,3));

> Gb := GeneratorMatrix(ReedMullerCodeRMZ4(1,1,3));
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> Gc := GeneratorMatrix(ReedMullerCodeRMZ4(1,0,3));

> C := ReedMullerCodeRMZ4(1,2,4);

> Cp := LinearCode(PlotkinSum(Ga, Gb));

> C eq Cp;

true

> D := ReedMullerCodeRMZ4(2,2,5);

> Dp := LinearCode(BQPlotkinSum(Ga, Gb, Gc));

> D eq Dp;

true

2.4 Invariants

StandardFormDual(C)

Given a code C over Z4 of length n, return the dual of a permutation-
equivalent code S in standard form, together with the corresponding iso-
morphism from the dual of C onto the dual of S. Since S is generated by
a matrix of the form (

Ik1 A B
0 2Ik2 2C

)
,

the dual of S is generated by the matrix(
−(AC +B)t Ct In−k1−k2

2At 2Ik2 0

)
,

where Ik1 and Ik2 are the k1×k1 and k2×k2 identity matrices, respectively,
A and C are Z2-matrices, and B is a Z4-matrix.

MinRowsGeneratorMatrix(C)

A generator matrix for the code C over Z4 of length n and type 2γ4δ,
with the minimum number of rows, that is with γ + δ rows: γ rows of
order two and δ rows of order four. It also returns the parameters γ and
δ.

MinRowsParityCheckMatrix(C)

A parity check matrix for the code C over Z4 of length n and type 2γ4δ,
with the minimum number of rows, that is, with γ rows of order two and
n−γ−δ rows of order four. This function should be faster for most codes
over Z4 than the general function ParityCheckMatrix(C) for codes over
finite rings. Another parity check matrix for the code C can be obtained
as the generator matrix of the dual of C with the minimum number of
rows, that is, as MinRowsGeneratorMatrix(DualZ4(C)).
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DualZ4(C)

The dual D of the code C over Z4 of length n. The dual consists of all
codewords in the Z4-space V = Zn4 which are orthogonal to all codewords
of C. This function should be faster for most codes over Z4 than the
general function Dual(C) for codes over finite rings.

Example H2E6

> C := HadamardCodeZ4(3, 11);

> G, gamma, delta := MinRowsGeneratorMatrix(C);

> Nrows(G) eq gamma + delta;

true

> deltaH := Length(C) - gamma - delta;

> H1 := MinRowsParityCheckMatrix(C);

> Nrows(H1) eq gamma + deltaH;

true

> H2 := MinRowsGeneratorMatrix(DualZ4(C));

> Nrows(H2) eq gamma + deltaH;

true

> time D := Dual(C);

Time: 24.660

> time D4 := DualZ4(C);

Time: 0.340

> D eq D4, D4 eq LinearCode(H1), D4 eq LinearCode(H2);

true true true

> DualS, f := StandardFormDual(C);

> DualS eq LinearCode(Matrix([f(H1[i]) : i in [1..Nrows(H1)]]));

true

SpanZ2CodeZ4(C)

Given a code C over Z4 of length n, return SC = Φ−1(Sbin) as a code over
Z4, and the linear span of Cbin, Sbin = 〈Cbin〉, as a binary linear code of
length 2n, where Cbin = Φ(C) and Φ is the Gray map.

KernelZ2CodeZ4(C)

Given a code C over Z4 of length n, return its kernel KC as a subcode
over Z4 of C, and Kbin = Φ(KC) as a binary linear subcode of Cbin of
length 2n, where Cbin = Φ(C) and Φ is the Gray map.

The kernel KC contains the codewords v such that 2v∗u ∈ C for all u ∈ C,
where ∗ denotes the component-wise product. Equivalently, the kernel
Kbin = Φ(KC) contains the codewords c ∈ Cbin such that c+Cbin = Cbin,
where Cbin = Φ(C) and Φ is the Gray map.
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KernelCosetRepresentatives(C)

Given a code C over Z4 of length n, return the coset representatives
[c1, . . . , ct] as a sequence of codewords of C, such that C = KC ∪⋃t
i=1

(
KC + ci

)
, where KC is the kernel of C as a subcode over Z4. It

also returns the coset representatives of the corresponding binary code
Cbin = Φ(C) as a sequence of binary codewords [Φ(c1), . . . ,Φ(ct)], such
that Cbin = Kbin∪

⋃t
i=1

(
Kbin + Φ(ci)

)
, where Kbin = Φ(KC) and Φ is the

Gray map.

DimensionOfSpanZ2(C)

RankZ2(C)

Given a code C over Z4, return the dimension of the linear span of Cbin,
that is, the dimension of 〈Cbin〉, where Cbin = Φ(C) and Φ is the Gray
map.

DimensionOfKernelZ2(C)

Given a code C over Z4, return the dimension of the Gray map image of
its kernel KC over Z4, that is, the dimension of Kbin = Φ(KC), where Φ
is the Gray map. Note that Kbin is always a binary linear code.

Example H2E7

> C := ReedMullerCodeRMZ4(0,3,5);

> DimensionOfKernelZ2(C);

20

> DimensionOfSpanZ2(C);

27

> K, Kb := KernelZ2CodeZ4(C);

> S, Sb := SpanZ2CodeZ4(C);

> K subset C;

true

> C subset S;

true

> Dimension(Kb) eq DimensionOfKernelZ2(C);

true

> Dimension(Sb) eq DimensionOfSpanZ2(C);

true

14



2.5 Coset Representatives

CosetRepresentatives(C)

Given a code C over Z4 of length n, with ambient space V = Zn4 , return
a set of coset representatives (not necessarily of minimal weight in their
cosets) for C in V as an indexed set of vectors from V . The set of coset
representatives {c0, c1, . . . , ct} satisfies the two conditions that c0 is the
zero codeword, and V =

⋃t
i=0

(
C + ci

)
. Note that this function is only

applicable when V and C are small.

CosetRepresentatives(C, S)

Given a code C over Z4 of length n, and a subcode S over Z4 of C, return
a set of coset representatives (not necessarily of minimal weight in their
cosets) for S in C as an indexed set of codewords from C. The set of
coset representatives {c0, c1, . . . , ct} satisfies the two conditions that c0 is
the zero codeword, and C =

⋃t
i=0

(
S+ci

)
. Note that this function is only

applicable when S and C are small.

Example H2E8

> C := LinearCode<Integers(4), 4 | [[1,0,0,3],[0,1,1,3]]>;

> L := CosetRepresentatives(C);

> Set(RSpace(Integers(4),4)) eq {v+ci : v in Set(C), ci in L};

true

> K := KernelZ2CodeZ4(C);

> L := CosetRepresentatives(C, K);

> {C!0} join Set(KernelCosetRepresentatives(C)) eq L;

true

> Set(C) eq {v+ci : v in Set(K), ci in L};

true

2.6 Information Space and Information Sets

InformationSpace(C)

Given a code C over Z4 of length n and type 2γ4δ, return the Z4-
submodule of Zγ+δ4 isomorphic to Zγ2 × Zδ4 such that the first γ coor-
dinates are of order two, that is, the space of information vectors for C.
The function also returns the (γ + 2δ)-dimensional binary vector space,
which is the space of information vectors for the corresponding binary
code Cbin = Φ(C), where Φ is the Gray map. Finally, for the encoding
process, it also returns the corresponding isomorphisms f and fbin from
these spaces of information vectors onto C and Cbin, respectively.
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Example H2E9

> C := LinearCode<Integers(4), 4 | [[2,0,0,2],[0,1,1,3]]>;

> R, V, f, fbin := InformationSpace(C);

> G := MinRowsGeneratorMatrix(C);

> (#R eq #C) and (#V eq #C);

true

> Set([f(i) : i in R]) eq Set(C);

true

> Set([i*G : i in R]) eq Set(C);

false

> i := R![2,3];

> c := f(i);

> c;

(2 3 3 3)

> c in C;

true

> i*G eq c;

false

> ibin := V![1,1,0];

> cbin := fbin(ibin);

> cbin;

(1 1 1 0 1 0 1 0)

> cbin in GrayMapImage(C);

true

> cbin eq GrayMap(C)(c);

true

InformationSet(C)

Given a code C over Z4 of length n and type 2γ4δ, return an information
set I = [i1, . . . , iγ+δ] ⊆ {1, . . . , n} for C such that the code C punctured on
{1, . . . , n}\{iγ+1, . . . , iγ+δ} is of type 4δ, and the corresponding informa-
tion set Φ(I) = [2i1−1, . . . , 2iγ−1, 2iγ+1−1, 2iγ+1, . . . , 2iγ+δ−1, 2iγ+δ] ⊆
{1, . . . , 2n} for the binary code Cbin = Φ(C), where Φ is the Gray map.
The information sets I and Φ(I) are returned as a sequence of γ + δ and
γ + 2δ integers, giving the coordinate positions that correspond to the
information set of C and Cbin, respectively.

An information set I for C is an ordered set of γ+ δ coordinate positions
such that |CI | = 2γ4δ, where CI = {vI : v ∈ C} and vI is the vector
v restricted to the I coordinates. An information set J for Cbin is an
ordered set of γ + 2δ coordinate positions such that |CJ

bin| = 2γ+2δ.
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IsInformationSet(C, I)

Given a code C over Z4 of length n and type 2γ4δ and a sequence I ⊆
{1, . . . , n} or I ⊆ {1, . . . , 2n}, return true if and only if I ⊆ {1, . . . , n}
is an information set for C. This function also returns another boolean,
which is true if an only if I ⊆ {1, . . . , 2n} is an information set for the
corresponding binary code Cbin = Φ(C), where Φ is the Gray map.

An information set I for C is an ordered set of γ+ δ coordinate positions
such that |CI | = 2γ4δ, where CI = {vI : v ∈ C} and vI is the vector
v restricted to the I coordinates. An information set J for Cbin is an
ordered set of γ + 2δ coordinate positions such that |CJ

bin| = 2γ+2δ.

Example H2E10

> C := HadamardCodeZ4(3,6);

> C;

((32, 4^3 2^1)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 3 2 0 3 2 1 3 2 1 0 2 1 0 3 1 0 3 2 0 3 2 1 3 2 1 0 2 1 0 3]

[0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3]

[0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]

> I, Ibin := InformationSet(C);

> I;

[ 16, 28, 31, 32 ]

> Ibin;

[ 31, 55, 56, 61, 62, 63, 64 ]

> #PunctureCode(C, {1..32} diff Set(I)) eq #C;

true

> Cbin := GrayMapImage(C);

> V := VectorSpace(GF(2), 7);

> #{V![c[i] : i in Ibin] : c in Cbin} eq #Cbin;

true

> IsInformationSet(C, I);

true false

> IsInformationSet(C, Ibin);

false true

> IsInformationSet(C, [1, 2, 5, 17]);

true false

> IsInformationSet(C, [1, 2, 3, 4, 9, 10, 33]);

false true

> D := LinearCode<Integers(4), 5 | [[2,0,0,2,0],[0,2,0,2,2],[0,0,2,2,0]]>;

> IsInformationSet(D, [1,3,5]);

true true
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2.7 Syndrome Space and Coset Leaders

SyndromeSpace(C)

Given a code C over Z4 of length n and type 2γ4δ, return the Z4-
submodule of Zn−δ4 isomorphic to Zγ2×Z

n−γ−δ
4 such that the first γ coordi-

nates are of order two, that is, the space of syndrome vectors for C. The
function also returns the (2n− 2δ − γ)-dimensional binary vector space,
which is the space of syndrome vectors for the corresponding binary code
Cbin = Φ(C), where Φ is the Gray map. Note that these spaces are com-
puted by using the function InformationSpace(C) applied to the dual
code of C, produced by function DualZ4(C).

Syndrome(u, C)

Given a code C over Z4 of length n and type 2γ4δ, and a vector u from
the ambient space V = Zn4 or V2 = Z2n

2 , construct the syndrome of u
relative to the code C. This will be an element of the syndrome space of
C, considered as the Z4-submodule of Zn−δ4 isomorphic to Zγ2 × Zn−γ−δ4

such that the first γ coordinates are of order two.

CosetLeaders(C)

Given a code C over Z4 of length n, with ambient space V = Zn4 , return
a set of coset leaders (vectors of minimal Lee weight in their cosets) for
C in V as an indexed set of vectors from V . This function also returns
a map from the syndrome space of C onto the coset leaders (mapping a
syndrome into its corresponding coset leader). Note that this function is
only applicable when V and C are small.

Example H2E11

> C := LinearCode<Integers(4), 4 | [[2,0,0,2],[0,1,1,3]]>;

> R, V, f, fbin := InformationSpace(C);

> Rs, Vs := SyndromeSpace(C);

> #R * #Rs eq 4^Length(C);

true

> #V * #Vs eq 4^Length(C);

true

> i := R![2,3];

> c := f(i);

> c;

(2 3 3 3)

> u := c;

> u[2] := u[2]+3;
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> u;

(2 2 3 3)

> s := Syndrome(u, C);

> s in Rs;

true

> H := Transpose(MinRowsParityCheckMatrix(C));

> s eq u*H;

true

> L, mapCosetLeaders := CosetLeaders(C);

> errorVector := mapCosetLeaders(s);

> errorVector;

(0 3 0 0)

> errorVector in L;

true

> u-errorVector eq c;

true

2.8 Decoding

This section describes functions for decoding vectors from the ambient space
of a code over Z4, or the corresponding space over Z2 under the Gray map,
using four different algorithms: coset decoding, syndrome decoding, lifted
decoding and permutation decoding. The reader is referred to [9, 10, 23] for
more information on coset decoding; to [13, 16, 24] on syndrome decoding;
to [1, 12] on lifted decoding; and to [2, 3, 4] on permutation decoding.

2.8.1 Coset Decoding

CosetDecode(C, u : parameters)

MinWeightCode RngIntElt Default : -
MinWeightKernel RngIntElt Default : -

Given a code C over Z4 of length n, and a vector u from the ambient
space V = Zn4 or V2 = Z2n

2 , attempt to decode u with respect to C. If
the decoding algorithm succeeds in computing a vector u′ ∈ C as the
decoded version of u ∈ V , then the function returns true, u′ and Φ(u′),
where Φ is the Gray map. If the decoding algorithm does not succeed in
decoding u, then the function returns false, the zero vector in V and
the zero vector in V2.
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The coset decoding algorithm considers the binary linear code Cu = Cbin∪
(Cbin + Φ(u)), when Cbin = Φ(C) is linear. On the other hand, when Cbin
is nonlinear, we have Cbin =

⋃t
i=0(Kbin + Φ(ci)), where Kbin = Φ(KC),

KC is the kernel of C as a subcode over Z4, [c0, c1, . . . , ct] are the coset
representatives of C with respect to KC (not necessarily of minimal weight
in their cosets) and c0 is the zero codeword. In this case, the algorithm
considers the binary linear codes K0 = Kbin∪ (Kbin + Φ(u)), K1 = Kbin∪
(Kbin + Φ(c1) + Φ(u)), . . ., Kt = Kbin ∪ (Kbin + Φ(ct) + Φ(u)).

If the parameter MinWeightCode is not assigned, then the minimum
weight of C, which coincides with the minimum weight of Cbin, denoted
by d, is computed. Note that the minimum distance of Cbin coincides
with its minimum weight. If Cbin is linear and the minimum weight of
Cu is less than d, then Φ(u′) = Φ(u) + e, where e is a word of minimum
weight of Cu; otherwise, the decoding algorithm returns false. On the
other hand, if Cbin is nonlinear and the minimum weight of ∪ti=0Ki is less
than the minimum weight of Kbin, then Φ(u′) = Φ(u) + e, where e is a
word of minimum weight of ∪ti=0Ki; otherwise, the decoding algorithm
returns false. If the parameter MinWeightKernel is not assigned, then
the minimum Hamming weight of Kbin is computed.

CosetDecode(C, Q : parameters)

MinWeightCode RngIntElt Default : -
MinWeightKernel RngIntElt Default : -

Given a code C over Z4 of length n, and a sequence Q of vectors from
the ambient space V = Zn4 or V2 = Z2n

2 , attempt to decode the vec-
tors of Q with respect to C. This function is similar to the function
CosetDecode(C, u) except that rather than decoding a single vector, it
decodes a sequence of vectors and returns a sequence of booleans and
two sequences of decoded vectors corresponding to the given sequence.
The algorithm used and effect of the parameters MinWeightCode and
MinWeightKernel are identical to those for the function CosetDecode(C,

u).

Example H2E12
Starting with the Hadamard code C over Z4 of length 16 and type 2043, a codeword c ∈ C
is selected and then perturbed to give a vector u in the ambient space of C. The vector u
is then decoded to recover c.

> C := HadamardCodeZ4(3, 5);

> C;

((16, 4^3 2^0)) Linear Code over IntegerRing(4)

Generator matrix:
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[1 0 3 2 0 3 2 1 3 2 1 0 2 1 0 3]

[0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3]

[0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3]

> d := MinimumLeeDistance(C);

> t := Floor((d-1)/2);

> t;

7

> c := C ! [1,1,1,1,2,2,2,2,3,3,3,3,0,0,0,0];

> c in C;

true

> u := c;

> u[5] := u[5] + 2;

> u[12] := u[12] + 1;

> u[13] := u[13] + 3;

> u[16] := u[16] + 2;

> c;

(1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 0)

> u;

(1 1 1 1 0 2 2 2 3 3 3 0 3 0 0 2)

> grayMap := GrayMap(UniverseCode(Integers(4), Length(C)));

> grayMap(c-u);

(0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1)

> isDecoded, uDecoded := CosetDecode(C, u : MinWeightCode := d);

> isDecoded;

true

> uDecoded eq c;

true

2.8.2 Syndrome Decoding

SyndromeDecode(C, u)

Given a code C over Z4 of length n, and a vector u from the ambient
space V = Zn4 or V2 = Z2n

2 , attempt to decode u with respect to C. The
decoding algorithm always succeeds in computing a vector u′ ∈ C as the
decoded version of u ∈ V , and the function returns true, u′ and Φ(u′),
where Φ is the Gray map. Although the function never returns false,
the first output parameter true is given to be consistent with the other
decoding functions.

The syndrome decoding algorithm consists of computing a table pairing
each possible syndrome s with a vector of minimum Lee weight es, called
coset leader, in the coset of C containing all vectors having syndrome s.
After receiving a vector u, its syndrome s is computed using the parity
check matrix. Then, u is decoded into the codeword c = u− es.
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SyndromeDecode(C, Q)

Given a code C over Z4 of length n, and a sequence Q of vectors from
the ambient space V = Zn4 or V2 = Z2n

2 , attempt to decode the vec-
tors of Q with respect to C. This function is similar to the function
SyndromeDecode(C, u) except that rather than decoding a single vector,
it decodes a sequence of vectors and returns a sequence of booleans and
two sequences of decoded vectors corresponding to the given sequence.
The algorithm used is the same as that of function SyndromeDecode(C,

u).

Example H2E13
The Hadamard code C over Z4 of length 8 and type 2142 is constructed. Next, information
bits are encoded using C and three errors are introduced to give the vector u. Then u is
decoded by calculating its syndrome and applying the map, given by the CosetLeaders

function, to the syndrome to recover the original vector.

> C := HadamardCodeZ4(2, 4);

> C;

((8, 4^2 2^1, 8)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 3 2 1 0 3 2]

[0 1 2 3 0 1 2 3]

[0 0 0 0 2 2 2 2]

> t := Floor((MinimumLeeDistance(C)-1)/2);

> t;

3

> R, V, f, fbin := InformationSpace(C);

> i := R![2,1,0];

> c := f(i);

> c;

(1 0 3 2 3 2 1 0)

> u := c;

> u[5] := u[5] + 3;

> u[7] := u[7] + 2;

> c;

(1 0 3 2 3 2 1 0)

> u;

(1 0 3 2 2 2 3 0)

> grayMap := GrayMap(UniverseCode(Integers(4), Length(C)));

> grayMap(c-u);

(0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0)

> isDecoded, uDecoded := SyndromeDecode(C, u);

> isDecoded;

true

> uDecoded eq c;
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true

> L, mapCosetLeaders := CosetLeaders(C);

> errorVector := mapCosetLeaders(Syndrome(u, C));

> errorVector;

(0 0 0 0 3 0 2 0)

> u-errorVector eq c;

true

2.8.3 Lifted Decoding

LiftedDecode(C, u : parameters)

AlgMethod MonStgElt Default : “Euclidean”

Given a code C over Z4 of length n, and a vector u from the ambient
space V = Zn4 or V2 = Z2n

2 , attempt to decode u with respect to C. If
the decoding algorithm succeeds in computing a vector u′ ∈ C as the
decoded version of u ∈ V , then the function returns true, u′ and Φ(u′),
where Φ is the Gray map. If the decoding algorithm does not succeed in
decoding u, then the function returns false, the zero vector in V and
the zero vector in V2 (in the Euclidean case it may happen that u′ is not
in C because there are too many errors in u to correct).

The lifted decoding algorithm comprises lifting decoding algorithms for
two binary linear codes C0 and C1, being the residue and torsion codes
of C. Let t0 and t1 be the error-correcting capability of C0 and C1,
respectively. Assume the received vector u = c + e, where c ∈ C and
e ∈ V is the error vector. Then, the lifted decoding algorithm can correct
all error vectors e such that τ1 + τ3 ≤ t0 and τ2 + τ3 ≤ t1, where τi is the
number of occurrences of i in e.

In the decoding process, the function Decode(C, u) for linear codes is
used. The accessible algorithms for linear codes are: syndrome decoding
and a Euclidean algorithm, which operates on alternant codes (BCH,
Goppa, and Reed–Solomon codes, etc.). If C0 or C1 is alternant, the
Euclidean algorithm is used by default, but the syndrome algorithm will
be used if the parameter AlgMethod is assigned the value "Syndrome".
For non-alternant codes C0 and C1, only syndrome decoding is possible,
so the parameter AlgMethod is not relevant.
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LiftedDecode(C, Q : parameters)

AlgMethod MonStgElt Default : “Euclidean”

Given a code C over Z4 of length n, and a sequence Q of vectors from
the ambient space V = Zn4 or V2 = Z2n

2 , attempt to decode the vec-
tors of Q with respect to C. This function is similar to the function
LiftedDecode(C, u) except that rather than decoding a single vector,
it decodes a sequence of vectors and returns a sequence of booleans and
two sequences of decoded vectors corresponding to the given sequence.
The algorithm used and effect of the parameter AlgMethod are the same
as for LiftedDecode(C, u).

Example H2E14
The Hadamard code C over Z4 of length 8 and type 2142 is constructed. Then an in-
formation word is encoded using C, three errors are introduced into the codeword c, and
then c is recovered by using the lifted decoding algorithm.

> C := HadamardCodeZ4(2, 4);

> C;

((8, 4^2 2^1, 8)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 3 2 1 0 3 2]

[0 1 2 3 0 1 2 3]

[0 0 0 0 2 2 2 2]

> d := MinimumLeeDistance(C);

> t := Floor((d-1)/2);

> t;

3

> C0 := BinaryResidueCode(C);

> C1 := BinaryTorsionCode(C);

> t0 := Floor((MinimumDistance(C0)-1)/2);

> t1 := Floor((MinimumDistance(C1)-1)/2);

> t0, t1;

1 1

Using the lifted decoding, it is possible to correct all error vectors e such that τ1 + τ3 ≤
t0 = 1 and τ2 + τ3 ≤ t1 = 1, where τi is the number of occurrences of i in e. The following
statements show that it is not possible to correct the error vector e = (00003020) since
τ2 + τ3 = 2 > 1, but it is possible to correct the error vector e = (00001020) since
τ1 + τ3 = 1 ≤ 1 and τ2 + τ3 = 1 ≤ 1.

> R, V, f, fbin := InformationSpace(C);

> i := R![2,1,0];

> c := f(i);

> c;

(1 0 3 2 3 2 1 0)
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> u := c;

> u[5] := u[5] + 3;

> u[7] := u[7] + 2;

> c;

(1 0 3 2 3 2 1 0)

> u;

(1 0 3 2 2 2 3 0)

> e := u - c;

> e;

(0 0 0 0 3 0 2 0)

> isDecoded, uDecoded := LiftedDecode(C, u);

> isDecoded;

true

> uDecoded eq c;

false

> u := c;

> u[5] := u[5] + 1;

> u[7] := u[7] + 2;

> c;

(1 0 3 2 3 2 1 0)

> u;

(1 0 3 2 0 2 3 0)

> e := u - c;

> e;

(0 0 0 0 1 0 2 0)

> isDecoded, uDecoded := LiftedDecode(C, u);

> isDecoded;

true

> uDecoded eq c;

true

2.8.4 Permutation Decoding

Let C be a code over Z4 of length n and type 2γ4δ and Cbin = Φ(C), where
Φ is the Gray map. A subset S ⊆ Sym(2n) is an s-PD-set for Cbin with
respect to a subset of coordinate positions I ⊆ {1, . . . , 2n} if S is a subset
of the permutation automorphism group of Cbin, I is an information set for
Cbin, and every s-set of coordinate positions in {1, . . . , 2n} is moved out of
the information set I by at least one element of S, where 1 ≤ s ≤ t and t is
the error-correcting capability of Cbin.

If I = [i1, . . . , iγ+δ] ⊆ {1, . . . , n} is an information set for C such that the
code obtained by puncturing C at positions {1, . . . , n}\{iγ+1, . . . , iγ+δ} is of
type 4δ, then Φ(I) = [2i1−1, . . . , 2iγ−1, 2iγ+1−1, 2iγ+1, . . . , 2iγ+δ−1, 2iγ+δ]
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is an information set for Cbin. It is also easy to see that if S is a subset of the
permutation automorphism group of C, that is, S ⊆ PAut(C) ⊆ Sym(n),
then Φ(S) = [Φ(τ) : τ ∈ S] ⊆ PAut(Cbin) ⊆ Sym(2n), where

Φ(τ)(i) =

{
2τ(i/2), if i is even,
2τ((i+ 1)/2)− 1 if i is odd.

(2.1)

Given a subset of coordinate positions I ⊆ {1, . . . , n} and a subset
S ⊆ Sym(n), in order to check that Φ(S) is an s-PD-set for Cbin with re-
spect to Φ(I), it is enough to check that S is a subset of the permutation
automorphism group of C, I is an information set for C, and every s-set of
coordinate positions in {1, . . . , n} is moved out of the information set I by
at least one element of S [2, 3].

IsPermutationDecodeSet(C, I, S, s)

Given a code C over Z4 of length n and type 2γ4δ, a sequence I ⊆
{1, . . . , 2n}, a sequence S of elements in the symmetric group Sym(2n) of
permutations on the set {1, . . . , 2n}, and an integer s ≥ 1, return true if
and only if S is an s-PD-set for Cbin = Φ(C), where Φ is the Gray map,
with respect to the information set I.

The arguments I and S can also be given as a sequence I ⊆ {1, . . . , n} and
a sequence S of elements in the symmetric group Sym(n) of permutations
on the set {1, . . . , n}, respectively. In this case, the function returns true
if and only if Φ(S) is an s-PD-set for Cbin = Φ(C) with respect to the
information set Φ(I), where Φ(I) and Φ(S) are the sequences defined as
above.

Depending on the length of the code C, its type, and the integer s, this
function could take some time to compute whether S or Φ(S) is an s-
PD-set for Cbin with respect to I or Φ(I), respectively. Specifically, if the
function returns true, it is necessary to check

∑s
i=1

(|I|
i

)
·
(
N−|I|
s−i

)
s-sets,

where N = n and |I| = γ + δ when I is given as an information set for
C, or N = 2n and |I| = γ + 2δ when I is given as an information set for
Cbin.

The verbose flag IsPDSetFlag is set to level 0 by default. If it is set to
level 1, the total time used to check the condition is shown. Moreover, the
reason why the function return false is also shown, that is, whether I is
not an information set, S is not a subset of the permutation automorphism
group or S is not an s-PD-set. If it is set to level 2, the percentage of the
computation process performed is also printed.
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PermutationDecode(C, I, S, s, u)

The arguments for the intrinsic are as follows:

- C is a code over Z4 of length n and type 2γ4δ;

- I = [i1, . . . , iγ+δ] ⊆ {1, . . . , n} is an information set for C given as a
sequence of coordinate positions such that the code C obtained by
puncturing C at coordinate positions {1, . . . , n}\{iγ+1, . . . , iγ+δ} is
of type 4δ;

- S is a sequence S such that either S or Φ(S) is an s-PD-set for Cbin =
Φ(C), where Φ is the Gray map, with respect to Φ(I);

- s is an integer such that s ∈ {1, . . . , t}, where t is the error-correcting
capability of Cbin;

- u is a vector from the ambient space V = Zn4 or V2 = Z2n
2 ,

Given the above assumptions, the function attempts to decode u with
respect to C. If the decoding algorithm succeeds in computing a vector
u′ ∈ C as the decoded version of u ∈ V , then the function returns the
values true, u′ and Φ(u′). If the decoding algorithm does not succeed in
decoding u, then the function returns the values false, the zero vector
in V and the zero vector in V2.

Assume that the received vector Φ(u) = c + e, where u ∈ V , c ∈ Cbin
and e ∈ V2 is the error vector with at most t errors. The permutation
decoding algorithm proceeds by moving all errors in a received vector
Φ(u) out of the information positions. That is, the nonzero coordinates
of e are moved out of the information set Φ(I) for Cbin, by using an
automorphism of Cbin.

Note that Φ(I) and Φ(S) are the sequences defined as above. Moreover,
the function does not check whether I is an information set for C, nor
whether S or Φ(S) is an s-PD-set for Cbin with respect to Φ(I), nor that
s ≤ t.
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PermutationDecode(C, I, S, s, Q)

Given

- a code C over Z4 of length n and type 2γ4δ;

- an information set I = [i1, . . . , iγ+δ] ⊆ {1, . . . , n} for C as a se-
quence of coordinate positions, such that the code C punctured
on {1, . . . , n}\{iγ+1, . . . , iγ+δ} is of type 4δ;

- a sequence S such that either S or Φ(S) is an s-PD-set for Cbin = Φ(C),
where Φ is the Gray map, with respect to Φ(I);

- an integer s ∈ {1, . . . , t}, where t is the error-correcting capability of
Cbin;

- and a sequence Q of vectors from the ambient space V = Zn4 or V2 =
Z2n

2 ,

attempt to decode the vectors of Q with respect to C. This function is
similar to the version of PermutationDecode that decodes a single vector
except that it decodes a sequence of vectors and returns a sequence of
booleans and two sequences of decoded vectors corresponding to the given
sequence. The algorithm used is the same as that used by the single vector
version of PermutationDecode.

Example H2E15
First the Hadamard code C over Z4 of length 32 and type 2143 is constructed. It
is known that I = [17, 1, 2, 5] is an information set for C and S = {πi : 1 ≤ i ≤
8}, where π = (1, 24, 26, 15, 3, 22, 28, 13) (2, 23, 27, 14, 4, 21, 25, 16) (5, 11, 32, 20, 7, 9, 30, 18)
(6, 10, 29, 19, 8, 12, 31, 17), is a subset of the permutation automorphism group of C such
that Φ(S) is a 7-PD-set for Cbin = Φ(C) with respect to Φ(I). Then, choosing a codeword
c of C, c is perturbed by the addition of an error vector to give a new vector u, and finally
permutation decoding is applied to u to recover c.

> C := HadamardCodeZ4(3, 6);

> C;

((32, 4^3 2^1)) Linear Code over IntegerRing(4)

Generator matrix:

[1 0 3 2 0 3 2 1 3 2 1 0 2 1 0 3 1 0 3 2 0 3 2 1 3 2 1 0 2 1 0 3]

[0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3]

[0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]

> t := Floor((MinimumLeeDistance(C) - 1)/2);

> t;

15
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> I := [17, 1, 2, 5];

> p := Sym(32)!(1, 24, 26, 15, 3, 22, 28, 13)(2, 23, 27, 14, 4, 21, 25, 16)

(5, 11, 32, 20, 7, 9, 30, 18)(6, 10, 29, 19, 8, 12, 31,17);

> S := [ p^i : i in [1..8] ];

> SetVerbose("IsPDSetFlag", 2);

> IsPermutationDecodeSet(C, I, S, 7);

Checking whether I is an information set...

Checking whether S is in the permutation automorphism group...

Checking whether S is an s-PD-set...

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

Took 136.430 seconds (CPU time)

true

> SetVerbose("IsPDSetFlag", 0);

> c := C ! [1,2,3,0,0,1,2,3,3,0,1,2,2,3,0,1,3,0,1,2,2,3,0,1,1,2,3,0,0,1,2,3];

> c in C;

true

> u := c;

> u[1] := c[1] + 2;

> u[2] := c[2] + 2;

> u[3] := c[3] + 1;

> u[16] := c[16] + 3;

> u[27] := c[27] + 1;

> u in C;

false

> LeeDistance(u, c);

7

> grayMap := GrayMap(UniverseCode(Integers(4), Length(C)));

> cbin := grayMap(c);

> ubin := grayMap(u);

> Distance(ubin, cbin);

7

> isDecoded, uDecoded, ubinDecoded := PermutationDecode(C, I, S, 7, u);

> isDecoded;

true

> uDecoded eq c;

true

> ubinDecoded eq cbin;

true
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> isDecoded, uDecoded, ubinDecoded := PermutationDecode(C, I, S, 7, ubin);

> isDecoded;

true

> uDecoded eq c;

true

> ubinDecoded eq cbin;

true

PDSetHadamardCodeZ4(δ, m)

AlgMethod MonStgElt Default : “Deterministic”

Given an integer m ≥ 5, and an integer δ such that 3 ≤ δ ≤ b(m+ 1)/2c,
the Hadamard code C over Z4 of length n = 2m−1 and type 2γ4δ, where
γ = m + 1 − 2δ, given by the function HadamardCodeZ4(δ, m), is con-
sidered. The function returns an information set I = [i1, . . . , iγ+δ] ⊆
{1, . . . , n} for C together with a subset S of the permutation automor-
phism group of C such that Φ(S) is an s-PD-set for Cbin = Φ(C) with
respect to Φ(I), where Φ is the Gray map and Φ(I) and Φ(S) are de-
fined above. The function also returns the information set Φ(I) and the
s-PD-set Φ(S). For m ≥ 1 and 1 ≤ δ ≤ 2, the Gray map image of C
is linear and it is possible to find an s-PD-set for Cbin = Φ(C), for any
s ≤ b2m/(m+ 1)c − 1, by using the function PDSetHadamardCode(m).

The information sets I and Φ(I) are returned as sequences of γ + δ and
γ + 2δ integers, giving the coordinate positions that correspond to the
information sets for C and Cbin, respectively. The sets S and Φ(S) are
also returned as sequences of elements in the symmetric groups Sym(n)
and Sym(2n) of permutations on the set {1, . . . , n} and {1, . . . , 2n}, re-
spectively.

A deterministic algorithm is used by default. In this case, the function
returns the s-PD-set of size s + 1 with s = b(22δ−2 − δ)/δc, which is the
maximum value of s when γ = 0, as described in [2]. If the parameter
AlgMethod is assigned the value "Nondeterministic", the function tries
to improve the previous result by finding an s-PD-set of size s + 1 such
that b(22δ−2 − δ)/δc ≤ s ≤ b(2m−1 + δ −m− 1)/(m+ 1− δ)c. In this
case, the function starts from the maximum value of s and decreases it if
the s-PD-set is not found after a specified time.
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PDSetKerdockCodeZ4(m)

Given an integer m ≥ 4 such that 2m − 1 is not a prime number, the
Kerdock code C over Z4 of length n = 2m and type 4m+1, given by
the function KerdockCodeZ4(m) is considered. The function returns the
information set I = [1, . . . ,m + 1] for C together with a subset S of the
permutation automorphism group of C such that Φ(S) is an s-PD-set for
Cbin = Φ(C) with respect to Φ(I), where Φ is the Gray map and Φ(I)
and Φ(S) are defined above. The function also returns the information
set Φ(I) = [1, . . . , 2m+ 2] and the s-PD-set Φ(S). The size of the s-PD-
set S is always λ = s + 1, where λ is the greatest divisor of 2m − 1 such
that λ ≤ 2m/(m+ 1).

The information sets I and Φ(I) are returned as sequences of m+ 1 and
2m + 2 integers, giving the coordinate positions that correspond to the
information sets for C and Cbin, respectively. The sets S and Φ(S) are
also returned as sequences of elements in the symmetric groups Sym(n)
and Sym(2n) of permutations on the sets {1, . . . , n} and {1, . . . , 2n}, re-
spectively. The s-PD-set S contains the s+ 1 permutations described in
[3].

Example H2E16
A 4-PD-set S of size 5 for the Hadamard code C over Z4 of length 16 and type 2043

is constructed. A check that it really is a 4-PD-set for C is then made. Note that
b(22δ−2 − δ)/δc = 4. Finally, a codeword c of C is selected, perturbed by an error vector
e to give a vector u, to which permutation decoding is applied to recover c.

> C := HadamardCodeZ4(3, 5);

> I, S, Ibin, Sbin := PDSetHadamardCodeZ4(3, 5);

> s := #Sbin-1; s;

4

> s eq Floor((2^(2*3-2)-3)/3);

true

> IsPermutationDecodeSet(C, I, S, s);

true

> IsPermutationDecodeSet(C, Ibin, Sbin, s);

true

> c := C ! [3,2,1,0,1,0,3,2,3,2,1,0,1,0,3,2];

> R := UniverseCode(Integers(4), Length(C));

> u := R ! [2,3,2,0,1,0,3,2,3,2,1,0,1,0,3,3];

> u in C;

false

> LeeDistance(u, c);

4
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> grayMap := GrayMap(R);

> cbin := grayMap(c);

> isDecoded, uDecoded, ubinDecoded := PermutationDecode(C, I, S, 4, u);

> isDecoded;

true

> uDecoded eq c;

true

> ubinDecoded eq cbin;

true

For the Hadamard code C over Z4 of length 32 and type 2143, a 4-PD-set of size 5
can be constructed either by using the deterministic method (by default), or by using a
nondeterministic method to obtain an s-PD-set of size s+1 with 4 ≤ s ≤ 7. In both cases,
the given sets are checked for really being s-PD-sets for C.

> C := HadamardCodeZ4(3, 6);

> I, S, Ibin, Sbin := PDSetHadamardCodeZ4(3, 6);

> s := #Sbin-1; s;

4

> IsPermutationDecodeSet(C, I, S, s);

true

> I, S, Ibin, Sbin := PDSetHadamardCodeZ4(3, 6 : AlgMethod := "Nondeterministic");

> s := #Sbin-1; s;

6

> IsPermutationDecodeSet(C, I, S, s);

true

Finally, a 2-PD-set of size 3 is constructed for the Kerdock code of length 16 and type
2045, and formally checked for being a 2-PD-set for this code.

> C := KerdockCode(4);

> I, S, Ibin, Sbin := PDSetKerdockCodeZ4(4);

> IsPermutationDecodeSet(C, I, S, 2);

true

> IsPermutationDecodeSet(C, Ibin, Sbin, 2);

true
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2.9 Automorphism Groups

PermutationGroupHadamardCodeZ4(δ, m)

PAutHadamardCodeZ4(δ, m)

Given an integer m ≥ 1 and an integer δ such that 1 ≤ δ ≤ b(m+ 1)/2c,
this function returns the permutation group G of a Hadamard code over
Z4 of length 2m−1 and type 2γ4δ, where γ = m + 1 − 2δ. The group
G contains all permutations of the coordinates which preserve the code.
Thus only permutation of coordinates is allowed, and the degree of G is
always 2m−1. Moreover, the generator matrix with γ + δ rows used to
generate the code is returned. This matrix is constructed in a recursive
way using the Plotkin and BQPlotkin constructions defined in Section
2.3.

PermutationGroupHadamardCodeZ4Order(δ, m)

PAutHadamardCodeZ4Order(δ, m)

Given an integer m ≥ 1 and an integer δ such that 1 ≤ δ ≤ b(m+ 1)/2c,
return the order of the permutation group G of a Hadamard code over
Z4 of length 2m−1 and type 2γ4δ, where γ = m + 1 − 2δ. The group G
contains all permutations of the coordinates which preserve the code.

PermutationGroupExtendedPerfectCodeZ4(δ, m)

PAutExtendedPerfectCodeZ4(δ, m)

Given an integer m ≥ 2 and an integer δ such that 1 ≤ δ ≤ b(m+ 1)/2c,
return the permutation group G of an extended perfect code over Z4 of
length 2m−1, such that its dual code is of type 2γ4δ, where γ = m+1−2δ.
The group G contains all permutations of the coordinates which preserve
the code. Thus only permutation of coordinates is allowed, and the degree
of G is always 2m−1. Moreover, the generator matrix with γ+δ rows used
to generate the code is returned. This matrix is constructed in a recursive
way using the Plotkin and BQPlotkin constructions defined in Section
2.3.

PermutationGroupExtendedPerfectCodeZ4Order(δ, m)

PAutExtendedPerfectCodeZ4Order(δ, m)

Given an integer m ≥ 2 and an integer δ such that 1 ≤ δ ≤ b(m+ 1)/2c,
return the order of the permutation group G of an extended perfect code
over Z4 of length 2m−1, such that its dual code is of type 2γ4δ, where
γ = m+1−2δ. The group G contains all permutations of the coordinates
which preserve the code.
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Example H2E17

> C := HadamardCodeZ4(2,4);

> PAut := PAutHadamardCodeZ4(2,4);

> PAut;

Permutation group PAut acting on a set of cardinality 8

(1, 2)(3, 4)(5, 6)(7, 8)

(2, 4)(6, 8)

(5, 7)(6, 8)

(1, 5)(3, 7)

> {p : p in Sym(8) | C^p eq C} eq Set(PAut);

true

> #PAut eq CardinalPAutHadamardCodeZ4(2,4);

true

> d := 2; m := 4; g := m+1-2*d;

> CardinalPAutHadamardCodeZ4(d, m) eq

#GL(d-1,Integers(4))*#GL(g,Integers(2))*2^g*4^((g+1)*(d-1));

true

> d := 4; m := 8; g := m+1-2*d;

> CardinalPAutHadamardCodeZ4(d, m) eq

#GL(d-1,Integers(4))*#GL(g,Integers(2))*2^g*4^((g+1)*(d-1));

true

> PAutHadamardCodeZ4(2,4) eq PAutExtendedPerfectCodeZ4(2,4);

true

PermutationGroup(C)

The permutation group G of the linear code C of length n over the ring
R, where G is the group of all permutation-action permutations which
preserve the code. Thus only permutation of coordinates is allowed, and
the degree of G is always n.

PermutationGroupGrayMapImage(C)

Given a code C over Z4 of length n, return the permutation group Gbin of
Cbin = Φ(C), where Gbin is the group of all permutation-action permuta-
tions which preserve the binary code Cbin of length 2n and Φ is the Gray
map. Thus only permutation of coordinates is allowed, and the degree of
Gbin is always 2n.

Example H2E18

> C := HadamardCodeZ4(2,4);

> PAutC := PermutationGroup(C);

> PAutC eq PAutHadamardCodeZ4(2,4);

true
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> #PAutC eq PAutHadamardCodeZ4Order(2,4);

true

> {p : p in Sym(8) | C^p eq C} eq Set(PAutC);

true

> Cbin := GrayMapImage(C);

> PAutCbin := PermutationGroupGrayMapImage(C);

> {p : p in PAutCbin | Set(Cbin)^p eq Set(Cbin)} eq Set(PAutCbin);

true
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Chapter 3

Linear Codes over Finite Fields

3.1 Permutation Decoding

This section supplies functions for decoding vectors from the ambient space of
a linear code C over a finite field by using the permutation decoding method.
The reader is referred to [2, 11, 16] for more information.

IsPermutationDecodeSet(C, I, S, s)

Given

- an [n, k] linear code C over a finite field K;

- a sequence I ⊆ {1, . . . , n};

- a sequence S of elements in the group of monomial matrices of degree
n over K, or a sequence of elements in the symmetric group Sym(n)
acting on the set {1, . . . , n};

- and an integer s ∈ {1, . . . , t}, where t is the error-correcting capability
of C;

this intrinsic returns true if and only if S is an s-PD-set for C with
respect to the information set I.

Depending on the length of the code C, its dimension k, and the integer s,
this function could take some time to compute whether S is an s-PD-set
for C with respect to I. Specifically, if the function returns true, it is
necessary to check

∑s
i=1

(
k
i

)
·
(
n−k
s−i

)
s-sets.
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The verbose flag IsPDSetFlag is set to level 0 by default. If it is set to
level 1, the total time used to check the condition is shown. Moreover,
the reason the function returns false is also shown, that is, whether I is
not an information set, S is not a subset of the monomial automorphism
group of C or S is not an s-PD-set. If it is set to level 2, the percentage
of the computation process performed is also printed.

PermutationDecode(C, I, S, s, u)

Given

- an [n, k] linear code C over a finite field K;

- an information set I ⊆ {1, . . . , n} for C as a sequence of coordinate
positions;

- a sequence S of elements in the group of monomial matrices of degree
n over K, or a sequence of elements in the symmetric group Sym(n)
acting on the set {1, . . . , n}. In either case S must be an s-PD-set
for C with respect to I;

- an integer s ∈ {1, . . . , t}, where t is the error-correcting capability of
C;

- and a vector u from the ambient space V of C,

the intrinsic attempts to decode u with respect to C. If the decoding
algorithm succeeds in computing a vector u′ ∈ C as the decoded version
of u ∈ V , then the function returns true and the codeword u′. If the
decoding algorithm does not succeed in decoding u, then the function
returns false and the zero vector in V .

The permutation decoding algorithm works by moving all errors in the
received vector u = c + e, where c ∈ C and e ∈ V is the error vector
with at most t errors, out of the information positions, that is, moving
the nonzero coordinates of e out of the information set I for C, by using
an automorphism of C. Note that the function does not check any of the
conditions that I is an information set for C, S is an s-PD-set for C with
respect to I, or s ≤ t.
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PermutationDecode(C, I, S, s, Q)

Given

- an [n, k] linear code C over a finite field K;

- an information set I ⊆ {1, . . . , n} for C as a sequence of coordinate
positions;

- a sequence S of elements in the group of monomial matrices of degree
n over K, or a sequence of elements in the symmetric group Sym(n)
acting on the set {1, . . . , n}. In either case S must be an s-PD-set
for C with respect to I;

- an integer s ∈ {1, . . . , t}, where t is the error-correcting capability of
C;

- and a sequence Q of vectors from the ambient space V of C,

the intrinsic attempts to decode the vectors of Q with respect to C. This
function is similar to the function PermutationDecode(C, I, S, s, u)

except that rather than decoding a single vector, it decodes a sequence
of vectors and returns a sequence of booleans and a sequence of decoded
vectors corresponding to the given sequence. The algorithm used is as for
the function PermutationDecode(C, I, S, s, u).

PDSetSimplexCode(K, m)

Given a finite field K of cardinality q, and a positive integer m, the
intrinsic constructs the [n = (qm − 1)/(q − 1),m, qm−1] linear simplex
code C over K, as Dual(HammingCode(K, m)), and then searches for an
s-PD-set for C. The function returns an information set I for C together
with a subset S of the monomial automorphism group of C such that S is
an s-PD-set for C with respect to I, where s = b(qm − 1)/(m(q − 1))c−1.

The information set I is returned as a sequence of m integers, giving the
coordinate positions that correspond to the information set for C. The
set S is also returned as a sequence, which contains the s + 1 elements
in the group of monomial matrices of degree n over K described in [11].
When K is GF (2), the function also returns the elements of S represented
as elements in the symmetric group Sym(n) of permutations on the set
{1, . . . , n}.

38



PDSetHadamardCode(m)

Given a positive integer m, the intrinsic constructs the
[2m,m + 1, 2m−1] binary linear Hadamard code C, as
Dual(ExtendCode(HammingCode(GF(2), m))), and then searches
for an s-PD-set for C. The function returns an information set
I ⊆ {1, . . . , 2m} for C together with a subset S of the permutation
automorphism group of C such that S is an s-PD-set for C with respect
to I, where s = b2m/(m+ 1)c − 1.

The information set I is returned as a sequence of m+ 1 integers, giving
the coordinate positions that correspond to the information set for C. The
set S is also returned as a sequence, which contains the s+ 1 elements in
the group of permutation matrices of degree 2m over GF (2) described in
[2]. The function also returns the elements of S represented as elements
in the symmetric group Sym(2m) of permutations on the set {1, . . . , 2m}.

Example H3E1

> C := Dual(ExtendCode(HammingCode(GF(2), 5)));

> C;

[32, 6, 16] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1]

[0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0]

[0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 1 1 1]

[0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0]

[0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0]

[0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1]

> I, SMAut, SPAut := PDSetHadamardCode(5);

> I in AllInformationSets(C);

true

> s := #SMAut-1; s;

4

> [ LinearCode(GeneratorMatrix(C)*SMAut[i]) eq C : i in [1..s+1] ];

[true, true, true, true, true];

> [ LinearCode(GeneratorMatrix(C)^SPAut[i]) eq C : i in [1..s+1] ];

[true, true, true, true, true];

> IsPermutationDecodeSet(C, I, SMAut, s);

true

> IsPermutationDecodeSet(C, I, SPAut, s);

true

> c := C ! [1^^32];

> c in C;

true

> u := c;
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> u[1] := c[1] + 1;

> u[2] := c[2] + 1;

> u[4] := c[4] + 1;

> u[32] := c[32] + 1;

> u in C;

false

> isDecoded, uDecoded := PermutationDecode(C, I, SMAut, s, u);

> isDecoded;

true

> uDecoded eq c;

true

> isDecoded, uDecoded := PermutationDecode(C, I, SPAut, s, u);

> isDecoded;

true

> uDecoded eq c;

true

Example H3E2

> K<a> := GF(4);

> C := Dual(HammingCode(K, 3));

> C;

[21, 3, 16] Linear Code over GF(2^2)

Generator matrix:

[1 0 a^2 a 1 0 a^2 a 1 a^2 0 1 a a 1 0 a^2 1 a a^2 0]

[0 1 1 1 1 0 0 0 0 a^2 a^2 a^2 a^2 a a a a 1 1 1 1]

[0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

> I, SMAut := PDSetSimplexCode(K, 3);

> I in AllInformationSets(C);

true

> s := #SMAut-1; s;

6

> [ LinearCode(GeneratorMatrix(C)*SMAut[i]) eq C : i in [1..s+1] ];

[true, true, true, true, true, true, true];

> IsPermutationDecodeSet(C, I, SMAut, s);

true

> c := C ! [0,1,1,1,1,0,0,0,0,a^2,a^2,a^2,a^2,a,a,a,a,1,1,1,1];

> c in C;

true

> u := c;

> u[1] := c[1] + a;

> u[2] := c[2] + a^2;

> u[3] := c[3] + a;

> u[4] := c[4] + a^2;

> u[5] := c[5] + a;

> u[6] := c[6] + a^2;

> u in C;
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false

> isDecoded, uDecoded := PermutationDecode(C, I, SMAut, s, u);

> isDecoded;

true

> uDecoded eq c;

true
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Appendix A

Updated and new functions of
version 2.1

A.1 Updated functions

SyndromeSpace(C) v2.0

Given a code C over Z4 of length n and type 2γ4δ, return the Z4-
submodule of Zn−δ4 isomorphic to Zγ2×Z

n−γ−δ
4 such that the first γ coordi-

nates are of order two, that is, the space of syndrome vectors for C. The
function also returns the (2n− 2δ − γ)-dimensional binary vector space,
which is the space of syndrome vectors for the corresponding binary code
Cbin = Φ(C), where Φ is the Gray map. Note that these spaces are com-
puted by using the function InformationSpace(C) applied to the dual
code of C, given by function Dual(C).

SyndromeSpace(C) v2.1

Given a code C over Z4 of length n and type 2γ4δ, return the Z4-
submodule of Zn−δ4 isomorphic to Zγ2×Z

n−γ−δ
4 such that the first γ coordi-

nates are of order two, that is, the space of syndrome vectors for C. The
function also returns the (2n− 2δ − γ)-dimensional binary vector space,
which is the space of syndrome vectors for the corresponding binary code
Cbin = Φ(C), where Φ is the Gray map. Note that these spaces are com-
puted by using the function InformationSpace(C) applied to the dual
code of C, given by function DualZ4(C).
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IsPermutationDecodeSet(C, I, S, s) v2.0

Given

- an [n, k] linear code C over a finite field K;

- a sequence I ⊆ {1, . . . , n};

- a sequence S of elements in the group of monomial matrices of degree
n over K, OR if C is a binary code, a sequence of elements in the
symmetric group Sym(n) acting on the set {1, . . . , n};

- and an integer s ∈ {1, . . . , t}, where t is the error-correcting capability
of C;

this intrinsic returns true if and only if S is an s-PD-set for C with
respect to the information set I.

IsPermutationDecodeSet(C, I, S, s) v2.1

Given

- an [n, k] linear code C over a finite field K;

- a sequence I ⊆ {1, . . . , n};

- a sequence S of elements in the group of monomial matrices of degree
n over K, or if C is a binary code, a sequence of elements in the
symmetric group Sym(n) acting on the set {1, . . . , n};

- and an integer s ∈ {1, . . . , t}, where t is the error-correcting capability
of C;

this intrinsic returns true if and only if S is an s-PD-set for C with
respect to the information set I.
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PermutationDecode(C, I, S, s, u) v2.0

Given

- an [n, k] linear code C over a finite field K;

- an information set I ⊆ {1, . . . , n} for C as a sequence of coordinate
positions;

- a sequence S of elements in the group of monomial matrices of degree
n over K, OR if C is a binary code, a sequence of elements in the
symmetric group Sym(n) acting on the set {1, . . . , n}. In either case
S must be an s-PD-set for C with respect to I;

- an integer s ∈ {1, . . . , t}, where t is the error-correcting capability of
C;

- and a vector u from the ambient space V of C,

the intrinsic attempts to decode...

PermutationDecode(C, I, S, s, u) v2.1

Given

- an [n, k] linear code C over a finite field K;

- an information set I ⊆ {1, . . . , n} for C as a sequence of coordinate
positions;

- a sequence S of elements in the group of monomial matrices of degree
n over K, or if C is a binary code, a sequence of elements in the
symmetric group Sym(n) acting on the set {1, . . . , n}. In either case
S must be an s-PD-set for C with respect to I;

- an integer s ∈ {1, . . . , t}, where t is the error-correcting capability of
C;

- and a vector u from the ambient space V of C,

the intrinsic attempts to decode...
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PermutationDecode(C, I, S, s, Q) v2.0

Given

- an [n, k] linear code C over a finite field K;

- an information set I ⊆ {1, . . . , n} for C as a sequence of coordinate
positions;

- a sequence S of elements in the group of monomial matrices of degree
n over K, OR if C is a binary code, a sequence of elements in the
symmetric group Sym(n) acting on the set {1, . . . , n}. In either case
S must be an s-PD-set for C with respect to I;

- an integer s ∈ {1, . . . , t}, where t is the error-correcting capability of
C;

- and a sequence Q of vectors from the ambient space V of C,

the intrinsic attempts to decode ...

PermutationDecode(C, I, S, s, Q) v2.1

Given

- an [n, k] linear code C over a finite field K;

- an information set I ⊆ {1, . . . , n} for C as a sequence of coordinate
positions;

- a sequence S of elements in the group of monomial matrices of degree
n over K, or if C is a binary code, a sequence of elements in the
symmetric group Sym(n) acting on the set {1, . . . , n}. In either case
S must be an s-PD-set for C with respect to I;

- an integer s ∈ {1, . . . , t}, where t is the error-correcting capability of
C;

- and a sequence Q of vectors from the ambient space V of C,

the intrinsic attempts to decode...
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A.2 New functions

StandardFormDual(C)

Given a code C over Z4 of length n, return the dual of a permutation-
equivalent code S in standard form, together with the corresponding iso-
morphism from the dual of C onto the dual of S. Since S is generated by
a matrix of the form (

Ik1 A B
0 2Ik2 2C

)
,

the dual of S is generated by the matrix(
−(AC +B)t Ct In−k1−k2

2At 2Ik2 0

)
,

where Ik1 and Ik2 are the k1×k1 and k2×k2 identity matrices, respectively,
A and C are Z2-matrices, and B is a Z4-matrix.

MinRowsParityCheckMatrix(C)

A parity check matrix for the code C over Z4 of length n and type 2γ4δ,
with the minimum number of rows, that is, with γ rows of order two and
n−γ−δ rows of order four. This function should be faster for most codes
over Z4 than the general function ParityCheckMatrix(C) for codes over
finite rings. Another parity check matrix for the code C can be obtained
as the generator matrix of the dual of C with the minimum number of
rows, that is, as MinRowsGeneratorMatrix(DualZ4(C)).

DualZ4(C)

The dual D of the code C over Z4 of length n. The dual consists of all
codewords in the Z4-space V = Zn4 which are orthogonal to all codewords
of C. This function should be faster for most codes over Z4 than the
general function Dual(C) for codes over finite rings.

Example HAE3

> C := HadamardCodeZ4(3, 11);

> G, gamma, delta := MinRowsGeneratorMatrix(C);

> Nrows(G) eq gamma + delta;

true

> deltaH := Length(C) - gamma - delta;

> H1 := MinRowsParityCheckMatrix(C);

> Nrows(H1) eq gamma + deltaH;

true

> H2 := MinRowsGeneratorMatrix(DualZ4(C));

> Nrows(H2) eq gamma + deltaH;
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true

> time D := Dual(C);

Time: 24.660

> time D4 := DualZ4(C);

Time: 0.340

> D eq D4, D4 eq LinearCode(H1), D4 eq LinearCode(H2);

true true true

> DualS, f := StandardFormDual(C);

> DualS eq LinearCode(Matrix([f(H1[i]) : i in [1..Nrows(H1)]]));

true

PermutationGroup(C)

The permutation group G of the linear code C of length n over the ring
R, where G is the group of all permutation-action permutations which
preserve the code. Thus only permutation of coordinates is allowed, and
the degree of G is always n.

PermutationGroupGrayMapImage(C)

Given a code C over Z4 of length n, return the permutation group Gbin of
Cbin = Φ(C), where Gbin is the group of all permutation-action permuta-
tions which preserve the binary code Cbin of length 2n and Φ is the Gray
map. Thus only permutation of coordinates is allowed, and the degree of
Gbin is always 2n.

Example HAE4

> C := HadamardCodeZ4(2,4);

> PAutC := PermutationGroup(C);

> PAutC eq PAutHadamardCodeZ4(2,4);

true

> #PAutC eq PAutHadamardCodeZ4Order(2,4);

true

> {p : p in Sym(8) | C^p eq C} eq Set(PAutC);

true

> Cbin := GrayMapImage(C);

> PAutCbin := PermutationGroupGrayMapImage(C);

> {p : p in PAutCbin | Set(Cbin)^p eq Set(Cbin)} eq Set(PAutCbin);

true

47



A.3 Undocumented functions

StandardFormInfo(C)

Internal Magma function.
Signatures: (C::CodeLin) → Mtrx, CodeLin, Mtrx, GrpPermElt

This function is called from StandardForm(C) function.

Z4Type(C)

Magma function.
Signatures: (C::CodeLinRng) → RngIntElt, RngIntElt

Return the “type” of the code C over Z4. Which is m1, m2 such that
|C| = 4m1 · 2m2 .

StandardFormInfoInverted(C)

Given a code C over Z4 of length n, return a generator matrix of a
permutation-equivalent code S in standard form, together with the per-
mutation of coordinates used to define the corresponding isomorphism
from C onto S.
This function is called from StandardFormInverted(C) function. The
generator matrix is of the form(

2C ′ 2Ik2 0
B′ A′ Ik1

)
,

where Ik1 and Ik2 are the k1×k1 and k2×k2 identity matrices, respectively,
A′ and C ′ are Z2-matrices, and B′ is a Z4-matrix, so it has the rows and
columns in inverted order compared to the matrix given by the function
StandardFormInfo(C).
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StandardFormInverted(C)

Given a code C over Z4 of length n, return a permutation-equivalent code
S in standard form, together with the corresponding isomorphism from
C onto S. The code S is generated by a matrix in standard form having
the rows and columns in inverted order compared to the one given by the
function StandardFormInfo(C), that is, the matrix(

2C ′ 2Ik2 0
B′ A′ Ik1

)
,

instead of the matrix (
Ik1 A B
0 2Ik2 2C

)
,

where Ik1 and Ik2 are the k1×k1 and k2×k2 identity matrices, respectively,
A, A′, C and C ′ are Z2-matrices, and B and B′ are Z4-matrices.

StandardFormDualInfo(C)

Given a code C over Z4 of length n, return a generator matrix of the dual
of a permutation-equivalent code S in standard form, together with the
permutation of coordinates used to define the corresponding isomorphism
from the dual of C onto the dual of S.
This function is called from StandardFormDual(C) function. The matrix
is of the form (

−(AC +B)t Ct In−k1−k2
2At 2Ik2 0

)
,

where Ik1 and Ik2 are the k1×k1 and k2×k2 identity matrices, respectively,
A and C are Z2-matrices, and B is a Z4-matrix.
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