
This is the accepted version of the book part:

Xu, Jiaolong; Nie, Yiming; Wang, Peng; [et al.]. Training a binary weight object
detector by knowledge transfer for autonomous driving. 2019. 6 pàg. DOI
10.1109/ICRA.2019.8793743

This version is available at https://ddd.uab.cat/record/274767

under the terms of the license

https://ddd.uab.cat/record/274767

Training a Binary Weight Object Detector by

Knowledge Transfer for Autonomous Driving

Jiaolong Xu**, Yiming Nie**, Peng Wang, Antonio M. López*
*Computer Vision Center, Universitat Autònoma de Barcelona, Spain

**Unmanned Systems Research Center, National Innovation Institute of Defense Technology, Beijing, China

Abstract—Autonomous driving has harsh requirements of
small model size and energy efficiency, in order to enable the
embedded system to achieve real-time on-board object detec-
tion. Recent deep convolutional neural network based object
detectors have achieved state-of-the-art accuracy. However, such
models are trained with numerous parameters and their high
computational costs and large storage prohibit the deployment
to memory and computation resource limited systems. Low-
precision neural networks are popular techniques for reducing
the computation requirements and memory footprint. Among
them, binary weight neural network (BWN) is the extreme case
which quantizes the float-point into just 1 bit. BWNs are difficult
to train and suffer from accuracy deprecation due to the extreme
low-bit representation. To address this problem, we propose a
knowledge transfer (KT) method to aid the training of BWN
using a full-precision teacher network. We built DarkNet- and
MobileNet-based binary weight YOLO-v2 detectors and conduct
experiments on KITTI benchmark for car, pedestrian and cyclist
detection. The experimental results show that the proposed
method maintains high detection accuracy while reducing the
model size of DarkNet-YOLO from 257 MB to 8.8 MB and
MobileNet-YOLO from 193 MB to 7.9 MB.

I. INTRODUCTION

Autonomous driving requires object detectors to operate on

embedded processors to accurately detect cars, pedestrians,

cyclists, road signs, and other objects in real-time to ensure

safety [1]. The state-of-the-art object detectors are trained

with deep neural networks (DNNs) which have shown top

accuracy for a wide range of computer vision tasks, such like

image classification [2], semantic segmentation [3] and object

detection [4], [5]. The success of deep convolutional neural

networks relies on a large amount of labeled training data

and powerful computing systems such as GPUs. Deep models

generally have high computation cost and require large storage

and memory footprints, which prohibits the deployment to

resource constrained systems, e.g. embedded systems. One

possible solution is to offload all computations to the cloud but

this introduces latency and potentially privacy risks because

data is processed remotely. Therefore, developing small size

and energy efficient DNN object detector is an emergent task.

Network compression and prunning have attracted increas-

ing research interests. Currently, there are mainly two cat-

egories of techniques to reduce the computational cost of

DNNs. One approach is to prune the network by removing

redundant weights. A typical way of pruning is to first remove

weights with small magnitude and then the network is fine-

tuned to recover the lost accuracy [6]. The second group of

techniques is to use low-precision neural networks [7], [8],

[9], [10], since conventional DNNs use float-point format,

being power and storage inefficient. Weight quantization has

become a popular technique that converts a baseline float-

point model into a low-precision representation. The quanti-

zation algorithms can be classified into the following groups:

fixed-point quantization [11], power-of-two quantization [12],

ternary or binary quantization [9], [10]. Among them, binary

quantization is the extreme case where the float-point weights

are represented by only 1 bit. The binary weight neural

networks (BWNs) have favorable largest compression ratio,

i.e. 32×, but also sacrifice the most accuracy over the baseline

full-precision networks [10].

How to improve the accuracies of BWNs has been a

challenging problem. Focusing on developing better training

strategies, recently, [13] proposed a layer-wise training method

and [14] has done careful analysis on the training tricks,

including learning rate, regularization, and activation approx-

imation. Other studies try to compensate the accuracy loss

by building more complex model structures to enhance the

representation power [15], [16]. However, all these methods

focus on the BWN itself but neglect its corresponding full-

precision counterparts, i.e. the full-precision counterpart is not

involved in the training. In this work, we consider to take the

advantage of the high accuracy full-precision model to assist

the training of the BWN.

Our method is inspired by Knowledge Distilling (KD)

technique[17], which is originally applied to model com-

pression and recently also to the training of low-precision

networks [18]. In this work, we use a full-precision network as

teacher network and a BWN as student network. We propose a

knowledge transfer method which guides the BWN to mimic

the responses of the intermediate layers of the teacher network

during the training. As we will show in the experiments, such

additional supervision actually improves the convergency of

the BWN. As a result, it effectively avoids the accuracy drop

in conventional BWN training. Note that the KD technique

used in [17] and [18] is limited to image classification tasks,

since it builds on the last layer of classification network, i.e. the

Softmax layer. Compared to KD, our method is more flexible,

since it transfers the knowledge of intermediate layers. As a

result, our method can be applied to object detection as well as

other tasks. Unlike [15], [16], our method increases neither the

model complexity nor the computational cost, and moreover

it is easy to implement.

http://arxiv.org/abs/1804.06332v2

In this work, we present the application of the proposed

method to the state-of-the-art YOLO-v2 [5] object detector.

However, our method is not limited to this specific detector.

It can be applied to any single-stage (e.g. SSD [19]) or two-

stage DNN-based detectors (e.g. Faster R-CNN[4]), or even

for other tasks, e.g. semantic segmentation.

We use DarkNet and MobileNet [20] as the backbones in

our binary weight YOLO-v2 detector. The former is the default

architecture of YOLO-v2 [5] and the latter is a recent high-

accuracy compact network which has much less parameters

and is suitable for the deployment on mobile devices. We

denote them by DarkNet-YOLO and MobileNet-YOLO re-

spectively. We conduct experiments on KITTI dataset [21], a

defacto benchmark designed for autonomous driving, for car,

pedestrian and cyclist detection. Moreover, we also carried

experiments on PASCAL VOC dataset [22] which contains

20 categories of general objects, to verify the generalization

of the proposed method . The experimental results show that

the proposed method significantly improves the accuracy of

BWNs while reduces the model size of DarkNet-YOLO from

257 MB to 8.8 MB and MobileNet-YOLO from 193 MB to

7.9 MB.

II. RELATED WORK

Network quantization and binarization. Network quan-

tization is an active research topic. Ternary [9] and binary

quantization [10] aim at quantizing the network at the largest

compression ratio. As a consequence, they usually suffer from

accuracy degradation. BWN and XNOR-Net [10] are the most

typical binary neural networks. Since XNOR-Net does not

only binarize the weight but also the input, its accuracy is

much worse than BWN. INQ [7] is an incremental network

quantization method which progressively quantizes a full-

precision network into a low-precision one whose weights are

constrained to be either powers of two or zero. A layer-wise

network binarization approach is studied in [14]. In our work,

we also use a similar but more efficient stage-wise training

strategy consisting of bainarizing groups of layers stage by

stage. Compared to [14], our training strategy can reduce a lot

of training iterations and meanwhile leads to a good accuracy.

Knowledge transfer methods. KT method for model com-

pression could be dated to [23] where a compressed shallow

model is trained with pseudo-data labeled by an ensemble of

strong classifiers. Recently, [17] brings it back for DNNs and

introduces knowledge distillation (KD). In [18], KD is also

applied to the training of low-precision networks and several

training schemes are studied. Inspired by KD, [24] proposes

to improve the performance of the student CNN by forcing it

to mimic the attention maps of the teacher network. In [24],

it is further studied that KT can be treated as a distribution

matching problem, which is similar to domain adaptation

[25], [26]. A new KT loss function is devised to minimize

the Maximum Mean Discrepancy (MMD) metric between the

feature distributions of student and teacher [27]. Our work

shares some characteristics of [24] and [27] in the sense that

we also transfer knowledge from the intermediate layers. Our

Fig. 1. The proposed knowledge transfer method for training binary weight
YOLO object detector.

KT method is related to curriculum learning, as we transfer

knowledge from easy tasks first and progressively increase the

difficulty in the later stages.

III. PROPOSED METHOD

In this section, we first briefly revisit the binary weight neu-

ral networks of [10], which is the base of our work. Then we

propose several straightforward schemes for efficient training

of BWNs, including fine-tuning and state-wise binarization,

which are served as strong baselines and can be combined with

the proposed KT method. Finally, we elaborate the details of

the proposed KT method for training high accuracy BWNs.

A. Binary weight neural network

BWN is the neural network with binary weights. Let c be

the number of channels, w and h the width and the height

of the filter respectively, the real valued filter W ∈ Rc×w×h

is estimated using a binary filter B ∈ {+1,−1}c×w×h and a

scaling factor α ∈ R+, such that W ≈ αB. The convolution

is thus approximated by I ∗ W ≈ (I ⊗ B)α, where I is the

input data, the symbol ∗ represents traditional convolution

operation while ⊗ indicates the convolution operation only

involving additions and subtractions as the weights of the filter

are binary. The optimal estimation of α and B is obtained by

solving the following optimization:

α∗,B∗ = argmin
α,B

‖W − αB‖22 (1)

The solution of Eq. (1) is:

α∗ =
1

n
‖W‖l1 ,B∗ = sign(W), (2)

where n is the number of elements in W, ‖ ·‖l1 is the l1 norm

and sign is the sign function which is applied element-wise.

The training of BWN is similar to the ordinary CNNs. In

each iteration, given real-valued weights from the previous

iteration, the binarized weights are computed accoridng to Eq.

2, then the forward propagation of activations and backward

propagation of gradients are calculated based on the scaled

binary weights. Given the gradient of the scaled binary weights

W̃, the gradients of the real-valued weights are calculated by
∂C
∂W

= ∂C

∂W̃
(1
n
+ ∂ sign

∂W
α). After that, the real-valued weights

are updated by gradient descent. For more details, please refer

to [10].

B. Fine-tuning and stage-wise binarization

Before introducing the KT method, we first present several

training schemes which can not only improve the training

efficiency but also be combined with the KT method.

Although BWNs and XNOR-Net can be trained from

scratch [10], fine-tuning with the pre-trained full precision net-

work obtains a faster and better convergence. The effectiveness

of such training strategy is also verified in [18]. In this work,

we use the full-precision network to initialize the BWNs and

fine-tune from the initialized BWNs.

As observed in [14], for BWN, the binarization of the first

few layers causes significant accuracy loss while binarizing

the last few layers has little effect. A layer-wise priority

training strategy is studied in [14], where the weights are

binarized in reverse order of the layer depth. In this work,

we propose an analog but more efficient stage-wise training

strategy. We first separate the layers into groups and then

binarize the groups stage by stage. We also follow a reversed

order, i.e. binarizing from the last group to the first group.

Such stage-wise training can be very efficient. According to

our experience, it only takes 1 or 2 epochs for the first stage

training to achieve a comparable accuracy to the full-precision

network. The stage-wise binarization can also be interpreted

as curriculum learning. For curriculum learning, we first solve

easy tasks and then gradually increase the difficulty. Binarizing

the whole network from the beginning is much more difficult

than stage-wise progressive binarization. The former converges

much slower and may get stuck at very bad local minima.

However, fine-tuning and stage-wise binarization make very

limited improvement on accuracy as they cannot provide

additional supervision. In fact, we found that by carefully

tuning the hyper-parameters, it is possible to train BWN from

scratch to obtain the same accuracy as these strategies but it

requires more iterations. In the next, based on the fine-tuning

and stage-wise training, we introduce the proposed KT method

which is the key to obtaining high accuracy in this work.

C. Intermediate layer knowledge transfer

Inspired by the knowledge distillation for model compres-

sion [17] and training low-precision networks [18], we propose

to transfer knowledge from the intermediate layers of a full-

precision network.

The overall idea is illustrated in Fig.1. The pre-trained full-

precision teacher network is shown on the top of Fig.1, where

reorg is the feature re-organization layer which stacks the

neighborhood features along the channels in order to have the

same spatial size as the concatenation layer. On the bottom is

the student BWN, whose intermediate layers are connected to

the teacher network. The knowledge transfer forces the student

to output similar feature responses to the teacher. In this work,

we assume the student and the teacher have exact the same

network architecture. This allows the student network to be

easily initialized by copying the pre-trained weights of the

teacher network. However, our method can be extended to

a more general case where the teacher and the student have

different architectures but with only some layers in common.

In such case, the student can be partially initialized from the

corresponding layers of the teacher.

After initialization, we run stage-wise training to binarize

the last few layers. As the first stage only takes a few epochs

to converge without accuracy loss, we start the iteration of KT

training based on the first stage BWN. In the forward prop-

agation, the student network performs binarization according

to Eq. (2), and intermediate feature responses of both teacher

and the student are calculated. We use the simplest L2 loss to

measure the similarity of feature response between the teacher

and the student. Given Fti and Fsi the feature responses of

the layer i in the teacher and student network respectively, the

L2 loss function minimizes the squared differences between

the student (estimated) and teacher (target) features responses:

L2(Fti ,Fsi) = ‖Fsi − Fti‖
2
2. Although other complex loss

functions can also be employed, e.g. attention map transfer

[24], or MMD [24], we find the simple L2 loss works well in

practice and leave the investigation of other loss functions as

future work. The overall loss of the network can be written as

follows:

L(W) = λ1Lcls(yc,W)+λ2Lloc(yb,W)+λ3

∑

i∈K

L2(Fti ,Fsi),

(3)

where Lcls and Lloc are the classification and localization loss

respectively for object detection, λ1, λ2 and λ3 are the weights

for each loss term, and K is the set of the indices of binary

weight convolutional layers. In the backward propagation, the

object detection loss, i.e. localization loss and classification

loss, together with the feature matching L2 loss are backward

propagated in the student network to compute gradients of

the weights. The weights of BWN are then updated using the

standard solver e.g. SGD[28] or ADAM[29]. Note that the

weights of the teacher network are fixed, thus the computation

of backward propagation of the teacher network is not needed.

The L2 loss between teacher and student network forces the

student to mimic the feature response of the full-precision

network. In this way, the pre-trained full-precision network

transfers knowledge to the student BWN. The transfered

knowledge provides additional supervision to the training of

BWN and guides the optimization of BWN along an optimal

path.

IV. EXPERIMENTS

We evaluate our proposed method on the KITTI dataset

[21] which is a standard object detection benchmark designed

for autonomous driving. The KITTI dataset contains three

categories, which are car, pedestrian and cyclist. To evaluate

the performance for more categories, we also carry out the

experiments on PASCAL VOC dataset [22] which has 20
categories. The mean average precision (mAP) versus recall

criterion is adopted to evaluate the detection performance.

Layer Filter shape M0 M1 M2 KT

Conv1 3× 3× 32

Conv2 3× 3× 32× 64 ✓ ✓

Conv3 1 3× 3× 64× 128 ✓ ✓

Conv3 2 1× 1× 128 × 64 ✓ ✓

Conv3 3 3× 3× 64× 128 ✓ ✓

Conv4 1 3× 3× 128 × 256 ✓ ✓

Conv4 2 1× 1× 256 × 128 ✓ ✓

Conv4 3 3× 3× 128 × 256 ✓ ✓

Conv5 1 3× 3× 256 × 512 ✓ ✓ ✓

Conv5 2 1× 1× 512 × 256 ✓ ✓ ✓

Conv5 3 3× 3× 256 × 512 ✓ ✓ ✓

Conv5 4 1× 1× 512 × 256 ✓ ✓ ✓

Conv5 5 3× 3× 256 × 512 ✓ ✓ ✓

Conv6 1 3× 3× 128 × 256 ✓ ✓ ✓

Conv6 2 1× 1× 256 × 128 ✓ ✓ ✓

Conv6 3 3× 3× 128 × 256 ✓ ✓ ✓

Conv6 4 3× 3× 128 × 256 ✓ ✓ ✓

Conv6 5 1× 1× 256 × 128 ✓ ✓ ✓

Conv7 1 3× 3× 1024 ✓ ✓ ✓ ✓

Conv7 2 3× 3× 1024 × 1024 ✓ ✓ ✓ ✓

Conv8 1 3× 3× 1024 × 1024 ✓ ✓ ✓ ✓

Pred 1× 1× 1024 × 125

Size (MB) 257 82 12 8.8 8.8

TABLE I
THE BINARY WEIGHT LAYERS AND MODEL SIZES OF DARKNET-YOLO

BASED MODELS.

We use the state-of-the-art object detector YOLO-v2 [5]

in our experiments for its efficiency and high accuracy. By

default, YOLO uses DarkNet as its backbone network. In

addition to that, we also use MobileNet [20] as the backbone,

which is much more compact than DarkNet and meanwhile

obtains similar accuracy on image classification. We denote

by DarkNet-YOLO and MobileNet-YOLO for these two de-

tectors. The filter sizes of the DarkNet-YOLO and MobileNet-

YOLO are listed in Table I and Table II respectively, where

the bold layer names are the candidate binary layers in our

experiments. For each architecture, five types of models are

compared, namely FP, M0, M1, M2 and KT. The definition

of the models are as follows. FP: the full-precision model;

M0, M1 and M2: the BWN with the 1st, 2nd and 3rd stage

binarization; KT: the BWN initialized from M0 and trained

with knowledge transfer. The binary weight layers of each

model as well as the model size are shown in Table I and

Table II.

A. Implementation details

The proposed methods are implemented using MXNET

[30]. Unless otherwise specified, we use following settings.

We take ADAM [29] optimizer with the initial learning rate of

1e−4. The default batch size is set to 10 for KITTI and 30 for

PASCAL VOC. The training accuracy is measured by mAP.

We train the model for around 500 and 300 epochs on KITTI

and PASCAL VOC respectively, until the models converge. We

use 5 anchors for the YOLO detectors for all experiments. As it

is pointed out in previous literature [10], for BWNs, binarizing

the first or the last layer will cause significant accuracy drop,

thus we keep the first and the last layer in full-precision.

Layer Filter shape M0 M1 M2 KT

Conv5 1 dw 3× 3× 512

Conv5 1 sep 1× 1× 512 × 512 ✓ ✓

Conv5 2 dw 3× 3× 512

Conv5 2 sep 1× 1× 512 × 512 ✓ ✓

Conv5 3 dw 3× 3× 512

Conv5 3 sep 1× 1× 512 × 512 ✓ ✓

Conv5 4 dw 3× 3× 512

Conv5 4 sep 1× 1× 512 × 512 ✓ ✓

Conv5 5 dw 3× 3× 512

Conv5 5 sep 1× 1× 512 × 512 ✓ ✓

Conv5 6 dw 3× 3× 512

Conv5 6 sep 1× 1× 512× 1024 ✓ ✓ ✓

Conv6 dw 3× 3× 1024

Conv6 sep 3× 3× 1024 × 1024 ✓ ✓ ✓

Conv7 1 3× 3× 1024 ✓ ✓ ✓ ✓

Conv7 2 3× 3× 1024 × 1024 ✓ ✓ ✓ ✓

Conv8 1 3× 3× 1024 × 1024 ✓ ✓ ✓ ✓

Pred 1× 1× 1024 × 125

Size (MB) 193 19 13 7.9 7.9

TABLE II
THE BINARY WEIGHT LAYERS AND MODEL SIZES OF MOBILENET-YOLO

BASED MODELS.

0 200 400 600 800
Epoch

0.2

0.3

0.4

0.5

0.6

0.7
m
AP

KT
M2-Stage
M2-Non-Stage

Fig. 2. Comparison of model convergence rate on KITTI.

Method mAP Pedestrian Car Cyclist Size (MB)

FP 78 68 89 77 257

M0 78 67 89 76 82
M1 76 65 88 75 12
M2 72 58 87 72 8.8

KT 76 64 88 76 8.8

TABLE III
SUMMARY OF DARKNET-YOLO DETECTION ACCURACY AND MODEL

SIZE ON KITTI OBJECT DETECTION BENCHMARK.

Method mAP Pedestrian Car Cyclist Size (MB)

FP 78 64 89 77 193

M0 76 64 88 76 19
M1 73 60 86 72 13
M2 70 57 85 67 7.9

KT 72 58 87 72 7.9

TABLE IV
SUMMARY OF MOBILENET-YOLO DETECTION ACCURACY AND MODEL

SIZE ON KITTI OBJECT DETECTION BENCHMARK.

B. KITTI object detection

The KITTI dataset contains 7381 training images. We

randomly split it in half as training set and validation set.

All images are scaled to canonical size of 1248 × 384. We

report mean average precision on the validation set.

The results of DarkNet-YOLO and MobileNet-YOLO are

shown in Table III and Table IV respectively. We report mAP

across categories as well as the average precision (AP) of

each category. The first row of each table shows the results

of the full precision model. Both DarkNet and MobileNet

based detectors obtain similar accuracy. The second row is

the 1st stage BWN model M0 which binarizes the Conv 7 1,

Conv 7 2 and Conv 8 layers. This model has equivalent

accuracy as the FP but with significant smaller model size,

i.e. 82 MB versus 257 MB and 19 MB versus 193 MB, which

indicates that binarizing the last few layers has little effect

to the accuracy. M1 and M2 further reduce the model size

with more layers binarized. However, there is around 2 to 5
percentage points accuracy drop for M1 and 6 to 8 for M2. The

overall performance of DarkNet-YOLO looks more robust than

MobileNet-YOLO which may due to that MobileNet is too

compact to be further compressed. The result of the proposed

KT is shown in the last row. KT has the same binarization

level as M2, i.e. with the model size of 8.8 MB and 7.9
MB for DarkNet-YOLO and MobileNet-YOLO respectively.

However, KT achieves better accuracy than M2, showing the

effectiveness of the proposed method.

Fig. 2 depicts the model accuracy on different epochs of the

training of DarkNet-YOLO. In this figure, we compare the

convergence rate of KT, M2-Stage and M2-Non-Stage. M2-

Stage is the M2 BWN fine-tuned from M1, i.e. stage-wise

training, while M2-Non-Stage is the BWN fine-tuned from FP,

i.e. without stage-wise training. KT has much faster and better

convergence rate than the other two models, which verifies

the effectiveness of the additional supervision. M2-Non-Stage

shows the worst convergence rate. In order to achieve the best

accuracy with M2-Non-Stage, we have to carefully adjust the

learning rate manually. The final accuracy is close to M2-

Stage but the curve is still unstable, showing the difficulty of

convergence.

Fig. 3 shows some typical failure cases of KT (right

column) when comparing to FP (left column). We can see

that FP achieves better detection accuracy for occluded cars

and poorly illumination pedestrians which are typical difficult

examples for object detectors. The per-category accuracy in

Table III also shows that KT losses most of the accuracy on

pedestrian detection, but achieves comparable accuracy on car

and cyclist detection. The first row of Fig. 3 shows that KT

even occasionally outperforms FP for the cyclist detection.

C. PASCAL VOC

In this section, we extend the proposed method for general

object detection. We conduct the experiments on PASCAL

VOC dataset, which contains 20 categories of common objects.

Specifically, we train on VOC2007 trainval and VOC2012

trainval (16551 images) and test on VOC2007 test (4952

images). For these experiments, all images are re-scaled to

canonical size of 416×416. Table V and Table VI present the

detection accuracies of DarkNet-YOLO and MobileNet-YOLO

models respectively. We obtain similar results as on KITTI

dataset. The proposed KT method again outperforms M2 by 3
percentage points, showing its effectiveness for general object

detection.

V. CONCLUSION

In this work, we address the problem of how to train a com-

pact binary weight object detector with high accuracy. First,

we reveal that both fine-tuning from full-precision network and

the stage-wise binarization are critical and efficient for training

BWNs. Moreover, to further improve the model accuracy,

we propose to transfer intermediate knowledge from the full-

precision network. The experimental results show that the

proposed method maintains a high detection accuracy while

significantly reduces the model size with a compression rate

around 30×. For the future work, we would like to combine

other techniques to further improve the accuracy, e.g. attention

map transfer [24], MMD [27] or domain adaptation [25].

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-

dation of China (NSFC, NO. 61601508). Antonio M. López

acknowledges the Spanish project TIN2017-88709-R (Ministe-

rio de Economia, Industria y Competitividad) and the Spanish

DGT project SPIP2017-02237, as well as the Generalitat de

Catalunya CERCA Program and its ACCIO agency.

REFERENCES

[1] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer, “Squeezedet: Unified,
small, low power fully convolutional neural networks for real-time object
detection for autonomous driving,” ArXiv e-prints, 2016.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1097–
1105.

[3] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in CVPR, 2015, pp. 3431–3440.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in NIPS, 2015.

[5] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in CVPR,
2017.

[6] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” ICLR, 2016.

[7] Y. G. L. X. Y. C. Aojun Zhou, Anbang Yao, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” in
ICLR, 2017.

[8] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-Net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” ArXiv e-prints, 2016.

[9] N. Mellempudi, A. Kundu, D. Mudigere, D. Das, B. Kaul, and P. Dubey,
“Ternary neural networks with fine-grained quantization,” in NIPS, 2017.

[10] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
Imagenet classification using binary convolutional neural networks,” in
ECCV, 2016.

[11] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural
networks with low precision multiplications,” in ICLR, 2014.

[12] D. A. Gudovskiy and L. Rigazio, “ShiftCNN: Generalized Low-
Precision Architecture for Inference of Convolutional Neural Networks,”
ArXiv e-prints, Jun. 2017.

[13] G. H. Wei Tang and L. Wang, “How to train a compact binary neural
network with high accuracy?” in Proceedings of the Thirty-First AAAI

Conference on Artificial Intelligence, 2017.

Fig. 3. Sample detections of DarkNet-YOLO on KITTI dataset (Left: FP, Right: KT).

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

FP 70 74 77 68 59 41 78 79 84 49 76 70 79 79 75 73 42 70 70 83 71

M0 69 71 78 68 57 40 77 79 82 48 73 69 78 79 76 72 41 66 66 84 71

M1 66 69 75 65 57 42 75 76 78 46 67 63 71 77 77 72 37 69 61 81 71

M2 62 64 73 56 48 28 73 74 74 39 64 65 66 77 70 67 34 57 62 77 62

KT 65 67 74 60 52 37 74 76 77 44 67 65 70 76 74 70 38 61 63 79 67

TABLE V
RESULTS OF DARKNET-YOLO MODELS ON PASCAL VOC2007 TESTING SET.

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

FP 69 71 78 70 56 41 75 76 82 42 73 69 77 79 74 71 43 65 62 81 70

M0 68 70 78 67 56 44 75 78 79 41 73 68 76 74 75 74 46 68 61 78 71

M1 65 68 77 67 50 39 73 76 80 42 70 60 73 74 74 72 43 66 59 79 69

M2 60 67 72 54 46 31 68 73 71 37 64 56 64 71 66 69 35 60 56 71 61

KT 63 66 75 60 52 36 71 75 72 42 72 63 68 71 69 71 33 62 60 73 64

TABLE VI
RESULTS OF MOBILENET-YOLO MODELS ON PASCAL VOC2007 TESTING SET.

[14] L. Zhuang, Y. Xu, B. Ni, and H. Xu, “Flexible Network Binarization
with Layer-wise Priority,” ArXiv e-prints, Sep. 2017.

[15] X. Lin, C. Zhao, and W. Pan, “Towards Accurate Binary Convolutional
Neural Network,” in NIPS, 2017.

[16] Z. Li, B. Ni, W. Zhang, X. Yang, and W. Gao, “Performance guaranteed
network acceleration via high-order residual quantization,” in ICCV,
2017.

[17] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in NIPS 2014 Deep Learning Workshop, 2014.

[18] A. Mishra and D. Marr, “Apprentice: Using Knowledge Distillation
Techniques To Improve Low-Precision Network Accuracy,” ArXiv e-

prints, Nov. 2017.

[19] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in ECCV, 2016.

[20] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” ArXiv e-prints, 2017.

[21] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in CVPR, Washington, DC,
USA, 2012.

[22] M. Everingham, L. V. Gool, C. Williams, J. Winn, and A. Zisserman,
“The PASCAL visual object classes (VOC) challenge,” IJCV, vol. 88,
no. 2, pp. 303–338, 2010.

[23] A. N.-M. Cristian Bucila, Rich Caruana, “Model compression,” in KDD,
2006.

[24] S. Zagoruyko and N. Komodakis, “Paying more attention to attention:
Improving the performance of convolutional neural networks via atten-
tion transfer,” in ICLR, 2017.

[25] M. Masana, J. van de Weijer, L. Herranz, A. D. Bagdanov, and J. M.
Alvarez, “Domain-adaptive deep network compression,” in ICCV, 2017.

[26] J. Xu, S. Ramos, D. Vázquez, and A. López, “Domain adaptation of
deformable part-based models,” T-PAMI, vol. 36, no. 12, pp. 2367–2380,
2014.

[27] Z. Huang and N. Wang, “Like what you like: Knowledge distill via
neuron selectivity transfer,” in NIPS, 2017.

[28] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks:

Tricks of the trade. Springer, 2012, pp. 421–436.
[29] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in ICLR, 2014.
[30] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,

C. Zhang, and Z. Zhang, “MXNET: A flexible and efficient machine
learning library for heterogeneous distributed systems,” in NIPS Work-

shop on Machine Learning Systems, 2015.

