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10. Impact evaluation and frontier methods in
education: a step forward
Daniel Santin and Gabriela Sicilia*

‘Getting something wrong is not a crime.
Failing to learn from past mistakes because you are not monitoring and evaluating, is’.
Shapiro (2011, p.5).

Monitoring and evaluation toolkit.
CIVICUS: World Alliance for Citizen Participation.

1 INTRODUCTION

Targets and tools for the monitoring and evaluation of educational policies and inter-
ventions in the economics of education have changed rapidly in the last 20 years. Most
previous works in this field have focused on running multivariate analysis models to find
statistical associations between variables, controlling for the presence of other covariates
and factors that also influence the dependent variables. Behind this traditional approach
lies the strong assumption that all covariates related to the dependent variable are exog-
enously determined. In other words, we would say that unobserved variables are equally
distributed among the population to be analysed.! Given modern estimation technology
it is no longer reasonable to make this assumption.

Parents’ decisions regarding the education of their children (for example, choice of
school, pre-primary education attendance, extra-curricular activities, support at home,
choice of teacher and so on) are strongly related to the so-called unobserved heterogene-
ity, or simply endogeneity. This unobserved heterogeneity is mainly rooted in the difficulty
in measuring certain dimensions — such as parents’ motivation, expectations, incentives,
non-cognitive traits, religious values and so on — which exert a big influence on both the
aforementioned key academic decisions and on educational achievements, and this leads
the researcher to confound the true causes of the observed results.

The same reasoning can be applied when we aim to evaluate the performance of teach-
ers, principals or schools in many public education systems where they are not randomly
distributed into schools. Highly qualified and more motivated teachers tend to self-select
into better schools with higher academic results, better facilities and a better peer group.

* We are grateful to participants at the 4th Workshop on the Efficiency in Education held in Milano for
useful comments and suggestions. We are also grateful to Tommaso Agasisti, Juan Aparicio, Geraint Johnes
and Mika Kortelainen for helpful discussions.

I This ‘ideal for analysis’ education system would be equivalent to allocating students, teachers and princi-
pals to schools by holding a big lottery at the age of school entry. This unrealistic strategy is based on the idea
that randomisation only creates small non-significant differences in unobserved variables. Of course, school
choice in the real world is far away from this system.
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212 Handbook of contemporary education economics

Another example could be when better schools are able to select high-achieving students
or those with the most motivated parents to support their children in the education pro-
duction process. An unfair management comparison between schools will conclude that
regardless of observed physical input quantities, the latter schools obtain better achieve-
ments due to better management. However, this result will likely be biased because of the
non-observed factors.

Likewise, the endogeneity problem in the education sector can also have an effect in
the opposite direction when there is a direct negative feedback from low educational
achievement to resources. This applies, for example, when an educational intervention
allocates more resources to schools with a greater proportion of disadvantaged students
with poorer academic results (Levaci¢ and Vignoles, 2002). In this case, a programme
may incorrectly be diagnosed as ineffective in a standard multivariate analysis identifying
a negative relationship between the intervention and the results.

Based on this background and the insights of statistics and econometrics, the impact
of an evaluation in education literature has concluded that the best way to measure the
true impact of educational interventions (the treatment) would be to observe the average
performance of exactly the same population group, both with and without the analysed
treatment. As this is impossible, the best solution to overcome this problem is to carry out
randomised experiments by selecting an untreated or counterfactual population group
with similar average characteristics to the treated group to compare both results after the
intervention. Nevertheless, most public programmes are not yet designed to be evaluated
using a counterfactual group. In these contexts, as we will discuss in Section 2, a set of so-
called quasi-experimental evaluation techniques are usually used to look for appropriate
counterfactual groups.

The impact evaluation of educational interventions can be carried out for programmes
devoted to individuals (students, parents, families, teachers and so on) or to organisa-
tions (schools, districts, municipalities and so on). Although impact evaluation in terms
of average output differences is the mainstream for evaluating educational programmes
targeted at individuals (for example, scholarships for more disadvantaged students),
when programmes are intended for organisations it also becomes relevant to measure
educational efficiency and productivity differences by means of production frontiers
(Worthington, 2001; Johnes, 2015; De Witte and Lopez-Torres, 2015; Thanassoulis et al.,
2016).

When public educational interventions are devoted to organisations they can be
carried out to improve results through input-oriented interventions (raising school
budgets, reducing teacher-pupil ratio, increasing teacher salary, facilities or instruction
material, among others) but also by promoting the organisations’ productivity, via tech-
nological change and/or improvements in technical efficiency. These practices are cur-
rently very common (external exams, schools’ autonomy, teaching-learning practices
in the classrooms or instruction time), so it becomes equally relevant to evaluate their
potential impacts on the output to unravel the channels through which the interven-
tion operates (inputs, technological change and/or efficiency). Surprisingly, to date in
the economics of education, both fields of research, impact evaluation and production
frontiers, run as parallel lines of research with no relationship, or very little, between
them.

In recent years there has been an emerging and growing interest in the production
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frontiers literature in addressing the endogeneity issue in the estimation of technical effi-
ciency from a theoretical approach.? Furthermore, some works have started to relate pro-
duction frontiers with impact evaluation insights into empirical educational problems. For
example, Perelman and Santin (2011) address the endogeneity problem of school choice
in Spain using instrumental variables, Crespo-Cebada et al. (2014) apply propensity score
matching to compare performance across different school ownership arrangements,
Santin and Sicilia (2014) exploit a natural experiment to evaluate teachers’ performance
in primary schools and Van Klaveren and De Witte (2014) relate conditional efficiency
scores to the matching strategy.

This chapter is concerned with two main goals. First, Section 2 introduces the basics
of impact evaluation in education for those readers not familiar with this approach.
Secondly, in Section 3 we develop a theory to relate impact evaluation and production
frontiers using the education production function framework. Section 4 describes a
Monte Carlo simulation run to show how production frontiers can help to enhance the
traditional impact evaluation approach regarding not only mean differences in outputs
but also mean differences in productivity changes caused by technological and/or effi-
ciency changes. Finally, Section 5 concludes and proposes the main lines and challenges
for future research.

2 BASICS ON IMPACT EVALUATION

Behind any intervention to improve academic achievements lies a results chain in which
the policymakers define the targets of the programme and the indicators to be used to
measure whether it has been successful or not. The results chain contributes to clarifying
all the steps necessary to reach the objectives and facilitate the evaluation. A typical results
chain is made up of the following dimensions.

® Inputs: resources needed in the production function to achieve the outputs. They
include teachers, other staff, school resources and budget.

® Activities: include instruction tasks carried out to transform inputs into outputs.
For example, instruction time, homework, classroom organisation and so on.

® Outputs: results produced and delivered to the beneficiaries (students, teachers,
principal and so on). Depending on the intervention and the final beneficiaries
the outputs can be measured from test scores to the skills obtained in the trained
dimensions.

® Results: short-to-medium term effects achieved by the beneficiaries.

® Outcomes: medium-to-long term goals of the intervention.

Once the results chain is defined and the indicators to measure the success of the pro-
gramme are clear, the next stage, and the central challenge in carrying out effective impact

2 Orme and Smith (1996); Bifulco and Bretschneider (2001, 2003); Ruggiero (2003, 2004); Cordero et al.
(2015); Cazals et al. (2016); Mayston (2016), Simar et al. (2016) and Santin and Sicilia (2017) deal with endog-
eneity in the estimation of technical efficiency using non-parametric techniques; and Greene (2010); Mayston
(2015); Amsler et al. (2016) and Griffiths and Hajargasht (2016) use parametric approaches.
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evaluations, is to identify the causal relationship between the intervention and the out-
comes (Gertler et al., 2016).% Impact evaluation is the technical approach that economists
involved in education use to demonstrate causality.

Basically, an impact evaluation in education consists of a procedure to measure the
causal effect of a programme or intervention (the treatment) on educational outputs, such
as academic achievement, success rates, raise of non-cognitive skills and so on. To do this,
the impact evaluation assess the average changes that can be attributed to this particular
treatment in the well-being (effects and outcomes) of individuals or organisations receiv-
ing the treatment (the treated group) with respect to another group not receiving the
programme (the counterfactual or control group).

Technically, the grounds for measuring causality are, in principle, quite simple. Let N
be a population of individuals or schools that may receive a programme or treatment or
not (D). We define, D = 1 if individuals received thd\=?ptment; D = 0 otherwise. After
the treatment we observe the following outcomes: E[Y | D = 1]; the expected outcome*
(the average) of treated individuals Y| in the treated group D = 1; and E[Y,| D = 0]; the
average outcome of non-treated individuals Y| in the non-treated group D = 0.

The theoretical, but impossible to obtain, target would be to measure the impact of the
treatment on the treated group over exactly the same group of population (the treated
individuals) without the treatment:

EAD=1]=EY,|D=1]-HY,|D=1] (10.1)

where the unobserved potential average outcome of non-treated individuals in the treated
group E[Y | D = 1] constitutes the identification problem of impact evaluation. Several
methodological strategies; randomised controlled trials (RCT), regression discontinuity
designs, instrumental variables and differences in differences, have been developed in sta-
tistics and econometrics to deal with this problem. Table 10.1 provides a rough description
of these techniques.

Additionally, the propensity score matching (PSM) technique (Heckman and Navarro-
Lozano, 2004) has been used in education economics to account for causal effects. When
there was no randomisation it is possible to match beneficiaries in the treated group with
non-beneficiaries in the control group using observed (before the treatment) variables.
Although this method can mitigate the problem of self-selection, because we can assume
that estimations are done just with similar individuals, it is unlikely that the assumption
of no unobserved differences between the treated and empirically derived control group,
essential for the propensity score strategy, held. For this reason, we think that PSM lags
behind the ones described in Table 10.1 in terms of its potential ability to identify causal
evidence. In the following, we shall describe the quasi-experimental techniques showed
in Table 10.1.

3 In the absence of a specific intervention, the focus is mainly on monitoring the standard school activity,

that is, the transformation of input into outputs through the educational activities. In this case, the most accu-
rate toolbox for analysing and comparing the school’s management performance is to carry out a productivity
and/or efficiency analysis.

4 For simplification, we will use the term expectation and the average result as equivalent expressions.

M4385 - JOHNES 9781785369063 PRINT.indd 214 @ 27/09/2017 14:51


Gabriela
Nota adhesiva
Please add a space between the expectancy and the bracket. This comment applies for the whole document. 

Gabriela
Resaltado


Impact evaluation and frontier methods in education 215

Table 10.1 Description of the impact evaluation methods most used in education

economics
Approach Description Advantages Drawbacks
Randomised Individuals are Both groups will be Is more expensive than
Controlled randomly assigned distributed identically the other alternatives to
Trials (RCTs)  to the treated and in all variables but in guarantee external validity.
control groups receiving the treatment. In occasions, it raises
through a social When is well designed, the ethical problems to run a
experiment. results are highly robust. social experiment.
Regression Participation is The cut-off point Results are local average
Discontinuity  decided through an reproduces a random treatment effects in the
Designs exogenous cut-off experiment. Is cheap, easy  sense that they could
(RDD) point, normally a law  to apply and provides not be generalised for
requirement. robust results. It suits well — individuals far away from
with educational policies  the cut-off-point.
based on rules such
grants, entry criteria and
o on.
Instrumental ~ The nature or the The method exploits Most of the time is quite
Variables (IV) legal framework a partial random difficult to find a good

Difference in
Differences
(DID)

originates exogenous
sources of variation
correlated with
receiving the
treatment but
uncorrelated with the
dependent variable.
The treatment

is exogenous for

the treated group.
The treated and
counterfactual groups
would have the same
trend in the absence
of the treatment.

assignment that
reproduces a natural
experiment. It provides
even robust results than
their counterparts.

The method is easy to
apply and provides robust
results.

instrument. Finding an
outstanding instrument is
really hard.

Data demanding in terms
of ‘before’ and ‘after’ the
treatment. It is necessary
to run different test and
models to demonstrate the
equal trends assumption
that guarantees that the
method provides causal
results.

2.1 Randomised Trials

The gold standard identification strategy used to deal with the identification problem
and determining causality is randomisation (Angrist, 2004). Assigning the treatment
through a random method guarantees that both groups will be distributed identically in all
observed and non-observed relevant variables. Summarising, randomisation ensures that:
E[Y | D= 1]= E[Y | D = (0] so the causal impact of the treatment can now be estimated as:

EJA|D=1]=EY||D=1]-E[Y|D = 0]
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In the last decade several randomised trials have been carried out in the context of edu-
cation with the aim of obtaining robust impact evaluations, for instance those focused on
the evaluation of early childhood education programmes (Heckman et al., 2010; Jensen
et al., 2013), charter schools (Angrist et al., 2016), changes in the size of the classroom
(Chetty et al., 2011; Dynarski et al., 2013), the use of ICT (Angrist and Lavy, 2002;
Banerjee et al., 2007), the effectiveness of extended day programmes (Meyer and Van
Klaveren, 2013) or the implementation of incentives for teachers or students (Dee and
Keys, 2004; Kane and Staiger, 2008; Angrist et al., 2009: Fryer, 2010;; Fryer et al., 2012;
Duflo et al., 2011, 2012, 2015).

Although the number of social experiments in education that uses randomisation in
the real world is growing rapidly, until now most educational public programmes and
interventions to boost academic results do not implement randomisation when they are
designed. In these cases, we cannot guarantee that E[ Y| D = 1] = E[ Y| D = 0] holds and
what we actually estimate is:

END=1]=EY,|D=1]-HY,|D=0]+{EY|D=1-EY D=1} (10.3)
where by rearranging the terms we have:
END=1]=EY,|D=1]-HY,|D=1]+{EY|D=1]-EY D=0} (10.4)
or:
EAD=1]=HY,|D=1]-EHY|D=1]+B (10.5)

The lack of randomisation causes a potential bias B in the measurement of the causal
effect of D on the difference in expected results for both the treated and the control group.
As the term E[Y| D = 1] is unknown, it is impossible to determine the magnitude of this
bias, which results in a misleading estimation and which is hardly conducive to taking
decisions.

Therefore, organising random experiments is not always possible, nor desirable.
Instead, in many practical circumstances, analysts should rely upon data generated for
other purposes, such as surveys, exercises or even administrative data. To tackle the endo-
geneity problem in the absence of randomisation, the econometric literature proposes a
growing toolbox of causal inference methods for evaluating the impact of interventions
(the treatment) using observational data, the so-called ‘quasi-experimental’ evaluation
methods. The root idea is to look for a good counterfactual group to try to avoid or at
least minimise selection bias derived from the lack of intended randomisation (Khandker
et al., 2010). It is out of the scope of this chapter to review all these techniques® in depth.
Instead we provide a basic overview of the main and more robust approaches used in
education economics; instrumental variables, regression discontinuity designs and the
difference in differences.

> There are many references in the literature that introduce impact evaluation and causal inference methods.

For the interested reader, we suggest Angrist and Pischke (2008, 2014) for a technical point of view and
Schlotter et al. (2011) and Webbink (2005) for a non-technical point of view applied to the education sector.
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2.2 Instrumental Variables

The basic idea behind this approach is to find an exogenous source of variation, the
instrumental variable (IV), correlated with having received the treatment but uncorre-
lated with the outcome. Exogenous sources of variation are difficult to find and so this
approach requires creativity on the part of the researcher, the availability of rich databases
and a profound knowledge about the intervention and the circumstances under it was
developed. Frequently, a starting point for finding an instrument is to check for legal or
natural variations during the period analysed (see Angrist and Krueger, 1991; Angrist
and Lavy, 1999; Hoxby, 2000; West and Woessmann, 2010; Jensen and Rasmussen, 2011;
Kearny and Levine, 2015, for example). Once an IV is found, we can keep the part of the
treatment that is exogenous and free from endogeneity bias. Remember that the basic
regression for analysing the impact of a programme is:

Y, =B+ BD;+BX; +u, (10.6)

where D, is a dummy variable that indicates whether the individual belongs to the treated
group (D = 1) or the control group (D = 0); X, is a set of covariates and Y, corresponds
to the outcome. In this equation 8, provides the impact of this treatment only if it is exog-
enous, that is corr(D, u;) = 0. When this condition does not hold, an exogenous variable
Z helps us to isolate the exogenous part of D. The instrument may fulfil two conditions:
being correlated with D so that corr(D, Z) # 0 (instrument relevance) but uncorrelated
with u, and hence corr(Z, u,) = 0 (instrument exogeneity). While the first condition can be
examined using the observed data, the second cannot be tested directly because the error
term is not observed in empirical settings. In this case ‘we must maintain this condition
by appealing to economic behaviour or introspection’ (Wooldridge, 2012 p. 514). To apply
the IV method, we proceed in two stages (two stage least squares).

1. Estimate a predictor for D using the instrument and the rest of exogenous covariates:

D= +R,Z+RX+¢ (10.7)

2. Substitute D for D in Equation (10.6) to obtain a robust estimation of B,, the impact
of the treatment:

Y=, +PBD+pX+e (10.8)

B, in (10.8) provides the measure of the impact of the treatment on the output
considered.

2.3 Regression Discontinuity Design
Regression Discontinuity Design (RDD) was introduced in the evaluation literature by
Thistlethwaite and Campbell (1960) when they tried to study the effect of a scholarship

only granted to those students who obtained specific test scores above a threshold. This
method has been widely applied in education to evaluate diverse issues as the effect of

M4385 - JOHNES 9781785369063 PRINT.indd 217 @ 27/09/2017 14:51



218 Handbook of contemporary education economics

class size on students’ performance (Angrist and Lavy, 1999), the impact of university
financial aid awards on college enrolment (Van der Klaauw, 2002), the influence of
grade retention on educational attainment (Jacob and Lefgren, 2004), the impact of the
Head Start programme on childrens’ life chances (Ludwig and Miller, 2007), the effect of
attending a mandatory summer school on test scores in the following year (Matsudaira,
2008), the impact of the month of birth on cognitive and non-cognitive skills (Crawford et
al., 2014), the effect of the IMPACT programme (a performance-based incentives system
based on rigorous teacher evaluations) on teachers’ retention and performance (Dee and
Wykoff, 2015), among others.

The RDD is the most appropiate method for programmes in which participation is
decided through a cut-off point so that whether or not an individual is treated depends
on their position relative to a threshold on some continuous variable. As the cut-off is
usually decided arbitrarily by an external rule, normally to adjust the available budget
to the expected population, around the cut-off gives rise to a natural random experi-
ment in which individuals are comparable in all respects other than that those on one
side of the threshold receive the treatment while those on the other do not. Therefore,
differences in outcomes can be entirely attributed to the intervention itself (Gertler et
al., 2016).

Let us assume a programme which has a continuous eligibility index, X, with a strictly
defined cut-off point, X, to determine who is eligible and who is not. Then, if D, denotes
the treatment then:

i{l if X, =X — Treated (109)

0 if X, > X — Non — treated

There are two main general settings within the RDD. The sharp regression discontinuity
design is applied when a running variable X, which defines the treatment and control
group precisely by running the following equation:

Y,=B,+B,D,+B,X, +e (10.10)

where D, indicates whether the individual belongs to the treated group or the control
group; X, is the running variable and Y, corresponds to the outcome. On the other
hand, in the fuzzy regression discontinuity design (FRDD) the running variable does not
determine the treatment group perfectly but creates a discontinuity in the probability of
receiving the treatment (Schlotter et al., 2011). This applies when the eligibility rules are
not strictly adhered to as some unobserved variables rule the assignment to treatment
(Hahn et al., 2001).

FRDD can be analysed in an instrumental variables framework, defining a simple
indicator, denoted by I, to determine whether the running variable X; is below or above
the cut-off point and using it as an instrument for treatment variable D, in the estimation
of the outcome equation (Angrist and Pischke, 2008). FRDD is estimated using the fol-
lowing equations:

First stage or treatment equation: D=y, +v [l +y,X te (10.11)
Second stage or outcome equation: Y. =B, + BD; + B, X, + ¢ (10.12)
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where D, is the estimated treatment variable in the first stage and denotes the probability
of receiving the treatment.

There are several concerns to consider when RDD is applied. First, the running variable
should not be manipulated to ensure assignment to treatment. Second, the specification
may be sensitive to the functional form used in modelling the relationship between the
assignment variable and the outcome variable (Gertler et al., 2016). On the other hand,
RDD produces local average treatment effects that cannot necessarily be generalised to
units far away from the cut-off point (Kandher et al., 2010). Finally, it is not always pos-
sible to find enough observations close enough to the threshold — the method involves
‘throwing away’ observations that are far from the cut-off point. To solve the problem
related to the limited sample size, the interval around the cut-off point can be increased,
but as we move further away from the eligibility threshold, the eligible and ineligible
units will become more different, which can bias the comparison (Schlotter et al., 2011).
Including more covariates in the aforementioned equations may eliminate some bias
resulting from the higher bandwidths (Imbens and Lemieux, 2008).

2.4 Difference in Differences

The Difference-in-Differences approach (DiD) estimates the impact of an intervention
by comparing the average outcomes of the treated and control groups both before and
after the treatment. The key identifying assumption of the DiD approach is that the
trend in the outcomes would be the same in both treatment and control groups in the
absence of treatment. In other words, both groups of individuals may be observationally
different before the treatment, but these differences are time invariant in the absence of
treatment, so the difference between both groups after the treatment can be attributable
to the intervention. This assumption holds when one group of individuals in the sample
have been exogenously exposed to the treatment (treated units).® Some examples of DiD
applications in education can be found in Pischke (2007), Bellei (2009); Schlotter et al.
(2011), Graves (2011), Felfe et al. (2015) and Anghel et al. (2015), Pedraja et al. (2016).

To estimate the impact of the treatment in the simplest scenario with just two periods
and two groups it is necessary to take two differences into account. First, the average dif-
ference in outcomes over the analysed period separately for both the treated and control
groups (first difference); and then, an additional difference between the average changes
in outcomes for these two groups (second difference). The average DiD treatment effect
can be calculated as:

DiD = [E(Y] = YJIT = D] = [E(Y\ - Y{|T =0)] (10.13)

where Y] and Y represent the average outcome for the treated group both after and
before the treatment respectively, Y and Y{ represent the average outcome for the control
group after and before the treatment respectively.

% This assumption is sometimes unlikely to hold for example, if the treatment was not exogenous. To overcome

this problem, it is worth, for example, running a propensity score matching (PSM) in the pre-treatment year to
obtain similar treated and control groups in terms of observable characteristics before the programme starts.
Alternatively, if a panel database with some periods before and after the treatment is available, another key identify-
ing assumption is to verify that trends in the treatment and the control groups are equal in the absence of treatment.

M4385 - JOHNES 9781785369063 PRINT.indd 219 @ 27/09/2017 14:51



220 Handbook of contemporary education economics

The DiD estimator is usually solved using a linear regression by estimating the follow-
ing equation:

Y,=oa+BTt+pT +yt+e¢, (10.14)

where T is the treatment variable (which takes the value 1 if the individual belongs to the
treatment group, and 0 if not), ¢ is the time dummy variable (1 denotes the value for the
periods after the treatment and 0 before) and the coefficient B associated to the interac-
tion between T and ¢, represents the estimated impact of the treatment (the DiD effect
in Equation 10.13).” The model can be generalised in many ways to adapt the estimation
to our empirical problem. For example, the time variable can be replaced for a set of
dummies representing each year after the treatment. These time effects allow following
the changes produced by the treatment over time. Another strategy is to introduce fixed
unit effects, or even unit time trends (Angrist and Pischke, 2008).

3 A STEP FORWARD: IMPACT EVALUATION AND
PRODUCTION FRONTIERS

Traditionally, educational policy has sought to change outcomes through an increase in
input. However, although theoretically public policies oriented to giving more resources
to schools should work, they are not a guaranteed success. Moreover, there is no reason to
suppose that each type of intervention would provide the same bang per buck, and thus
it is important to know what are the most (and least) effective interventions so that finite
resources can be invested most effectively. For this reason, most educational programmes
and research in education nowadays are not devoted to increasing the budget but to
improving the school’s management and the educational practices inside the classrooms.
These policies do not imply a significant change in the observed inputs but an alternative
way to improve the schools’ productivity.

This chapter contributes to the impact evaluation literature by proposing a new
approach, based on production frontiers, not only to compare the final average results
between treated and control schools to evaluate the causal impact of an intervention, but
also to analyse how a treatment implemented in the schools can influence the production
activity of a group of treated schools in comparison to the control schools. The novelty of
this approach is to show that the causal influence of a successful programme on a group of
treated units with respect to a control group cannot only be visible in the average output
difference but also can be detected by measuring the total factor productivity changes
(TFPC) caused by technology and/or efficiency changes, that can occur throughout the

treatment.
Let us assume that the educational production function for a group of schools can be
defined using a vector of inputs x = (x, ..., x;) € N and outputs y = (y,, ..., y) €

ML+, A feasible production technology can be defined using the output possibility set

7 We can rewrite Equation (10.13) using Equation (10.14) as DiD = [E(YT — YI|T =1)]1 — [E(Xf
-~ YIT=0]=[(a+B+p+y+e —(a+p+el—[(a+y+e) — (a+e)] from which we have
DiD =[B +v)—v]=B.
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P(x), which can be produced using the input vector x: P(x) = {y: x can produce y}, which
is assumed to satisfy the set of axioms described in Fare and Primont (1995). Following
this scheme, the well-known educational production function proposed by Levin (1974)
and Hanushek (1979) for a set of S'schoolss =1, ..., Sis:

y, = AF(x)u, (10.15)

where sub index s refers to school, and y_ represents the educational output vector while
the vector of educational inputs x_ capture the average student’s family, social, cultural
and economic background together with school educational resources, and 4 accounts
for changes in total output growth relative to changes in the technology.

As Levin (1974) comments, one of the major assumptions derived from market theory
that tacitly underlies the estimation of educational production functions is that schools
are technically efficient, that is, that they are maximising output given the input mix that
they have selected. However, in real life, it is quite frequent to detect inefficient behav-
iours. According to Leibenstein (1966) the source of inefficiency mainly comes from light
competition pressure. Efficiency in schools may be due to multiple factors related with
management, incentives structure, clear targets and factors related to the motivation of the
agents involved in the educational process. Levin (1974) provides and develops six sources
of inefficiency in education; (i) managerial knowledge of the technical production process;
(i1) substantial managerial discretion over input mix; (iii) a basic competitive environment
with all of its attendant assumptions (freedom of entry, many firms, perfect information);
(iv) managerial knowledge of prices for both inputs and outputs; (v) an objective function
that is consistent with maximising output such as profit maximisation and (vi) clear signals
of success or failure (profits, losses, sales, costs, rate of return, share of market). Although
all these factors are not direct inputs, they may significantly affect student performance.

Another important issue to be underlined here is that the education service produces
several outputs, although educational achievement is the one that has concentrated
major attention in the literature (Hoxby, 1999). The multiple dimensions of cognitive
(for example, mathematics, reading or science test scores) and non-cognitive outputs (for
example, the big five personality characteristics (Heckman, 2011)), raise into considera-
tion the relationship between inputs and outputs jointly with the trade-off between the
different outputs that is feasible to produce with a vector of inputs.

For these two reasons, the educational production function is frequently estimated in
education economics through production frontiers considering a multi-output multi-input
framework that incorporates the possible existence of inefficient behaviours in schools
(for a review see Worthington, 2001; Johnes, 2015 and De Witte and Lopez-Torres, 2015).
In Equation 10.15, u_captures the efficiency level of school s and is distributed over the
interval 0 < u < 1. Values of u_= 1 imply that the school is fully efficient, meaning that,
given the initial input endowment and the existing technology, this school is maximising
its outputs and correctly managing the school inputs available given existing technology.
Values of u <1 indicate that the school is inefficient, and therefore the efficiency rate,
0, = 1/u, indicates the amount by which the actual output should be multiplied to reach
the frontier.

In short, when the policymaker applies a treatment to raise the educational outputs,
y,» the programme modifies one of the following factors: the educational inputs x, the
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technology A4 or the technical efficiency u . From now on we discuss the implications for
the analysis of this framework in a randomised trial. We are aware that although ran-
domised interventions are considerable growing worldwide in the last decade, they are not
the most common way to carry out and evaluate educational public policies yet. However,
as this chapter aims to introduce and illustrate a new approach we try to make it from a
simple viewpoint, if before the intervention both groups are equal on the average inputs,
technology and efficiency. Soon, a fruitful contribution will be to extend this approach
to the case where before implementing the treatment, both groups may differ in terms of
input, technology or efficiency.

3.1 The Randomised Trial in the Simplest Production Setting

To introduce and illustrate these ideas briefly, let us parameterise Equation 10.15 using a
Cobb-Douglas specification as follows:

K
y, = A. I |xf; U (10.16)
k=1

where x, represent the k = 1, . . ., Kinputs to produce a unique output y . From now on
we assume a single input, single output setting® in which we carry out a randomised trial
to introduce an educational treatment. Figure 10.1 illustrates this situation. The left-hand
panel plots a set of schools before the treatment and constitutes the baseline scenario in
which all schools share the same technology and have different inefficiency levels repre-
sented by the distance of each dot to the production frontier (in terms of the output).
The right-hand panel shows how schools are randomly divided into two groups where the
white and black circles represent the schools assigned to the treated and counterfactual
groups respectively.

Randomisation assigns N decision making units (DMUSs) — represented by white
circles — to the treated group, whereas the M black circles represent the DMUSs in the
control group, N + M = S. Points T (the white diamond) and C (the black diamond) in the
right-hand panel in Figure 10.1 represent, for illustration purposes, the theoretical average
production activity observed for the treated and control groups respectively, where:

12 1 1 1Y AN
V.. = — Xy = Uy = jand yo = — P Xe = o7 B
yr N;)’z Xr N;x Ur NZ” and ye Mj:zly’ e szzlx‘/
_ 1 &
e = 3y 2
s=j

Randomisation guarantees that mean differences in inputs X, = X, and outputs y, = y.
will not be statistically significant different from zero when both groups are compared

8 The Cobb-Douglas approximation is employed in most of regressions run in impact evaluation. Although

frontier analysis can deal with multiple outputs and multiple inputs at the same time, for the sake of simplic-
ity and to be able of representing the technology in a graph we assume the simplest specification of Equation
10.15, a technology with just one input K = 1 and one output L = | under constant returns to scale. This
framework is drawn in Figure 10.1 assuming § = 1.

M4385 - JOHNES 9781785369063 PRINT.indd 222 @ 27/09/2017 14:51



nduy

S1ADIS JUUIDLY Y] 240f2q S]00YIS [0 1as D fO 4a11u0.Lf Lj1a130npodg [ ()] 24n3L]

O

SnSxp =54

191jU0I,{ UONINPOIJ

2 =1d

M=

mdinQo

nduy

O

SnSxy =54

1913U0I,J UONINPOIJ

mdinQ

223

27/09/2017 14:51

M4385 - JOHNES 9781785369063 PRINT.indd 223



224 Handbook of contemporary education economics

after the randomised trial but before the treatment starts.’ Likewise, the production activ-
ity information can be used to estimate both production frontiers and efficiency scores for
all schools using DEA. Then, we could also estimate the average efficiency of each group
projecting each theoretical average school T"and C upwards, following an output orienta-
tion, up to the respective production frontier. In Figure 10.1 the mean efficiency of the
treated and control groups is @, < 1 and i < 1 respectively, where again randomisation
guarantees that u; = u.

3.2 Educational Treatments Introduced by a Randomised Trial

Here we simply set out four theoretical potential changes that the treatment could
bring about in the production function.!? In all cases, we will assume that the treatment
produces a positive change in the treated group although in real life changes due to an
intervention programme could result in positive, negative or no changes with respect to
the control group. The left-hand panel in Figures 10.2, 10.3, 10.4 and 10.5 reproduces the
right-hand panel in Figure 10.1, that is, the initial situation just after the randomised trial
in which we decided which schools will be treated and which will be the controls but the
treatment had not yet started.

3.2.1 A treatment that changes the input level in the treated group

An intervention that changes one input is, basically, a policy that increases one of the
controllable inputs to the treated schools X; > X,. The clearest example is one in
which the number of teachers in the school is increased. The dots 7’ and C in the right-
hand panel in Figure 10.2 denote the theoretical average production activity for the
treated and the control groups after the treatment. We now observe a difference in the
average output (y;/ — y- > 0) concluding that the treatment, the change in the input
level (x;/ — X~ > 0), was effective. Nevertheless, we can also see that both technolo-
gies A, = A and efficiency levels u, = 0y,'/0y} = 0y./0y¢ = u, remain without
significant differences.

3.2.2 A treatment that improves the efficiency level

In this case, we assume a treatment that only changes the managerial efficiency of the
treated schools it,’ > it,. Some examples of these interventions are to adjust educational
content to the individual student’s needs, to offer intensive teacher training programmes,
to sort students into classrooms by prior achievement level or to introduce new teacher-
learning practices, among others. Once the treatment finishes in the right-hand panel
in Figure 10.3 we again observe a difference in the average output (3, — y. > 0) con-
cluding that the treatment was effective. However, in this case there is no change in the
input levels X = X so differences in outputs are due to total factor productivity change
(TFPC). As both technologies are coincident 4, = A, efficiency levels u, = Oy;'/ oy%’
and i, = Oy./0y% are the only aspects responsible for this TFPC because the treatment
caused a better management of the treated school giving rise to @, > @,..

9
10

In finite samples, little but not significant differences can arise by chance between both groups.
Certainly, we could derive many other scenarios but the aim of this chapter is to illustrate the main
sources that originate changes in outputs. Then, any combination could be easily replicable.
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3.2.3 A treatment that brings about a technological change

The final pure illustrated intervention is a treatment that gives rise to a positive shift in
the technology of schools belonging to the treated group 4,' > A4,. Implementing or
publicising the results of standardised external tests, introducing changes in the edu-
cational curriculum or tracking students are just a few of the illustrative interventions
that could bring about a technological change in the education system. This situation
is represented in the right-hand panel in Figure 10.4 through the production frontier
drawn with the dashed line while the straight line displays the production technology
for the control group. Again, once the treatment is finished we observe a positive dif-
ference in the average output (¥,/ — ¥, > 0) concluding that the treatment was effec-
tive. In this case, there is neither a change in the input level nor in the efficiency levels
u, = 0y, 10y% = 0y./0y% = u, leading us to conclude that differences in outputs
originate from differences in the technologies used to transform inputs into outputs
A > A

3.2.4 A treatment that brings about both a technological and efficiency change

In this last scenario we define a treatment that simultaneously positively shifts the pro-
duction frontier 4,' > A, and increases the managerial efficiency in the treated group
i, > ii,. Figure 10.5 provides this framework. The difference between the two outputs
(y;' — ¥o > 0) brought about by the treatment is caused by a positive TFPC driven by
a technological gap as the treated units are now more productive in terms of technology
A, > A but also by an efficiency gap because the treated schools are more efficient than
the control ones u, = Oy, /0yE > 0y-/0y% = u,.

3.3 A New Approach: Impact Evaluation Through Production Frontiers

As we discussed earlier, impact evaluations carried out in randomised trials generally esti-
mate the average treatment effect on the welfare, outcomes or outputs of treated schools
with respect to the counterfactual group. To do this, researchers normally carry out mean
differences tests in these variables between both groups. However, we also wonder through
which channels the treatment is changing the average output in the treated schools.
According to Equation 10.15, changes in outputs can be explained through three channels
in the production process:

1. A change in inputs: the treatment can consist of increasing the endowment of one or
more inputs in the treated group with respect to the control group. After the interven-
tion differences in inputs x can explain the differences in observed outputs.

2. A technological change: because of the treatment, the production technology 4 may
increase and result in a positive change in outputs in the treated group.

3. An efficiency change: a treatment could influence the managerial activity in the
treated schools leading to an improvement in the average technical efficiency u in the
treated group.

In other words, after the treatment we allow the production frontiers of each group to

vary in different ways. For the treatment group the production function is now y . =
A F(x ;)'u while for the control group the new production functionis y .= A . F(x ) u .
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230 Handbook of contemporary education economics

By averaging the production information for all treated and control schools in the
post-treatment period we can obtain the following average production functions:
yr=A;. F(X;) -uyand y. = A.-. F(X.) - u.. Operating by dividing both expressions we
obtain the variation in each component of the production process as follows:

¥ A FG) u, A F,)

N

T
r _ ) Ur _ Lr D) ¥r 10.17
Ve A FK&Q)-u. A, F(xp) uc ( )

where changes in the average output between both groups < " after the treatment can
be decomposed into changes in the technology % % and/or 1n inputs IFF;T and/or in
efficiency 2. . )

This approach allows a step forward because, by combining causal inference and pro-
duction frontiers, we can evaluate the impact of the treatments and disentangle the causes
that give rise not only to a change in the average outputs, but also whether the programme
brings about changes in terms of the total factor productivity due to technological and/
or efficiency changes. The usefulness of this approach is also relevant in several scenarios
frequently observed when educational policies are implemented. Owing to space limita-
tions, however, we cannot illustrate that in this chapter. An example would be when an
educational programme initially causes an upward shift of the production frontier led
by a reference set of schools that constitutes the best practices applying the programme.
In this case, receiving feedback from monitoring and evaluating the best performers is
relevant to translate best practices into a second stage for the remaining schools. This
process will enhance the programme in a second step leading to an effective catching-up
process. However, a priori, if were only to evaluate the programme in terms of the average
output we would conclude that it has no effect on the schools treated. Another example
could be a treatment that is effective only for the most productive units but where this
effect is not converted into a significant difference in average outputs due to the existence
of unaccounted losses in efficiency.

As technology and efficiency are not observed in empirical educational applications
they must be estimated from the observed data sample. We propose an adaptation of the
Malmquist index methodology to estimate changes in total factor productivity TFPC, in
both technology and efficiency after the treatment.

3.3.1 The estimation of total factor productivity changes

The Malmquist index was proposed by Caves et al. (1982) with the aim of measuring the
TFPC between two data points within two time periods as the ratio of the distances of
each data point relative to a common frontier. The index may be built and decomposed
using several data envelopment analysis (DEA) programmes to compute different dis-
tances between the evaluated production unit and the frontier for each period. Following
Fare et al. (1994) the output-orientated Malmquist productivity index for two periods of
time 7 and 7 + 1 under a constant returns to scale technology!! can be written as:

Il There are other studies that also consider variable returns to scale. However, it is well known (Pastor and

Lovell, 2005) that infeasibilities can arise when DEA is used to compute the distance functions constituting the
Malmquist decomposition when the scale component is considered in the productivity growth. For the sake of
simplicity in this paper we follow Camanho and Dyson (2006) assuming a constant returns to scale technol-
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Dt+1(xr+1,yr+1) Dt(xH—l’yH-l) Dt(xt,yt) 12
MI(X’“,J/ H,X’,y’) = Dt(xr’yt) ’ (le(xwl’ywl) ' Dt+1(xr’yt) = TEC*TC

(10.18)

Where the super-index indicates the time period and D™*!(x!, y*) represents the dis-
tance from the period ¢ observation (x/, ') to the period ¢ + 1 technology D'*!(+). A
Malmquist index higher (lower) than one implies productivity improvements (losses)
from period ¢ to period ¢ + 1. Furthermore, Equation (10.18) includes two components.
The first ratio reflects the technical efficiency change (TEC), which captures the effi-
ciency improvements (reductions) in period ¢ + 1 with respect to period ¢ if TEC > 1
(TEC < 1), whereas TEC = 1 indicates no changes in technical efficiency. The second
measure (in squared brackets) represents the technological change (7C) in period
t + 1 with respect to period ¢, whose value may be analysed in a similar way to TEC,
(TC > 1 now implies technological progress). The two measures may of course go in
different directions. As De Witte and Lopez-Torres (2015) state ‘the decomposition in
a Malmquist index can help to open the black box of effect studies as it shows what
exactly is driving the results’.

The standard Malmquist index methodology requires observing a group of DMUs in
two different periods. To compare the treated and the control group under this evalua-
tion framework we need to calculate two different Malmquist indices, one for each group,
using an unbalanced panel data in which data in the baseline period ¢ are shared by the
two groups. The explanation is easy to demonstrate. Before a randomised trial starts we
know that all schools, treated and control, constitute the production set sharing the same
common technology as shown in the left-hand panel in Figure 10.1. This implies that the
whole sample of schools will be used to define the initial production technology in period
t. After the treatment, and as we discuss above, if the technology may change differently
in both groups, for period ¢ + 1 and subsequent periods we will use only the data for the
treated and control groups separately to estimate each new by-group production frontier
technology.

Therefore, we run this By-Group Malmquist Index (BGMI) method for treated
(control) schools using an unbalanced panel database in which period ¢ contains all school
information, the whole sample made up of treated and control schools,'? but in period
t + 1 we only use the treated (control) schools. The BGMI for the treated and the control
groups can be defined as:

ogy. In the case of empirical applications in education, scale is not a major problem and variables are usually
normalised to avoid school size issues.

12 If the production technology is the same in period ¢ an alternative strategy would be to run the
Malmquist indexes separately for the treated and the control groups using two balanced panel data comparing
the mean results. However, we know that in finite samples the estimated production frontier in period ¢ could
vary due to exogenous differences or to random noise as the frontier is built with the information available. This
fact could lead to estimating different technologies in period ¢ for both groups although this problem is reduced,
as long as sample size increases.
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BGMI (X7, 5, X, Yie) = @
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BGMI (X&', i, X, yio) =
M M M s s 12
(HDICH(xtCJrlthH) (HD C(xtﬂay’cﬂ) <HDT((XTC9yTC))
m=1 = _
s 18 UM /s 18 =TECHTC,
<HDITC(XITC>,V[TC)) (HDI+1(X[+1>J}[C+1 ) (H [H(xtrc»ytrc))
s=1 m=1
VT (10.20)
TEC, TC,

where now subscripts 7" and C denote schools in the treated and control groups respec-
tively while subscript 7'C indicates schools in treated and control groups (all schools in
the sample).

The estimated BGMI and its components can be used to empirically decompose the
estimated change in the average output between both groups i’ after the treatment into
changes in the technology, efficiency and/or inputs (Equation 10.17). Changes in the tech-
nology 2 5. can be estimated by TCT and changes in efficiency ;* can be estimated by ;gg’

Changes in the production function £ (2 after the treatment cannot be directly esti-
mated in empirical samples, but it can be computed as the residual by:

FGp) (;Z)
() o

ITC./I\TEC, (10.21)

Thus, the decomposition of the estimated change in the average output between both
groups )?77 after the treatment can be expressed as:

= (7e) (Fe) (T
Yo \TC.) \F(X)) \TEC, (10.22)
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4 MONTE CARLO SIMULATIONS

To illustrate the theoretical ideas discussed earlier we use synthetic data generated in a
Monte Carlo experiment. First, we use a data generation process (DGP) to create a base-
line dataset with no intervention. Second, we simulate the four alternative educational
treatments illustrated in Section 3 with different intensities of the treatment and we
measure the impact on a set of treated schools compared with the control schools.

4.1 Data Generation Process and Experimental Design

To emulate the educational production technology of schools we assume a Cobb-Douglas
production function in a single output setting with three inputs and constant returns to
scale:

y=dA.xP xbxb oy (10.23)

where y represents the output, and x,, x, and x, are the observed inputs, 4 measures
the Hicks-neutral technological change and u represents the efficiency level. The three
inputs are randomly and independently drawn from a uniform distribution U[5, 50] with
weights B, = 0.4 and 8, = B, = 0.3 defining the contribution of each input to produce the
output. This production function exhibits constant returns to scale because the elasticity
of scale, the sum of output elasticities, is equal to one. In the baseline scenario, there is no
technological change, then A = 1. To compute the efficiency component u, we generate a
random term 6 assumed to be independently distributed from a half-normal distribution
|N(@; 62)| where in our case |N(0; 0.30)| and u = ¢79. It is also assumed that around 15 per
cent of the schools belong to the production frontier, that is, # = 1, so these DM Us are
defined as fully efficient. To do this, a Bernoulli distribution B(p = 0.15) is used to decide
which schools in the sample are defined as fully efficient. The generated average efficiency
level in each experiment ranges from 0.779 to 0.864 with a standard deviation of from
0.124 to 0.166, respectively. To represent a more realistic set, we simulate a small two-sided
random statistical perturbation v drawn from a normal distribution N(0; 62) to account
for statistical noise. In our case € distributes N(0; 0.025) and v = ¢*. Finally, we compute
the observed educational output using Equation (10.21) for a set of N = 200 DM Us.

We now assume that a public agency runs a randomised experimental trial where half
of the 200 schools are randomly selected to receive the treatment. To do this we randomly
assign half of schools to the treated group N.. = 100, the rest of schools being the control
group N = 100. We simulate the four scenarios illustrated in Section 3.

In the first scenario S1 (a treatment that changes the input level), we assume that the
intervention plan to produce a change in the output through a change in input x,. We
simulate five intensities of the increment of input x,,.in the treated schools: 10 per cent,
20 per cent, 30 per cent, 50 per cent and 75 per cent.

In the second scenario S2 (a treatment that improves the efficiency level), we assume that
the intervention produces a positive efficiency change in the treated schools. We simulate
three levels of improvement in efficiency u’,. in the treated schools through reducing the
variance of the 6’ term: 63, = 0.25; 63, = 0.20 and 6%, = 0.15. These reductions in the
variance 0’ are translated into an increment in u,. of 2.5 per cent, 5.4 per cent and 8.2 per
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cent respectively. The new average efficiency in the treated group &', in each simulated
scenario now being 0.848, 0.873 and 0.897 respectively. We generate the new efficiency
after the treatment &', assuming a correlation coefficient of 0.80'* with the efficiency
before the treatment i, and maintaining unchanged the 15 per cent of the schools which
belonged to the production frontier. It is worth to note here that although the new after
treatment efficiency is randomly generated with the new efficiency distribution it is neces-
sary to maintain certain degree of correlation with the initial inefficiency term to observe
the efficiency change.

In the third scenario S3 (a treatment that brings about a technological change), we
assume that the intervention produces a positive change in the treated schools’ technol-
ogy. Thus, we simulate four levels of a positive Hicks-neutral technological change 4’,. to
the treated schools: 4’ = 1.01; 4’ = 1.025; A’ = 1.05; and 4’ = 1.10.

In the last scenario S4 (a treatment that brings about a technological change and effi-
ciency change), we assume that the intervention will not produce a change in inputs,
but it may (or indeed may not) change the level of the output depending on the inten-
sity of the intervention over the efficiency and the technological change. Thus, we
simulate three combinations of improvements in the level of efficiency &', and a positive
Hicks-neutral technological change A’,. to the treated schools: 63, = 0.25 & 4 = 1.05;
62r = 0.20 & A, = 1.025; and finally, 63, = 0.15 & A, = 1.025.

Summarising, 15 scenarios were simulated using a Monte Carlo experiment.!* In each
replication, we aim to evaluate if the intervention has significant impacts on the output
», the input x,, the efficiency u and the technology A of the treated group compared with
the control group.

4.2 Results

Table 10.2 summarises the average of the means and standard deviations obtained in
each scenario after the 100 simulated replications for the simulated input x,, the simu-
lated efficiency u, the output y, and the estimated By-Group Malmquist Index (BGM]I)
and its decomposition into technical efficiency change (TEC) and technological change
(TC). After each loop in every scenario we computed the mean t-test differences for the
treated and control groups after the treatment in the aforementioned variables. Table 10.3
provides the rejection rate for the 100 means t-test differences run after the Monte Carlo
simulations in each scenario. For example, a rejection rate of 0.30 means that in 30 out
of the 100 replications the mean t-test difference for the considered variable between the
treated and the control group was statistically significant at 99 per cent.

As in a real empirical estimation we only have one database, MC replications can be
interpreted as a robust bootstrap set of samples to build confidence intervals. For each
replication in the MC simulation we calculate the average value of the variable of inter-
est. Then we compute the confidence intervals at 98 per cent discarding the lowest and
highest 1 per cent values for each variable distribution. In an empirical application, we

13 To generate the new efficiency variable with the desired correlation coefficient with the efficiency before

the treatment we follow the procedure used in Cordero et al. (2015) to generate two correlated variables.
% Each experiment was replicated 100 times in MATLAB R2013b using the DEA Toolbox developed by
Alvarez et al. (2016) available at http://www.deatoolbox.com/.
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Table 10.3  Rejection rate of the mean differences t-test for relevant variables

Treatment / variables X, u y BGMI TEC C
Baseline 0.04 0.00 0.03 0.00 0.27 0.30
S1 10% 0.11 0.01 0.04 0.00 0.24 0.29
20% 0.43 0.01 0.05 0.01 0.27 0.30
30% 0.89 0.03 0.27 0.02 0.25 0.30
50% 1.00 0.00 0.70 0.05 0.16 0.30
75% 1.00 0.00 0.96 0.03 0.12 0.22
S2 6=0.25 0.01 0.05 0.02 0.63 0.54 0.29
6=0.20 0.00 0.49 0.07 0.99 091 0.30
6=0.15 0.02 0.98 0.15 1.00 1.00 0.30
S3 AT = 1.01 0.02 0.01 0.00 0.25 0.21 0.51
AT = 1.025 0.00 0.01 0.00 1.00 0.29 0.83
AT=1.05 0.01 0.00 0.04 1.00 0.23 1.00
AT =1.1 0.00 0.00 0.24 1.00 0.25 1.00
S4 6=0.25 & AT = 1.05 0.00 0.14 0.21 0.99 0.55 1.00
6=0.20 & AT = 1.025 0.02 0.63 0.21 1.00 0.91 0.97
6=0.15 & AT = 1.025 0.01 0.99 0.41 1.00 0.99 0.99

Note: The rejection rate indicates the proportion of times that the null hypothesis (equal means between
both groups) has been rejected in 100 replications. In grey rejection rates higher than 30 per cent.

propose to follow the same strategy by drawing a bootstrap sample with replacement
from the original one (Simar and Wilson, 1999). Then, we test whether the confidence
intervals built for the treated and the control groups overlap. If they overlap, we cannot
reject the null mean equality differences for the relevant variable. Table 10.4 reports the
results from the confidence interval overlap analysis after the MC, where ‘Non-Reject’
(NR hereafter) denotes that after the replications the 98 per cent confidence intervals
of both groups overlap. Alternatively, ‘Reject’ (R hereafter) denotes that the intervals
do not overlap at 98 per cent and consequently, we reject that the means of both groups
are equal. In this last case, we consider that the treatment had a positive impact on the
treated schools.

From Tables 10.2 to 10.4, we first verify that after the randomised trial but before the
intervention (baseline scenario), the mean values of all variables are not significantly dif-
ferent between the treated and control groups. The only exception appears in Table 10.3
for TEC and TC components where around 30 per cent of replications were statistically
significantly different in the baseline scenario. This result is due to the deterministic nature
of the non-parametric frontier estimations in finite sample sizes; however, building con-
fidence intervals is a way of correcting this spurious difference as shown in Table 10.4 in
which the differences are not significant.

Second, it is worth noting that results obtained in Tables 10.3 and 10.4 correspond to
that expected. In scenario 1, we only find significant differences in mean outputs once that
the increase in inputs is equal to or higher than 30 per cent. An input increase does not
produce a TFPC because in this scenario the technology and the efficiency components
remain unchanged. In scenarios 2 and 3 we corroborate that a moderate higher efficiency
and a neutral technology progress in the treated group leads to a positive TFPC explained
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Table 10.4  Confidence intervals overlaps from MC distributions

Treatment / variables X, y BGM1I TEC TC
Baseline NR NR NR NR NR
S1 10% NR NR NR NR NR
20% R NR NR NR NR
30% R R NR NR NR
50% R R NR NR NR
75% R R NR NR NR
S2  62=0.25 NR NR NR NR NR
62=0.20 NR NR R R NR
62=0.15 NR NR R R NR
S3 AT =1.01 NR NR NR NR NR
AT = 1.025 NR NR R NR R
AT=1.05 NR NR R NR R
AT =1.1 NR NR R NR R
S4 62=0.25& AT =1.05 NR NR R NR R
02=0.20 & AT = 1.025 NR NR R R R
62=0.15 & AT = 1.025 NR R R R R

Note: NR = indicates that the null hypothesis (equal mean between treated and control groups) is not
rejected at 98 per cent of confidence, i.e. the central 98% of the distributions of the means values in ea
group overlap. R = indicates that the null hypothesis (equal mean between treated and control groups a
rejected at 98 per cent of confidence, i.e. confidence interval for the means do not overlap. In grey whe

null hypothesis is rejected.

by the efficiency and technological components respectively. Finally, the scenario 4 results
show that the By-Group Malmquist Index can disentangle the channels used by the
programme to improve TFP in the treated group correctly.

Third, it is remarkable that when an input change does not occur, the treatment effect
is measured better as regards TFPC than through output changes in the treated and
control groups. Remember that TFPC can measure the efficiency and technology changes
determined by best practices detected through the production frontier instead of using a
simple difference in average results. Although in the case of input movements the average
output difference is the only way of detecting improvements in, for other policies and
programmes it is clear that improvements in technology can be hidden by random noise
and/or inefficiency if we only measure the treatment effect be estimating the mean outputs
differences between the treated and the control groups. For example, in all simulations
included in scenarios 2 and 3 we do not observe significant differences in average outputs
but we are able to find these differences in terms of efficiency and technology respectively.
The conclusion is that the programme has carried out a TFPC in the treated group with
respect to the control one and now we need to learn from best practices to transfer their
behaviour to less productive schools.

Finally, Table 10.5 reports the decomposition of the ratio between the estimated
average output in the treated and control groups 7 2t into the components of the produc-
tion function (Equation 10.15). We provide the true simulated ratios (Equation 10.17)
and the estimated ratios for each component (Equation 10.22) respectively. These results
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Table 10.5  Average output and components of the production function variation between
treated and control groups

Treatment / Simulated variables Estimated variables

variables Yr  TFPC, Ur 4, F(;) BGMI, TEC, TC, F(&)
Ye  TFPC. Uc Ae  F(X) BGMI. TEC, TC. F(&J

Baseline 1.007 1.000 1.000 1.000 1.007 1.000 1.001 1.000 1.007
SI 10% 1.038 1.000 1.000 1.000 1.038 1.000 0.998 1.002 1.039
20% 1.057 0998 0.998 1.000 1.059 0.999 1.001 0.997 1.058
30% 1.108 1.001 1.001 1.000 1.107 0.999 0.999 1.000 1.109
50% 1.182 1.000 1.000 1.000 1.181 1.000 1.001 0.999 1.182
75% 1.254 0.999 0999 1.000 1.255 0999 1.001 0.998 1.255

S2 62=10.25 1.030 1.025 1.025 1.000 1.005 1.037 1.036 1.000 0.993
62=0.20 1.056 1.054 1.054 1.000 1.001 1.073 1.070 1.003 0.984
62=0.15 1.078 1.081 1.081 1.000 0.998 1.108 1.104 1.004 0.973

S3 AT =1.01 1.006 1.005 0.995 1.010 1.001 1.010 1.001 1.009 0.996
AT =1.025 1.021 1.022 0997 1.025 0.999 1.027 1.001 1.026 0.994
AT=1.05 1.056 1.056 1.006 1.050 1.000 1.049 0.996 1.053 1.006
AT =1.1 1.106  1.102 1.002 1.100 1.003 1.100 0.999 1.101 1.0

S4 62=025& 1.095 1.083 1.032 1.050 1.010 1.096 1.036 1.058 0.9
AT =1.05
02=020& 1.088 1.088 1.061 1.025 1.000 1.108 1.068 1.037 0.982
AT = 1.025
62=0.15& 1.120 1.124 1.097 1.025 0.996 1.146 1.101 1.041 0.978
AT = 1.025

allow us to account for the ability of the proposed BGMI method to correctly estimate the
magnitude of the treatment’s impacts on productivity, efficiency and technology.

Table 10.5 shows that not only is the proposed approach able to detect significant
impacts of the treatment on total factor productivity, technical efficiency and technology
correctly, but also the magnitude of these estimated effects is also accurately estimated. For
example, under the treatment of a positive technological change of 5 per cent (S3; AT =
1.05) the estimated ratio between the estimated technological change of the treated and
controls school Tjgf is 5.3 per cent. Additionally, the decomposition computed in Table 10.5
allows us to account for the contribution of each component on the production function
to the average output improvement in treated schools. For example, in the last simulated
scenario (S4, 62 = 0.15 & AT = 1.05) in which the average output of the treated schools
is 12 per cent greater than in control schools, improvements in treated schools’ efficiency
rises to 10.1 per cent and the estimated positive technological change in the treated schools
is estimated as 4.1 per cent. In other words, improvements estimated in technical efficiency
accounts for almost 85 per cent of the positive impact found on the output.

4.3 Discussion

As it was showed throughout this section production frontier analysis can notably comple-
ment and reinforce impact evaluation and vice versa. On one hand, the traditional causal

M4385 - JOHNES 9781785369063 PRINT.indd 239 @

27/09/2017 14:51


Gabriela
Resaltado

Gabriela
Nota adhesiva
This row should be vertically centered. This comment also applies for the next two rows.


240 Handbook of contemporary education economics

inference analysis evaluates the impacts of an educational treatment conducted on schools
on the average. However, as we have discussed in the previous sections, average effects
may be highly influenced by inefficient behaviours and do not allow to observe the best
performers. The novelty of the proposed approach is to assume that the treatment effects
that could be unobserved on the mean output, can detected by measuring TFPC through
BGMI using production frontiers that allow decomposing efficiency and technological
changes between the treated and the control groups. Moreover, the production frontier
framework allows to easily deal with multiple inputs and multiple outputs which allows
to evaluate the treatment effects over all considered outputs at the same time. For the sake
of simplicity, in our simulation study we have only considered just one output but it will
be worth in future research to extend the impact evaluation through production frontiers
gathering all outputs together. On the other hand, to date, production frontiers were
estimated for evaluating school efficiency without considering the endogeneity problem
(Cordero et al., 2015). Obviously, it will be necessary more research to incorporate this
issue in standard efficiency analysis to benchmark schools.

The main conclusion to be noted from our simulations is the large applicability of the
approach proposed in this chapter. First, when educational interventions do not translate
into significant increments in the mean observed outputs but they actually do in terms
of schools’ productivity. Second, when educational treatments do significantly impact on
the average observed output level, our approach results notably helpful for disentangling
these impacts between improvements in inputs or in total factor productivity changes.

Evaluating educational treatments impacts in terms of productivity changes beyond
the effects on average outputs seems to be of great relevance in most simulated sce-
narios where the impacts on output are not significant.!> In these contexts, if we only
evaluate the treatments in terms of the average output improvements we will probably
arrive at inaccurate conclusions about the effectiveness of the interventions. But, if we
also measure the impacts of the treatments in terms of TFPC, that is, efficiency and
technology, we can find significant impacts. In this sense, scenarios 2 and 3 reveal that
a hypothetical treatment that only affected efficiency levels or provoked a technology
shift would be only detected by using production frontiers. An illustrative intervention
could be a programme that promote the implementation of new innovative teaching
methods inside the classrooms. It seems likely that inefficiency may arise at the beginning
of a new treatment because some schools could be reluctant to apply new procedures.
However, some schools can take advantage of the intervention and rapidly incorporate
the new education policy to boost students’ results. If this were the case, an evaluation
on the average could mask the effectiveness of the treatment for some schools in terms
of increasing efficiency or improving the technology. This would allow policymakers to
learn from the best practices giving an opportunity to enhance the programme when
applied to the rest of schools.

Furthermore, even when the treatment significantly impacts on the average output,
it is crucial for policymakers to know whether these impacts are driven only by increas-
ing input allocation or by their better management, that is, through schools’ efficiency
improvements or an overall technological progress in the educational sector. This is

15 Most of the simulated average impacts on outputs represent less than 0.25 standard deviations which

are relatively moderate effects in the context of educational interventions to be found as significant impacts.
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evident if we compare two treatments with similar impacts in terms of the average output.
For example, by comparing an intervention that only increases the input by around 30
per cent (S1; 30 per cent) with a treatment that increases total factor productivity by 12
per cent (S4; 6 = 0.15 & AT = 1.05). When we estimate the effect in terms of average
outputs, a priori both scenarios show similar impacts, but of course, the causes behind
these improvements are vastly different with very different consequences in terms of
budget and performance-based policy recommendations.

5 CONCLUSIONS

At present, the impact evaluation literature provides the most robust available approach
for evaluating and enhancing public policies in education. This is because it allows the
causal relationship between the intervention and the changes in educational outcomes of
individuals receiving the treatment to be identified with respect an appropriately selected
counterfactual group of people not participating in the programme. On the other hand,
production frontier research allows the production activity of a set of schools to be
evaluated by estimating their technical efficiency level and pointing out best practices.
Although both fields of research provide complementary information to evaluate pro-
grammes and policies comprehensively, to date the two methods have not been linked.

In this chapter, we give an overview of the basics of impact evaluation on education
together with a new framework based on production frontiers to analyse the impact of
public programmes implemented on schools through a randomised trial. This strategy
proposes to measure TFPC (due to efficiency and/or technology changes), through the
estimation of a By-Group Malmquist Index. This methodology is illustrated in a Monte
Carlo experiment demonstrating that the proposed approach accurately identifies the
impacts of the treatments simulated in all scenarios.

From the analysis, we find that in those scenarios where the treatment consists of pro-
viding more input to schools, the average output difference is an accurate way of detect-
ing output improvements. However, for policies and programmes devoted to enhancing
schools’ productivity, technology improvements can be hidden if we only calculate
mean output differences between the treated and the control groups. In these cases, the
treatment effects are better measured regarding TFPC because it allows us to measure
efficiency and technology changes determined by best practices detected through the
production frontier. If we only evaluate the treatments in terms of the average outputs
improvement, we might not find significant impacts concluding that the intervention had
no effect and leading to imprecisely evidence-based policy recommendations. Even when
we find significant impacts on the average output, it is crucial for policymakers to reveal
the channels through which the treatment operates (additional inputs, schools’ efficiency
improvements and/or an overall technological progress in the educational sector).

In summary, this chapter highlights the potential of combining a production frontiers
framework with the traditional impact evaluation approach to enhance impact evalua-
tions in education. Many lines of research can be addressed in the near future. First, it is
necessary to run new Monte Carlo experiments with alternative data generation processes
to confirm the robustness of the results found in this chapter. Additionally, alternative
treatments should be simulated to test the usefulness of the proposed approach in a
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wider context — for example, when we only take advantage of the treatment of the most
inefficient schools. Finally, it would be a fruitful contribution to develop a theoretical
framework to carry out impact evaluations using production frontiers in the absence of
randomised trials, that is, when only quasi-experimental data are available by relating
standard quasi-experimental approaches (DiD, IV, RDD, PSM) with production fron-
tiers. First, it seems straightforward to combine this frame with sharp RDD and DiD
methods. For instance, as De Witte and Lopez-Torres (2015) suggest, to relate the DiD
technique to a metafrontier framework. An alternative approach to run DiD through
production frontiers could be to use the Aparicio et al. (2016) methodology, which allows
technology and/or efficiency between the treated and control groups to be controlled for
differences in input before implementing the educational programme.
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