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Aspects of Iwasawa theory over function fields

Andrea Bandini, Francesc Bars*, Ignazio Longhi'

Abstract. We consider Zﬁ—extensions F of a global function field F' and study various
aspects of Iwasawa theory with emphasis on the two main themes already (and still)
developed in the number fields case as well. When dealing with the Selmer group of an
abelian variety A defined over F', we provide all the ingredients to formulate an Iwasawa
Main Conjecture relating the Fitting ideal and the p-adic L-function associated to A and
F. We do the same, with characteristic ideals and p-adic L-functions, in the case of
class groups (using known results on characteristic ideals and Stickelberger elements for
Zg—extensions). The final section provides more details for the cyclotomic Zg—extension
arising from the torsion of the Carlitz module: in particular, we relate cyclotomic units
with Bernoulli-Carlitz numbers by a Coates-Wiles homomorphism.
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1. Introduction

The main theme of number theory (and, in particular, of arithmetic geometry) is
probably the study of representations of the Galois group Gal(Q/Q) - or, more
generally, of the absolute Galois group G := Gal(F*?/F) of some global field
F. A basic philosophy (basically, part of the yoga of motives) is that any ob-
ject of arithmetic interest is associated with a p-adic realization, which is a p-adic
representation p of Gr with precise concrete properties (and to any p-adic repre-
sentation with such properties should correspond an arithmetic object). Moreover
from this p-adic representation one defines the L-function associated to the arith-
metic object. Notice that the image of p is isomorphic to a compact subgroup of
GL,(Z,) for some n, hence it is a p-adic Lie group and the representation factors
through Gal(F'/F'), where F' contains subextensions F and F’ such that F/F’ is
a pro-p extension and F’'/F and F'/F are finite.

Iwasawa theory offers an effective way of dealing with various issues arising in
this context, such as the variation of arithmetic structures in p-adic towers, and is
one of the main tools currently available for the knowledge (and interpretation) of
zeta values associated to an arithmetic object when F is a number field [35]. This
theory constructs some sort of elements, called p-adic L-functions, which provide
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a good understanding of both the zeta values and the arithmetic properties of the
arithmetic object. In particular, the various forms of Iwasawa Main Conjecture
provide a link between the zeta side and the arithmetic side.

The prototype is given by the study of class groups in the cyclotomic extensions
Q(¢pn)/Q. In this case the arithmetic side corresponds to a torsion A-module X,
where A is an Iwasawa algebra related to Gal(Q((p~)/Q) and X measures the
p-part of a limit of cl(Q({pn)). As for the zeta side, it is represented by a p-adic
version of the Riemann zeta function, that is, an element £ € A interpolating the
zeta values. One finds that £ generates the characteristic ideal of X.

For another example of Iwasawa Main Conjecture, take E an elliptic curve
over Q and p a prime of good ordinary reduction (in terms of arithmetic objects,
here we deal with the Chow motive h'(E), as before with h°(Q)). Then on the
arithmetic side the torsion Iwasawa module X corresponds to the Pontrjagin dual
of the Selmer group associated to E and the p-adic L-function of interest here is an
element L,(E) in an Iwasawa algebra A (that now is Z,[[Gal(Q((pe-)/Q)]]) which
interpolates twists of the L-function of E by Dirichlet characters of (Z/p™)*. As
before, conjecturally L,(E) should be the generator of the characteristic ideal of
X.

In both these cases, we had F = Q and F' = Q((pe). Of course there is no
need for such a limitation and one can take as F’ any p-adic extension of the global
field F: for example one can deal with Zj-extensions of F'. A more recent creation
is non-commutative Iwasawa theory, which allows to deal with non-commutative
p-adic Lie group, as the ones appearing from non-CM elliptic curves (in particular,
this may include the extensions where the p-adic realization of the arithmetic object
factorizes).

In most of these developments, the global field F' was assumed to be a number
field. The well-known analogy with function fields suggests that one should have
an interesting Iwasawa theory also in the characteristic p side of arithmetic. So
in the rest of this paper F will be a global function field, with char(F) = p
and constant field Frp. Observe that there is a rich and well-developed theory of
cyclotomic extension for such an F, arising from Drinfeld modules: for a survey
on its analogy with the cyclotomic theory over Q see [62].

We shall limit our discussion to abelian Galois extension of F'. One has to notice
that already with this assumption, an interesting new phenomenon appears: there
are many more p-adic abelian extensions than in the number field case, since local
groups of units are Zy-modules of infinite rank. So the natural analogue of the
Z,-extension of Q is the maximal p-adic abelian extension F/F unramified outside
a fixed place and we have I' = Gal(F/F) ~ Z}. Tt follows that the ring Z,[[T']] is
not noetherian; consequently, there are some additional difficulties in dealing with
A-modules in this case. Our proposal is to see A as a limit of noetherian rings and
replace characteristic ideals by Fitting ideals when necessary.

As for the motives originating the Iwasawa modules we want to study, we start
considering abelian varieties over F' and ask the same questions as in the number
field case. Here the theory seems to be rich enough. In particular, various control
theorems allow to define the algebraic side of the Iwasawa Main conjecture. As
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for the analytic part, we will sketch how a p-adic L-function can be defined for
modular abelian varieties.

Then we consider the Iwasawa theory of class groups of abelian extensions of
F. This subject is older and more developed: the Iwasawa Main Conjecture for
Z,-extension was already proved by Crew in the 1980’s, by geometric techniques.
We concentrate on Zﬁ—extensions, because they are the ones arising naturally in
the cyclotomic theory; besides they are more naturally related to characteristic p
L-functions (a brave new world where zeta values have found another, yet quite
mysterious, life). The final section, which should be taken as a report on work
in progress, provides some material for a more cyclotomic approach to the Main
Conjecture.

1.1. Contents of the paper. In section 2 we study the structure of Selmer
groups associated with elliptic curves (and, more in general, with abelian varieties)
and Zg—extensions of a global function field F. We use the different versions of
control theorems avaliable at present to show that the Pontrjagin duals of such
groups are finitely generated (sometimes torsion) modules over the appropriate
Iwasawa algebra. These results allow us to define characteristic and Fitting ideals
for those duals. In section 3, taking the Zf-extensions as a filtration of a Zj-
extension F, we can use a limit argument to define a (pro-)Fitting ideal for the
Pontrjagin dual of the Selmer group associated with F. This (pro-)Fitting ideal
(or, better, one of its generators) can be considered as a worthy candidate for
an algebraic L-function in this setting. In section 4 we deal with the analytic
counterpart, giving a brief description of the p-adic L-functions which have been
defined (by various authors) for abelian varieties and the extensions F/F. Sections
3 and 4 should provide the ingredients for the formulation of an Iwasawa Main
Conjecture in this setting. In section 5 we move to the problem of class groups.
We use some techniques of an (almost) unpublished work of Kueh, Lai and Tan
to show that the characteristic ideals of the class groups of Zg—subextensions of
a cyclotomic Z?f—extension are generated by some Stickelberger element. Such a
result can be extended to the whole Zg—extension via a limit process because, at
least under a certain assumption, the characteristic ideals behave well with respect
to the inverse limit (as Stickelberger elements do). This provides a new approach
to the Iwasawa Main Conjecture for class groups. At the end of section 5 we briefly
recall some results on what is known about class groups and characteristic p zeta
values. Section 6 is perhaps the closest to the spirit of function field arithmetic.
For simplicity we deal only with the Carlitz module. We study the Galois module
of cyclotomic units by means of Coleman power series and show how it fits in
an Iwasawa Main Conjecture. Finally we compute the image of cyclotomic units
by Coates-Wiles homomorphisms: one gets special values of the Carlitz-Goss zeta
function, a result which might provide some hints towards its interpolation ®.

LA different approach using a version of Iwasawa Main Conjecture for the cyclotomic Carlitz
extension and leading to information on special values of the Carlitz-Goss zeta function is carried
out in [1].
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This paper was first written in 2010 so it reflects the situation at the time. We
have added a few references to more recent developments related with the theory
presented here but have not attempted to include detailed descriptions of new
results. A recent excellent source for the arithmetic of function fields is the book
[14], in particular (since here we focus on Iwasawa theory) we mention the paper
[18] which also covers the non-commutative approach.

1.2. Some notations. Given a field L, L will denote an algebraic closure and
L*°P a separable closure; we shall use the shortening G, := Gal(L**? /L). When L
is (an algebraic extension of) a global field, L, will be its completion at the place
v, O, the ring of integers of L, and [, the residue field. We are going to deal only
with global fields of positive characteristic: so Fj, shall denote the constant field
of L.

As mentioned before, let F' be a global field of characteristic p > 0, with field of
constants Fr of cardinality q. We also fix algebraic closures F' and F,, for any place
v of F, together with embeddings F' < F),, so to get restriction maps Gr, — Gp.
All algebraic extensions of F' (resp. F,) will be assumed to be contained in F
(resp. F,).

Script letters will denote infinite extensions of F. In particular, F shall always
denote a Galois extension of F', ramified only at a finite set of places S and such
that I' := Gal(F/H) is a free Z,-module, with H/F a finite subextension (to
ease notations, in some sections we will just put H = F'); the associated Iwasawa
algebra is A := Z,[[T]]. We also put T := Gal(F/F) and A := Z,[[T]].

The Pontrjagin dual of an abelian group A shall be denoted as AV.

Remark 1.1. Class field theory shows that, in contrast with the number field
case, in the characteristic p setting Gal(F/F) (and hence I') can be very large
indeed. Actually, it is well known that for every place v the group of 1-units
O}, C F; (which is identified with the inertia subgroup of the maximal abelian
extension unramified outside v) is isomorphic to a countable product of copies of
Zy: hence there is no bound on the dimension of I'. Furthermore, the only Zgimte—
extension of F which arises somewhat naturally is the arithmetic one F% i.e.,
the compositum of F with the maximal pro-p-extension of Fr. This justifies our
choice to concentrate on the case of a I' of infinite rank: F shall mostly be the
maximal abelian extension unramified outside S (often imposing some additional
condition to make it disjoint from Fo7).

We also recall that a Zy-extension of F' can be ramified at infinitely many places
[26, Remark 4]: hence our condition on S is a quite meaningful restriction.

2. Control theorems for abelian varieties

2.1. Selmer groups. Let A/F be an abelian variety, let A[p"] be the group
scheme of p™-torsion points and put A[p>] := lim A[p"]. Since we work in charac-
—

teristic p we define the Selmer groups via flat cohomology of group schemes. For
any finite algebraic extension L/F let X, := Spec L and for any place v of L let
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L, be the completion of L at v and X, := Spec L, . Consider the local Kummer
embedding

kL

v

t A(Ly) ® Qp/Zp — lim Hp (X, Alp™)) = Hpy (X1, A[p™]) -

Definition 2.1. The p part of the Selmer group of A over L is defined as

Sela(L), := Ker {H}I(XL, Ap>) = [[Hh (XL, , Alp™])/Im nLv}

where the map is the product of the natural restrictions at all primes v of L. For
an infinite algebraic extension £/F we define, as usual, the Selmer group Sela (L),
via the direct limit of the Sel(L), for all the finite subextensions L of L.

In this section we let F4/F be a Zf-extension (d < oo) with Galois group
I’y and associated Iwasawa algebra Ay. Our goal is to describe the structure of
Sela(Fq)p (actually of its Pontrjagin dual) as a Ag-module. The main step is a
control theorem proved in [9] for the case of elliptic curves and in [58] in general,
which will enable us to prove that S(Fy) := Sela(Fy), is a finitely generated (in
some cases torsion) Ag-module. The proof of the control theorem requires semi-
stable reduction for A at the places which ramify in F4/F": this is not a restrictive
hypothesis thanks to the following (see [46, Lemma 2.1])

Lemma 2.2. Let F'/F be a finite Galois extension. Let F) := FqF' and Al :=
Zp[Gal(Fy/F")]]. Put A" for the base change of A to F'. If ' := Sela(F}), is
a finitely generated (torsion) Al-module, then S is a finitely generated (torsion)
Ag-module.

Proof. From the natural embeddings Sels(L), — H}l(XL,A[poo]) (any L) one
gets a diagram between duals

HY (X, Al 7
HY (X5, Alp<]) s

| |

HY(Gal(Fg/ Fa), Alp™)(F)) ————=§/Im S’

(where in the lower left corner one has the dual of a Galois cohomology group and
the whole left side comes from the dual of the Hochschild-Serre spectral sequence).
Obviously F;/Fy is finite (since F'/F is) and A[p™](F}) is cofinitely generated,
hence H'(Gal(F}/Fa), A[p=](F}))" and §/Im S’ are finite as well. Therefore S
is a finitely generated (torsion) A/-module and the lemma follows from the fact
that Gal(F}/F') is open in I'y. O
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2.2. Elliptic curves. Let E/F be an elliptic curve, non-isotrivial (i.e., j(E) &
Fr) and having good ordinary or split multiplicative reduction at all the places
which ramify in Fy;/F (assuming there is no ramified prime of supersingular re-
duction one just needs a finite extension of F' to achieve this). We remark that for
such curves E[p™]|(F*°P) is finite (it is an easy consequence of the fact that the
p™-torsion points for n > 0 generate inseparable extensions of F', see for example
[12, Proposition 3.8]).

For any finite subextension FF C L C Fy we put 'y, := Gal(Fy/L) and consider
the natural restriction map

ar, SGZE(L)I) — SElE(]‘—d)gL .
The following theorem summarizes results of [9] and [58].

Theorem 2.3. In the above setting assume that F4/F is unramified outside a finite
set of places of F and that E has good ordinary or split multiplicative reduction
at all ramified places. Then Keray is finite (of order bounded independently of
L) and Cokerar, is a cofinitely generated Z,-module (of bounded corank if d=1).
Moreover if all places of bad reduction for E are unramified in Fq/F, then Coker ar,
is finite as well (of bounded order if d =1).

Proof. Let F,, be the completion of F; at w and, to shorten notations, let

G(Xr) :=1Im {H}z(XL»E[POO]) — 1] H}z(XLwE[PwD/ImHLU}

(analogous definition for G(Xx,) ).
Consider the diagram

Selg(L)y—— H} (X, E[p>®]) ———= G(XL)

Selp(Fa)y* = Hp(Xz,, Ep®])' —= G(X7,)"" .

Since X x, /X7, is a Galois covering the Hochschild-Serre spectral sequence (see [44,
I11.2.21 a),b) and II1.1.17 d)]) yields

Kerby, = HY (T, E[p™](F4)) and Cokerby, C H*(Tyr, E[p™](F4))

(where the H"’s are Galois cohomology groups). Since E[p™](Fy) is finite it is easy
to see that

d(d—1)

|Kerbr| < |Ep>®|(Fy)|¢ and |Cokerby| < |E[p™](Fi)|~ =z

([9, Lemma 4.1]). By the snake lemma the inequality on the left is enough to prove
the first statement of the theorem, i.e.,

|[Kerar| < |Kerbp| < |E[Poo}(fd)‘d
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which is finite and bounded independently of L (actually one can also use the
upper bound |E[p>°](F**?)|¢ which makes it independent of F, as well).
We are left with Kercy,: for any place w of Fy dividing v define

Ep™])/Im Ky

w )

dy : Hy(Xp,, Ep®))/Imkr, — Hp(XF,

Then
Kercp — HﬂKerdw

v wlv

(note also that Kerd, really depends on v and not on w). If v totally splits in
Fa/L then d,, is obviously an isomorphism. Therefore from now on we study the
Kerd,’s only for primes which are not totally split. Moreover, because of the
following diagram coming from the Kummer exact sequence

Hy(X¢,, E[p>])/Im Ky, H}{ (XL, E)

- -

H}I(X]:w,E[poo])/Imm]:wC—> H}I(X]:w,E) ,
one has an injection
Kerd, — Kerhy, ~ H (T, B(Fy))
which allows us to focus on H*(T',,, E(F,)).

2.2.1. Places of good reduction. If v is unramified let L™ be the maximal
unramified extension of L, . Then using the inflation map and [45, Proposition
1.3.8] one has

HY(Typ,,E(Fy)) = HY (Gal(L*"" /L,), E(L*")) =0 .

v

Let E be the formal group associated with F and, for any place v, let F, be the
reduced curve. From the exact sequence

E(Ofv) — E(zv) - EU(FU)
and the surjectivity of E(L,) — E,(F,) (see [44, Exercise 1.4.13]), one gets
HY(Tr,, B(Ow)) < H'(Tr,, E(Fu)) = H'(Tr,, Bo(Fu))

Using the Tate local duality (see [45, Theorem III.7.8 and Appendix C]) and a
careful study of the p"-torsion points in inseparable extensions of L, , Tan proves
that HY(T'z,, E(O,)) is isomorphic to the Pontrjagin dual of E,[p>](F,) (see [58,
Theorem 2]). Hence

[H'(Tr,, E(Fu))| < [H (T, Bo(Fu))| [Eo[p™](Fo)| -

v
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Finally let L/, be the maximal unramified extension of L,, contained in F,, (so that,
in particular, F,, = Fz, ) and let T'y, := Gal(Fy/L;) be the inertia subgroup of
T'z,. The Hochschild-Serre sequence reads as
H'Tp,/T, Ey(Fr.)) —=H"(Ty,, Ey(Fy))
1
HY(Tp,, Ey(Fy,)) = /Tvs = HX(Tp, /T, Ey(Fr)) -
Now I'z, /I'r, can be trivial, finite cyclic or Z, and in any case Lang’s Theorem

yields _
H'(T'p, /T, Ey(Frr)) =0 i=1, 2.

Therefore
H'Tp,, Ey(Fy)) ~ H' (T, By (Fpy) 9 o/ B) ~ HY(Ty, , By (Fy))
and eventually
|HY(Cr,, E(Fo))| < [H'(Try, By (Fy)| | Eu[p™](F,)|
< By [p](Fy) | "0 < | B, [p](Fy)|

where d(L),) := rankz, ',
comes from [9, Lemma 4.1].
We are left with the finitely many primes of bad reduction.

N

d and the middle bound (independent from F)

2.2.2. Places of bad reduction. By our hypothesis at these primes we have
the Tate curve exact sequence

050 = Fiy = E(Fu) .
For any subfield K of F,,/L, one has a Galois equivariant isomorphism
K*/O;(Q%',v = TK

(coming from Ey(Fy) — E(F,) - Tr, ), where Tk is a finite cyclic group of order
—ordk (j(E)) arising from the group of connected components (see, for example,
[9, Lemma 4.9 and Remark 4.10]). Therefore

HY(Ty,, B(Fy)) = lim H' Tk, B(K)) = lim H' (g, Tic) ~ lim (T g ™),
K K K

where (Tk ), is the p-part of Tk and d(K') = rankz, I'f .

If v is unramified then all Tk’s are isomorphic to T, and d(K) = d(L,) = 1;
hence

[H' (Tr,, B(Fu))| = [(Te,)pl = (TR, )l

where v is the prime of F lying below v (note that the bound is again independent
of ]:d )
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If v is ramified then taking Galois cohomology in the Tate curve exact sequence,
one finds
Kerh, =H'(Ty,,E(Fy) = H*(TL,,q5.,)

where the injectivity comes from Hilbert 90.
Since I'y, acts trivially on ‘J%,v» one finds that

Ker hy — HQ(FLU’Q%,U) = HQ(FLMZ) = (F([L,bv)v = (Qp/Zp)d(L“) — (Qp/zp)d )

i.e., Kerhy is a cofinitely generated Z,-module.

This completes the proof for the general case. If all ramified primes are of good
reduction, then the Kerd,’s are finite so Coker ay, is finite as well. In particular
its order is bounded by

[T [E¥IE) < [ o7 GED x [Cokerby| .

v ram, good v inert, bad

If d = 1 the last term is trivial and, in a Z,-extension, the (finitely many) places
which are ramified or inert of bad reduction admit only a finite number of places
above them. If d > 2 such bound is not independent of L because the number
of terms in the products is unbounded. In the case of ramified primes of bad
reduction the bound for the corank is similar. O

Both Selg(Fg), and its Pontrjagin dual are modules over the ring A4 in a
natural way. An easy consequence of the previous theorem and of Nakayama’s
Lemma (see [6]) is the following (see for example [9, Corollaries 4.8 and 4.13])

Corollary 2.4. In the setting of the previous theorem, let S(Fy) be the Pontrjagin
dual of Selg(Fq)p. Then S(Fq) is a finitely generated Ag-module. Moreover if all
ramified primes are of good reduction and Selg(F), is finite, then S(Fq) is Ag-
torsion.

Remarks 2.5.

1. We recall that, thanks to Lemma 2.2, the last corollary holds when there
are no ramified primes of supersingular reduction for £ (when such a prime
is present the finitely generated statement does not hold anymore, see [59,
Theorem 3.10]).

2. The ramified primes of split multiplicative reduction are the only obstacle
to the finiteness of Cokera; and this somehow reflects the number field
situation as described in [42, section II.6], where the authors defined an
extended Mordell-Weil group whose rank is rank E(F) + N (where N is
the number of primes of split multiplicative reduction and dividing p, i.e.,
totally ramified in the cyclotomic Z,-extension they work with) to deal with
the phenomenon of exceptional zeroes.

3. A different way of having finite kernels and cokernels (and then, at least
in some cases, torsion modules S(Fy4)) consists in a modified version of the
Selmer groups. Examples with trivial or no conditions at all at the ramified
primes of bad reduction are described in [9, Theorem 4.12].
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4. The available constructions of a p-adic L-function associated to Zg—extensions
require the presence of a totally ramified prime p of split multiplicative re-
duction for E. Thus the theorem applies to that setting but, unfortunately,
it only provides finitely generated Agz-modules S(Fy).

5. The paper [38] describes an example of an elliptic curve E/F and a Z,-
extension F; such that S(F;) is a non-torsion Aj-module (the last section of
[38] verifies the vanishing of the p-adic L-function attached to these E and
F, in accordance with the Iwasawa Main Conjecture).

2.3. Higher dimensional abelian varieties. We go back to the general case
of an abelian variety A/F. For any finite subextension L/F of F4 we put 'y, :=
Gal(F4/L) and consider the natural restriction map

ar : Sela(L), — Sela(Fa)," -
The following theorem summarizes results of [58].

Theorem 2.6. In the above setting assume that Fq/F is unramified outside a finite
set of places of F' and that A has good ordinary or split multiplicative reduction at
all ramified places. Then Ker ay, is finite (of bounded order if d = 1) and Coker ay,
is a cofinitely generated Zy,-module. Moreover if all places of bad reduction for A
are unramified in Fq/F, then Coker ar, is finite as well (of bounded order if d = 1).

Proof. We use the same notations and diagrams as in Theorem 2.3, substituting
the abelian variety A for the elliptic curve E.
The Hochschild-Serre spectral sequence yields

Kerby, = H (T, A[p™](F4)) and Cokerby, C H*(Ty, A[p™](Fa)) .

Let Ly C F4 be the extension generated by A[p™](F4). The extension Lo/L is
everywhere unramified (for the places of good reduction see [58, Lemma 2.5.1 (b)],
for the other places note that the p”-torsion points come from the p”-th roots of the
periods provided by the Mumford parametrization so they generate an inseparable
extension while F;/F is separable): hence Gal(Lo/L) ~ A x Zs; where A is finite
and e = 0 or 1. Let v be a topological generator of Z; in Gal(Lo/L) (if e = 0 then
v = 1) and let L; be its fixed field. Then A[p>®|(F;)<7> = A[p>®|(L;) is finite
and we can apply [10, Lemma 3.4] (with b the maximum between |A[p>](L1)| and
[Alp>](Fa) /(Alp>)(Fa))ai|) to get

d(d—1)

|Kerbp| <b? and |Cokerb| <b 2

By the snake lemma the inequality on the left is enough to prove that Keray is
finite (for the bounded order in the case d =1 see [58, Corollary 3.2.4]).

The bounds for the Kerd,,’s are a direct generalization of the ones provided for
the case of the elliptic curve so we give just a few details. Recall the embedding

Kerd, — Kerhy, ~ H (T, E(Fy,)) .
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2.3.1. Places of good reduction. If v is unramified then

H'(Ty,, A(Fy)) < HY(Gal(L*™ /L,), A(L""")) =0 .

v?

If v is ramified one has an exact sequence (as above)
H'(Ty,, A(0F,)) = H' (U1, A(Fy)) = H'(Tr,, Ay (Fz,)) -

By [58, Theorem 2]

~

H'(Tp,, A(OF,)) = By[p™](FL,)

v?

(where B is the dual variety of A) and the last group has the same order of
Ay[p™|(Fr,). Using Lang’s theorem as in 2.2.1, one finds

[HY(Tr,, A(Fw)| < [Ao[p™](Fr, )|

2.3.2. Places of bad reduction. If v is unramified let 7 ,(A) be the group
of connected components of the Néron model of A at v. Then, again by [45,
Proposition 1.3.8],

H'(Tp,, A(Fuw)) = HY(Gal(Ly"™ /Ly), A(Ly"™)) = H'(Gal(Ly"™ /Ly), m0,0(A))
and the last group has order bounded by |, (A)FeE""/Lv)|,
If v is ramified one just uses Mumford’s parametrization with a period lattice
Q, C Ly, x -+ x L, (genus A times) to prove that H'(T'z,, A(F,)) is cofinitely
generated as in 2.2.2. O

We end this section with the analogue of Corollary 2.4.

Corollary 2.7. In the setting of the previous theorem, let S(Fy) be the Pontrjagin
dual of Sela(Fq)p . Then S(Fq) is a finitely generated Ag-module. Moreover if all
ramified primes are of good reduction and Sela(F), is finite, then S(Fq) is Aqg-
torsion.

Remark 2.8. In [46, Theorem 1.7], by means of crystalline and syntomic coho-
mology, Ochiai and Trihan prove a stronger result. Indeed they can show that
the dual of the Selmer group is always torsion, with no restriction on the abelian
variety A/F, but only in the case of the arithmetic extension F%/F, which lies
outside the scope of the present paper. Moreover in the case of a (not necessarily
commutative) pro-p-extension containing F¢"#  they prove that the dual of the
Selmer group is finitely generated (for a precise statement, see [46], in particular
Theorem 1.9) 2.

2A generalization of the torsion statement for Z%-extensions containing F¢"* can be found in
[59] and [8] (where one also finds an approach to the results of Section 3 in terms of characteristic
ideals).
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3. A-modules and Fitting ideals

We need a few more notations.

For any Zd-extension Fy, let I'(Fy) := Gal(Fq/F) and A(Fy) := Zy[[['(Fy)]] (the
Iwasawa algebra) with augmentation ideal I7¢ (or simply I'y, Aq and I if the
extension Fy is clearly fixed).

For any d > e and any Zg_e—extension Fa/Fe, we put D(Fy/Fe) = Gal(Fy/Fe),
AN(Fa/Fe) == Zp[[T(Fa/Fe)]) and I as the augmentation ideal of A(Fy/Fe), ie.,
the kernel of the canonical projection 7'(';: : A(Fq) = A(Fe) (whenever possible all
these will be abbreviated to T'¢, A? | I¢ and 7¢ respectively).

Recall that A(Fy) is (noncanonically) isomorphic to Zy[[Th,...,Tq]]. A finitely
generated torsion A(Fg)-module is said to be pseudo-null if its annihilator ideal
has height at least 2. If M is a finitely generated torsion A(F,)-module, then there
is a pseudo-isomorphism (i.e., a morphism with pseudo-null kernel and cokernel)

M ~nxy) @A(fd)/(gf’) ;
i=1

where the g;’s are irreducible elements of A(F;) (determined up to an element of
A(F4)*) and n and the e;’s are uniquely determined by M (see e.g. [15, VII.4.4
Theorem 5]).

Definition 3.1. In the above setting the characteristic ideal of M is

0 if M is not torsion

ChA(fd)(M) = <Hgfl> otherwise
i=1

Let Z be a finitely generated A(F4)-module and let
MF2)* SN Fa)b — 2

be a presentation where the map ¢ can be represented by a b X a matrix ® with
entries in A(Fy) .

Definition 3.2. In the above setting the Fitting ideal of Z is

0 ifa<bd
. __J the ideal generated by all the
FZttA(Fd)(Z) T determinants of the b x b ifa>b

minors of the matrix ®

Let F/F be a Zi’—extension with Galois group I'. Our goal is to define an
ideal in A := Z,[[T']] associated with S, the Pontrjagin dual of Sels(F), . For this
we consider all the Zg-extensions F4/F (d € N) contained in F (which we call
Z,-finite extensions). Then F = UFg and A = liin A(Fq) = liin Zp|[Gal(Fq/F)]).
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The classical characteristic ideal does not behave well (in general) with respect to
inverse limits (because the inverse limit of pseudo-null modules is not necessarily
pseudo-null). For the Fitting ideal, using the basic properties described in the
Appendix of [43], we have the following

Lemma 3.3. Let Fy C F. be an inclusion of multiple Z,-extensions, e > d.
Assume that A[p™](F) =0 or that Fittar,)(S(Fa)) is principal. Then

7TJIJ:Z(FittA(fe)(5(]'}))) C Fittpr,)(S(Fa)) -

Proof. Consider the natural map a§ : Sels(Fq)p, — SelA(]-"e)gi and dualize to get
S(Fe) /T3S (Fe) = S(Fa) - (Kerag)”
where (as in Theorem 2.6)
Kerag — H' (L, Alp™](Fe))
is finite. If A[p™](F) = 0 then (Kera$)¥ =0 and
w5(Fitta, (S(Fe))) = Fitta,(S(Fe)/I5S(Fe)) C Fittn, (S(Fa)) -
If (Kera%)¥ # 0 one has
Fitty,(S(Fe) /IS (Fe)) Fittp,(Kera$)") C Fitta,(S(Fa)) -

The Fitting ideal of a finitely generated torsion module contains a power of its
annihilator, so let 01,09 be two relatively prime elements of Fitty,((Kera$)Y)
and 64 a generator of Fitty,(S(Fq)). Then 64 divides o1 and osa for any o €
Fittp,(S(Fe)/I5S(Fe)) (it holds, in the obvious sense, even for §; = 0). Hence

ma(Fitta, (S(Fe))) = Fitt,(S(Fe)/13S8(Fe)) C Fitta,(S(Fa)) -
O
Remark 3.4. In the case A = E an elliptic curve, the hypothesis E[p>](F) =0
is satisfied if j(E) ¢ (F*)P, i.e., when the curve is admissible (in the sense of [12]);
otherwise j(E) € (F*)*" — (F*)P""" and one can work over the field FP". The

other hypothesis is satisfied in general by elementary A(F4)-modules or by modules
having a presentation with the same number of generators and relations.

Let mx, be the canonical projection from A to A(Fy) with kernel Ix,. Then
the previous lemma shows that, as Fy varies, the (7z,) ™' (Fitts(x,)(S(Fy))) form
an inverse system of ideals in A.

Definition 3.5. Assume that A[p>](F) = 0 or that Fitt,(r,)(S(Fy)) is principal
for any Fy. Define

Fitty(S(F)) = lim(nz,) " (Fittar,) (S(Fa)))
Fa

to be the pro-Fitting ideal of S(F) (the Pontrjagin dual of Selg(F), ).



14 A. Bandini, F. Bars, I. Longhi

Proposition 3.6. Assume that A[p™|(F) = 0 or that Fittyr,(S(Fa)) is prin-
cipal for any Fq. If corankZpSelA(fl)g(}—l) > 1 for any Z,-extension F1/F con-
tained in F, then Fittx(S(F)) C I (where I is the augmentation ideal of A).

Proof. Recall that I7¢ is the augmentation ideal of A(F,), that is, the kernel of
74 N(F4) — Zyp. By hypothesis Fitty, ((Sela(F1)p (}-1)) ) = 0. Thus, since
Zp = N(F1)/ 7" and (Sela(F1)p V)Y = S(F) /171 S(F),

0 = Fittg, ((Sela(F1)STN)Y) = a7 (Fittaz,) (S(F1)))

Le., Fittyr)(S(F1)) C Kern/t =171,
For any Zz—extension Fq take a Zy-extension F; contained in 54 . Then, by Lemma
3.3,

T2 (Fittp (7, (S(Fa))) C Fitty ) (S(F1) € 7

Note that 77¢ = 771 o 7r . Therefore
Fitty(r,)(S(Fa)) C I7 <= wfi(Fittar,(S(Fa)) C I7"

Le., Fitty(r,)(S(Fq)) C I7* for any Z,-finite extension Fy. Finally

Fitty(S(F)) = ((mr,) "~ (Fittacr,y (S(Fa))) C ﬂ 7r,) AT C T .
Fa

Remark 3.7. From the exact sequence

I'(F1)

Kerag, — Sela(F), F—1>Sel,4(}"1)p — Cokerag,

and the fact that Ker ar, is finite one immediately finds out that the hypothesis on
corankgz,, SelA(]:l) (1) is satisfied if rankz A(F) > 1 or corankz,Cokerar, > 1.
As already noted, when there is a totally ramified prime of split multiplicative
reduction, the second option is very likely to happen. In the number field case,
when F is the cyclotomic Zp-extension and, in some cases, Selg(F )1\0/ is known to
be a torsion module, this is equivalent to saying that T divides a generator of the
characteristic ideal of Selx(F), (i.e., there is an exceptional zero). Note that all
the available constructions of p-adic L-function for our setting require a ramified
place of split multiplicative reduction and they are all known to belong to I.

4. Modular abelian varieties of G Ls-type

The previous sections show how to define the algebraic (p-adic) L-function asso-
ciated with F/F and an abelian variety A/F under quite general conditions. On
the analytic side there is, of course, the complex Hasse-Weil L-function L(A/F,s),
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so the problem becomes to relate it to some element in an Iwasawa algebra. In
this section we will sketch how this can be done at least in some cases; in order to
keep the paper to a reasonable length, the treatment here will be very brief.

We say that the abelian variety A/F is of GLa-type if there is a number field
K such that [K : Q] = dim A and K embeds into Endr(A4) ® Q. In particular,
this implies that for any [ # p the Tate module T; A yields a representation of Gg
in GLy(K ® Q). The analogous definition for A/Q can be found in [52], where
it is proved that Serre’s conjecture implies that every simple abelian variety of
G Lo-type is isogenous to a simple factor of a modular Jacobian. We are going to
see that a similar result holds at least partially in our function field setting.

4.1. Automorphic forms. Let Ap denote the ring of adeles of F. By au-
tomorphic form for GLy we shall mean a function f: GL2(Ap) — C which
factors through GLy(F)\GL2(Ap)/K, where K is some open compact subgroup
of GLy(AF); furthermore, f is cuspidal if it satisfies some additional technical
condition (essentially, the annihilation of some Fourier coefficients). A classical
procedure associates with such an f a Dirichlet sum L(f, s): see e.g. [64, Chapters
IT and III].

The C-vector spaces of automorphic and cuspidal forms provide representations
of GL2(AF). Besides, they have a natural Q-structure: in particular, the decom-
position of the space of cuspidal forms in irreducible representations of GLy(AFr)
holds over Q (and hence over any algebraically closed field of characteristic zero);
see e.g. the discussion in [51, page 218]. We also recall that every irreducible au-
tomorphic representation m of GL2(AF) is a restricted tensor product &/ m,, v
varying over the places of F: the m,’s are representations of GLs(F;,) and they are
called local factors of .

Let Wg denote the Weil group of F': it is the subgroup of Gg consisting of
elements whose restriction to F, is an integer power of the Frobenius. By a fun-
damental result of Jacquet and Langlands [32, Theorem 12.2], a two-dimensional
representation of Wr corresponds to a cuspidal representation if the associated L-
function and its twists by characters of Wy are entire functions bounded in vertical
strips (see also [64]).

Let A/F be an abelian variety of GLo-type. Recall that L(A/F,s) is the
L-function associated with the compatible system of l-adic representations of G g
arising from the Tate modules T} A, as [ varies among primes different from p. The-
orems of Grothendieck and Deligne show that under certain assumptions L(A/F, s)
and all its twists are polynomials in ¢—* satisfying the conditions of [32, Theorem
12.2] (see [23, §9] for precise statements). In particular all elliptic curves are ob-
viously of GLy-type and one finds that L(A/F,s) = L(f,s) for some cusp form f
when A is a non-isotrivial elliptic curve.

4.2. Drinfeld modular curves. From now on we fix a place occ.
The main source for this section is Drinfeld’s original paper [24]. Here we just
recall that for any divisor n of F with support disjoint from oo there exists a
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projective curve M (n) (the Drinfeld modular curve) and that these curves form a
projective system. Hence one can consider the Galois representation

H o= lim B, (M (n) x F*7. Q)

Besides, the moduli interpretation of the curves M (n) allows to define an action
of GLa(Ay) on H (where Ay denotes the adeles of F' without the component
at 00). Let II, be the set of those cuspidal representations having the special
representation of GLy(Fy) (i.e., the Steinberg representation) as local factor at
oo. Drinfeld’s reciprocity law [24, Theorem 2| (which realizes part of the Langlands
correspondence for GLy over F') attaches to any m € Il a compatible system of
two-dimensional Galois representations o(7);: G — GL2(Q;) by establishing an
isomorphism of GLy(A ) x Gp-modules

H~ P (@) 00m) @o(m) . (4.1)

el

As o(m); one obtains all l-adic representations of G satisfying certain properties:
for a precise list (and a thorough introduction to all this subject) see [51]. Here we
just remark the following requirement: the restriction of o(w); to G, has to be
the special [-adic Galois representation sp~,. For example, the representation orig-
inated from the Tate module T} F of an elliptic curve E/F satisfies this condition
if and only if E has split multiplicative reduction at oco.

The Galois representations appearing in (4.1) are exactly those arising from
the Tate module of the Jacobian of some M(n). We call modular those abelian
varieties isogenous to some factor of Jac(M(n)). Hence we see that a necessary
condition for abelian varieties of G La-type to be modular is that their reduction
at oo is a split torus.

The paper [25] provides a careful construction of Jacobians of Drinfeld modular
curves by means of rigid analytic geometry.

4.3. The p-adic L-functions. For any ring R let Meas(P!(F,), R) denote the
R-valued measures on the topological space P!(F,) (that is, finitely additive func-
tions on compact open subsets of P!(F,)) and Measo(P*(F,), R) the subset of
measures of total mass 0. A key ingredient in the proof of (4.1) is the identifica-
tion of the space of R-valued cusp forms with direct sums of certain subspaces of
Measy(P(F.,), R) (for more precise statements, see [51, §2] and [25, §4]). There-
fore we can associate with any modular abelian variety A some measure @4 on
P! (F.); this fact can be exploited to construct elements (our p-adic L-functions)
in Iwasawa algebras in the following way.

Let K be a quadratic algebra over F': an embedding of K into the F-algebra of
2 x 2 matrices Ms(F') gives rise to an action of the group G := (K ® Fy)*/FZ on
the PG La(Fs)-homogeneous space P (Fy,). Class field theory permits to relate G
to a subgroup I of I' = Gal(F/F), where F is a certain extension of F (depending
on K) ramified only above oco. Then the pull-back of pa to G yields a measure
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on I'; this is enough because Meas(T', R) is canonically identified with R® A (and
Measo(T', R) with the augmentation ideal). Various instances of the construction
just sketched are explained in [41] for the case when A is an elliptic curve: here
one can take R = Z. Similar ideas were used in P&l’s thesis [48], where there is
also an interpolation formula relating the element in Z[[I']] so obtained to special
values of the complex L-function. One should also mention [49] for another con-
struction of p-adic L-function, providing an interpolation property for one of the
cases studied in [41]. Notice that in all this cases the p-adic L-function is, more or
less tautologically, in the augmentation ideal.

A different approach had been previously suggested by Tan [57]: starting with
cuspidal automorphic forms, he defines elements in certain group algebras and
proves an interpolation formula [57, Proposition 2]. Furthermore, if the cusp form
is “well-behaved” his modular elements form a projective system and originate an
element in an Iwasawa algebra of the kind considered in the present paper: in
particular, this holds for non-isotrivial elliptic curves having split multiplicative
reduction. In the case of an elliptic curve over Fy(T") Teitelbaum [61] re-expressed
Tan’s work in terms of modular symbols (along the lines of [42]); in [30] it is shown
how this last method can be related to the “quadratic algebra” techniques sketched
above.

A unified treatment of all of this will appear in [11].

Thus for a modular abelian variety A/F we can define both a Fitting ideal and a
p-adic L-function: it is natural to expect that an Iwasawa Main Conjecture should
hold, i.e., that the Fitting ideal should be generated by the p-adic L-function.

Remark 4.1. In the cases considered in this paper (involving a modular abelian
variety and a geometric extension of the function field) the Iwasawa Main Conjec-
ture is still wide open. However, recently there has been some interesting progress
in two related settings.

First, one can take A to be an isotrivial abelian variety (notice that [57, page
308] defines modular elements also for an isotrivial elliptic curve). Thanks to an
observation of Ki-Seng Tan, the Main Conjecture in this setting can be reduced to
the one for class groups, which is already known to hold (as it will be explained
in the next section). On this basis, the Iwasawa Main Conjecture for constant
ordinary abelian varieties is proved in [39] when F is a Zd-extension.

Second, one can take as F the maximal arithmetic pro-p-extension of F, i.e.,
F =Forit = FF® | where F® is the subfield of F defined by Gal(F'? /Fr) ~ Z,
(note that this is the setting of [46, Theorem 1.7]). In this case Trihan has obtained
a proof of the Iwasawa Main Conjecture, by techniques of syntomic cohomology.
No assumption on the abelian variety A/F is needed: the relevant p-adic L-function
is defined by means of cohomology and it interpolates the Hasse-Weil L-function
(see [40]).
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5. Class groups

For any finite extension L/F, A(L) will denote the p-part of the group of de-

gree zero divisor classes of L; for any F’ intermediate between F and F, we put

A(F'") :=1lim A(L) as L runs among finite subextensions of F'/F (the limit being
—

taken with respect to norm maps). The study of similar objects and their relations
with zeta functions is an old subject and was the starting point for Iwasawa himself
(see [62] for a quick summary). The goal of this section is to say something on
what is known about Iwasawa Main Conjectures for class groups in our setting.

5.1. Crew’s work. A version of the Iwasawa Main Conjecture over global func-
tion fields was proved by R. Crew in [22]. His main tools are geometric: so he
considers an affine curve X over a finite field of characteristic p (in the language of
the present paper, F' is the function field of X) and a p-adic character of 71 (X),
that is, a continuous homomorphism p: 71(X) — R*, where R is a complete
local noetherian ring of mixed characteristic, with maximal ideal m (notice that
the Iwasawa algebras Ag introduced in section 2.1 above are rings of this kind). To
such a p are attached H(p,z) € R[z]| (the characteristic polynomial of the coho-
mology of a certain étale sheaf - see [21] for more explanation) and the L-function
L(p,x) € R[[x]]. The main theorem of [22] proves, by means of étale and crystalline
cohomology, that the ratio L(p,z)/H(p,x) is a unit in the m-adic completion of
R[z]. An account of the geometric significance of this result (together with some of
the necessary background) is provided by Crew himself in [21]; in [22, §3] he shows
the following application to Iwasawa theory. Letting (in our notations) R be the
Iwasawa algebra A(Fy), the special value L(p, 1) can be seen to be a Stickelberger
element (the definition will be recalled in section 5.3 below). As for H(p, 1), [21,
Proposition 3.1] implies that it generates the characteristic ideal of the torsion Ag4-
module lim A(L)Y, L varying among finite subextensions of F;/F 3. The Iwasawa

Main Conjecture follows.

Crew’s cohomological techniques are quite sophisticated. A more elementary
approach was suggested by Kueh, Lai and Tan in [37] (and refined, with Burns’s
contribution and different cohomological tools, in [16]). In the next two sections we
will give a brief account of this approach (and its consequences) in a particularly
simple setting, related to Drinfeld-Hayes cyclotomic extensions (which will be the
main topic of section 6).

5.2. Characteristic ideals for class groups. In this section (which somehow
parallels section 3) we describe an algebraic object which can be associated to the
inverse limit of class groups in a Zg—extension F of a global function field F'. Since
our first goal is to use this “algebraic L-function” for the cyclotomic extension
which will appear in section 6.1, we make the following simplifying assumption.

3Note that in [21] our A(L)’s appear as Picard groups, so the natural functoriality yields
A(L) — A(L") if L C L’ - that is, arrows are opposite to the ones we consider in this paper:
hence Crew takes Pontrjagin duals and we don’t.
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Assumption 5.1. There is only one ramified prime in F/F (call it p) and it is
totally ramified (in particular this implies that F is disjoint from Fo"i),

We shall use some ideas of [36] which, in our setting, provide a quite elemen-
tary approach to the problem. We maintain the notations of section 3: F/F is
a Zg—extension with Galois group I' and associated Iwasawa algebra A with aug-

mentation ideal I. For any d > 0 let F,; be a Zg-extension of F' contained in F,
taken so that |J Fyq = F.

For any finite extension L/F let M(L) be the p-adic completion of the group
of divisor classes Div(L)/Py, of L, i.e.,

M(L) = (L\I /T,0%) & Z,,

where Iy, is the group of ideles of L. As before, when £/F is an infinite extension,

we put M(L) := lim M(K) as K runs among finite subextensions of £/F (the limit
—

being taken with respect to norm maps). For two finite extensions L D L' D F, the

degree maps deg; and deg;, fit into the commutative diagram (with exact rows)

degp,

A(L)C M(L) Z, (5.1)

iNIL:I iNé, Jf
degL/

AL M(L) —2 7,

where NE denotes the norm and the vertical map on the right is multiplication
by [Fr : Fr/] (the degree of the extension between the fields of constants). For
an infinite extension £/F contained in F, taking projective limits (and recalling
Assumption 5.1 above), one gets an exact sequence

deg,

A(L)—= M(L) Z, . (5.2)

Remark 5.2. If one allows non-geometric extensions, then the deg, map above
becomes the zero map exactly when the Z,-extension F*"** is contained in L.

It is well known that M(Fy) is a finitely generated torsion A(Fg;)-module (see
e.g. [28, Theorem 1]), so the same holds for A(Fy) as well. Moreover take any
Zg—extension Fq of F contained in F: since our extension F/F is totally ramified
at the prime p, for any F4_1 C F4 one has

M(Fa)/IF M(Fq) ~ M(Fg-1) (5.3)

(see for example [63, Lemma 13.15]). As in section 3, to ease notations we will
often erase the F from the indices (for example I% ¢ will be denoted by If_, ),
hoping that no confusion will arise. Consider the following diagram

A(F) e M(Fa) L2z, (5.4)

A(F)) = M(Fa) L2z,
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(where (v) = Gal(Fy/Fa-1) = T4_|; note also that the vertical map on the right
is 0) and its snake lemma sequence

A(Fa) T e M(F )T — % Z, (5.5)

|

M(Fa) [ 1§ M(Fa) =—— A(Fa) /T A(Fa) -

deg

Ly

For d > 2 the Ag-module Z, is pseudo-null, hence (5.2) yields Chy,(M(Fq)) =
Cha,(A(Fq)), and, using (5.3) and (5.5), one finds (for d > 3)

ChAd—l(A(‘Fd)/IgflA(fd>) = ChAd—1(M(]:d)/IgflM(]:d))
= Cha,_,(M(Fa-1)) = Chp,_, (A(Fa-1))  (5.6)

(where all the modules involved are A4_;-torsion modules).
Let
N(Fg) = A(Fa) — E(Fa) — R(Fa) (5.7)
be the exact sequence coming from the structure theorem for Agz-modules (see
section 3), where

E(Fq) = @Ad/(fi,d)

is an elementary module and N(Fy), R(F4) are pseudo-null. Let Chp,(A(Fq))
be the characteristic ideal of A(Fy): we want to compare Chy,_, (A(F4—1)) with

7;371 (Cha,(A(Faq))) for some F4_1 C Fq and show that these characteristic ideals
form an inverse system (in A). Consider the module B(Fy) := N(F4) ® R(Fq)-
We need the following hypothesis.

Assumption 5.3. There is a choice of the pseudo-isomorphism ¢ in (5.7) and a
splitting of the projection I'y — I'y_1 so that

i) Ta = (va) ® Ta-1;

it) B(Fy) is a finitely generated torsion Z,[[I'4—1]]-module.

As explained in [29] (see the remarks just before Lemma 3), for any F; and ¢
one can find a subfield 741 so that Assumption 5.3 holds.
In order to ease notations, we put 7 = -4, so that ng = (7).

Lemma 5.4. With the above notations, one has
Chiyy (AFD) [T A(Fa)) = 181 (Cha, (A(Fa))) - Cha,_, (A(Fa) i) .
Proof. We split the previous sequence in two by

N(Fa) = A(Fa) - C(Fa) , C(Fa) = E(Fa) — R(Fa)
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and consider the snake lemma sequences coming from the following diagrams

N(Fi)— A(Fa) — C(Fa) C(Fa)© E(Fa) R(Fa)
N(Fi)— A(Fa) — C(Fa) C(Fa)© E(Fa) R(Fa) ,
(5.8)

N(Fg) i s A(Fy)Ti C(Fg)Ti (5.9)

|

C(Fa) /1§, C(Fa) <— A(Fa) /1§ A(Fa) <—— N(Fa) /1§ N (Fa)

and

C(Fa) i = B(Fa) i R(Fy)"i (5.10)

|

R(Fa)/Ii_R(Fa) <— E(Fa)/Ii_ E(Fa) <— C(Fa)/Ii_,C(Fa) -
From (5.7) we get an exact sequence

A(Fa) /1§ A(Fa) — @Ad/(v —1, fia) — R(Fa)/Ij_ R(Fa)

where the last term is a torsion Ag_j-module. So is A(F4—1) for d > 3 and, by
(5.6), Cha,_, (A(Fa-1)) = Cha,, (A(Fa)/15_1A(Fa)) . It follows that none of
the f;4’s belong to I¢_, . Therefore:

1. the map v — 1: E(F,;) — E(F,) has trivial kernel, i.e., E(F;) 41 = 0 so
that C(F,)Té1 = 0 as well;

2. the characteristic ideal of the A4_j-module E(F,)/I¢ E(F4) is generated
by the product of the f;4’s modulo Igﬁl, hence it is obviously equal to
mi-1(Cha, (A(Fa))).

Moreover, from the fact that N(Fy) and R(F,) are finitely generated torsion Ag_1-
modules 4 and the multiplicativity of characteristic ideals, looking at the left (resp.
right) vertical sequence of the first (resp. second) diagram in (5.8), one finds

Cha,(N(Fa)Ti=1) = Cha,_, (N(Fa)/IE_ N (Fa))

4Tt might be worth to notice that this is the only point where we use the hypothesis that
Assumption 5.3 holds.
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and
Cha,_, (R(Fg)"e=1) = Cha,_, (R(Fa) /I R(F2)) .

Hence from (5.9) one has

ChAdfl(A(fd)/Ig_lA(.Fd)) =Cha, , (C(fd)/fg_lc(fd)) -Chy,_, (N(]_—d)rg,l)
= Cha,  (C(FQ)/ 13-, C(Fa)) - Cha, (A(Fa) 51)

(where the last line comes from the isomorphism A(F,) i1 ~ N(F4) 41 ). The
sequence (5.10) provides the equality

Cha, ,(C(Fa)/I]_,C(Fa)) = Chn,_, (E(Fa)/Ij_ E(Fa))
=74 1(Cha,(A(Fa))) -

Therefore one concludes that
Chay (A(Fa) /T  A(Fa)) = 781 (Cha,(A(Fa))) - Chay, (A(Fg) 4-1) . (5.11)
O

Our next step is to prove that A(]-'d)rg—l = 0 (note that it would be enough
to prove that it is pseudo-null as a Az_1-module). For this we need first a few
lemmas.

Lemma 5.5. Let G be a finite group and endow Z,, with the trivial G-action. Then
for any G-module M we have

HY (G,M ®Z,)=H(G,M)®1Z,
for alli > 0.

This result should be well-known. Since we were not able to find a suitable
reference, here is a sketch of the proof.

Proof. Let X be a G-module which has no torsion as an abelian group and put
Y := X ®Q. It is not hard to prove that Y4 ®Z, = (Y ® Z,)¢ and it follows that
the same holds for X, since X“®Z, is a saturated submodule of X ®Z,. Applying
this to the standard complex by means of which the H*(G, M) are defined, one can
prove the equality in the case M has no torsion as an abelian group. The general
case follows because any G-module is the quotient of two such modules. O

Up to now we have mainly considered M (L) as an Iwasawa module (for various
L), now we focus on its interpretation as a group of divisor classes. Let L be a
finite extensions of F' and recall that we defined M(L) = (Div(L)/Pr) ®Z, . From
the exact sequence

F; < L* — Py,

and the fact that |F7} | is prime with p, one finds an isomorphism between L* ® Z,
and Pr, ® Z,, . Hence we can (and will) identify the two.
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Lemma 5.6. For any finite Galois extension L/F, the map
DiU(L)Gal(L/F) ® Zp — M(L)Gal(L/F)
18 surjective.

Proof. The sequence
L*®Z, — Div(L) ® Z, - M(L) (5.12)

is exact because Z, is flat and |F7} | is prime with p. The claim follows by taking
the Gal(L/F)-cohomology of (5.12) and applying Lemma 5.5 and Hilbert 90. O

For any finite subextension L of F/F, let p;, be the unique prime lying above
p. In the following lemma, we identify p;, with its image in Div(L) ® Z,. Moreover
for any element x € M(F) we let ;, denote its image in M(L) via the canonical
norm map.

Lemma 5.7. Let x € M(F)': then, for any L as above, 1, is represented by a
T-invariant divisor supported in pr, .

Proof. For any L, let y, be the image of py, in M(L). Since Z,yy, is a closed subset
of M(L), to prove the lemma it is enough to show that (z1+p" M(L))NZpyr, # 0
for any n.

For any finite Galois extension K/L we have the maps

K Div(L) ® 2, — Div(K) @ Z,

and
NE: Div(K) ® Z, — Div(L) @ Z,

respectively induced by the inclusion and the norm. For any divisor whose support
is unramifed in K /L we have

N{(f (D)) =[K : L]D.
Also, Lemma 5.5 yields
(Div(K) ® Z,) ¢ /D) = Diy(K)CE/D) @ 7, = K(Div(L) ® Z,)

(since in a Gal(K/L)-invariant divisor all places of K above a same place of L
occur with the same multiplicity).

Choose n and let K C F be such that [K : L] > p". By Lemma 5.6, there
exists a Gal(K/L)-invariant Ex € Div(K) ® Z, having image zx. Write Ex =
Dk + axpk, where ax € Z, and Dk has support disjoint from pg. Then Dy is
Galois invariant, so Dg = (X (Dy) and (using Assumption 5.1)

NE(Eg)=[K: LDy, +axpr -

Projecting into M(L) we get z1, € axyr, + p"M(L). O
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Corollary 5.8. A(F,) i1 =0.

Proof. Taking I'4_|-invariants in (5.2) (with £ = F,), one finds a similar sequence

rd re deg]—"d
-A(]:d) d—1 C—>M(]3'd) d—1 4>Zp . (513)
Lemma 5.7 holds, with exactly the same proof, also replacing F and I'" with Fy

and T'y. Therefore any x = (x1)1, € ./\/l(]-'d)rjf1 can be represented by a sequence
(arpr)r. Furthermore Nf((aKpK) = arpr, implies that the value ar is indepen-
dent of L: call it a. Then

degr, (x) =lim (ar degy (pr)) = adegp(p).
Hence x € Ker(degz,) = A(}-d)l“ﬁ,l only if a = 0. O

Remark 5.9. The image of the degree map appearing in (5.13) is (degp)Z,, , so
degz, always provides an isomorphism between M(]:d)Fgfl and Z, . Moreover, if
p does not divide degp, one has surjectivity as well. In this case, looking back at
the sequence (5.5), one finds a short exact sequence

A(Fa) /T4 A(Fa)—> M(Fa) [ IE \ M(Fa) 27, .

From (5.1), by taking the limit with L and L’ varying respectively among subex-
tensions of Fy and F4_1, one obtains a commutative diagram

MFa) T8 M(Fy) —== z,
v
deg}—di1
M(Fa_1) Z,

where the map N is the isomorphism induced by the norm, i.e., the one ap-
pearing in (5.3). This and the exact sequence (5.2) for £ = F4_1, show that
A(Fa) /18 A(Fy) ~ A(Fa-1) (for any d > 1).

From (5.11) one finally obtains
Cha,y (A(Fa-1)) = Cha,_y (A(Fa) /111 A(Fa)) = w1 (Cha, (A(Fa))) - (5.14)

We remark that this equation holds for any Z,-extension F;/F4—1 satisfying
Assumption 5.3. If the filtration {F; : d € N} verifies that Assumption at any
level d, then the inverse images of the Chy(r,)(A(Fy)) in A (with respect to the
canonical projections 7wz, : A — A(Fy) ) form an inverse system and we can define

Definition 5.10. The pro-characteristic ideal of A(F) is

Cha(A(F)) :=lim(r7,) " (Char, (A(Fa))) -
Fa
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Remark 5.11. Two questions naturally arise from the above definition:
a. 1is there a filtration verifying Assumption 5.3 at any level d?

b. (assuming a has a positive answer) is the limit independent from the chosen
filtration?

In the next section we are going to show (in particular in (5.17) and Corollary
5.16) that there is an element § € A, independent of the filtration and such that,
for all Fy, its image in A(Fy) generates Chy(r,)(A(Fa)). Hence Question b has a
positive answer (and presumably so does Question a) and we only needed (5.14)
as a first step and a natural analogue of (5.16).

Nevertheless we believe that these questions have some interest on their own and
it would be nice to have a direct construction of a “good” filtration {F,; : d € N}
based on a generalization of [29, Lemma 2]. Since our goal here is the Main
Conjecture we do not pursue this subject further, but we hope to get back to it in
a future paper.

We also observe that Assumption 5.3 was used only in one passage in the proof of
Lemma 5.4, as we evidentiated in a footnote. It might be easier to show that in
that passage one does not need the finitely generated hypothesis: if so, Definition
5.10 would makes sense for all filtrations {Fy}q 5.

Remark 5.12. We could have used Fitting ideals, just as we did in section 3, to
provide a more straightforward construction (there would have been no need for
preparatory lemmas). But, since the goal is a Main Conjecture, the characteristic
ideals, being principal, provide a better formulation. We indeed expect equality
between Fitting and characteristic ideals in all the cases studied in this paper but,
at present, are forced to distinguish between them (but see Remark 5.17).

5.3. Stickelberger elements. We shall briefly describe a relation between the
characteristic ideal of the previous section and Stickelberger elements. The main
results on those elements are due to A. Weil, P. Deligne and J. Tate and for all
the details the reader can consult [60, Ch. V]. Let S be a finite set of places of F'
containing all places where the extension F/F ramifies; since we are interested in
the case where F is substantially bigger than the arithmetic extension, we assume
S # (. We consider also another non-empty finite set T of places of F' such that
SNT = {). For any place outside S let F'r,, be the Frobenius of v in I' = Gal(F/F).
Let

Or/psrw) = [[(1 = Fryg®@ute®) TT (1 - Froute®)=", (5.15)
veT vEgS

For any n € N there are only finitely many places of F' with degree n: hence we
can expand (5.15) and consider © x/p g r(u) as a power series ) | c,u" € Z[I'][[u]].
Moreover, it is clear that for any continuous character ¢: I' — C* the image
Y(O©r/ps,r(q”")) is the L-function of 1, relative to S and modified at T For

5This is exactly the approach taken in [7], providing a positive answers to question b.
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any subextension F' C L C F, let 77 : Z[T'|[[u]] = Z[Gal(L/F)][[u]] be the natural
projection and define
Or/rsr(u) =77 (OF psr(w).

For L/F finite it is known (essentially by Weil’s work) that ©/r ¢ 7(¢”°) is an
element in the polynomial ring C[g~*] (see [60, Ch.V, Proposition 2.15] for a
proof): hence O, /p g r(u) € Z[Gal(L/F)][u]. It follows that the coefficients ¢, of
O©r/p,s,r(u) tend to zero in

11312[Gal(L/F)] = Z[T]] CA.
Therefore we can define
Or/psr =0OF/Fsr(l) €A.

We also observe that the factors (1 — Fr,q38(")yd°8(*)) in (5.15) are units in the
ring Af[u]]. Hence the ideal generated by 67, g 1 is independent of the auxiliary
set T" and we can define the Stickelberger element

Or/rs = 0r/psT H (1 — Frygtes®)=L,
veT

We also define, for FF C L C F,

0r/rs1 =1 (0F/rs1) = Or/rs7(1).

It is clear that these form a projective system: in particular, for any Z,-extension
Fa/Fa-1 the relation
4105, rsT) = 0F, /R 5T (5.16)

clearly recalls the one satisfied by characteristic ideals (equation (5.14)). Also, to
define 1,p g there is no need of F: one can take for a finite extension L/F' the
analogue of product (5.15) and reason as above.

Theorem 5.13 (Tate, Deligne). For any finite extension L/F, |F} (0L /5 s is in
the annihilator ideal of the class group of L (considered as a Z[Gal(L/F')]-module).

Proof. This is [60, Ch. V, Théoréme 1.2]. O

Remark 5.14. Another proof of this result was given by Hayes [31], by means of
Drinfeld modules.

Corollary 5.15. Let F4/F be a Zg—emtension as before and S = {p}, the unique
(totally) ramified prime in F/F: then

1. efd/p,sA(]:d) = O,’
2. if O, p,s 18 irreducible in A(Fg), then Chpr,)(A(Fa)) = (05, rs)™ for

somem = 1;
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3. if 0r,/r,s is irreducible in A(Fy) for all Fy’s, then 6’711\(./4(.7:)) = (Or/ps)"
for some m > 1.

Proof. For 1 one just notes that |F7}| is prime with p. Part 2 follows from the
structure theorem for torsion A(F;)-modules. Part 3 follows from 2 by taking
limits (as in Definition 5.10) and noting that the m is constant through the Fy’s
because of equations (5.14) and (5.16). O

The exponent in 2 and 3 of the corollary above is actually m = 1. A proof
of this fact is based on the following technical result of [37] (generalized in [17,
Theorem A.1]). Once Fq is fixed it is always possible to find a Zg-extension of F
containing Fy, call it L4, such that:

a. the extension L£;4/F is ramified at all primes of a finite set S containing S
(moreover S can be chosen arbitrarily large);

b. the Stickelberger element 0 5 5 is irreducible in the Iwasawa algebra A(Ly);

c. there is a Zp-extension £ of F contained in £4 which is ramified at all
primes of S and such that the Stickelberger element 6, JFS is monomial,

i.e., congruent to u(c — 1)" modulo (¢ — 1)"*! (where o is a topological
generator of Gal(L'/F) and u € Zj,).

With condition b and an iteration of equation (5.14) one proves that
Chary(A(Fa)) = (05,/p,s)" for some m > 1.

The monomiality condition ¢ (using £ as a first layer in a tower of Z,-extensions)
leads to m =1 (see [36, section 4] or [17, section A.1] which uses the possibility of
varying the set S , provided by a, more directly). We remark that the proof only
uses the irreducibility of eﬁd/F,g’ ie.,

Char,)(A(Fa)) = (07,/F.s) (5.17)

holds in general for any Fg.

Corollary 5.16 (Iwasawa Main Conjecture). In the previous setting we have
Cha(A(F)) = (0/p,p) -
Proof. From the main result of [36], one has that
Cha(ra(A(Fa)) = (0r,/pp)
and we take the limit in both sides. O

Remark 5.17. The equality between characteristic ideals and ideals generated
by Stickelberger elements has been proved by K.-L. Kueh, K. F. Lai and K.-S.
Tan ([36]) and by D. Burns ([16] and the Appendix coauthored with K.F. Lai and
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K-S. Tan [17]) in a more general situation. The Zg—extension they consider has to
be unramified outside a finite set S of primes of F (but there is no need for the
primes to be totally ramified). Moreover they require that none of the primes in S
is totally split (otherwise 0z, ,p g = 0). The strategy of the proof is basically the
same but, of course, many technical details are simplified by our choice of having
just one (totally) ramified prime (just compare, for example, Lemma 5.7 with [36,
Lemma 3.3 and 3.4]). Moreover, going back to the Fitting vs. characteristic ideal
situation, it is worth noticing that Burns proves that the first cohomology group
of certain complexes (strictly related to class groups, see [16, Proposition 4.4] and
[17, section A.1l]) are of projective dimension 1 ([16, Proposition 4.1]). In this
case the Fitting and characteristic ideals are known to be equal to the inverse of
the Knudsen-Mumford determinant (the ideal by which all the results of [16] are
formulated).

5.4. Characteristic p L-functions. One of the most fascinating aspects of
function field arithmetic is the existence, next to complex and p-adic L-functions,
of their characteristic p avatars. For a thorough introduction the reader is referred
to [27, Chapter 8]: here we just provide a minimal background.

Recall our fixed place oo and let C, denote the completion of an algebraic clo-
sure of F,. Already Carlitz had studied a characteristic p version of the Riemann
zeta function, defined on N and taking values in C,, (we will say more about it in
section 6.6). More recently Goss had the intuition that, like complex and p-adic
L-functions have as their natural domains respectively the complex and the p-adic
(quasi-)characters of the Weil group, so one could consider C..-valued characters.
In particular, the analogue of the complex plane as domain for the characteristic p
L-functions is S := C} X Z,, that can be seen as a group of C-valued homo-
morphisms on F%, just as for s € C one defines z + z* on RT. The additive group
Z embeds discretely in S,,. Similarly to the classical case, one can define L(p, s)
for p a compatible system of v-adic representation of G (v varying among places
different from co) by Euler products converging on some “half-plane” of S.

The theory of zeta values in characteristic p is still quite mysterious and at the
moment we can at best speculate that there are links with the Iwasawa theoretical
questions considered in this paper . To the best of our knowledge, the main results
available in this direction are the following. Let F(p)/F be the extension obtained
from the p-torsion of a Drinfeld-Hayes module (in the simplest case, F(p) is the
F; we are going to introduce in section 6.1). Goss and Sinnott have studied the
isotypic components of A(F(p)) and shown that they are non-zero if and only if p
divides certain characteristic p zeta values: see [27, Theorem 8.14.4] for a precise
statement. Note that the proof given in [27], based on a comparison between the
reductions of a p-adic and a characteristic p L-function respectively mod p and
mod p ([27, Theorem 8.13.3]), makes use of Crew’s result. Okada [47] obtained a
result of similar flavor for the class group of the ring of “integers” of F'(p) when

6This field is in rapid evolution. After this paper was written, L. Taelman introduced some
important new ideas: see [55] and [56]. Further recent developments can be found in [1], [2], [3],
[4], [5] and [50].
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F is the rational function field, and Shu [54] extended it to any F'; since Okada’s
result is strictly related with the subject of section 6.6 below, we will say more
about it there.

6. Cyclotomy by the Carlitz module

6.1. Setting. From now on we take F' = [ (T) and let co be the usual place
at infinity, so that the ring of elements regular outside co is A := F,[T}]; this
allows a number of simplifications, leaving intact the main aspects of the theory.
The “cyclotomic” theory of function fields is obtained via Drinfeld-Hayes modules:
in the setting of the rational function field the only one is the Carlitz module
®: A — A{r}, T — ®p := T + 7 (here 7 denotes the operator = — x? and, if
R is an F,-algebra, R{7} is the ring of skew polynomials with coefficients in R:
multiplication in R{7} is given by composition).

We also fix a prime p C A and let 7 € A be its monic generator. In order to
underline the fact that A and its completion at p play the role of Z and Z,, in the
Drinfeld-Hayes cyclotomic theory, we will often use the alternative notation A,
for the ring of local integers O, C Fj,. Let C, be the completion of an algebraic
closure of Fj.

As usual, if T is an ideal of A, ®[I] will denote the I-torsion of ® (i.e., the
common zeroes of all ®,, a € I). One checks immediately that if ¢ is the unique
monic generator of I, then

We put

and
Kn = Fp(®[p"]).

As stated in section 1.2, we think of the F},’s as subfields of C,,, so that the K,,’s
are their topological closures. We shall denote the ring of A-integers in F,, by B,
and its closure in K,, by O,, and write U,, for the 1-units in O,,. Let F := UF,
and T := Gal(F/F).

Consider the ring of formal skew power series A,{{7}}: it is a complete local
ring, with maximal ideal 7A, + A, {{7}}7. It is easy to see that ® extends to
a continuous homomorphism ®: A, — A,{{7}} (i.e., a formal Drinfeld module)
and this allows to define a “cyclotomic” character y: I' —» Aj. More precisely,
let T,® := 1i£1 ®[p"] (the limit is taken with respect to & — ®,(x)) be the Tate
module of ®. The ring A, acts on T, ® via @, i.e., a- (u), := (Po(un))n, and the
character x is defined by ou =: x(0) - u, i.e., x() is the unique element in A} such
that @, (,)(un) = ouy, for all n. From this it follows immediately that I =AxT,
where A ~ [} is a finite group of order prime to p and I is the inverse image of
the 1-units.
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Since @ has rank 1, T,® is a free Ap-module of rank 1. As in [13], we fix a
generator w = (wy)n,>1: this means that the sequence {w,,} satisfies

Don(wp) =0# Ppn1(wy,) and Pp(wpa1) = wy -

By definition K,, = F,(wy). By Hayes’s theory, the minimal polynomial of w,,
over F' is Eisenstein: it follows that the extensions F,/F and K, /F, are totally
ramified, w,, is a uniformizer for the field K,,, O, = Ay[w,]] = Aplws]. The
extension F,,/F is unramified at all other finite places: this can be seen directly
by observing that ®,~» has constant coefficient 7#™. Furthermore F,/F is tamely
ramified at oo with inertia group Ioo(F,/F) =~ Fy .

The similarity with the classical properties of Q((,n)/Q is striking.

The formula Ng, ., /F, (Wnt1) = wy shows that the wy,’s form a compatible
system under the norm maps (the proof is extremely easy; it can be found in [13,
Lemma 2]). This and the observation that [F, 1 : F},] = ¢%°8®) for n > 1 imply

lim K}, = w” x F} x imUy, . (6.1)
“— —
Note that 1131 U, is a A-module.

6.2. Coleman’s theory. A more complete discussion and proofs of results in
this section can be found in [13, §3]. Let R be a subring of C,: then, as usual,
R((z)) := R[[z]](x~1) is the ring of formal Laurent series with coefficients in R.
Moreover, following [20] we define R[[z]]; and R((x)); as the subrings consisting
of those (Laurent) power series which converge on the punctured open ball

B :=B(0,1) - {0} c C, .

The rings R[[z]]; and R((z)); are endowed with a structure of topological R-
algebras, induced by the family of seminorms {||-||,.}, where r varies in |C,|N(0, 1)
and || f[lr == sup{[f(2)] : |z = r}.

All essential ideas for the following two theorems are due to Coleman [20)].

Theorem 6.1. There exists a unique continuous homomorphism
N Fy((2))1 = Fy((2))1

such that
I f@+uw)=WNfod,.

u€P([p]

Theorem 6.2. The evaluation map ev : f +— {f(wn)} gives an isomorphism
(Ap((2))")N=" =~ lim K7,

where the inverse limit is taken with respect to the norm maps.
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We shall write Col,, for the power series in A,((z))* associated to u € lim K,
“—

by Coleman’s isomorphism of Theorem 6.2.

Remark 6.3. An easily obtained family of AM-invariant power series is the follow-
ing. Let a € A3: then

H Py (x4 u) = H (Pa(2) + Pa(u)) = Pr(Pa(x))

uedp] u€®[p]

(since ®, permutes elements in ®[p]) and, from &,®, = ®,P, in A, {{r}}, it
follows that ®,(x) is invariant under the Coleman norm operator N (as observed
in [13, page 797], this just amounts to replacing w with a - w as generator of the
Tate module).

Following [20], we define an action of " on Fy[[z]]; by (0% f) (%) := f(Py(e) (7))
Then Coly,, = (0 % Col,,), as one sees from

(0% Coly)(wn) = Coly(Py (o) (wn)) = Coly(owy) = a(Coly(wn)) = o(uy) . (6.2)

6.3. The Coates-Wiles homomorphisms. We introduce some operators on
*

power series. Let dlog: Fy((z))] — Fp((2))1 be the logarithmic derivative, i.e.,

dlog (g) := %. Also, for any j € Nlet A;: Fy((z)) — Fy((x)) be the jth Hasse-

Teichmiiller derivative, defined by the formula

AY (Z c"x”> = Z <n—;]> CntjT"

n=0 n=0

%%) A number of properties of the Hasse-

Teichmiiller derivatives can be found in [33]; here we just recall that the operators
Aj are Fy-linear and that

(i.e., A; “is” the differential operator

F@) = Bj(f)a=o’ - (6.3)
j=0

The last operator we need to introduce is composition with the Carlitz exponential
ec(z)=x+...,1e., f flec(z)).

Definition 6.4. For any integer & > 1, define the kth Coates-Wiles homomor-
phism 6y : liin O, — F, by

6 (u) == Ag—1((dlog COlu)(ec(J?)))|x:0 = (Ak—1((dlog Col,) o ec))(0) .

Notice that by (6.3) this is equivalent to putting

(dlog Col,,)(ec(x)) = _ dx ()~ . (6.4)
k=1
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Lemma 6.5. The Coates-Wiles homomorphisms satisfy
(o) = x(0) o (u)
Proof. Recall that f—ﬂ@a(a:) =q for any a € A,. Then from (6.2) it follows

dlog Coly.,, = dlog (Col, o @y () = x(o)(dlog Col,) o (s ,

since dlog (fog) = g’(fT/ og). Composing with e and using ®,(ec(z)) = ec(ax),
one gets, by (6.4),

(dlog Coly)(ec(x)) = x(0)(dlog Col,)(ec(x(0)z)) = x(0) D ok (u)x(o)* "ot
k=1

The result follows. O

6.4. Cyclotomic units.

Definition 6.6. The group C), of cyclotomic units in F), is the intersection of B}
with the subgroup of Ff generated by o(w,), o0 € Gal(F,,/F).

By the explicit description of the Galois action via ®, one sees immediately
that this is the same as B} N (Pq(wn))aca—p -

Lemma 6.7. Let Y c,0 be an element in Z[Gal(F, /F)]: then

[l cw)veCie=> c=0.

0€Gal(Fy /F)

Proof. Obvious from the observation that w,, is a uniformizer for the place above
p and a unit at every other finite place of F,. O

Let C,, and C} denote the closure respectively of C,, NO} and of C! := C,,NU,, .

Let a € Aj. By Remark 6.3 (®4(w,)), is a norm compatible system: hence
one can define a homomorphism

T: Z[[] — lim K,

ZC‘TJ — H (U(wn)ca)n = H ((I)X(U) (wn)c”)n .

Let lm be the p-adic completion of lim K. By (6.1) one gets the isomorphism
«— —

—= ’
lim K ~ w® x limU,, .
— —

Lemma 6.8. The restriction of T to Z[['] can be extended to T: A — lm .
—
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Proof. If a € A, is a 1-unit, then
D, (wy) = wnup (6.5)

with u,, € U,. Since by definition I' = x (1 + wA,), it follows that T sends Z[I']
into w” x limU,,. To complete the proof it suffices to check that Y is continuous
—

with respect to the natural topologies on A = lim(Z/p"Z)[Gal(F,,/F)] and 1@.
— —

But a = a’ (mod 7") in A, implies ®,(w;) = Po/(w;) for any j < n and the result
follows from the continuity of . O

Proposition 6.9. Let I C A denote the augmentation ideal; then Y induces a sur-
jective homomorphism of A-modules I — 1imC}. The kernel has empty interior.
+—

Proof. From Lemma 6.7 and (6.5) it is clear that Y(a) € limC} if and only if
—
« € I. This map is surjective because I is compact and already the restriction to

the augmentation ideal of Z[I'] is onto C}} for all n. A straightforward computation
shows that it is a homomorphism of A-algebras: for v € T’

~T (Z cﬂa) = (fy (H Dy (o) (wn)c")n> = (H Dy (o) (wn)c">n (6.6)

because (Pq(wn)) = Po(V(wn)) = Pa(Py(y) (Wn))-

For the statement about the kernel, let AT C A be the subset of monic polyno-
mials and consider any function AT — Z, a — n,, such that n, = 0 for almost
all a. We claim that [[,c 4+ ®a(x)" =1 only if n, = 0 for all a. To see it, let u,
denote a generator of the cyclic A-module ®[(a)]. Then = —u, divides ®,(x) if and
only if b € (a): hence the multiplicity m, of u, as root of [ ®,(z)™ =1 is exactly
> be(ayna+ M- For b € A, let £(b) denote the number of primes of A dividing b
(counted with multiplicities): then a simple combinatorial argument shows that

Ng = Z (—1)5(17) Z Nabe -

beAt ceAt

It follows that m, = 0 for all a € A* if and only if n, = 0 for all a.

As in section 5.3, for v # p, oo let Fr,, € T be its Frobenius. By [27, Proposition
7.5.4] one finds that x(F'r,) is the monic generator of the ideal in A corresponding
to the place v: hence, by Chebotarev density theorem, x ~1(A¥) is dense in . Thus
the isomorphism of Theorem 6.2 shows that we have proved that T: [ — liin or

is injective on a dense subset; the kernel must have empty interior. O

Remark 6.10. Since I ®z Z[A] = ©scald, formula (6.6) shows that T can be
extended to a homomorphism of A-modules I ® Z[A] — 1131 Cn.

Proposition 6.11. We have: lim 0% /limC,, ~ limU,,/1imC; .
— — — —
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Proof. Consider the commutative diagram

1 —— limC! —— limU, —— liml,/limC} —— 1
— — — —

ol I

1 —— limC, —— im0 — limO*/HmC, — 1.
— — “— “—

All vertical maps are injective and by (6.1) the cokernel of ay is Fj;. For 6 € A
one has dw, = @, (s5)(wn) = X(8)wnu, for some u, € U, . By the injectivity part of
the proof of Proposition 6.9, C,, = C} x T(Z[A]) and it follows that the cokernel
of o is also F; . O

6.5. Cyclotomic units and class groups. Let F C F, be the fixed field
of the inertia group I (F,/F). The extension F;/F is totally split at co and
ramified only above the prime p. We shall denote the ring of A-integers of F,I" by
B;t. Also, define &, and &} to be the closure respectively of BN O} and B NU, .

We need to introduce a slight modification of the groups A(L) of section 5.
For any finite extension L/F, A (L) will be the p-part of the class group of A-
integers of L, so that, by class field theory, A*°(L) ~ Gal(H(L)/L), where H(L)
is the maximal abelian unramified p-extension of L which is totally split at places
dividing co. We shall use the shortening A,, := A>(F.}).

Also, let X, := Gal(M(F;})/F,), where M(L) is the maximal abelian p-
extension of L unramified outside p and totally split above co. As in the number
field case, one has an exact sequence

1 —— &/C —— Uy /C, X, A, 1 (67)

coming from the following

Proposition 6.12. There is an isomorphism of Galois modules
Un/Ey = Gal(M(E)/H(E)) .

Proof. This is a consequence of class field theory in characteristic p > 0, as
the analogous statement in the number field case: just recall that the role of
archimedean places is now played by the valuations above oco. Under the class
field theoretic identification of idele classes I+ /(F;")* with a dense subgroup of

Gal((F;})®/F}), one finds a surjection
1104 - Gal(M(F})/H(E))
Blp
whose kernel contains the closure of
[Tosn@ET]on TTER =w(BhH)
Blp wip wloo

(where ¢, denotes the diagonal inclusion). Reasoning as in [63, Lemma 13.5] one
proves the proposition. O
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Taking the projective limit of the sequence (6.7), we get

1 ——— EL/CL — U /CL Xoo Ao 1. (6.8)

Lemma 6.13. The sequence (6.8) is eract.

Proof. Taking the projective limit of the short exact sequence

1 &l U, Gal(M(F+)/H(FF)) —— 1

we obtain

1 &L Uso Gal(M(F*+)/H(F*)) —— lim'E} |
—

where M (F 1) and H(F*) are the maximal abelian p-extensions of F1 totally split
above oo and unramified respectively outside the place above p and everywhere.
To prove the lemma it is enough to show that lim'(£}) = 1. By a well-known
+—

result in homological algebra, the functor lim! is trivial on projective systems
—

satisfying the Mittag-Leffler condition. We recall that an inverse system (B, dy)
enjoys such property if for any n the images of the transition maps By, — By
are the same for large m. So we are reduced to check that this holds for the &!’s
with the norm maps.

Observe first that £! is a finitely generated A,,-module, thus noetherian because
so is A,,. Consider now NgImage(Ny itk n), where Ny p: 5}L+k — &L is the norm
map. This intersection is a A,-submodule of £!, non-trivial because it contains
the cyclotomic units. By noetherianity it is finitely generated, hence there exists
! such that Image(N, 1) is the same for k > I. Therefore (£}) satisfies the

Mittag-Leffler property. O

The exact sequence (6.8) lies at the heart of Iwasawa theory. Its terms are all
A-modules and, in section 5.2, we have shown how to associate a characteristic
ideal to A, and its close relation with Stickelberger elements. In a similar way,
i.e., working on Zg—subextensions, one might approach a description of X, , while,
for the first two terms of the sequence, the filtration of the F’s seems more natural
(as the previous sections show).

Assume for example that the class number of F' is prime with p, then it is
easy to see that A,, = 1 for all n. Moreover, using the fact that, by a theorem of
Galovich and Rosen, the index of the cyclotomic units is equal to the class number
(see [53, Theorem 16.12]), one can prove that £ /CL = 1 as well. These provide
isomorphisms

U,/C ~ x,
and

U /CL ~ X

In general one expects a relation (at least at the level of Zg-subextensions, then
a limit procedure should apply) between the pro-characteristic ideal of A, and the
(vet to be defined) analogous ideal for €L /CL (the Stickelberger element might
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be a first hint for the study of this relation). Consequently (because of the multi-
plicativity of characteristic ideals) an equality of (yet to be defined) characteristic
ideals of X, and of U, /CL, is expected as well. Any of those two equalities can
be considered as an instance of Iwasawa Main Conjecture for the setting we are
working in.

6.6. Bernoulli-Carlitz numbers. We go back to the subject of characteristic
p L-function. Let AT C A be the subset of monic polynomials. The Carlitz zeta

function is defined )
Ca(k) := Z p
acAt
for k € N.
Recall that the Carlitz module corresponds to a lattice £A C C,, and can be

constructed via the Carlitz exponential ec(2) := 2 [[,c 4 (1 — 2§ ta™t) (where A’
denotes A — {0}). Rearranging summands in the equality

1 1 — 2F !
=dlog (ec(z)) = =- - —
ec(z) (co(2)) (;4 z—fa z a;/ ;; (&a)*
(and using A" = F; x A*) one gets the well-known formula
1 1 — CA(n<q — 1)) n(g—1)—1
= - _— . 6.9
ec(z) =z + 7;1 gnla—1) “ (6.9)

From section 6.4 it follows that for any a,b € A — p, the function i‘;gg is an

N-invariant power series, associated with

D, (w) (@a(wn)> i
c(a,b) = = €limQ; . 6.10
(a,5) Dy (w) Oy(wn) /), (6.10)
Theorem 6.14. The kth Coates-Wiles homomorphism applied to c(a,b) is equal
to:
0 if k20 (modgq-—1)
Ou(cla, b)) = { (a* —b*) 4B if k=0 (mod ¢ —1)

We remark that the condition k = n(g — 1) here is the analogue of k being an
even integer in the classical setting (since ¢ — 1 = [Fy| just as 2 = |Z*|).

Proof. Observe that (6.10) amounts to giving the Coleman power series Col.(q,p)-
Let A be the Carlitz logarithm, i.e., A € F{{7}} is the element uniquely determined
by ec o A =1. Then ®,(x) = ec(aX(x)) and by (6.10) and (6.9) one gets

dlog Colc(qp)(z) = <I>aa(x) - %(1)

n(g—1) _ bn(q—l))%)\(m)n((;ﬁl)—l '

n}l(a
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Since A(ec(z)) = z, we get

(dlog Colup)(eca)) = 3 (a0 — pra-1) A0 = D) pngn1 (g 1)

n(g—1
= gnla—1)

and the theorem follows comparing (6.11) with (6.4). O

Remark 6.15. As already known to Carlitz, 4 (k)¢ is in F when ¢—1 divides k.
Note that by a theorem of Wade, £ € F, is transcendental over F. Furthermore,
Jing Yu [65] proved that (a(k) for all k € N and (4(k)¢~% for k “odd” (i.e., not
divisible by ¢ — 1) are transcendental over F'.

Theorem 6.14 can be restated in terms of the Bernoulli-Carlitz numbers BC,
[27, Definition 9.2.1]. They can be defined by

1 _ZBCn 1
T L Ti(n)”

ec (Z) n=0

(where II(n) is a function field analogue of the classical factorial n!); in particular
BC,, =0 when n #0 (mod ¢ — 1). Then Theorem 6.14 becomes

BCY,

or(c(a, b)) = (aF — bk)H(k) .

(6.12)

Theorem 6.14 and formula (6.12) can be seen as extending a result by Okada,
who in [47] obtained the ratios % (for k = 1,...,¢%8®) — 2) as images of
cyclotomic units under the Kummer homomorphisms (which are essentially a less
refined version of the Coates-Wiles homomorphisms). From here one proves that
the non-triviality of an isotypic component of A; implies the divisibility of the
corresponding “even” Bernoulli-Carlitz number by p: we refer to [27, §8.20] for an
account. As already mentioned, Shu [54] generalized Okada’s work to any F (but
with the assumption deg(oco) = 1): it might be interesting to extend Theorem 6.14
to a “Coates-Wiles homomorphism” version of her results.

6.7. Interpolation?. In the classical setting of cyclotomic number fields, the
analogue of the formula in Theorem 6.14 can be used as a key step in the con-
struction of the Kubota-Leopoldt zeta function (see e.g. [19]). Hence it is natural
to wonder if something like it holds in our function field case. For now we have no
answer and can only offer some vague speculation.

As mentioned in section 5.4, Goss found a way to extend the domain of (4 from
N to So. He also considered the analogue of the p-adic domain and defined it to
be C} x Sy, with Sy 1= Z,, x Z,/(q°¢") — 1) (observe that C; x Sy is the Cy-valued
dual of Fy). Then functions like (4 enjoy also a p-adic life: for example, letting
7y € AT be a uniformizer for a place v, (4, is defined on C; x Sy by

Cap(s):= [ A —m)7",

vipoo
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at least where the product converges.

The ring Z embeds discretely in S, and has dense image in 1x S,. So Theorem
6.14 seems to suggest interpolation of (4, on 1x.S,. Another clue in this direction
is the fact that S, is the “dual” of T, just as Z, is the “dual” of Gal(Q({p~)/Q) (a
strengthening of this interpretation has been recently provided by the main result
of [34]).
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