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Aspects of Iwasawa theory over function fields

Andrea Bandini, Francesc Bars∗, Ignazio Longhi†

Abstract. We consider ZN
p -extensions F of a global function field F and study various

aspects of Iwasawa theory with emphasis on the two main themes already (and still)
developed in the number fields case as well. When dealing with the Selmer group of an
abelian variety A defined over F , we provide all the ingredients to formulate an Iwasawa
Main Conjecture relating the Fitting ideal and the p-adic L-function associated to A and
F . We do the same, with characteristic ideals and p-adic L-functions, in the case of
class groups (using known results on characteristic ideals and Stickelberger elements for
Zd
p-extensions). The final section provides more details for the cyclotomic ZN

p -extension
arising from the torsion of the Carlitz module: in particular, we relate cyclotomic units
with Bernoulli-Carlitz numbers by a Coates-Wiles homomorphism.

2010 Mathematics Subject Classification. Primary: 11R23. Secondary: 11R58,
11G05, 11G10, 14G10, 11R60.

Keywords. Iwasawa Main Conjecture, global function fields, L-functions, Selmer groups,
class groups, Bernoulli-Carlitz numbers

1. Introduction

The main theme of number theory (and, in particular, of arithmetic geometry) is
probably the study of representations of the Galois group Gal(Q/Q) - or, more
generally, of the absolute Galois group GF := Gal(F sep/F ) of some global field
F . A basic philosophy (basically, part of the yoga of motives) is that any ob-
ject of arithmetic interest is associated with a p-adic realization, which is a p-adic
representation ρ of GF with precise concrete properties (and to any p-adic repre-
sentation with such properties should correspond an arithmetic object). Moreover
from this p-adic representation one defines the L-function associated to the arith-
metic object. Notice that the image of ρ is isomorphic to a compact subgroup of
GLn(Zp) for some n, hence it is a p-adic Lie group and the representation factors
through Gal(F ′/F ), where F ′ contains subextensions F and F ′ such that F/F ′ is
a pro-p extension and F ′/F and F ′/F are finite.

Iwasawa theory offers an effective way of dealing with various issues arising in
this context, such as the variation of arithmetic structures in p-adic towers, and is
one of the main tools currently available for the knowledge (and interpretation) of
zeta values associated to an arithmetic object when F is a number field [35]. This
theory constructs some sort of elements, called p-adic L-functions, which provide
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a good understanding of both the zeta values and the arithmetic properties of the
arithmetic object. In particular, the various forms of Iwasawa Main Conjecture
provide a link between the zeta side and the arithmetic side.

The prototype is given by the study of class groups in the cyclotomic extensions
Q(ζpn)/Q. In this case the arithmetic side corresponds to a torsion Λ-module X,
where Λ is an Iwasawa algebra related to Gal(Q(ζp∞)/Q) and X measures the
p-part of a limit of cl(Q(ζpn)). As for the zeta side, it is represented by a p-adic
version of the Riemann zeta function, that is, an element ξ ∈ Λ interpolating the
zeta values. One finds that ξ generates the characteristic ideal of X.

For another example of Iwasawa Main Conjecture, take E an elliptic curve
over Q and p a prime of good ordinary reduction (in terms of arithmetic objects,
here we deal with the Chow motive h1(E), as before with h0(Q)). Then on the
arithmetic side the torsion Iwasawa module X corresponds to the Pontrjagin dual
of the Selmer group associated to E and the p-adic L-function of interest here is an
element Lp(E) in an Iwasawa algebra Λ (that now is Zp[[Gal(Q(ζp∞)/Q)]]) which
interpolates twists of the L-function of E by Dirichlet characters of (Z/pn)∗. As
before, conjecturally Lp(E) should be the generator of the characteristic ideal of
X.

In both these cases, we had F = Q and F ′ = Q(ζp∞). Of course there is no
need for such a limitation and one can take as F ′ any p-adic extension of the global
field F : for example one can deal with Znp -extensions of F . A more recent creation
is non-commutative Iwasawa theory, which allows to deal with non-commutative
p-adic Lie group, as the ones appearing from non-CM elliptic curves (in particular,
this may include the extensions where the p-adic realization of the arithmetic object
factorizes).

In most of these developments, the global field F was assumed to be a number
field. The well-known analogy with function fields suggests that one should have
an interesting Iwasawa theory also in the characteristic p side of arithmetic. So
in the rest of this paper F will be a global function field, with char(F ) = p
and constant field FF . Observe that there is a rich and well-developed theory of
cyclotomic extension for such an F , arising from Drinfeld modules: for a survey
on its analogy with the cyclotomic theory over Q see [62].

We shall limit our discussion to abelian Galois extension of F . One has to notice
that already with this assumption, an interesting new phenomenon appears: there
are many more p-adic abelian extensions than in the number field case, since local
groups of units are Zp-modules of infinite rank. So the natural analogue of the
Zp-extension of Q is the maximal p-adic abelian extension F/F unramified outside
a fixed place and we have Γ = Gal(F/F ) ' ZN

p . It follows that the ring Zp[[Γ]] is
not noetherian; consequently, there are some additional difficulties in dealing with
Λ-modules in this case. Our proposal is to see Λ as a limit of noetherian rings and
replace characteristic ideals by Fitting ideals when necessary.

As for the motives originating the Iwasawa modules we want to study, we start
considering abelian varieties over F and ask the same questions as in the number
field case. Here the theory seems to be rich enough. In particular, various control
theorems allow to define the algebraic side of the Iwasawa Main conjecture. As



Iwasawa theory over function fields 3

for the analytic part, we will sketch how a p-adic L-function can be defined for
modular abelian varieties.

Then we consider the Iwasawa theory of class groups of abelian extensions of
F . This subject is older and more developed: the Iwasawa Main Conjecture for
Znp -extension was already proved by Crew in the 1980’s, by geometric techniques.

We concentrate on ZN
p -extensions, because they are the ones arising naturally in

the cyclotomic theory; besides they are more naturally related to characteristic p
L-functions (a brave new world where zeta values have found another, yet quite
mysterious, life). The final section, which should be taken as a report on work
in progress, provides some material for a more cyclotomic approach to the Main
Conjecture.

1.1. Contents of the paper. In section 2 we study the structure of Selmer
groups associated with elliptic curves (and, more in general, with abelian varieties)
and Zdp-extensions of a global function field F . We use the different versions of
control theorems avaliable at present to show that the Pontrjagin duals of such
groups are finitely generated (sometimes torsion) modules over the appropriate
Iwasawa algebra. These results allow us to define characteristic and Fitting ideals
for those duals. In section 3, taking the Zdp-extensions as a filtration of a ZN

p -
extension F , we can use a limit argument to define a (pro-)Fitting ideal for the
Pontrjagin dual of the Selmer group associated with F . This (pro-)Fitting ideal
(or, better, one of its generators) can be considered as a worthy candidate for
an algebraic L-function in this setting. In section 4 we deal with the analytic
counterpart, giving a brief description of the p-adic L-functions which have been
defined (by various authors) for abelian varieties and the extensions F/F . Sections
3 and 4 should provide the ingredients for the formulation of an Iwasawa Main
Conjecture in this setting. In section 5 we move to the problem of class groups.
We use some techniques of an (almost) unpublished work of Kueh, Lai and Tan
to show that the characteristic ideals of the class groups of Zdp-subextensions of

a cyclotomic ZN
p -extension are generated by some Stickelberger element. Such a

result can be extended to the whole ZN
p -extension via a limit process because, at

least under a certain assumption, the characteristic ideals behave well with respect
to the inverse limit (as Stickelberger elements do). This provides a new approach
to the Iwasawa Main Conjecture for class groups. At the end of section 5 we briefly
recall some results on what is known about class groups and characteristic p zeta
values. Section 6 is perhaps the closest to the spirit of function field arithmetic.
For simplicity we deal only with the Carlitz module. We study the Galois module
of cyclotomic units by means of Coleman power series and show how it fits in
an Iwasawa Main Conjecture. Finally we compute the image of cyclotomic units
by Coates-Wiles homomorphisms: one gets special values of the Carlitz-Goss zeta
function, a result which might provide some hints towards its interpolation 1.

1A different approach using a version of Iwasawa Main Conjecture for the cyclotomic Carlitz
extension and leading to information on special values of the Carlitz-Goss zeta function is carried
out in [1].
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This paper was first written in 2010 so it reflects the situation at the time. We
have added a few references to more recent developments related with the theory
presented here but have not attempted to include detailed descriptions of new
results. A recent excellent source for the arithmetic of function fields is the book
[14], in particular (since here we focus on Iwasawa theory) we mention the paper
[18] which also covers the non-commutative approach.

1.2. Some notations. Given a field L, L will denote an algebraic closure and
Lsep a separable closure; we shall use the shortening GL := Gal(Lsep/L). When L
is (an algebraic extension of) a global field, Lv will be its completion at the place
v, Ov the ring of integers of Lv and Fv the residue field. We are going to deal only
with global fields of positive characteristic: so FL shall denote the constant field
of L.

As mentioned before, let F be a global field of characteristic p > 0, with field of
constants FF of cardinality q. We also fix algebraic closures F and Fv for any place
v of F , together with embeddings F ↪→ Fv, so to get restriction maps GFv ↪→ GF .
All algebraic extensions of F (resp. Fv) will be assumed to be contained in F
(resp. Fv).

Script letters will denote infinite extensions of F . In particular, F shall always
denote a Galois extension of F , ramified only at a finite set of places S and such
that Γ := Gal(F/H) is a free Zp-module, with H/F a finite subextension (to
ease notations, in some sections we will just put H = F ); the associated Iwasawa
algebra is Λ := Zp[[Γ]]. We also put Γ̃ := Gal(F/F ) and Λ̃ := Zp[[Γ̃]].

The Pontrjagin dual of an abelian group A shall be denoted as A∨.

Remark 1.1. Class field theory shows that, in contrast with the number field
case, in the characteristic p setting Gal(F/F ) (and hence Γ) can be very large
indeed. Actually, it is well known that for every place v the group of 1-units
O∗v,1 ⊂ F ∗v (which is identified with the inertia subgroup of the maximal abelian
extension unramified outside v) is isomorphic to a countable product of copies of
Zp: hence there is no bound on the dimension of Γ. Furthermore, the only Zfinitep -

extension of F which arises somewhat naturally is the arithmetic one Farit, i.e.,
the compositum of F with the maximal pro-p-extension of FF . This justifies our
choice to concentrate on the case of a Γ of infinite rank: F shall mostly be the
maximal abelian extension unramified outside S (often imposing some additional
condition to make it disjoint from Farit).

We also recall that a Zp-extension of F can be ramified at infinitely many places
[26, Remark 4]: hence our condition on S is a quite meaningful restriction.

2. Control theorems for abelian varieties

2.1. Selmer groups. Let A/F be an abelian variety, let A[pn] be the group
scheme of pn-torsion points and put A[p∞] := lim

→
A[pn]. Since we work in charac-

teristic p we define the Selmer groups via flat cohomology of group schemes. For
any finite algebraic extension L/F let XL := SpecL and for any place v of L let
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Lv be the completion of L at v and XLv := SpecLv . Consider the local Kummer
embedding

κLv : A(Lv)⊗Qp/Zp ↪→ lim
−→
n

H1
fl(XLv , A[pn]) =: H1

fl(XLv , A[p∞]) .

Definition 2.1. The p part of the Selmer group of A over L is defined as

SelA(L)p := Ker

{
H1
fl(XL, A[p∞])→

∏
v

H1
fl(XLv , A[p∞])/ImκLv

}

where the map is the product of the natural restrictions at all primes v of L. For
an infinite algebraic extension L/F we define, as usual, the Selmer group SelA(L)p
via the direct limit of the SelA(L)p for all the finite subextensions L of L.

In this section we let Fd/F be a Zdp-extension (d < ∞) with Galois group
Γd and associated Iwasawa algebra Λd . Our goal is to describe the structure of
SelA(Fd)p (actually of its Pontrjagin dual) as a Λd-module. The main step is a
control theorem proved in [9] for the case of elliptic curves and in [58] in general,
which will enable us to prove that S(Fd) := SelA(Fd)∨p is a finitely generated (in
some cases torsion) Λd-module. The proof of the control theorem requires semi-
stable reduction for A at the places which ramify in Fd/F : this is not a restrictive
hypothesis thanks to the following (see [46, Lemma 2.1])

Lemma 2.2. Let F ′/F be a finite Galois extension. Let F ′d := FdF ′ and Λ′d :=
Zp[[Gal(F ′d/F ′)]]. Put A′ for the base change of A to F ′. If S ′ := SelA′(F ′d)∨p is
a finitely generated (torsion) Λ′d-module, then S is a finitely generated (torsion)
Λd-module.

Proof. From the natural embeddings SelA(L)p ↪→ H1
fl(XL, A[p∞]) (any L) one

gets a diagram between duals

H1
fl(XF ′d , A[p∞])∨ // //

��

S ′

��
H1
fl(XFd , A[p∞])∨ // //

����

S

����
H1(Gal(F ′d/Fd), A[p∞](F ′d))∨ // // S/ImS ′

(where in the lower left corner one has the dual of a Galois cohomology group and
the whole left side comes from the dual of the Hochschild-Serre spectral sequence).
Obviously F ′d/Fd is finite (since F ′/F is) and A[p∞](F ′d) is cofinitely generated,
hence H1(Gal(F ′d/Fd), A[p∞](F ′d))∨ and S/ImS ′ are finite as well. Therefore S
is a finitely generated (torsion) Λ′d-module and the lemma follows from the fact
that Gal(F ′d/F ′) is open in Γd .



6 A. Bandini, F. Bars, I. Longhi

2.2. Elliptic curves. Let E/F be an elliptic curve, non-isotrivial (i.e., j(E) 6∈
FF ) and having good ordinary or split multiplicative reduction at all the places
which ramify in Fd/F (assuming there is no ramified prime of supersingular re-
duction one just needs a finite extension of F to achieve this). We remark that for
such curves E[p∞](F sep) is finite (it is an easy consequence of the fact that the
pn-torsion points for n� 0 generate inseparable extensions of F , see for example
[12, Proposition 3.8]).
For any finite subextension F ⊆ L ⊆ Fd we put ΓL := Gal(Fd/L) and consider
the natural restriction map

aL : SelE(L)p −→ SelE(Fd)ΓL
p .

The following theorem summarizes results of [9] and [58].

Theorem 2.3. In the above setting assume that Fd/F is unramified outside a finite
set of places of F and that E has good ordinary or split multiplicative reduction
at all ramified places. Then Ker aL is finite (of order bounded independently of
L) and Coker aL is a cofinitely generated Zp-module (of bounded corank if d = 1).
Moreover if all places of bad reduction for E are unramified in Fd/F , then Coker aL
is finite as well (of bounded order if d = 1).

Proof. Let Fw be the completion of Fd at w and, to shorten notations, let

G(XL) := Im

{
H1
fl(XL, E[p∞]) −→

∏
v

H1
fl(XLv , E[p∞])/ImκLv

}

(analogous definition for G(XFd) ).
Consider the diagram

SelE(L)p

aL

��

� � // H1
fl(XL, E[p∞])

bL

��

// // G(XL)

cL

��
SelE(Fd)ΓL

p
� � // H1

fl(XFd , E[p∞])ΓL // G(XFd)ΓL .

Since XFd/XL is a Galois covering the Hochschild-Serre spectral sequence (see [44,
III.2.21 a),b) and III.1.17 d)]) yields

Ker bL = H1(ΓL, E[p∞](Fd)) and Coker bL ⊆ H2(ΓL, E[p∞](Fd))

(where the Hi’s are Galois cohomology groups). Since E[p∞](Fd) is finite it is easy
to see that

|Ker bL| 6 |E[p∞](Fd)|d and |Coker bL| 6 |E[p∞](Fd)|
d(d−1)

2

([9, Lemma 4.1]). By the snake lemma the inequality on the left is enough to prove
the first statement of the theorem, i.e.,

|Ker aL| 6 |Ker bL| 6 |E[p∞](Fd)|d
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which is finite and bounded independently of L (actually one can also use the
upper bound |E[p∞](F sep)|d which makes it independent of Fd as well).
We are left with Ker cL : for any place w of Fd dividing v define

dw : H1
fl(XLv , E[p∞])/ImκLv −→ H1

fl(XFw , E[p∞])/Imκw .

Then
Ker cL ↪→

∏
v

⋂
w|v

Ker dw

(note also that Ker dw really depends on v and not on w). If v totally splits in
Fd/L then dw is obviously an isomorphism. Therefore from now on we study the
Ker dw’s only for primes which are not totally split. Moreover, because of the
following diagram coming from the Kummer exact sequence

H1
fl(XLv , E[p∞])/ImκLv

� � //

dw

��

H1
fl(XLv , E)

hw

��
H1
fl(XFw , E[p∞])/ImκFw

� � // H1
fl(XFw , E) ,

one has an injection

Ker dw ↪→ Ker hw ' H1(ΓLv , E(Fw))

which allows us to focus on H1(ΓLv , E(Fw)).

2.2.1. Places of good reduction. If v is unramified let Lunrv be the maximal
unramified extension of Lv . Then using the inflation map and [45, Proposition
I.3.8] one has

H1(ΓLv , E(Fw)) ↪→ H1(Gal(Lunrv /Lv), E(Lunrv )) = 0 .

Let Ê be the formal group associated with E and, for any place v, let Ev be the
reduced curve. From the exact sequence

Ê(OLv ) ↪→ E(Lv)� Ev(Fv)

and the surjectivity of E(Lv)� Ev(Fv) (see [44, Exercise I.4.13]), one gets

H1(ΓLv , Ê(Ow)) ↪→ H1(ΓLv , E(Fw))→ H1(ΓLv , Ev(Fw)) .

Using the Tate local duality (see [45, Theorem III.7.8 and Appendix C]) and a
careful study of the pn-torsion points in inseparable extensions of Lv , Tan proves
that H1(ΓLv , Ê(Ow)) is isomorphic to the Pontrjagin dual of Ev[p

∞](Fv) (see [58,
Theorem 2]). Hence

|H1(ΓLv , E(Fw))| 6 |H1(ΓLv , Ev(Fw))| |Ev[p∞](Fv)| .
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Finally let L′v be the maximal unramified extension of Lv contained in Fw (so that,
in particular, Fw = FL′v ) and let ΓL′v := Gal(Fw/L′v) be the inertia subgroup of
ΓLv . The Hochschild-Serre sequence reads as

H1(ΓLv/ΓL′v , Ev(FL′v )) ↪→H1(ΓLv , Ev(Fw))

↓

H1(ΓL′v , Ev(Fw))ΓLv/ΓL′v → H2(ΓLv/ΓL′v , Ev(FL′v )) .

Now ΓLv/ΓL′v can be trivial, finite cyclic or Zp and in any case Lang’s Theorem
yields

Hi(ΓLv/ΓL′v , Ev(FL′v )) = 0 i = 1, 2 .

Therefore

H1(ΓLv , Ev(Fw)) ' H1(ΓL′v , Ev(FL′v ))Gal(L
′
v/Lv) ' H1(ΓL′v , Ev(Fv))

and eventually

|H1(ΓLv , E(Fw))| 6 |H1(ΓL′v , Ev(Fv))| |Ev[p
∞](Fv)|

6 |Ev[p∞](Fv)|d(L′v)+1 6 |Ev[p∞](Fv)|d+1

where d(L′v) := rankZpΓL′v 6 d and the middle bound (independent from Fd )
comes from [9, Lemma 4.1].

We are left with the finitely many primes of bad reduction.

2.2.2. Places of bad reduction. By our hypothesis at these primes we have
the Tate curve exact sequence

qZE,v ↪→ F∗w � E(Fw) .

For any subfield K of Fw/Lv one has a Galois equivariant isomorphism

K∗/O∗KqZE,v ' TK

(coming from E0(Fw) ↪→ E(Fw)� TFw ), where TK is a finite cyclic group of order
−ordK(j(E)) arising from the group of connected components (see, for example,
[9, Lemma 4.9 and Remark 4.10]). Therefore

H1(ΓLv , E(Fw)) = lim
−→
K

H1(ΓK , E(K)) ↪→ lim
−→
K

H1(ΓK , TK) ' lim
−→
K

(TK)d(K)
p ,

where (TK)p is the p-part of TK and d(K) = rankZpΓK .
If v is unramified then all TK ’s are isomorphic to TLv and d(K) = d(Lv) = 1;

hence
|H1(ΓLv , E(Fw))| = |(TLv )p| = |(TFν )p| ,

where ν is the prime of F lying below v (note that the bound is again independent
of Fd ).
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If v is ramified then taking Galois cohomology in the Tate curve exact sequence,
one finds

Ker hw = H1(ΓLv , E(Fw)) ↪→ H2(ΓLv , q
Z
E,v)

where the injectivity comes from Hilbert 90.
Since ΓLv acts trivially on qZE,v, one finds that

Ker hw ↪→ H2(ΓLv , q
Z
E,v) ' H2(ΓLv ,Z) ' (ΓabLv )∨ ' (Qp/Zp)d(Lv) ↪→ (Qp/Zp)d ,

i.e., Ker hw is a cofinitely generated Zp-module.
This completes the proof for the general case. If all ramified primes are of good

reduction, then the Ker dw’s are finite so Coker aL is finite as well. In particular
its order is bounded by∏

v ram, good

|Ev[p∞](FLv )|d+1 ×
∏

v inert, bad

pordp(ordv(j(E))) × |Coker bL| .

If d = 1 the last term is trivial and, in a Zp-extension, the (finitely many) places
which are ramified or inert of bad reduction admit only a finite number of places
above them. If d > 2 such bound is not independent of L because the number
of terms in the products is unbounded. In the case of ramified primes of bad
reduction the bound for the corank is similar.

Both SelE(Fd)p and its Pontrjagin dual are modules over the ring Λd in a
natural way. An easy consequence of the previous theorem and of Nakayama’s
Lemma (see [6]) is the following (see for example [9, Corollaries 4.8 and 4.13])

Corollary 2.4. In the setting of the previous theorem, let S(Fd) be the Pontrjagin
dual of SelE(Fd)p . Then S(Fd) is a finitely generated Λd-module. Moreover if all
ramified primes are of good reduction and SelE(F )p is finite, then S(Fd) is Λd-
torsion.

Remarks 2.5.

1. We recall that, thanks to Lemma 2.2, the last corollary holds when there
are no ramified primes of supersingular reduction for E (when such a prime
is present the finitely generated statement does not hold anymore, see [59,
Theorem 3.10]).

2. The ramified primes of split multiplicative reduction are the only obstacle
to the finiteness of Coker aL and this somehow reflects the number field
situation as described in [42, section II.6], where the authors defined an
extended Mordell-Weil group whose rank is rank E(F ) + N (where N is
the number of primes of split multiplicative reduction and dividing p, i.e.,
totally ramified in the cyclotomic Zp-extension they work with) to deal with
the phenomenon of exceptional zeroes.

3. A different way of having finite kernels and cokernels (and then, at least
in some cases, torsion modules S(Fd) ) consists in a modified version of the
Selmer groups. Examples with trivial or no conditions at all at the ramified
primes of bad reduction are described in [9, Theorem 4.12].
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4. The available constructions of a p-adic L-function associated to ZN
p -extensions

require the presence of a totally ramified prime p of split multiplicative re-
duction for E. Thus the theorem applies to that setting but, unfortunately,
it only provides finitely generated Λd-modules S(Fd).

5. The paper [38] describes an example of an elliptic curve E/F and a Zp-
extension F1 such that S(F1) is a non-torsion Λ1-module (the last section of
[38] verifies the vanishing of the p-adic L-function attached to these E and
F , in accordance with the Iwasawa Main Conjecture).

2.3. Higher dimensional abelian varieties. We go back to the general case
of an abelian variety A/F . For any finite subextension L/F of Fd we put ΓL :=
Gal(Fd/L) and consider the natural restriction map

aL : SelA(L)p −→ SelA(Fd)ΓL
p .

The following theorem summarizes results of [58].

Theorem 2.6. In the above setting assume that Fd/F is unramified outside a finite
set of places of F and that A has good ordinary or split multiplicative reduction at
all ramified places. Then Ker aL is finite (of bounded order if d = 1) and Coker aL
is a cofinitely generated Zp-module. Moreover if all places of bad reduction for A
are unramified in Fd/F , then Coker aL is finite as well (of bounded order if d = 1).

Proof. We use the same notations and diagrams as in Theorem 2.3, substituting
the abelian variety A for the elliptic curve E.
The Hochschild-Serre spectral sequence yields

Ker bL = H1(ΓL, A[p∞](Fd)) and Coker bL ⊆ H2(ΓL, A[p∞](Fd)) .

Let L0 ⊆ Fd be the extension generated by A[p∞](Fd). The extension L0/L is
everywhere unramified (for the places of good reduction see [58, Lemma 2.5.1 (b)],
for the other places note that the pn-torsion points come from the pn-th roots of the
periods provided by the Mumford parametrization so they generate an inseparable
extension while Fd/F is separable): hence Gal(L0/L) ' ∆× Zep where ∆ is finite
and e = 0 or 1. Let γ be a topological generator of Zep in Gal(L0/L) (if e = 0 then

γ = 1) and let L1 be its fixed field. Then A[p∞](Fd)<γ> = A[p∞](L1) is finite
and we can apply [10, Lemma 3.4] (with b the maximum between |A[p∞](L1)| and
|A[p∞](Fd)/(A[p∞](Fd))div|) to get

|Ker bL| 6 bd and |Coker bL| 6 b
d(d−1)

2 .

By the snake lemma the inequality on the left is enough to prove that Ker aL is
finite (for the bounded order in the case d = 1 see [58, Corollary 3.2.4]).
The bounds for the Ker dw’s are a direct generalization of the ones provided for
the case of the elliptic curve so we give just a few details. Recall the embedding

Ker dw ↪→ Ker hw ' H1(ΓLv , E(Fw)) .
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2.3.1. Places of good reduction. If v is unramified then

H1(ΓLv , A(Fw)) ↪→ H1(Gal(Lunrv /Lv), A(Lunrv )) = 0 .

If v is ramified one has an exact sequence (as above)

H1(ΓLv , Â(OFw)) ↪→ H1(ΓLv , A(Fw))→ H1(ΓLv , Av(FFw)) .

By [58, Theorem 2]

H1(ΓLv , Â(OFw)) ' Bv[p∞](FLv )

(where B is the dual variety of A) and the last group has the same order of
Av[p

∞](FLv ). Using Lang’s theorem as in 2.2.1, one finds

|H1(ΓLv , A(Fw))| 6 |Av[p∞](FLv )|d+1 .

2.3.2. Places of bad reduction. If v is unramified let π0,v(A) be the group
of connected components of the Néron model of A at v. Then, again by [45,
Proposition I.3.8],

H1(ΓLv , A(Fw)) ↪→ H1(Gal(Lunrv /Lv), A(Lunrv )) ' H1(Gal(Lunrv /Lv), π0,v(A))

and the last group has order bounded by |π0,v(A)Gal(L
unr
v /Lv)|.

If v is ramified one just uses Mumford’s parametrization with a period lattice
Ωv ⊂ Lv × · · · × Lv (genus A times) to prove that H1(ΓLv , A(Fw)) is cofinitely
generated as in 2.2.2.

We end this section with the analogue of Corollary 2.4.

Corollary 2.7. In the setting of the previous theorem, let S(Fd) be the Pontrjagin
dual of SelA(Fd)p . Then S(Fd) is a finitely generated Λd-module. Moreover if all
ramified primes are of good reduction and SelA(F )p is finite, then S(Fd) is Λd-
torsion.

Remark 2.8. In [46, Theorem 1.7], by means of crystalline and syntomic coho-
mology, Ochiai and Trihan prove a stronger result. Indeed they can show that
the dual of the Selmer group is always torsion, with no restriction on the abelian
variety A/F , but only in the case of the arithmetic extension Farit/F , which lies
outside the scope of the present paper. Moreover in the case of a (not necessarily
commutative) pro-p-extension containing Farit , they prove that the dual of the
Selmer group is finitely generated (for a precise statement, see [46], in particular
Theorem 1.9) 2.

2A generalization of the torsion statement for Zd
p-extensions containing Farit can be found in

[59] and [8] (where one also finds an approach to the results of Section 3 in terms of characteristic
ideals).
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3. Λ-modules and Fitting ideals

We need a few more notations.
For any Zdp-extension Fd , let Γ(Fd) := Gal(Fd/F ) and Λ(Fd) := Zp[[Γ(Fd)]] (the

Iwasawa algebra) with augmentation ideal IFd (or simply Γd , Λd and Id if the
extension Fd is clearly fixed).
For any d > e and any Zd−ep -extension Fd/Fe , we put Γ(Fd/Fe) := Gal(Fd/Fe),
Λ(Fd/Fe) := Zp[[Γ(Fd/Fe)]] and IFdFe as the augmentation ideal of Λ(Fd/Fe), i.e.,

the kernel of the canonical projection πFdFe : Λ(Fd)→ Λ(Fe) (whenever possible all

these will be abbreviated to Γde , Λde , Ide and πde respectively).
Recall that Λ(Fd) is (noncanonically) isomorphic to Zp[[T1, . . . , Td ]]. A finitely
generated torsion Λ(Fd)-module is said to be pseudo-null if its annihilator ideal
has height at least 2. If M is a finitely generated torsion Λ(Fd)-module, then there
is a pseudo-isomorphism (i.e., a morphism with pseudo-null kernel and cokernel)

M ∼Λ(Fd)

n⊕
i=1

Λ(Fd)/(geii ) ,

where the gi’s are irreducible elements of Λ(Fd) (determined up to an element of
Λ(Fd)∗ ) and n and the ei’s are uniquely determined by M (see e.g. [15, VII.4.4
Theorem 5]).

Definition 3.1. In the above setting the characteristic ideal of M is

ChΛ(Fd)(M) :=


0 if M is not torsion(

n∏
i=1

geii

)
otherwise

.

Let Z be a finitely generated Λ(Fd)-module and let

Λ(Fd)a
ϕ−→Λ(Fd)b � Z

be a presentation where the map ϕ can be represented by a b × a matrix Φ with
entries in Λ(Fd) .

Definition 3.2. In the above setting the Fitting ideal of Z is

FittΛ(Fd)(Z) :=


0 if a < b
the ideal generated by all the
determinants of the b× b if a > b
minors of the matrix Φ

.

Let F/F be a ZN
p -extension with Galois group Γ. Our goal is to define an

ideal in Λ := Zp[[Γ]] associated with S, the Pontrjagin dual of SelA(F)p . For this
we consider all the Zdp-extensions Fd/F (d ∈ N) contained in F (which we call
Zp-finite extensions). Then F = ∪Fd and Λ = lim

←
Λ(Fd) := lim

←
Zp[[Gal(Fd/F )]].
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The classical characteristic ideal does not behave well (in general) with respect to
inverse limits (because the inverse limit of pseudo-null modules is not necessarily
pseudo-null). For the Fitting ideal, using the basic properties described in the
Appendix of [43], we have the following

Lemma 3.3. Let Fd ⊂ Fe be an inclusion of multiple Zp-extensions, e > d.
Assume that A[p∞](F) = 0 or that FittΛ(Fd)(S(Fd)) is principal. Then

πFeFd(FittΛ(Fe)(S(Fe))) ⊆ FittΛ(Fd)(S(Fd)) .

Proof. Consider the natural map aed : SelA(Fd)p → SelA(Fe)
Γed
p and dualize to get

S(Fe)/IedS(Fe)→ S(Fd)� (Ker aed)
∨

where (as in Theorem 2.6)

Ker aed ↪→ H1(Γed, A[p∞](Fe))

is finite. If A[p∞](F) = 0 then (Ker aed)
∨ = 0 and

πed(FittΛe(S(Fe))) = FittΛd(S(Fe)/IedS(Fe)) ⊆ FittΛd(S(Fd)) .

If (Ker aed)
∨ 6= 0 one has

FittΛd(S(Fe)/IedS(Fe))FittΛd((Ker aed)
∨) ⊆ FittΛd(S(Fd)) .

The Fitting ideal of a finitely generated torsion module contains a power of its
annihilator, so let σ1 , σ2 be two relatively prime elements of FittΛd((Ker aed)

∨)
and θd a generator of FittΛd(S(Fd)). Then θd divides σ1α and σ2α for any α ∈
FittΛd(S(Fe)/IedS(Fe)) (it holds, in the obvious sense, even for θd = 0). Hence

πed(FittΛe(S(Fe))) = FittΛd(S(Fe)/IedS(Fe)) ⊆ FittΛd(S(Fd)) .

Remark 3.4. In the case A = E an elliptic curve, the hypothesis E[p∞](F) = 0
is satisfied if j(E) 6∈ (F ∗)p, i.e., when the curve is admissible (in the sense of [12]);

otherwise j(E) ∈ (F ∗)p
n − (F ∗)p

n+1

and one can work over the field F p
n

. The
other hypothesis is satisfied in general by elementary Λ(Fd)-modules or by modules
having a presentation with the same number of generators and relations.

Let πFd be the canonical projection from Λ to Λ(Fd) with kernel IFd . Then
the previous lemma shows that, as Fd varies, the (πFd)−1(FittΛ(Fd)(S(Fd))) form
an inverse system of ideals in Λ.

Definition 3.5. Assume that A[p∞](F) = 0 or that FittΛ(Fd)(S(Fd)) is principal
for any Fd . Define

F̃ ittΛ(S(F)) := lim
←−
Fd

(πFd)−1(FittΛ(Fd)(S(Fd)))

to be the pro-Fitting ideal of S(F) (the Pontrjagin dual of SelE(F)p ).
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Proposition 3.6. Assume that A[p∞](F) = 0 or that FittΛ(Fd)(S(Fd)) is prin-

cipal for any Fd . If corankZpSelA(F1)
Γ(F1)
p > 1 for any Zp-extension F1/F con-

tained in F , then F̃ ittΛ(S(F)) ⊂ I (where I is the augmentation ideal of Λ).

Proof. Recall that IFd is the augmentation ideal of Λ(Fd), that is, the kernel of

πFd : Λ(Fd) → Zp . By hypothesis FittZp((SelA(F1)
Γ(F1)
p )∨) = 0. Thus, since

Zp = Λ(F1)/IF1 and (SelA(F1)
Γ(F1)
p )∨ = S(F1)/IF1S(F1),

0 = FittZp((SelA(F1)Γ(F1)
p )∨) = πF1(FittΛ(F1)(S(F1))) ,

i.e., FittΛ(F1)(S(F1)) ⊂ Ker πF1 = IF1 .

For any Zdp-extension Fd take a Zp-extension F1 contained in Fd . Then, by Lemma
3.3,

πFdF1
(FittΛ(Fd)(S(Fd))) ⊆ FittΛ(F1)(S(F1)) ⊂ IF1 .

Note that πFd = πF1 ◦ πFdF1
. Therefore

FittΛ(Fd)(S(Fd)) ⊂ IFd ⇐⇒ πFdF1
(FittΛ(Fd)(S(Fd))) ⊂ IF1 ,

i.e., FittΛ(Fd)(S(Fd)) ⊂ IFd for any Zp-finite extension Fd . Finally

F̃ ittΛ(S(F)) :=
⋂
Fd

(πFd)−1(FittΛ(Fd)(S(Fd))) ⊂
⋂
Fd

(πFd)−1(IFd) ⊂ I .

Remark 3.7. From the exact sequence

Ker aF1 ↪→ SelA(F )p
aF1

−−→SelA(F1)Γ(F1)
p � Coker aF1

and the fact that Ker aF1
is finite one immediately finds out that the hypothesis on

corankZpSelA(F1)
Γ(F1)
p is satisfied if rankZA(F ) > 1 or corankZpCoker aF1 > 1.

As already noted, when there is a totally ramified prime of split multiplicative
reduction, the second option is very likely to happen. In the number field case,
when F is the cyclotomic Zp-extension and, in some cases, SelE(F)∨p is known to
be a torsion module, this is equivalent to saying that T divides a generator of the
characteristic ideal of SelE(F)∨p (i.e., there is an exceptional zero). Note that all
the available constructions of p-adic L-function for our setting require a ramified
place of split multiplicative reduction and they are all known to belong to I.

4. Modular abelian varieties of GL2-type

The previous sections show how to define the algebraic (p-adic) L-function asso-
ciated with F/F and an abelian variety A/F under quite general conditions. On
the analytic side there is, of course, the complex Hasse-Weil L-function L(A/F, s),
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so the problem becomes to relate it to some element in an Iwasawa algebra. In
this section we will sketch how this can be done at least in some cases; in order to
keep the paper to a reasonable length, the treatment here will be very brief.

We say that the abelian variety A/F is of GL2-type if there is a number field
K such that [K : Q] = dimA and K embeds into EndF (A) ⊗ Q. In particular,
this implies that for any l 6= p the Tate module TlA yields a representation of GF
in GL2(K ⊗ Ql). The analogous definition for A/Q can be found in [52], where
it is proved that Serre’s conjecture implies that every simple abelian variety of
GL2-type is isogenous to a simple factor of a modular Jacobian. We are going to
see that a similar result holds at least partially in our function field setting.

4.1. Automorphic forms. Let AF denote the ring of adeles of F . By au-
tomorphic form for GL2 we shall mean a function f : GL2(AF ) −→ C which
factors through GL2(F )\GL2(AF )/K, where K is some open compact subgroup
of GL2(AF ); furthermore, f is cuspidal if it satisfies some additional technical
condition (essentially, the annihilation of some Fourier coefficients). A classical
procedure associates with such an f a Dirichlet sum L(f, s): see e.g. [64, Chapters
II and III].

The C-vector spaces of automorphic and cuspidal forms provide representations
of GL2(AF ). Besides, they have a natural Q-structure: in particular, the decom-
position of the space of cuspidal forms in irreducible representations of GL2(AF )
holds over Q (and hence over any algebraically closed field of characteristic zero);
see e.g. the discussion in [51, page 218]. We also recall that every irreducible au-
tomorphic representation π of GL2(AF ) is a restricted tensor product ⊗′vπv, v
varying over the places of F : the πv’s are representations of GL2(Fv) and they are
called local factors of π.

Let WF denote the Weil group of F : it is the subgroup of GF consisting of
elements whose restriction to Fq is an integer power of the Frobenius. By a fun-
damental result of Jacquet and Langlands [32, Theorem 12.2], a two-dimensional
representation of WF corresponds to a cuspidal representation if the associated L-
function and its twists by characters of WF are entire functions bounded in vertical
strips (see also [64]).

Let A/F be an abelian variety of GL2-type. Recall that L(A/F, s) is the
L-function associated with the compatible system of l-adic representations of GF
arising from the Tate modules TlA, as l varies among primes different from p. The-
orems of Grothendieck and Deligne show that under certain assumptions L(A/F, s)
and all its twists are polynomials in q−s satisfying the conditions of [32, Theorem
12.2] (see [23, §9] for precise statements). In particular all elliptic curves are ob-
viously of GL2-type and one finds that L(A/F, s) = L(f, s) for some cusp form f
when A is a non-isotrivial elliptic curve.

4.2. Drinfeld modular curves. From now on we fix a place ∞.

The main source for this section is Drinfeld’s original paper [24]. Here we just
recall that for any divisor n of F with support disjoint from ∞ there exists a
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projective curve M(n) (the Drinfeld modular curve) and that these curves form a
projective system. Hence one can consider the Galois representation

H := lim
→
H1
et(M(n)× F sep,Ql).

Besides, the moduli interpretation of the curves M(n) allows to define an action
of GL2(Af ) on H (where Af denotes the adeles of F without the component
at ∞). Let Π∞ be the set of those cuspidal representations having the special
representation of GL2(F∞) (i.e., the Steinberg representation) as local factor at
∞. Drinfeld’s reciprocity law [24, Theorem 2] (which realizes part of the Langlands
correspondence for GL2 over F ) attaches to any π ∈ Π∞ a compatible system of
two-dimensional Galois representations σ(π)l : GF −→ GL2(Ql) by establishing an
isomorphism of GL2(Af )×GF -modules

H '
⊕
π∈Π∞

(⊗′v 6=∞πv)⊗ σ(π)l . (4.1)

As σ(π)l one obtains all l-adic representations of GF satisfying certain properties:
for a precise list (and a thorough introduction to all this subject) see [51]. Here we
just remark the following requirement: the restriction of σ(π)l to GF∞ has to be
the special l-adic Galois representation sp∞. For example, the representation orig-
inated from the Tate module TlE of an elliptic curve E/F satisfies this condition
if and only if E has split multiplicative reduction at ∞.

The Galois representations appearing in (4.1) are exactly those arising from
the Tate module of the Jacobian of some M(n). We call modular those abelian
varieties isogenous to some factor of Jac(M(n)). Hence we see that a necessary
condition for abelian varieties of GL2-type to be modular is that their reduction
at ∞ is a split torus.

The paper [25] provides a careful construction of Jacobians of Drinfeld modular
curves by means of rigid analytic geometry.

4.3. The p-adic L-functions. For any ring R let Meas(P1(Fv), R) denote the
R-valued measures on the topological space P1(Fv) (that is, finitely additive func-
tions on compact open subsets of P1(Fv)) and Meas0(P1(Fv), R) the subset of
measures of total mass 0. A key ingredient in the proof of (4.1) is the identifica-
tion of the space of R-valued cusp forms with direct sums of certain subspaces of
Meas0(P1(F∞), R) (for more precise statements, see [51, §2] and [25, §4]). There-
fore we can associate with any modular abelian variety A some measure µA on
P1(F∞); this fact can be exploited to construct elements (our p-adic L-functions)
in Iwasawa algebras in the following way.

Let K be a quadratic algebra over F : an embedding of K into the F -algebra of
2× 2 matrices M2(F ) gives rise to an action of the group G := (K ⊗F∞)∗/F ∗∞ on
the PGL2(F∞)-homogeneous space P1(F∞). Class field theory permits to relate G
to a subgroup Γ of Γ̃ = Gal(F/F ), where F is a certain extension of F (depending
on K) ramified only above ∞. Then the pull-back of µA to G yields a measure
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on Γ; this is enough because Meas(Γ, R) is canonically identified with R⊗Λ (and
Meas0(Γ, R) with the augmentation ideal). Various instances of the construction
just sketched are explained in [41] for the case when A is an elliptic curve: here
one can take R = Z. Similar ideas were used in Pál’s thesis [48], where there is
also an interpolation formula relating the element in Z[[Γ]] so obtained to special
values of the complex L-function. One should also mention [49] for another con-
struction of p-adic L-function, providing an interpolation property for one of the
cases studied in [41]. Notice that in all this cases the p-adic L-function is, more or
less tautologically, in the augmentation ideal.

A different approach had been previously suggested by Tan [57]: starting with
cuspidal automorphic forms, he defines elements in certain group algebras and
proves an interpolation formula [57, Proposition 2]. Furthermore, if the cusp form
is “well-behaved” his modular elements form a projective system and originate an
element in an Iwasawa algebra of the kind considered in the present paper: in
particular, this holds for non-isotrivial elliptic curves having split multiplicative
reduction. In the case of an elliptic curve over Fq(T ) Teitelbaum [61] re-expressed
Tan’s work in terms of modular symbols (along the lines of [42]); in [30] it is shown
how this last method can be related to the “quadratic algebra” techniques sketched
above.

A unified treatment of all of this will appear in [11].

Thus for a modular abelian variety A/F we can define both a Fitting ideal and a
p-adic L-function: it is natural to expect that an Iwasawa Main Conjecture should
hold, i.e., that the Fitting ideal should be generated by the p-adic L-function.

Remark 4.1. In the cases considered in this paper (involving a modular abelian
variety and a geometric extension of the function field) the Iwasawa Main Conjec-
ture is still wide open. However, recently there has been some interesting progress
in two related settings.

First, one can take A to be an isotrivial abelian variety (notice that [57, page
308] defines modular elements also for an isotrivial elliptic curve). Thanks to an
observation of Ki-Seng Tan, the Main Conjecture in this setting can be reduced to
the one for class groups, which is already known to hold (as it will be explained
in the next section). On this basis, the Iwasawa Main Conjecture for constant
ordinary abelian varieties is proved in [39] when F is a Zdp-extension.

Second, one can take as F the maximal arithmetic pro-p-extension of F , i.e.,

F = Farit = FF(p)
F , where F(p)

F is the subfield of FF defined by Gal(F(p)
F /FF ) ' Zp

(note that this is the setting of [46, Theorem 1.7]). In this case Trihan has obtained
a proof of the Iwasawa Main Conjecture, by techniques of syntomic cohomology.
No assumption on the abelian variety A/F is needed: the relevant p-adic L-function
is defined by means of cohomology and it interpolates the Hasse-Weil L-function
(see [40]).



18 A. Bandini, F. Bars, I. Longhi

5. Class groups

For any finite extension L/F , A(L) will denote the p-part of the group of de-
gree zero divisor classes of L; for any F ′ intermediate between F and F , we put
A(F ′) := lim

←
A(L) as L runs among finite subextensions of F ′/F (the limit being

taken with respect to norm maps). The study of similar objects and their relations
with zeta functions is an old subject and was the starting point for Iwasawa himself
(see [62] for a quick summary). The goal of this section is to say something on
what is known about Iwasawa Main Conjectures for class groups in our setting.

5.1. Crew’s work. A version of the Iwasawa Main Conjecture over global func-
tion fields was proved by R. Crew in [22]. His main tools are geometric: so he
considers an affine curve X over a finite field of characteristic p (in the language of
the present paper, F is the function field of X) and a p-adic character of π1(X),
that is, a continuous homomorphism ρ : π1(X) −→ R∗, where R is a complete
local noetherian ring of mixed characteristic, with maximal ideal m (notice that
the Iwasawa algebras Λd introduced in section 2.1 above are rings of this kind). To
such a ρ are attached H(ρ, x) ∈ R[x] (the characteristic polynomial of the coho-
mology of a certain étale sheaf - see [21] for more explanation) and the L-function
L(ρ, x) ∈ R[[x]]. The main theorem of [22] proves, by means of étale and crystalline
cohomology, that the ratio L(ρ, x)/H(ρ, x) is a unit in the m-adic completion of
R[x]. An account of the geometric significance of this result (together with some of
the necessary background) is provided by Crew himself in [21]; in [22, §3] he shows
the following application to Iwasawa theory. Letting (in our notations) R be the
Iwasawa algebra Λ(Fd), the special value L(ρ, 1) can be seen to be a Stickelberger
element (the definition will be recalled in section 5.3 below). As for H(ρ, 1), [21,
Proposition 3.1] implies that it generates the characteristic ideal of the torsion Λd-
module lim

←
A(L)∨, L varying among finite subextensions of Fd/F 3. The Iwasawa

Main Conjecture follows.
Crew’s cohomological techniques are quite sophisticated. A more elementary

approach was suggested by Kueh, Lai and Tan in [37] (and refined, with Burns’s
contribution and different cohomological tools, in [16]). In the next two sections we
will give a brief account of this approach (and its consequences) in a particularly
simple setting, related to Drinfeld-Hayes cyclotomic extensions (which will be the
main topic of section 6).

5.2. Characteristic ideals for class groups. In this section (which somehow
parallels section 3) we describe an algebraic object which can be associated to the
inverse limit of class groups in a ZN

p -extension F of a global function field F . Since
our first goal is to use this “algebraic L-function” for the cyclotomic extension
which will appear in section 6.1, we make the following simplifying assumption.

3Note that in [21] our A(L)’s appear as Picard groups, so the natural functoriality yields
A(L) → A(L′) if L ⊂ L′ - that is, arrows are opposite to the ones we consider in this paper:
hence Crew takes Pontrjagin duals and we don’t.
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Assumption 5.1. There is only one ramified prime in F/F (call it p) and it is
totally ramified (in particular this implies that F is disjoint from Farit ).

We shall use some ideas of [36] which, in our setting, provide a quite elemen-
tary approach to the problem. We maintain the notations of section 3: F/F is
a ZN

p -extension with Galois group Γ and associated Iwasawa algebra Λ with aug-

mentation ideal I. For any d > 0 let Fd be a Zdp-extension of F contained in F ,
taken so that

⋃
Fd = F .

For any finite extension L/F let M(L) be the p-adic completion of the group
of divisor classes Div(L)/PL of L, i.e.,

M(L) := (L∗\IL/ΠvO∗v)⊗ Zp
where IL is the group of ideles of L. As before, when L/F is an infinite extension,
we putM(L) := lim

←
M(K) as K runs among finite subextensions of L/F (the limit

being taken with respect to norm maps). For two finite extensions L ⊃ L′ ⊃ F , the
degree maps degL and degL′ fit into the commutative diagram (with exact rows)

A(L) �
� //

NL
L′

��

M(L)
degL // //

NL
L′

��

Zp

��
A(L′) �

� //M(L′)
degL′ // // Zp ,

(5.1)

where NL
L′ denotes the norm and the vertical map on the right is multiplication

by [FL : FL′ ] (the degree of the extension between the fields of constants). For
an infinite extension L/F contained in F , taking projective limits (and recalling
Assumption 5.1 above), one gets an exact sequence

A(L)
� � //M(L)

degL // // Zp . (5.2)

Remark 5.2. If one allows non-geometric extensions, then the degL map above
becomes the zero map exactly when the Zp-extension Farit is contained in L.

It is well known that M(Fd) is a finitely generated torsion Λ(Fd)-module (see
e.g. [28, Theorem 1]), so the same holds for A(Fd) as well. Moreover take any
Zdp-extension Fd of F contained in F : since our extension F/F is totally ramified
at the prime p, for any Fd−1 ⊂ Fd one has

M(Fd)/IFdFd−1
M(Fd) 'M(Fd−1) (5.3)

(see for example [63, Lemma 13.15]). As in section 3, to ease notations we will
often erase the F from the indices (for example IFdFd−1

will be denoted by Idd−1 ),
hoping that no confusion will arise. Consider the following diagram

A(Fd) �
� //

γ−1

��

M(Fd)
deg // //

γ−1

��

Zp

γ−1

��
A(Fd) �

� //M(Fd)
deg // // Zp

(5.4)
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(where 〈γ〉 = Gal(Fd/Fd−1) =: Γdd−1 ; note also that the vertical map on the right
is 0) and its snake lemma sequence

A(Fd)Γdd−1
� � //M(Fd)Γdd−1

deg // Zp

��
Zp M(Fd)/Idd−1M(Fd)

degoooo A(Fd)/Idd−1A(Fd) .oo

(5.5)

For d > 2 the Λd-module Zp is pseudo-null, hence (5.2) yields ChΛd(M(Fd)) =
ChΛd(A(Fd)), and, using (5.3) and (5.5), one finds (for d > 3)

ChΛd−1
(A(Fd)/Idd−1A(Fd)) = ChΛd−1

(M(Fd)/Idd−1M(Fd))
= ChΛd−1

(M(Fd−1)) = ChΛd−1
(A(Fd−1)) (5.6)

(where all the modules involved are Λd−1-torsion modules).
Let

N(Fd) ↪→ A(Fd)
ι−→ E(Fd)� R(Fd) (5.7)

be the exact sequence coming from the structure theorem for Λd-modules (see
section 3), where

E(Fd) :=
⊕
i

Λd/(fi,d)

is an elementary module and N(Fd), R(Fd) are pseudo-null. Let ChΛd(A(Fd))
be the characteristic ideal of A(Fd): we want to compare ChΛd−1

(A(Fd−1)) with

πFdFd−1
(ChΛd(A(Fd))) for some Fd−1 ⊂ Fd and show that these characteristic ideals

form an inverse system (in Λ). Consider the module B(Fd) := N(Fd) ⊕ R(Fd).
We need the following hypothesis.

Assumption 5.3. There is a choice of the pseudo-isomorphism ι in (5.7) and a
splitting of the projection Γd � Γd−1 so that

i) Γd = 〈γd〉 ⊕ Γd−1;

ii) B(Fd) is a finitely generated torsion Zp[[Γd−1]]-module.

As explained in [29] (see the remarks just before Lemma 3), for any Fd and ι
one can find a subfield Fd−1 so that Assumption 5.3 holds.

In order to ease notations, we put γ = γd, so that Γdd−1 = 〈γ〉.

Lemma 5.4. With the above notations, one has

ChΛd−1
(A(Fd)/Idd−1A(Fd)) = πdd−1

(
ChΛd(A(Fd))

)
· ChΛd−1

(A(Fd)Γdd−1) .

Proof. We split the previous sequence in two by

N(Fd) ↪→ A(Fd)� C(Fd) , C(Fd) ↪→ E(Fd)� R(Fd)
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and consider the snake lemma sequences coming from the following diagrams

N(Fd) �
� //

γ−1

��

A(Fd) // //

γ−1

��

C(Fd)

γ−1

��

C(Fd) �
� //

γ−1

��

E(Fd) // //

γ−1

��

R(Fd)

γ−1

��
N(Fd) �

� // A(Fd) // // C(Fd) C(Fd) �
� // E(Fd) // // R(Fd) ,

(5.8)
i.e.,

N(Fd)Γdd−1
� � // A(Fd)Γdd−1 // C(Fd)Γdd−1

��
C(Fd)/Idd−1C(Fd) A(Fd)/Idd−1A(Fd)oooo N(Fd)/Idd−1N(Fd)oo

(5.9)

and

C(Fd)Γdd−1
� � // E(Fd)Γdd−1 // R(Fd)Γdd−1

��
R(Fd)/Idd−1R(Fd) E(Fd)/Idd−1E(Fd)oooo C(Fd)/Idd−1C(Fd) .oo

(5.10)

From (5.7) we get an exact sequence

A(Fd)/Idd−1A(Fd) −→
⊕
i

Λd/(γ − 1, fi,d) −→ R(Fd)/Idd−1R(Fd)

where the last term is a torsion Λd−1-module. So is A(Fd−1) for d > 3 and, by
(5.6), ChΛd−1

(A(Fd−1)) = ChΛd−1

(
A(Fd)/Idd−1A(Fd)

)
. It follows that none of

the fi,d’s belong to Idd−1 . Therefore:

1. the map γ − 1 : E(Fd) −→ E(Fd) has trivial kernel, i.e., E(Fd)Γdd−1 = 0 so

that C(Fd)Γdd−1 = 0 as well;

2. the characteristic ideal of the Λd−1-module E(Fd)/Idd−1E(Fd) is generated

by the product of the fi,d’s modulo Idd−1 , hence it is obviously equal to

πdd−1(ChΛd(A(Fd))).

Moreover, from the fact that N(Fd) and R(Fd) are finitely generated torsion Λd−1-
modules 4 and the multiplicativity of characteristic ideals, looking at the left (resp.
right) vertical sequence of the first (resp. second) diagram in (5.8), one finds

ChΛd−1
(N(Fd)Γdd−1) = ChΛd−1

(N(Fd)/Idd−1N(Fd))
4It might be worth to notice that this is the only point where we use the hypothesis that

Assumption 5.3 holds.
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and
ChΛd−1

(R(Fd)Γdd−1) = ChΛd−1
(R(Fd)/Idd−1R(Fd)) .

Hence from (5.9) one has

ChΛd−1
(A(Fd)/Idd−1A(Fd)) = ChΛd−1

(
C(Fd)/Idd−1C(Fd)

)
· ChΛd−1

(N(Fd)Γdd−1)

= ChΛd−1

(
C(Fd)/Idd−1C(Fd)

)
· ChΛd−1

(A(Fd)Γdd−1)

(where the last line comes from the isomorphism A(Fd)Γdd−1 ' N(Fd)Γdd−1 ). The
sequence (5.10) provides the equality

ChΛd−1
(C(Fd)/Idd−1C(Fd)) = ChΛd−1

(E(Fd)/Idd−1E(Fd))
= πdd−1(ChΛd(A(Fd))) .

Therefore one concludes that

ChΛd−1
(A(Fd)/Idd−1A(Fd)) = πdd−1

(
ChΛd(A(Fd))

)
·ChΛd−1

(A(Fd)Γdd−1) . (5.11)

Our next step is to prove that A(Fd)Γdd−1 = 0 (note that it would be enough
to prove that it is pseudo-null as a Λd−1-module). For this we need first a few
lemmas.

Lemma 5.5. Let G be a finite group and endow Zp with the trivial G-action. Then
for any G-module M we have

Hi(G,M ⊗ Zp) = Hi(G,M)⊗ Zp

for all i > 0.

This result should be well-known. Since we were not able to find a suitable
reference, here is a sketch of the proof.

Proof. Let X be a G-module which has no torsion as an abelian group and put
Y := X⊗Q. It is not hard to prove that Y G⊗Zp = (Y ⊗Zp)G and it follows that
the same holds for X, since XG⊗Zp is a saturated submodule of X⊗Zp. Applying
this to the standard complex by means of which the Hi(G,M) are defined, one can
prove the equality in the case M has no torsion as an abelian group. The general
case follows because any G-module is the quotient of two such modules.

Up to now we have mainly consideredM(L) as an Iwasawa module (for various
L), now we focus on its interpretation as a group of divisor classes. Let L be a
finite extensions of F and recall that we definedM(L) = (Div(L)/PL)⊗Zp . From
the exact sequence

F∗L ↪→ L∗ � PL

and the fact that |F∗L| is prime with p, one finds an isomorphism between L∗ ⊗Zp
and PL ⊗ Zp . Hence we can (and will) identify the two.
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Lemma 5.6. For any finite Galois extension L/F , the map

Div(L)Gal(L/F ) ⊗ Zp −→M(L)Gal(L/F )

is surjective.

Proof. The sequence

L∗ ⊗ Zp ↪→ Div(L)⊗ Zp �M(L) (5.12)

is exact because Zp is flat and |F∗L| is prime with p. The claim follows by taking
the Gal(L/F )-cohomology of (5.12) and applying Lemma 5.5 and Hilbert 90.

For any finite subextension L of F/F , let pL be the unique prime lying above
p. In the following lemma, we identify pL with its image in Div(L)⊗Zp. Moreover
for any element x ∈ M(F) we let xL denote its image in M(L) via the canonical
norm map.

Lemma 5.7. Let x ∈ M(F)Γ: then, for any L as above, xL is represented by a
Γ-invariant divisor supported in pL .

Proof. For any L, let yL be the image of pL inM(L). Since ZpyL is a closed subset
ofM(L), to prove the lemma it is enough to show that

(
xL+pnM(L)

)
∩ZpyL 6= ∅

for any n.
For any finite Galois extension K/L we have the maps

ιKL : Div(L)⊗ Zp −→ Div(K)⊗ Zp

and
NK
L : Div(K)⊗ Zp −→ Div(L)⊗ Zp

respectively induced by the inclusion and the norm. For any divisor whose support
is unramifed in K/L we have

NK
L (ιKL (D)) = [K : L]D .

Also, Lemma 5.5 yields

(Div(K)⊗ Zp)Gal(K/L) = Div(K)Gal(K/L) ⊗ Zp = ιKL (Div(L)⊗ Zp)

(since in a Gal(K/L)-invariant divisor all places of K above a same place of L
occur with the same multiplicity).

Choose n and let K ⊂ F be such that [K : L] > pn. By Lemma 5.6, there
exists a Gal(K/L)-invariant EK ∈ Div(K) ⊗ Zp having image xK . Write EK =
DK + aKpK , where aK ∈ Zp and DK has support disjoint from pK . Then DK is
Galois invariant, so DK = ιKL (DL) and (using Assumption 5.1)

NK
L (EK) = [K : L]DL + aKpL .

Projecting into M(L) we get xL ∈ aKyL + pnM(L) .
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Corollary 5.8. A(Fd)Γdd−1 = 0.

Proof. Taking Γdd−1-invariants in (5.2) (with L = Fd), one finds a similar sequence

A(Fd)Γdd−1
� � //M(Fd)Γdd−1

degFd // Zp . (5.13)

Lemma 5.7 holds, with exactly the same proof, also replacing F and Γ with Fd
and Γd. Therefore any x = (xL)L ∈M(Fd)Γdd−1 can be represented by a sequence
(aLpL)L. Furthermore NK

L (aKpK) = aLpL implies that the value aL is indepen-
dent of L: call it a. Then

degFd(x) = lim
(
aL degL(pL)

)
= adegF (p) .

Hence x ∈ Ker(degFd) = A(Fd)Γdd−1 only if a = 0.

Remark 5.9. The image of the degree map appearing in (5.13) is (deg p)Zp , so

degFd always provides an isomorphism between M(Fd)Γdd−1 and Zp . Moreover, if
p does not divide deg p, one has surjectivity as well. In this case, looking back at
the sequence (5.5), one finds a short exact sequence

A(Fd)/Idd−1A(Fd) �
� //M(Fd)/Idd−1M(Fd)

deg // // Zp .

From (5.1), by taking the limit with L and L′ varying respectively among subex-
tensions of Fd and Fd−1, one obtains a commutative diagram

M(Fd)/Idd−1M(Fd)
deg // //

N

��

Zp

M(Fd−1)
degFd−1 // // Zp

where the map N is the isomorphism induced by the norm, i.e., the one ap-
pearing in (5.3). This and the exact sequence (5.2) for L = Fd−1 , show that
A(Fd)/Idd−1A(Fd) ' A(Fd−1) (for any d > 1).

From (5.11) one finally obtains

ChΛd−1
(A(Fd−1)) = ChΛd−1

(A(Fd)/Idd−1A(Fd)) = πdd−1(ChΛd(A(Fd))) . (5.14)

We remark that this equation holds for any Zp-extension Fd/Fd−1 satisfying
Assumption 5.3. If the filtration {Fd : d ∈ N} verifies that Assumption at any
level d, then the inverse images of the ChΛ(Fd)(A(Fd)) in Λ (with respect to the
canonical projections πFd : Λ→ Λ(Fd) ) form an inverse system and we can define

Definition 5.10. The pro-characteristic ideal of A(F) is

C̃hΛ(A(F)) := lim
←−
Fd

(πFd)−1(ChΛ(Fd)(A(Fd))) .
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Remark 5.11. Two questions naturally arise from the above definition:

a. is there a filtration verifying Assumption 5.3 at any level d?

b. (assuming a has a positive answer) is the limit independent from the chosen
filtration?

In the next section we are going to show (in particular in (5.17) and Corollary
5.16) that there is an element θ ∈ Λ, independent of the filtration and such that,
for all Fd, its image in Λ(Fd) generates ChΛ(Fd)(A(Fd)). Hence Question b has a
positive answer (and presumably so does Question a) and we only needed (5.14)
as a first step and a natural analogue of (5.16).
Nevertheless we believe that these questions have some interest on their own and
it would be nice to have a direct construction of a “good” filtration {Fd : d ∈ N}
based on a generalization of [29, Lemma 2]. Since our goal here is the Main
Conjecture we do not pursue this subject further, but we hope to get back to it in
a future paper.
We also observe that Assumption 5.3 was used only in one passage in the proof of
Lemma 5.4, as we evidentiated in a footnote. It might be easier to show that in
that passage one does not need the finitely generated hypothesis: if so, Definition
5.10 would makes sense for all filtrations {Fd}d 5.

Remark 5.12. We could have used Fitting ideals, just as we did in section 3, to
provide a more straightforward construction (there would have been no need for
preparatory lemmas). But, since the goal is a Main Conjecture, the characteristic
ideals, being principal, provide a better formulation. We indeed expect equality
between Fitting and characteristic ideals in all the cases studied in this paper but,
at present, are forced to distinguish between them (but see Remark 5.17).

5.3. Stickelberger elements. We shall briefly describe a relation between the
characteristic ideal of the previous section and Stickelberger elements. The main
results on those elements are due to A. Weil, P. Deligne and J. Tate and for all
the details the reader can consult [60, Ch. V]. Let S be a finite set of places of F
containing all places where the extension F/F ramifies; since we are interested in
the case where F is substantially bigger than the arithmetic extension, we assume
S 6= ∅. We consider also another non-empty finite set T of places of F such that
S∩T = ∅. For any place outside S let Frv be the Frobenius of v in Γ = Gal(F/F ).

Let

ΘF/F,S,T (u) :=
∏
v∈T

(1− Frvqdeg(v)udeg(v))
∏
v 6∈S

(1− Frvudeg(v))−1. (5.15)

For any n ∈ N there are only finitely many places of F with degree n: hence we
can expand (5.15) and consider ΘF/F,S,T (u) as a power series

∑
cnu

n ∈ Z[Γ][[u]].
Moreover, it is clear that for any continuous character ψ : Γ −→ C∗ the image
ψ(ΘF/F,S,T (q−s)) is the L-function of ψ, relative to S and modified at T . For

5This is exactly the approach taken in [7], providing a positive answers to question b.
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any subextension F ⊂ L ⊂ F , let πFL : Z[Γ][[u]]→ Z[Gal(L/F )][[u]] be the natural
projection and define

ΘL/F,S,T (u) := πFL (ΘF/F,S,T (u)).

For L/F finite it is known (essentially by Weil’s work) that ΘL/F,S,T (q−s) is an
element in the polynomial ring C[q−s] (see [60, Ch. V, Proposition 2.15] for a
proof): hence ΘL/F,S,T (u) ∈ Z[Gal(L/F )][u]. It follows that the coefficients cn of
ΘF/F,S,T (u) tend to zero in

lim
←

Z[Gal(L/F )] =: Z[[Γ]] ⊂ Λ .

Therefore we can define

θF/F,S,T := ΘF/F,S,T (1) ∈ Λ .

We also observe that the factors (1 − Frvqdeg(v)udeg(v)) in (5.15) are units in the
ring Λ[[u]]. Hence the ideal generated by θF/F,S,T is independent of the auxiliary
set T and we can define the Stickelberger element

θF/F,S := θF/F,S,T
∏
v∈T

(1− Frvqdeg(v))−1.

We also define, for F ⊂ L ⊂ F ,

θL/F,S,T := πFL (θF/F,S,T ) = ΘL/F,S,T (1).

It is clear that these form a projective system: in particular, for any Zp-extension
Fd/Fd−1 the relation

πdd−1(θFd/F,S,T ) = θFd−1/F,S,T (5.16)

clearly recalls the one satisfied by characteristic ideals (equation (5.14)). Also, to
define θL/F,S there is no need of F : one can take for a finite extension L/F the
analogue of product (5.15) and reason as above.

Theorem 5.13 (Tate, Deligne). For any finite extension L/F , |F∗L|θL/F,S is in
the annihilator ideal of the class group of L (considered as a Z[Gal(L/F )]-module).

Proof. This is [60, Ch. V, Théorème 1.2].

Remark 5.14. Another proof of this result was given by Hayes [31], by means of
Drinfeld modules.

Corollary 5.15. Let Fd/F be a Zdp-extension as before and S = {p}, the unique
(totally) ramified prime in F/F : then

1. θFd/F,SA(Fd) = 0;

2. if θFd/F,S is irreducible in Λ(Fd), then ChΛ(Fd)(A(Fd)) = (θFd/F,S)m for
some m > 1;
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3. if θFd/F,S is irreducible in Λ(Fd) for all Fd’s, then C̃hΛ(A(F)) = (θF/F,S)m

for some m > 1.

Proof. For 1 one just notes that |F∗L| is prime with p. Part 2 follows from the
structure theorem for torsion Λ(Fd)-modules. Part 3 follows from 2 by taking
limits (as in Definition 5.10) and noting that the m is constant through the Fd’s
because of equations (5.14) and (5.16).

The exponent in 2 and 3 of the corollary above is actually m = 1. A proof
of this fact is based on the following technical result of [37] (generalized in [17,
Theorem A.1]). Once Fd is fixed it is always possible to find a Zcp-extension of F
containing Fd, call it Ld, such that:

a. the extension Ld/F is ramified at all primes of a finite set S̃ containing S

(moreover S̃ can be chosen arbitrarily large);

b. the Stickelberger element θLd/F,S̃ is irreducible in the Iwasawa algebra Λ(Ld);

c. there is a Zp-extension L′ of F contained in Ld which is ramified at all

primes of S̃ and such that the Stickelberger element θL′/F,S̃ is monomial,

i.e., congruent to u(σ − 1)r modulo (σ − 1)r+1 (where σ is a topological
generator of Gal(L′/F ) and u ∈ Z∗p ).

With condition b and an iteration of equation (5.14) one proves that

ChΛ(Fd)(A(Fd)) = (θFd/F,S)m for some m > 1 .

The monomiality condition c (using L′ as a first layer in a tower of Zp-extensions)
leads to m = 1 (see [36, section 4] or [17, section A.1] which uses the possibility of

varying the set S̃, provided by a, more directly). We remark that the proof only
uses the irreducibility of θLd/F,S̃ , i.e.,

ChΛ(Fd)(A(Fd)) = (θFd/F,S) (5.17)

holds in general for any Fd .

Corollary 5.16 (Iwasawa Main Conjecture). In the previous setting we have

C̃hΛ(A(F)) = (θF/F,p) .

Proof. From the main result of [36], one has that

ChΛ(Fd)(A(Fd)) = (θFd/F,p)

and we take the limit in both sides.

Remark 5.17. The equality between characteristic ideals and ideals generated
by Stickelberger elements has been proved by K.-L. Kueh, K. F. Lai and K.-S.
Tan ([36]) and by D. Burns ([16] and the Appendix coauthored with K.F. Lai and
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K-S. Tan [17]) in a more general situation. The Zdp-extension they consider has to
be unramified outside a finite set S of primes of F (but there is no need for the
primes to be totally ramified). Moreover they require that none of the primes in S
is totally split (otherwise θFd/F,S = 0). The strategy of the proof is basically the
same but, of course, many technical details are simplified by our choice of having
just one (totally) ramified prime (just compare, for example, Lemma 5.7 with [36,
Lemma 3.3 and 3.4]). Moreover, going back to the Fitting vs. characteristic ideal
situation, it is worth noticing that Burns proves that the first cohomology group
of certain complexes (strictly related to class groups, see [16, Proposition 4.4] and
[17, section A.1]) are of projective dimension 1 ([16, Proposition 4.1]). In this
case the Fitting and characteristic ideals are known to be equal to the inverse of
the Knudsen-Mumford determinant (the ideal by which all the results of [16] are
formulated).

5.4. Characteristic p L-functions. One of the most fascinating aspects of
function field arithmetic is the existence, next to complex and p-adic L-functions,
of their characteristic p avatars. For a thorough introduction the reader is referred
to [27, Chapter 8]: here we just provide a minimal background.

Recall our fixed place∞ and let C∞ denote the completion of an algebraic clo-
sure of F∞. Already Carlitz had studied a characteristic p version of the Riemann
zeta function, defined on N and taking values in C∞ (we will say more about it in
section 6.6). More recently Goss had the intuition that, like complex and p-adic
L-functions have as their natural domains respectively the complex and the p-adic
(quasi-)characters of the Weil group, so one could consider C∞-valued characters.
In particular, the analogue of the complex plane as domain for the characteristic p
L-functions is S∞ := C∗∞ × Zp, that can be seen as a group of C∞-valued homo-
morphisms on F ∗∞, just as for s ∈ C one defines x 7→ xs on R+. The additive group
Z embeds discretely in S∞. Similarly to the classical case, one can define L(ρ, s)
for ρ a compatible system of v-adic representation of GF (v varying among places
different from ∞) by Euler products converging on some “half-plane” of S∞.

The theory of zeta values in characteristic p is still quite mysterious and at the
moment we can at best speculate that there are links with the Iwasawa theoretical
questions considered in this paper 6. To the best of our knowledge, the main results
available in this direction are the following. Let F (p)/F be the extension obtained
from the p-torsion of a Drinfeld-Hayes module (in the simplest case, F (p) is the
F1 we are going to introduce in section 6.1). Goss and Sinnott have studied the
isotypic components of A(F (p)) and shown that they are non-zero if and only if p
divides certain characteristic p zeta values: see [27, Theorem 8.14.4] for a precise
statement. Note that the proof given in [27], based on a comparison between the
reductions of a p-adic and a characteristic p L-function respectively mod p and
mod p ([27, Theorem 8.13.3]), makes use of Crew’s result. Okada [47] obtained a
result of similar flavor for the class group of the ring of “integers” of F (p) when

6This field is in rapid evolution. After this paper was written, L. Taelman introduced some
important new ideas: see [55] and [56]. Further recent developments can be found in [1], [2], [3],
[4], [5] and [50].
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F is the rational function field, and Shu [54] extended it to any F ; since Okada’s
result is strictly related with the subject of section 6.6 below, we will say more
about it there.

6. Cyclotomy by the Carlitz module

6.1. Setting. From now on we take F = Fq(T ) and let ∞ be the usual place
at infinity, so that the ring of elements regular outside ∞ is A := Fq[T ]; this
allows a number of simplifications, leaving intact the main aspects of the theory.
The “cyclotomic” theory of function fields is obtained via Drinfeld-Hayes modules:
in the setting of the rational function field the only one is the Carlitz module
Φ: A → A{τ}, T 7→ ΦT := T + τ (here τ denotes the operator x 7→ xq and, if
R is an Fp-algebra, R{τ} is the ring of skew polynomials with coefficients in R:
multiplication in R{τ} is given by composition).

We also fix a prime p ⊂ A and let π ∈ A be its monic generator. In order to
underline the fact that A and its completion at p play the role of Z and Zp in the
Drinfeld-Hayes cyclotomic theory, we will often use the alternative notation Ap

for the ring of local integers Op ⊂ Fp. Let Cp be the completion of an algebraic
closure of Fp.

As usual, if I is an ideal of A, Φ[I] will denote the I-torsion of Φ (i.e., the
common zeroes of all Φa, a ∈ I). One checks immediately that if ι is the unique
monic generator of I, then

Φι(x) =
∏

u∈Φ[I]

(x− u) .

We put
Fn := F (Φ[pn])

and
Kn := Fp(Φ[pn]) .

As stated in section 1.2, we think of the Fn’s as subfields of Cp, so that the Kn’s
are their topological closures. We shall denote the ring of A-integers in Fn by Bn
and its closure in Kn by On, and write Un for the 1-units in On. Let F := ∪Fn
and Γ̃ := Gal(F/F ).

Consider the ring of formal skew power series Ap{{τ}}: it is a complete local
ring, with maximal ideal πAp + Ap{{τ}}τ . It is easy to see that Φ extends to
a continuous homomorphism Φ: Ap → Ap{{τ}} (i.e., a formal Drinfeld module)

and this allows to define a “cyclotomic” character χ : Γ̃
∼−→ A∗p. More precisely,

let TpΦ := lim
←

Φ[pn] (the limit is taken with respect to x 7→ Φπ(x)) be the Tate

module of Φ. The ring Ap acts on TpΦ via Φ, i.e., a · (u)n := (Φa(un))n, and the
character χ is defined by σu =: χ(σ) ·u, i.e., χ(σ) is the unique element in A∗p such

that Φχ(σ)(un) = σun for all n. From this it follows immediately that Γ̃ = ∆× Γ,
where ∆ ' F∗p is a finite group of order prime to p and Γ is the inverse image of
the 1-units.
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Since Φ has rank 1, TpΦ is a free Ap-module of rank 1. As in [13], we fix a
generator ω = (ωn)n>1: this means that the sequence {ωn} satisfies

Φπn(ωn) = 0 6= Φπn−1(ωn) and Φπ(ωn+1) = ωn .

By definition Kn = Fp(ωn). By Hayes’s theory, the minimal polynomial of ωn
over F is Eisenstein: it follows that the extensions Fn/F and Kn/Fp are totally
ramified, ωn is a uniformizer for the field Kn, On = Ap[[ωn]] = Ap[ωn]. The
extension Fn/F is unramified at all other finite places: this can be seen directly
by observing that Φπn has constant coefficient πn. Furthermore Fn/F is tamely
ramified at ∞ with inertia group I∞(Fn/F ) ' F∗q .

The similarity with the classical properties of Q(ζpn)/Q is striking.

The formula NFn+1/Fn(ωn+1) = ωn shows that the ωn’s form a compatible
system under the norm maps (the proof is extremely easy; it can be found in [13,
Lemma 2]). This and the observation that [Fn+1 : Fn] = qdeg(p) for n > 1 imply

lim
←
K∗n = ωZ × F∗p × lim

←
Un . (6.1)

Note that lim
←
Un is a Λ̃-module.

6.2. Coleman’s theory. A more complete discussion and proofs of results in
this section can be found in [13, §3]. Let R be a subring of Cp: then, as usual,
R((x)) := R[[x]](x−1) is the ring of formal Laurent series with coefficients in R.
Moreover, following [20] we define R[[x]]1 and R((x))1 as the subrings consisting
of those (Laurent) power series which converge on the punctured open ball

B′ := B(0, 1)− {0} ⊂ Cp .

The rings R[[x]]1 and R((x))1 are endowed with a structure of topological R-
algebras, induced by the family of seminorms {‖·‖r}, where r varies in |Cp|∩(0, 1)
and ‖f‖r := sup{|f(z)| : |z| = r}.

All essential ideas for the following two theorems are due to Coleman [20].

Theorem 6.1. There exists a unique continuous homomorphism

N : Fp((x))∗1 → Fp((x))∗1

such that ∏
u∈Φ[p]

f(x+ u) = (N f) ◦ Φπ .

Theorem 6.2. The evaluation map ev : f 7→ {f(ωn)} gives an isomorphism

(Ap((x))∗)N=id ' lim
←
K∗n

where the inverse limit is taken with respect to the norm maps.
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We shall write Colu for the power series in Ap((x))∗ associated to u ∈ lim
←
K∗n

by Coleman’s isomorphism of Theorem 6.2.

Remark 6.3. An easily obtained family of N -invariant power series is the follow-
ing. Let a ∈ A∗p: then∏

u∈Φ[p]

Φa(x+ u) =
∏

u∈Φ[p]

(Φa(x) + Φa(u)) = Φπ(Φa(x))

(since Φa permutes elements in Φ[p]) and, from ΦπΦa = ΦaΦπ in Ap{{τ}}, it
follows that Φa(x) is invariant under the Coleman norm operator N (as observed
in [13, page 797], this just amounts to replacing ω with a · ω as generator of the
Tate module).

Following [20], we define an action of Γ on Fp[[x]]1 by (σ∗f)(x) := f(Φχ(σ)(x)).
Then Colσu = (σ ∗ Colu), as one sees from

(σ ∗ Colu)(ωn) = Colu(Φχ(σ)(ωn)) = Colu(σωn) = σ(Colu(ωn)) = σ(un) . (6.2)

6.3. The Coates-Wiles homomorphisms. We introduce some operators on
power series. Let dlog : Fp((x))∗1 → Fp((x))1 be the logarithmic derivative, i.e.,

dlog (g) := g′

g . Also, for any j ∈ N let ∆j : Fp((x)) → Fp((x)) be the jth Hasse-
Teichmüller derivative, defined by the formula

∆j

( ∞∑
n=0

cnx
n

)
:=

∞∑
n=0

(
n+ j
j

)
cn+jx

n

(i.e., ∆j “is” the differential operator 1
j!

dj

dxj ). A number of properties of the Hasse-

Teichmüller derivatives can be found in [33]; here we just recall that the operators
∆j are Fp-linear and that

f(x) =

∞∑
j=0

∆j(f)|x=0 x
j . (6.3)

The last operator we need to introduce is composition with the Carlitz exponential
eC(x) = x+ . . . , i.e., f 7→ f(eC(x)).

Definition 6.4. For any integer k > 1, define the kth Coates-Wiles homomor-
phism δk : lim

←
O∗n → Fp by

δk(u) := ∆k−1

(
(dlogColu)(eC(x))

)
|x=0

=
(
∆k−1((dlogColu) ◦ eC)

)
(0) .

Notice that by (6.3) this is equivalent to putting

(dlogColu)(eC(x)) =

∞∑
k=1

δk(u)xk−1 . (6.4)
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Lemma 6.5. The Coates-Wiles homomorphisms satisfy

δk(σu) = χ(σ)kδk(u) .

Proof. Recall that d
dxΦa(x) = a for any a ∈ Ap. Then from (6.2) it follows

dlogColσu = dlog (Colu ◦ Φχ(σ)) = χ(σ)(dlogColu) ◦ Φχ(σ) ,

since dlog (f ◦ g) = g′( f
′

f ◦ g). Composing with eC and using Φa(eC(x)) = eC(ax),

one gets, by (6.4),

(dlogColσu)(eC(x)) = χ(σ)(dlogColu)(eC(χ(σ)x)) = χ(σ)

∞∑
k=1

δk(u)χ(σ)k−1xk−1 .

The result follows.

6.4. Cyclotomic units.

Definition 6.6. The group Cn of cyclotomic units in Fn is the intersection of B∗n
with the subgroup of F ∗n generated by σ(ωn), σ ∈ Gal(Fn/F ).

By the explicit description of the Galois action via Φ, one sees immediately
that this is the same as B∗n ∩ 〈Φa(ωn)〉a∈A−p .

Lemma 6.7. Let
∑
cσσ be an element in Z[Gal(Fn/F )]: then∏

σ∈Gal(Fn/F )

σ(ωn)cσ ∈ Cn ⇐⇒
∑

cσ = 0 .

Proof. Obvious from the observation that ωn is a uniformizer for the place above
p and a unit at every other finite place of Fn.

Let Cn and C1
n denote the closure respectively of Cn∩O∗n and of C1

n := Cn∩Un .

Let a ∈ A∗p. By Remark 6.3 (Φa(ωn))n is a norm compatible system: hence
one can define a homomorphism

Υ: Z[Γ̃] −→ lim
←
K∗n∑

cσσ 7→
∏(

σ(ωn)cσ
)
n

=
∏(

Φχ(σ)(ωn)cσ
)
n
.

Let ̂lim
←
K∗n be the p-adic completion of lim

←
K∗n. By (6.1) one gets the isomorphism

̂lim
←
K∗n ' ωZp × lim

←
Un .

Lemma 6.8. The restriction of Υ to Z[Γ] can be extended to Υ: Λ→ ̂lim
←
K∗n .
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Proof. If a ∈ Ap is a 1-unit, then

Φa(ωn) = ωnun (6.5)

with un ∈ Un. Since by definition Γ = χ−1(1 + πAp), it follows that Υ sends Z[Γ]
into ωZ × lim

←
Un. To complete the proof it suffices to check that Υ is continuous

with respect to the natural topologies on Λ = lim
←

(Z/pnZ)[Gal(Fn/F )] and ̂lim
←
K∗n.

But a ≡ a′ (mod πn) in Ap implies Φa(ωj) = Φa′(ωj) for any j 6 n and the result
follows from the continuity of χ.

Proposition 6.9. Let I ⊂ Λ denote the augmentation ideal; then Υ induces a sur-
jective homomorphism of Λ-modules I −→ lim

←
C1
n. The kernel has empty interior.

Proof. From Lemma 6.7 and (6.5) it is clear that Υ(α) ∈ lim
←
C1
n if and only if

α ∈ I. This map is surjective because I is compact and already the restriction to
the augmentation ideal of Z[Γ] is onto C1

n for all n. A straightforward computation
shows that it is a homomorphism of Λ-algebras: for γ ∈ Γ

γΥ
(∑

cσσ
)

=
(
γ
(∏

Φχ(σ)(ωn)cσ
)
n

)
=
(∏

Φχ(σγ)(ωn)cσ
)
n

(6.6)

because γ(Φa(ωn)) = Φa(γ(ωn)) = Φa(Φχ(γ)(ωn)).

For the statement about the kernel, let A+ ⊂ A be the subset of monic polyno-
mials and consider any function A+ −→ Z, a 7→ na , such that na = 0 for almost
all a. We claim that

∏
a∈A+ Φa(x)na = 1 only if na = 0 for all a. To see it, let ua

denote a generator of the cyclic A-module Φ[(a)]. Then x−ua divides Φb(x) if and
only if b ∈ (a): hence the multiplicity ma of ua as root of

∏
Φa(x)na = 1 is exactly∑

b∈(a)∩A+ nb . For b ∈ A, let ε(b) denote the number of primes of A dividing b

(counted with multiplicities): then a simple combinatorial argument shows that

na =
∑
b∈A+

(−1)ε(b)
∑
c∈A+

nabc .

It follows that ma = 0 for all a ∈ A+ if and only if na = 0 for all a.

As in section 5.3, for v 6= p,∞ let Frv ∈ Γ̃ be its Frobenius. By [27, Proposition
7.5.4] one finds that χ(Frv) is the monic generator of the ideal in A corresponding
to the place v: hence, by Chebotarev density theorem, χ−1(A+) is dense in Γ̃. Thus
the isomorphism of Theorem 6.2 shows that we have proved that Υ: I −→ lim

←
O∗n

is injective on a dense subset; the kernel must have empty interior.

Remark 6.10. Since I ⊗Z Z[∆] = ⊕δ∈∆Iδ, formula (6.6) shows that Υ can be
extended to a homomorphism of Λ̃-modules I ⊗Z Z[∆] −→ lim

←
Cn .

Proposition 6.11. We have: lim
←
O∗n/ lim

←
Cn ' lim

←
Un/ lim

←
C1
n .
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Proof. Consider the commutative diagram

1 −−−−→ lim
←
C1
n −−−−→ lim

←
Un −−−−→ lim

←
Un/ lim

←
C1
n −−−−→ 1yα1

yα2

yα3

1 −−−−→ lim
←
Cn −−−−→ lim

←
O∗n −−−−→ lim

←
O∗n/ lim

←
Cn −−−−→ 1 .

All vertical maps are injective and by (6.1) the cokernel of α2 is F∗p . For δ ∈ ∆
one has δωn = Φχ(δ)(ωn) = χ(δ)ωnun for some un ∈ Un . By the injectivity part of
the proof of Proposition 6.9, Cn = C1

n ×Υ(Z[∆]) and it follows that the cokernel
of α1 is also F∗p .

6.5. Cyclotomic units and class groups. Let F+
n ⊂ Fn be the fixed field

of the inertia group I∞(Fn/F ). The extension F+
n /F is totally split at ∞ and

ramified only above the prime p. We shall denote the ring of A-integers of F+
n by

B+
n . Also, define En and E1

n to be the closure respectively of B∗n∩O∗n and B∗n∩Un .
We need to introduce a slight modification of the groups A(L) of section 5.

For any finite extension L/F , A∞(L) will be the p-part of the class group of A-
integers of L, so that, by class field theory, A∞(L) ' Gal(H(L)/L), where H(L)
is the maximal abelian unramified p-extension of L which is totally split at places
dividing ∞. We shall use the shortening An := A∞(F+

n ).
Also, let Xn := Gal(M(F+

n )/F+
n ), where M(L) is the maximal abelian p-

extension of L unramified outside p and totally split above ∞. As in the number
field case, one has an exact sequence

1 −−−−→ E1
n/C1

n −−−−→ Un/C1
n −−−−→ Xn −−−−→ An −−−−→ 1 (6.7)

coming from the following

Proposition 6.12. There is an isomorphism of Galois modules

Un/E1
n ' Gal(M(F+

n )/H(F+
n )) .

Proof. This is a consequence of class field theory in characteristic p > 0, as
the analogous statement in the number field case: just recall that the role of
archimedean places is now played by the valuations above ∞. Under the class
field theoretic identification of idele classes IF+

n
/(F+

n )∗ with a dense subgroup of

Gal((F+
n )ab/F+

n ), one finds a surjection∏
P|p

O∗P � Gal(M(F+
n )/H(F+

n ))

whose kernel contains the closure of∏
P|p

O∗P ∩ (F+
n )∗

∏
w-p

O∗w
∏
w|∞

(F+
n,w)∗ = ιp((B+

n )∗)

(where ιp denotes the diagonal inclusion). Reasoning as in [63, Lemma 13.5] one
proves the proposition.
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Taking the projective limit of the sequence (6.7), we get

1 −−−−→ E1
∞/C1

∞ −−−−→ U∞/C1
∞ −−−−→ X∞ −−−−→ A∞ −−−−→ 1 . (6.8)

Lemma 6.13. The sequence (6.8) is exact.

Proof. Taking the projective limit of the short exact sequence

1 −−−−→ E1
n −−−−→ Un −−−−→ Gal(M(F+

n )/H(F+
n )) −−−−→ 1

we obtain

1 −−−−→ E1
∞ −−−−→ U∞ −−−−→ Gal(M(F+)/H(F+)) −−−−→ lim

←
1E1
n ,

where M(F+) and H(F+) are the maximal abelian p-extensions of F+ totally split
above ∞ and unramified respectively outside the place above p and everywhere.

To prove the lemma it is enough to show that lim
←

1(E1
n) = 1. By a well-known

result in homological algebra, the functor lim
←

1 is trivial on projective systems

satisfying the Mittag-Leffler condition. We recall that an inverse system (Bn, dn)
enjoys such property if for any n the images of the transition maps Bn+m → Bn
are the same for large m. So we are reduced to check that this holds for the E1

n’s
with the norm maps.

Observe first that E1
n is a finitely generated Λn-module, thus noetherian because

so is Λn. Consider now ∩kImage(Nn+k,n), where Nn+k,n : E1
n+k → E1

n is the norm
map. This intersection is a Λn-submodule of E1

n, non-trivial because it contains
the cyclotomic units. By noetherianity it is finitely generated, hence there exists
l such that Image(Nn+k,n) is the same for k > l. Therefore (E1

n) satisfies the
Mittag-Leffler property.

The exact sequence (6.8) lies at the heart of Iwasawa theory. Its terms are all
Λ-modules and, in section 5.2, we have shown how to associate a characteristic
ideal to A∞ and its close relation with Stickelberger elements. In a similar way,
i.e., working on Zdp-subextensions, one might approach a description of X∞ , while,
for the first two terms of the sequence, the filtration of the F+

n ’s seems more natural
(as the previous sections show).

Assume for example that the class number of F is prime with p, then it is
easy to see that An = 1 for all n. Moreover, using the fact that, by a theorem of
Galovich and Rosen, the index of the cyclotomic units is equal to the class number
(see [53, Theorem 16.12]), one can prove that E1

n/C1
n = 1 as well. These provide

isomorphisms
Un/C1

n ' Xn
and

U∞/C1
∞ ' X∞ .

In general one expects a relation (at least at the level of Zdp-subextensions, then
a limit procedure should apply) between the pro-characteristic ideal of A∞ and the
(yet to be defined) analogous ideal for E1

∞/C1
∞ (the Stickelberger element might
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be a first hint for the study of this relation). Consequently (because of the multi-
plicativity of characteristic ideals) an equality of (yet to be defined) characteristic
ideals of X∞ and of U∞/C1

∞ is expected as well. Any of those two equalities can
be considered as an instance of Iwasawa Main Conjecture for the setting we are
working in.

6.6. Bernoulli-Carlitz numbers. We go back to the subject of characteristic
p L-function. Let A+ ⊂ A be the subset of monic polynomials. The Carlitz zeta
function is defined

ζA(k) :=
∑
a∈A+

1

ak

for k ∈ N.
Recall that the Carlitz module corresponds to a lattice ξA ⊂ C∞ and can be

constructed via the Carlitz exponential eC(z) := z
∏
a∈A′(1− zξ−1a−1) (where A′

denotes A− {0}). Rearranging summands in the equality

1

eC(z)
= dlog (eC(z)) =

∑
a∈A

1

z − ξa
=

1

z
−
∑
a∈A′

∞∑
k=1

zk−1

(ξa)k

(and using A′ = F∗q ×A+) one gets the well-known formula

1

eC(z)
=

1

z
+

∞∑
n=1

ζA(n(q − 1))

ξn(q−1)
zn(q−1)−1 . (6.9)

From section 6.4 it follows that for any a, b ∈ A − p, the function Φa(x)
Φb(x) is an

N -invariant power series, associated with

c(a, b) :=
Φa(ω)

Φb(ω)
=

(
Φa(ωn)

Φb(ωn)

)
n

∈ lim
←
O∗n . (6.10)

Theorem 6.14. The kth Coates-Wiles homomorphism applied to c(a, b) is equal
to:

δk(c(a, b)) =

{
0 if k 6≡ 0 (mod q − 1)

(ak − bk) ζA(k)
ξk

if k ≡ 0 (mod q − 1)
.

We remark that the condition k = n(q − 1) here is the analogue of k being an
even integer in the classical setting (since q − 1 = |F∗q | just as 2 = |Z∗|).

Proof. Observe that (6.10) amounts to giving the Coleman power series Colc(a,b).
Let λ be the Carlitz logarithm, i.e., λ ∈ F{{τ}} is the element uniquely determined
by eC ◦ λ = 1. Then Φa(x) = eC(aλ(x)) and by (6.10) and (6.9) one gets

dlogColc(a,b)(x) = a
Φa(x) −

b
Φb(x)

=
∑
n>1(an(q−1) − bn(q−1)) ζA(n(q−1))

ξn(q−1) λ(x)n(q−1)−1 .
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Since λ(eC(x)) = x, we get

(dlogColc(a,b))(eC(x)) =
∑
n>1

(an(q−1) − bn(q−1))
ζA(n(q − 1))

ξn(q−1)
xn(q−1)−1 (6.11)

and the theorem follows comparing (6.11) with (6.4).

Remark 6.15. As already known to Carlitz, ζA(k)ξ−k is in F when q−1 divides k.
Note that by a theorem of Wade, ξ ∈ F∞ is transcendental over F . Furthermore,
Jing Yu [65] proved that ζA(k) for all k ∈ N and ζA(k)ξ−k for k “odd” (i.e., not
divisible by q − 1) are transcendental over F .

Theorem 6.14 can be restated in terms of the Bernoulli-Carlitz numbers BCk
[27, Definition 9.2.1]. They can be defined by

1

eC(z)
=
∑
n>0

BCn
Π(n)

zn−1

(where Π(n) is a function field analogue of the classical factorial n!); in particular
BCn = 0 when n 6≡ 0 (mod q − 1). Then Theorem 6.14 becomes

δk(c(a, b)) = (ak − bk)
BCk
Π(k)

. (6.12)

Theorem 6.14 and formula (6.12) can be seen as extending a result by Okada,
who in [47] obtained the ratios BCk

Π(k) (for k = 1, . . . , qdeg(p) − 2) as images of

cyclotomic units under the Kummer homomorphisms (which are essentially a less
refined version of the Coates-Wiles homomorphisms). From here one proves that
the non-triviality of an isotypic component of A1 implies the divisibility of the
corresponding “even” Bernoulli-Carlitz number by p: we refer to [27, §8.20] for an
account. As already mentioned, Shu [54] generalized Okada’s work to any F (but
with the assumption deg(∞) = 1): it might be interesting to extend Theorem 6.14
to a “Coates-Wiles homomorphism” version of her results.

6.7. Interpolation?. In the classical setting of cyclotomic number fields, the
analogue of the formula in Theorem 6.14 can be used as a key step in the con-
struction of the Kubota-Leopoldt zeta function (see e.g. [19]). Hence it is natural
to wonder if something like it holds in our function field case. For now we have no
answer and can only offer some vague speculation.

As mentioned in section 5.4, Goss found a way to extend the domain of ζA from
N to S∞. He also considered the analogue of the p-adic domain and defined it to
be C∗p×Sp, with Sp := Zp×Z/(qdeg(p)−1) (observe that C∗p×Sp is the Cp-valued
dual of F ∗p ). Then functions like ζA enjoy also a p-adic life: for example, letting
πv ∈ A+ be a uniformizer for a place v, ζA,p is defined on C∗p × Sp by

ζA,p(s) :=
∏
v-p∞

(1− π−sv )−1 ,
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at least where the product converges.
The ring Z embeds discretely in S∞ and has dense image in 1×Sp. So Theorem

6.14 seems to suggest interpolation of ζA,p on 1×Sp. Another clue in this direction
is the fact that Sp is the “dual” of Γ, just as Zp is the “dual” of Gal(Q(ζp∞)/Q) (a
strengthening of this interpretation has been recently provided by the main result
of [34]).
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[53] M. Rosen, Number theory in function fields. GTM 210, Springer-Verlag, New York,
2002.

[54] L. Shu, Kummer’s criterion over global function fields. J. Number Theory 49 (1994),
no. 3, 319–359.

[55] L. Taelman, Special L-values of Drinfeld modules. Annals of Math. 175 (2012), 369–
391.



Iwasawa theory over function fields 41

[56] L. Taelman, A Herbrand-Ribet theorem for function fields. Invent. Math. 188 (2012),
253–275.

[57] K.-S. Tan, Modular elements over function fields. J. Number Theory 45 (1993), no.
3, 295–311.

[58] K.-S. Tan, A generalized Mazur’s theorem and its applications. Trans. Amer. Math.
Soc. 362 (2010), 4433–4450.

[59] K.-S. Tan, Selmer groups over Zd
p-extensions. Math. Ann. 359 (2014), 1025–1075.

[60] J. Tate, Les conjectures de Stark sur les fonctions L d’Artin en s = 0. Progr. Math.,
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