
This is the accepted version of the book part:

Aparicio Baeza, Juan [et al.]. «On the estimation of educational technical
efficiency from sample designs : a new methodology using robust
nonparametric models». Advances in Efficiency and Productivity II, Vol. 287
(2020), p. 87-105 DOI 10.1007/978-3-030-41618-8_6

This version is available at https://ddd.uab.cat/record/324713

under the terms of the  license.

https://ddd.uab.cat/record/324713


1 

 

On the estimation of educational technical efficiency from sample 

designs: a new methodology using robust nonparametric models 

 

Juan Aparicio1,*, Martín González1, Daniel Santín2 and Gabriela Sicilia3 

1 Center of  Operations Research (CIO). Miguel Hernandez University of  Elche (UMH), 03202 Elche 

(Alicante), Spain 

2 Department of  Applied Economics, Public Economics and Political Economy, Complutense 

University of  Madrid, Campus de Somosaguas, 28223 Madrid, Spain 

3 Department of  Economics and Public Finance, Autonomous University of  Madrid, Campus de 

Cantoblanco 28049 Madrid, Spain 

 

Abstract 

Average efficiency is popular in the empirical education literature for comparing the aggregate 

performance of regions or countries using the efficiency results of their disaggregated 

decision-making units (DMUs) microdata. The most common approach for calculating average 

efficiency is to use a set of inputs and outputs from a representative sample of DMUs, typically 

schools or high schools, in order to characterize the performance of the population in the 

analysed education system. Regardless of the sampling method, the use of sample weights 

is standard in statistics and econometrics for approximating population parameters. However, 

weight information has been disregarded in the literature on production frontier estimation 

using nonparametric methodologies in education. The aim of this chapter is to propose a 

preliminary methodological strategy to incorporate sample weight information into the 

estimation of production frontiers using robust nonparametric models. Our Monte Carlo results 

suggest that current sample designs are not intended for estimating either population 

production frontiers or average technical efficiency. Consequently, the use of sample weights 

does not significantly improve the efficiency estimation of a population with respect to an 

unweighted sample. In order to enhance future efficiency and productivity estimations of a 

population using samples, we should define an independent sampling design procedure for 

the set of DMUs based on the population’s production frontier.  
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1. Introduction 

 

Large-scale assessment surveys have played a growing role in educational research over the 

last three decades. Broadly defined, large-scale assessments are standardized surveys of 

cognitive skills in different subjects that provide comparable data about many different 

students, schools and, in short, education systems in one region, country or even several 

countries around the world. Because both home and school play an important role in how 

students learn, large-scale surveys also collect extensive information about such background 

factors at individual, teacher and school level. Some of the best-known international databases 

worldwide are the Programme for International Student Assessment (PISA), the Trends in 

International Mathematics and Science Study (TIMSS) or the Progress in International 

Reading Literacy Study (PIRLS). Additionally, in many developed countries, ministries of 

education gather similar data for analysing their educational systems.  

 

Researchers can use this information for three important purposes. First, educational 

databases are useful for making cross-country comparisons of the achievements of different 

education systems, as well as for introducing the quality of human capital in economic growth 

regressions (Hanushek and Kimko, 2000; De la Fuente, 2011; Hanushek and Woessmann, 

2012). Second, these databases are analysed for disentangling the causal effects of 

educational policies, law changes and different social factors on educational outcomes 

through the use of counterfactuals (Strietholt et al., 2014; Cordero et al. 2017). Finally, large-

scale assessment surveys are used for measuring technical efficiency through production 

frontiers in order to benchmark the most successful educational policies (Afonso and St 

Aubyn, 2005, 2006; De Jorge and Santín, 2010, Agasisti and Zoido, 2018). This latter research 

line is the focus of this chapter, also addressed in recent related publications by Aparicio et al. 

(2017a, 2017b), Aparicio et al. (2018) and Aparicio and Santín (2018). 

 

Furthermore, the use of representative samples of a population is an extremely widespread 

practice in statistics. Multiple methods have been developed for characterizing a population 

through a sample (see Hedayat and Sinha, 1991 and Särndal et al., 1992). There are some 

reasons for introducing weight designs in educational databases. First, sampling could 

oversample or undersample some major school types within the population. For example, the 

sample could include schools from major, albeit small, territories or regions, which, depending 

on the sampling method applied, could be either not well represented or overly significant 

when results are averaged to draw conclusions about the population. Second, school sizes 

vary across the school population. Therefore, average results at school level hide the fact that 
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the analysis covers all students at some schools and just a group of students at others. Finally, 

weighting is used to address non-response issues from some schools. 

 

However, the sample weights that appear in many educational databases have been 

repeatedly ignored in econometrics. Recently, Lavy (2015) investigated whether instruction 

time has a positive impact on academic performance across countries using unweighted PISA 

2006 data pooled at student level. Jerrim et al. (2017, p54) reanalysed Lavy’s data, running 

the same regression analysis with the PISA final weights to capture the population size of 

each country. Their results show that the effect of an additional hour of instruction is almost 

50% greater in developed countries and 40% smaller in Eastern European countries than 

Lavy’s estimations. As a result, the parameters estimated from a sample might not be 

representing the population under study.  

 

The same problem could affect production frontiers applied to educational databases when 

researchers assume that the average efficiency results for an unweighted sample can be 

straightforwardly identified as a good estimation for the population. So far, extensions have 

not been developed to incorporate the sample weights when estimating the production frontier 

and the efficiency scores for comparing the performance of different sets of schools.  

 

Under the production frontier framework, there are basically two potential concerns affecting 

the estimation of technical efficiency. First, there is a representativeness problem, since only 

the weighted sample is representative of the population. Thus, sample weights are necessary 

to make valid estimates and inferences about any population parameter from the sample. 

Therefore, a straightforward adjustment could be to expand the sample to the population using 

the sample weights. Basically, this means including these weights to compute the aggregate 

(average) efficiency of the sector (region, country, etc.) and ensure that the entire population 

is represented. Second, the DMUs included in the analysis are only one of many possible 

sampling realizations of the population. Because not all DMUs have the same probability of 

inclusion in the sample, the omission of best-performers information might affect the shape of 

the estimated true production frontier. The potential misidentification of the true frontier also 

impairs the estimation of individual efficiency scores, since they are computed as the relative 

distance to the estimated frontier. 

 

PISA, TIMSS and PIRLS are based on multi-stage probability proportional to size (PPS) 

sampling schemes. Basically, the sampling design is composed of two stages. First, schools 

are randomly selected from different strata taking into account the size of the schools. Second, 

students are randomly selected within each sampled school. As a result, each school and 
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each student have different probabilities of being included in the sample, i.e. different sample 

weights1. This makes weighting information crucial for getting unbiased estimates of 

population characteristics. As stated in the PISA 2015 Technical Report (OECD, 2017, p.116): 

“Survey weights are required to analyse PISA data, to calculate appropriate estimates of 

sampling error and to make valid estimates and inferences of the population”… “While the 

students included in the final PISA sample for a given country were chosen randomly, the 

selection probabilities of the students vary. Survey weights must be incorporated into the 

analysis to ensure that each sampled student appropriately represents the correct number of 

students in the full PISA population.” For this reason, it could be misleading to extrapolate 

results from sample to population regardless of weighting. This problem can also arise in other 

sectors, like health, banking, agriculture, etc., where the use of samples is commonplace too. 

 

How can we deal with weights in production frontiers? Nonparametric methods, and especially 

data envelopment analysis, have been applied for measuring efficiency much more often than 

parametric methods in the education literature. Their extensive application is a consequence 

of their flexibility, as there is no theoretical education production function (Levin, 1974) and 

few assumptions are needed to envelop the best performers. Nonparametric methods do not 

explicitly estimate the parameters of a production technology. Instead, they determine an 

efficiency index reflecting how much use each unit makes of its available resources based on 

a mathematical model implicitly describing the estimated technology. 

 

Taking insights from the conditional quantile-based approach proposed by Aragon et al. 

(2005), this paper provides a preliminary methodological strategy to incorporate the 

information of sample weights into the estimation of the production frontier using robust 

nonparametric models. The final aim is to enhance the estimation of the technical efficiency 

of a population of DMUs using a representative sample and its weights as is common practice 

in education. The reason why we select Aragon et al. (2005), among other possibilities, is that 

it allows extending the standard frontier analysis to contexts with sample weights2 in a simple 

way. 

 

The remainder of the paper is organized as follows. In Section 2, we discuss the main 

methodological issues related to the estimation of nonparametric production from sample 

designs. In Section 3 we propose a method to add the sample weights to the estimation of 

 
1 For a detailed explanation of this sampling design, see Chapter 4 of the PISA 2015 Technical Report. 
2 In the DEA literature, we can find some references that include weights like, for example, Allen et al. (1997) 
and Färe and Zelenyuk (2003). However, they do not consider sample weights from sample designs.  
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robust nonparametric frontier models. Section 4 is devoted to check the performance of this 

method through a Monte Carlo experiment. Finally, Section 5 outlines the main conclusions. 

 

2. Methodological issues 

In this section, we briefly review the main nonparametric frontier estimators, their robust 

estimation through partial frontiers, and some key notions about finite population sampling in 

statistics before extending Aragon et al.’s approach (2005) to the context where information 

on the sampling design is available. See also Daouia and Simar (2007) and Daraio and Simar 

(2007). 

 

2.1. Nonparametric frontier models 

In frontier analysis, most of the nonparametric approaches —free disposal hull (FDH) and data 

envelopment analysis (DEA)— are based upon enveloping the set of observations from above 

to let the data speak for themselves, as well as requiring certain properties (like monotonicity). 

According to economic theory (Koopmans, 1951; Debreu, 1951; Shephard, 1953), the 

production set, where the activity is described by a set of m  inputs 
mx R
+

  used to produce 

a set of p  outputs 
py R
+

 , is defined as the set of all physically producible activities given a 

certain knowledge ( ),x y : ( ) , :  can produce m px y R x y+

+
 =   (see also Pastor et al., 

2012). 

In this paper, we assume that   is a subset of 
m pR +

+  that satisfies the following postulates 

(see Färe et al., 1985).  

 

(P1)   ; 

(P2) ( ) ( ) : , :x u y u x =    is bounded 
mx R
+

  ; 

(P3) ( ) ( ) ( ) ( ), , , , ,x y x y x y x y    −  −   , i.e., inputs and outputs are freely 

disposable; 

(P4)   is a closed set; 

(P5)   is a convex set. 
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A certain activity (observation) is considered to be technically inefficient if it is possible to either 

expand its output bundle y  without requiring any increase in its inputs x  or contract its input 

bundle without requiring a reduction in its outputs. The capacity for expanding the output 

bundle reflects output-oriented inefficiency. Likewise, potential input savings indicate input-

oriented inefficiency. Exactly which of these two orientations is selected depends on the 

analysed empirical framework. On the one hand, it is assumed, in the case of input-oriented 

contexts, that the output bundle (like the number of patients to be treated at a hospital) is fixed 

or given by the demand side. Hence, it is reasonable to save on the use of inputs to contain 

costs. In this case, determining input-oriented technical efficiency measurements by scaling 

down x  (the frontier of  ) as far as possible is the most rational first step. On the other hand, 

when the input bundle is predetermined (like land at a farm), output-oriented technical 

efficiency measurements would appear to be a better option.  

 

For simplicity’s sake, we assume in this paper that firms, schools if we refer to the education 

sector, cannot change their inputs in the short run or that they are given. Consequently, output-

orientation is the best choice, and we will evaluate their performance based on the assessment 

of the production of outputs from a certain level of inputs. In this context, it is common practice 

to work with the notion of requirement set. The requirement set, denoted as ( )Y x , is the set 

of all outputs that a firm can produce using 
mx R
+

  as inputs. Mathematically speaking, 

( ) ( ) : ,pY x y R x y
+

=   . 

 

Assumptions on the data generating process (DGP) encompass the statistical model, which 

defines how the observations in   are generated. There are many alternatives. However, 

since nonparametric methods for estimating frontiers have no need of parametric assumptions 

about the DGP, we will simply assume that the production process, which generates the set 

of observations ( )  = =, : 1,...,n i ix y i n , is defined by the joint distribution of the random 

vector ( ) + +
 , m pX Y R R , where X  represents the random inputs and Y  represents the 

random outputs. Where   is equal to the support of the distribution of ( ),X Y  and 1p = , 

another way to define the production frontier is through the notion of production function. The 

production function, denoted as  , is characterized for a given level of inputs 
mx R
+

  by the 

upper boundary of the support of the conditional distribution of the univariate Y  given X x
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, i.e., ( ) ( ) sup : | 1 ,x y R F y x
+

=    where ( )|F y x  is the conditional distribution 

function of Y  given X x . The inequality X x  should be interpreted componentwise. We 

owe this formulation of the production function to Cazals et al. (2002), and it is useful for 

expressing the customary notion of production function by distribution functions. 

 

Regarding the practical determination of the technology from a data sample, economists 

before Farrell (1957) used to parametrically specify the corresponding production functions 

(e.g. a Cobb-Douglas function) and apply ordinary least squares (OLS) regression analysis to 

estimate an ‘average’ production function, assuming that disturbance terms had zero mean. 

However, the notion of production function moves away from the concept of average. In this 

respect, Farrell (1957) was the first author to show how to estimate an isoquant enveloping all 

the observations and, therefore, was the first to econometrically implement the idea of 

production frontier. 

 

The line of research initiated by Farrell in 1957 was later taken up by Charnes et al. (1978) 

and Banker et al. (1984), resulting in the development of the data envelopment analysis (DEA) 

approach, where the determination of the frontier is only constrained by its axiomatic 

foundation and the property of convexity plays a major role. Additionally, Deprins et al. (1984) 

introduced a more general version of the DEA estimator, depending exclusively upon the free 

disposability assumption of inputs and outputs and neglecting convexity. Indeed, the two main 

nonparametric frontier techniques in the literature nowadays are: DEA and FDH. In the case 

of DEA, the frontier estimator is, as already mentioned, constructed as the smallest polyhedral 

set that contains the observations and satisfies free disposability, whereas FDH makes fewer 

assumptions than DEA. Graphically, the convex hull of the FDH estimate is the same as the 

DEA estimate of the production technology. 

 

Aigner and Chu (1968) reported a more natural follow-on from previous research by 

econometricians than DEA and FDH. They showed how to apply a technique based on 

mathematical programming to yield an envelope ‘parametric’ Cobb-Douglas production 

function by controlling the sign of the disturbance terms and, consequently, following the 

standard definition of production function. A more general parametric approach is the 

stochastic frontier analysis (SFA) by Aigner, Lovell and Schmidt (1977) and Meeusen and Van 

den Broeck (1977). 
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Generally speaking, two different approaches have been introduced in the literature: 

deterministic frontier models, like DEA and FDH, which assume with probability one that all 

the observations in n  belong to  , and stochastic frontier models, like SFA, where, due to 

random noise, some observations may be outside of  . 

 

 

2.2. Nonparametric robust estimators: partial frontiers 

Nonparametric deterministic frontier models, like DEA and FDH, are very attractive because 

they depend on very few assumptions. However, by definition, they are very sensitive to 

extreme values. To solve this problem, Cazals et al. (2002) and Aragon et al. (2005) proposed 

robust nonparametric frontier techniques. In this section, we briefly review the main features 

of these two approaches. 

 

Cazals et al. (2002) introduced the notion of expected maximal output frontier of order 

*,m  where 
*  denotes the set of all integers 1m  . It is defined as the expected 

maximum achievable level of output across m  units drawn from the population using less 

than a given level of inputs. Formally, for a fixed integer 
*m  and a given level of inputs 

+
 ,mx R  the order- m  frontier is defined as 

 

 ( ) ( ) ( )( )


   = = −    
1

0
max ,..., 1 |

mm

m x E Y Y F y x dy , (1) 

 

where ( )1,..., mY Y  are m  independent identically distributed random variables generated by 

the distribution of Y , given X x . Its nonparametric estimator is defined by 

( ) ( )( )0

ˆˆ 1 |
m

m x F y x dy


 = −
  , which is based upon the estimation of the distribution 

function. In particular, ( ) ( ) ( )ˆ ˆ ˆ| ,F y x F x y F x=  is the empirical version of the conditional 

distribution function of Y  given X x , with ( ) ( )
1

1ˆ , 1 ,
n

i i

i

F x y X x Y y
n =

=    and 
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( ) ( )
1

1ˆ 1
n

i

i

F x X x
n =

=  . Cazals et al. (2002) were also able to rewrite the FDH estimator of 

the production function in terms of the conditional distribution function as 

( ) ( )   
:

ˆˆ sup : | 1 max
i

FDH i
i X x

x y R F y x Y
+


=   = . 

 

By definition, the order- m  frontier does not envelop all the observations in the sample. 

Consequently, it is more robust to extreme values and outliers than the standard FDH 

estimator. Additionally, using an appropriate selection of m  as a function of the sample size, 

( )ˆ
m x  estimates the production function ( )x  while, at the same time, retaining the 

asymptotic properties of the FDH estimator. 

 

Later, Aragon et al. (2005) proposed a nonparametric estimator of the production function that 

is, as they demonstrated, more robust to extreme values than the standard DEA and FDH 

estimators and the nonparametric order- m  frontier by Cazals et al. (2002). This model is 

based upon quantiles of the conditional distribution of Y  given X x . These conditional 

quantiles define a natural notion of a partial production frontier in place of the order-m  frontier. 

Moreover, Aragon et al. (2005) proved that their estimators satisfy most of the good properties 

of the order- m  estimator. 

 

In particular, the quantile production function of order  ,  0,1  , given a certain level of 

inputs 
mx R
+

 , can be defined as 

 

 ( ) ( ) ( )   −

+
= =  1 | inf : |q x F x y R F y x . (2) 

 

This conditional quantile is the production threshold exceeded by ( )100 1 %−  of units that 

use less than the level x  of inputs. Notice that, by the traditional production function definition, 

( )x  coincides with the order-one quantile production function, i.e. ( ) ( )1x q x = . 
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The natural way of estimating ( )q x
 is to substitute the conditional distribution function by its 

empirical estimation ( )ˆ |F x : 

 

 ( ) ( ) ( )   −

+
= =  1ˆ ˆˆ | inf : |q x F x y R F y x . (3) 

 

This estimator may be computed explicitly as follows (see Aragon et al., 2005). Let 

 1,..., xx ns i i=  be the subset of observations in the data sample such that iX x , where 

( )
1

1
n

x i

i

n X x
=

=  , i.e. the number of elements in xs . Hence, 
1
,...,

nx
i iY Y  corresponds to the 

outputs observed in xs , while 
( ) ( )1

,...,
nx

i i
Y Y  are their ordered values. Additionally, it is assumed 

that the labels 
1,..., xni i  contain no information as to the ordering of the values of 

1
,...,

nx
i iY Y . 

For example, it is not necessarily true that 
j ki iY Y  for j k . However, 

( ) ( )kj
ii

Y Y  for all 

j k . We also assume that 0xn  . 

 

The estimation of the conditional distribution function is  

 

 ( )
( )

( )( )
 =

 

= =

 
: 1

1 1
ˆ | .

x

j

i

n

i i
i X x j

x x

Y y Y y

F y x
n n

 (4) 

 

Hence, 

 

 ( )
( )

( ) ( )

( )

+

 



=     −





1

1

0, if 

ˆ | , if y ,1 1

1, if 

k k

nx

i

x xi i

i

y Y

F y x k n Y Y k n

y Y

 (5) 
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Consequently, for any 0  , we have that 

 

 ( )
( )

 ( )









+

 


= 


*

1

, if 
ˆ

, otherwise

nx

x

xi

n

Y n
q x

Y
, (6) 

 

where  xn  is the largest integer less than or equal to xn . Consequently, the conditional 

empirical quantile ( )q̂ x
 is computed as the simple empirical quantile of 

1
,...,

nx
i iY Y . 

Additionally, note that ( ) ( ) ( )  1
:

max
nx i

ii i X x
x q x Y Y


= = = , i.e. it is equal to the FDH estimation. 

 

In this research, we extend Aragon et al.’s notion of  -quantile production function (Aragon 

et al., 2005) in order to deal with situations where the data sample is the result of applying a 

particular sampling design on a finite population. 

 

2.3. Sampling designs on a finite population 

Let us now assume that the first stage of the production process generates a finite population 

of production units ( ) , : 1,...,N i iX Y i N = = . For simplicity’s sake, let the i -th element be 

represented by its label i . Thus, we denote the finite population as  1,...,U N= . Additionally, 

we assume that we are an observer outside the production process. Hence, the values iX  

and iY , 1,...,i N= , are unknown to us. Let us also suppose that, in a second stage, we select 

a subset of the population, called a sample and denoted as s U , with the aim of estimating 

some parameters associated with the population. Specifically, we are able to observe and 

collect the values of iX  and iY  for all i s . In particular, as is very common in social science, 

we consider samples that are realized by a probabilistic (randomized) selection scheme. 
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Given a sample selection scheme, it is possible, although not always simple, to establish the 

probability of selecting a specified sample s . We shall use the notation ( )p s  for this 

probability. In this way, we assume that there is a function ( )p   such that ( )p s  gives the 

probability of selecting s  under the scheme in use. The function ( )p   is usually called the 

sampling design in finite population sampling theory. This notion plays a central role because 

it determines the essential statistical properties (sampling distribution, expected value and 

variance) of random quantities calculated from the data sample (estimators) in order to 

estimate certain population parameters or functions of parameters. 

 

For a given sampling design ( )p  , we can regard any sample s  as the outcome of a set-

valued random variable S , whose probability distribution is specified by the function ( )p  . Let 

  be the set of all samples. Thus the cardinal of   is 2N  if we consider the empty set as well 

as U  itself. Then we have that ( ) ( )Pr S s p s= =  for any s S . Because ( )p   is a 

probability distribution on the set  , we have (i) ( ) 0p s  , s S , and (ii) ( ) 1
s

p s


= . Note 

that the probability of some (usually many) of the 2N  samples contained in   is equal to zero. 

The subset of   composed of any samples for which ( )p s  is strictly positive constitutes the 

set of possible samples. They are the only ones that can be drawn given the specified design.  

 

The sample size, denoted as sn , is the number of elements in s . Note that sn  depends on 

the sample and is not, therefore, necessarily the same for all possible samples. If, in fact, all 

possible samples have the same size, then the sample size is denoted, as usual, as n . For 

example, Bernoulli sampling can generate different sample sizes, while simple random 

sampling without replacement always yields the same sample size (Särndal et al., 1992). For 

simplicity’s sake, we will assume hereafter that all possible samples have the same size n . 

 

An interesting feature of a finite population of N  units is that each unit can be given different 

probabilities of inclusion in the sample. The sampling statistician often takes advantage of the 

identifiability of the population unit by deliberately attaching different inclusion probabilities to 

the various elements. This is one way to get more accurate estimates, for example, by using 

strata, clusters or some known auxiliary variable related to the size of the population units. 
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Given a sampling design ( )p  , the probability that unit k  was included in a sample, denoted 

k , is obtained from the given design ( )p   as ( ) ( )
:

Prk

s k s

k S p s


=  =  . 

 

One very usual parameter to be estimated in these contexts is the total of a population, defined 

for a response variable Z  as 
z i

i U

t Z


= . An unbiased estimator of zt , under any sampling 

design, is the so-called   estimator, which resorts to the use of the inclusion probabilities of 

the units belonging to the data sample. In particular, it is expressed as follows: 

 

 




=ˆ i
z

i s i

Z
t . (7) 

 

The   estimator expands the values collected in the sample by increasing the importance of 

the observed population units. Because the sample contains fewer elements than the original 

population, an expansion is required to reach the level for the total population. The i -th unit, 

when present in the sample, will represent 1 i  population units. As it is unbiased, the   

estimator is the cornerstone of the main estimators in finite population sampling theory. 

Formulations of the variance and estimations of the variance of the   estimator can be found 

in many textbooks (see, for example, Särndal et al. 1992 and Hedayat and Sinha, 1991). 

Horvitz and Thompson (1952) were the first authors to use this expansion principle to estimate 

the total of a population, on which ground the   estimator is also called the Horvitz-Thompson 

(HT) estimator in the literature. 

 

3. An adaptation of the order-α quantile-type frontier for dealing with sampling designs 

In this framework, we adapt the estimation of the order-  quantile production function, 

 0,1  , to work with a data sample derived from a sampling design ( )p  . The results 

reported in this section are completely new. 
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The conditional distribution function of the survey variable Y  given X x  in a finite population 

of size N  is defined as follows: 

 

 ( )
( )

=

 

=


1

1 ,

|

N

i i

i
U

x

X x Y y

F y x
N

, (8) 

 

where ( )
1

1
N

x i

i

N X x
=

=   represents the number of units in the population such that X x . 

 

Notice that, from the point of view of finite population sampling, ( )|UF y x  is a population 

parameter since it is defined through the unknown values of survey variables X  and Y  for 

all the population units U . At the same time, ( )|UF y x  could be considered the empirical 

estimation of ( )|F y x  (see Section 2) for the original production process from the N  

generated observations, which are, as already pointed out, unknown to us. 

 

Note also that the estimation process linked to the quantile production function described 

above could be applied to U  instead of the observed s  in order to determine an estimation 

for ( )q x . In this case, ( )ˆ |F y x  should be substituted by ( )|UF y x . 

 

In our framework, however, we are an observer outside the production process. Consequently, 

the values iX  and iY , 1,...,i N= , are unknown to us. It implies that we cannot apply the 

estimation process by Aragon et al. (2005) for the quantile production function directly on U . 

Instead, we select a subset of the population s U  and try to accurately estimate some 

population parameters of interest, like ( )|UF y x . 

 

To do this, note first that 
( ) ( ),

1

1 ,
N

i iI x y
i

t X x Y y
=

=    is really the total of the population for the 

binary membership indicator variable ( ),I x y  defined as: 
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 ( )
 

= 


1, if  and 
,

0, otherwise

i i

i

X x Y y
I x y . (9) 

 

Additionally, ( )
1

1
N

x i

i

N X x
=

=   is the total of the population for the binary membership 

indicator variable ( )I x  defined as: 

 

 ( )


= 


1, if 

0, otherwise

i

i

X x
I x . (10) 

 

Then, ( ) ( ),
|U xI x y

F y x t N=  is the ratio of two population totals. The HT estimator can 

estimate each total without bias. Hence, we propose the following estimator for ( )|UF y x : 

 

 ( )
( )

( )

( )( ) ( )


 

=

 =

 

= =





 

1

1

11 ,
ˆ |

1 1

x

j j

x

j

n

i i i i i
ji s

U n

i i i
i s j

Y yX x Y y

F y x

X x

. (11) 

 

Using (first-order) Taylor linearization of the ratio ( )ˆ |UF y x , we get  

 

 ( ) ( )
( ) ( ) ( )



−
 + 

, |1ˆ | | i U i

U U

i sx i

I x y F y x I x
F y x F y x

N
. (12) 

 

This implies that ( ) ( )
( ) ( ) ( ), |1ˆ | | i U i

U U

i sx i

I x y F y x I x
E F y x E F y x

N 

 −
   + =  

 
  

( )
( ) ( ) ( ), |1

| i U i

U

i sx i

I x y F y x I x
F y x E

N 

 −
+  

 
 . And 

( ) ( ) ( )


 −
= 

 


, |i U i

i s i

I x y F y x I x
E  
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( )
( )

( )
  

 
− = 

 
 

,
|i i

U

i s i si i

I x y I x
E F y x  

( )
( )

( )
  

   
− =   

   
 

,
|i i

U

i s i si i

I x y I x
E F y x E   

( ) ( ) ( )
( )

− = − =
,

, ,
| 0

I x y

U x xI x y I x y

x

t
t F y x N t N

N
, which means that ( ) ( )ˆ | |U UE F y x F y x  

 
.  

 

In other words, the estimator ( )ˆ |UF y x  is approximately unbiased for ( )|UF y x , which is, at 

the same time, the estimator that Aragon et al. (2005) would use for approximating ( )| .F y x  

 

Moreover, ( )ˆ |UF y x  may be expressed as 

 

 ( )

( )

( )

( ) ( )

( )




+

=

=

 





=     −











1

1

1

1

0, if 

1
ˆ | , if y ,1 1

1

1, if 

j

x k k

j

nx

i

k

i
j

U xn i i

i

j

i

y Y

F y x Y Y k n

y Y

. (13) 

 

Let us now introduce some new notation. Let 
( )

1

1
j

k

k i
j

W 
=

= . Additionally, let ( ),Uq x  be the 

empirical quantile of Y  calculated from iY , i U  such that iX x .  

 

Then, following Aragon et al.’s (2005) approach, an estimator of ( ),Uq x  would be 

( ) ( ),
ˆ

k
U i

q x Y = , where k , 1 xk n  , is the smallest index such that 
xk nW W , for 0  . 

 

In the extreme case of 1 = , i.e. when the quantile to be estimated is equal to the maximum, 

note that ( ) ( )  1,
:

ˆ max
nx i

U ii i X x
q x Y Y


= = . This means that the estimation of the traditional 
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production function constructed from the N  population units is equal to the standard FDH 

estimation calculated from n  observations, regardless of the sampling design. 

 

The following proposition establishes that any sampling design that generates identical 

inclusion probabilities for all the elements of the population produces the same quantile 

production function estimator as Aragon et al.’s (2005) approach applied directly to the n  

observations, i.e. without using the information contained in i , i U . 

 

Proposition 1. Let ( )p   such that i =  i U  , then ( ) ( ),
ˆ ˆ

Uq x q x =  for any 0  . 

 

Proof. From (11), ( )
( )

( )


( )

( )

 

 

 

 

   

= = =

 

 

 by hypothesis

1 , 1 ,
ˆ |

1 1

i i i i i

i s i s
U

i i i

i s i s

X x Y y X x Y y

F y x

X x X x

 

( )

( )

( )




 

=







:

11 ,

1

i

ii i
i X xi s

x
i

i s

Y yX x Y y

n
X x

, since ( )
1

1
n

x i

i

n X x
=

=  . By expression (4), we have 

that ( )ˆ |UF y x  is equal to ( )ˆ |F y x  in Aragon et al. (2005). Consequently, ( ) ( ),
ˆ ˆ

Uq x q x =  

for any 0  . ■ 

 

Several well-known sampling designs satisfy the hypothesis in Proposition 1, including 

Bernoulli sampling, simple random sampling without replacement and systematic sampling. 

The following result establishes that, under these designs, our approach generates the same 

estimations as the approach by Aragon et al. (2005). 

 

Corollary 1. Applying Bernoulli sampling (BE), simple random sampling without replacement 

(SRS) and systematic sampling (SS), ( ) ( ),
ˆ ˆ

Uq x q x =  for any 0  . 
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As a consequence of Corollary 1, BE, SRS and SS generate the same estimation for the 

quantile production function of order 0   as by directly applying Aragon et al.’s approach 

(2005) without taking into account that the sample has been drawn from a finite population U

. Hence, if a researcher’s database is built from the above sampling design types, then it 

suffices, as suggested by Aragon et al. (2005), to determine the empirical quantile of 

observations in the sample such that X x . The problem arises when the data used in the 

empirical study come from a sampling design with non-equal inclusion probabilities. For 

example, the sampling statisticians in the famous PISA report resort to random schemes 

based on inclusion probabilities proportional to a positive and known auxiliary variable, such 

as the number of students in each school. This means that the inclusion probabilities vary 

across the population units and, therefore, the hypothesis stated in Proposition 1 does not 

hold. The effect of this deviation on the estimation of the quantiles is something that warrants 

detailed investigation due to the importance of reports like PISA. Indeed, the PISA technical 

report states that “While the students included in the final PISA sample for a given country 

were chosen randomly, the selection probabilities of the students vary. Survey weights must 

therefore be incorporated into the analysis to ensure that each sampled student represents 

the appropriate number of students in the full PISA population” (PISA 2012 Technical Report, 

p. 132). 

 

The above process of estimation is able to generate a point estimation for the population 

quantile ( ),Uq x . However, a confidence interval of this parameter sometimes has to be used 

to make other inference types. Next, we propose an approximate confidence interval for the 

population quantile ( ),Uq x .  

 

Our approach is inspired by Woodruff (1952). This method was used by Woodruff (1952) for 

confidence intervals of medians, although it can be generalized to other quantiles. In our 

context, the approach requires computing a confidence interval for ( )|UF y x . Assuming that 

these values are lF  and uF , the confidence interval for ( ),Uq x , namely ( ),l uq q , is implicitly 

defined by the equations: ( )ˆ |U l lF q x F=  and ( )ˆ |U u uF q x F= . 
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In order to determine a confidence interval for the population parameter ( )|UF y x , we first 

need to propose an estimation of the variance of the estimator ( )ˆ |UF y x . Following Särndal 

et al. (1992), an approximate variance of the   estimator of the ratio of two totals is 

 

 

( )( )
( ) ( ) ( ) ( ) ( ) ( )

  



−−
2

ˆ |

, |, |1

U

j U ji U i

ij

i U j Ux i j

V F y x

I x y F y x I xI x y F y x I x

N

, (14) 

 

which can be estimated through 

 

 

( )( )
( ) ( ) ( ) ( ) ( ) ( )

 


 

=



−−


 
 
 






2

1

ˆ ˆ |

ˆˆ , |, |1

1
x

j

U

j U ji U i

ij
n

i s j s i j

i

j

V F y x

I x y F y x I xI x y F y x I x
, (15) 

 

where ij ij i j   = − , 
ij ij ij =   and ( )Pr ,ij i S j S =   . 

 

Then, a confidence interval for ( )|UF y x  at the approximate level 1 −  can be computed as  

 

 ( ) ( )( )−
 
 

1 2

1 2
ˆ ˆ ˆ| |U UF y x z V F y x , (16) 

 

where 1 2z −  is the constant exceeded with probability 2  by the ( )0,1N  random variable. 

 

Let us define the following two elements, which we will use to define the confidence interval: 

 

 ( ) ( )( )−
 = −
 

1 2

1 2
ˆ ˆ ˆ| |l U UF F y x z V F y x  (17) 

 

and 
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 ( ) ( )( )−
 = +
 

1 2

1 2
ˆ ˆ ˆ| |u U UF F y x z V F y x . (18) 

 

Then, a confidence interval for ( ),Uq x
 at the approximate level 1 −  is ( ),l uq q  with 

( )
= ,

l
l i

q Y  where l , 1 xl n  , is the largest index such that 
xl l nW FW , and ( )u

u i
q Y= , where 

u , 1 xu n  , is the largest index such that 
xu u nW F W . The problem in this case is that we 

need to know not only  i
 but also  ij  to determine the approximate confidence interval. 

Unfortunately, the database owner (e.g. the OECD for PISA) does not always provide this 

information. 

 

4. Monte Carlo experiment 

In order to test the performance of the proposed method, we perform a Monte Carlo 

experiment applied to three different scenarios assuming different sample designs. As 

discussed in Section 3, it is common in the educational context to observe complex sample 

designs where the probabilities of inclusion in the sample are not equal across the population 

units. Particularly, most large-scale international educational assessments (e.g. PISA, TIMSS, 

PIRLS, etc.) are based on a probability proportional to size (PPS) design, where the inclusion 

probabilities are proportional to a positive and known auxiliary variable (e.g. the number of 

students in each school).  

 

4.1. Experimental design 

To carry out the experiment, we replicate Aragon et al.’s Example 1 (2005). Thus, the data 

generation process is rooted in a Cobb-Douglas log-linear single-input single-output model 

given by 
0.5 exp UY X −= , where the input X is uniformly distributed between (0,1) and the 

efficiency component U is exponentially distributed with mean 
1

3

 
 
 

. Finally, the true frontier 

is defined by 
0.5( )x x = . 
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All scenarios in this Monte Carlo experiment are based on a PPS design with a population 

size (N) equal to 1,000. First, we compute a scenario assuming that the sample is drawn using 

a PPS design and the auxiliary variable jT  is not correlated with the efficiency level (referred 

to hereinafter as the non-informative design scenario). The second scenario is generated 

drawing the sample from a PPS design and assuming that the auxiliary variable jT  is highly 

correlated with the level of efficiency by 4(exp )UjT
−=  (referred to hereinafter as the 

informative design scenario). Finally, the third scenario is simulated using a two-stage 

sampling design. In this scenario, half of the sample is drawn using an informative design and 

the second half of the sample is drawn using a simple random sample (SRS) design (referred 

to hereinafter as the two-stage design scenario). In this scenario, we use the first half of the 

sample only to estimate the frontier and the second half of the sample only to estimate the 

average efficiency. 

 

We replicate each scenario for different sample sizes (50, 100, 300 and 500), i.e. we simulate 

four different sampling fractions 
n

f
N

= . In large-scale international assessment, we usually 

observe sample sizes of around 50 schools. This is usually no more than 10% of the population 

at country level. However, there are some exceptions where f  can be very large (even equal 

to 1), for example, when some countries expand the sample at regional level. In this vein, we 

aim to simulate different sample sizes to dimension the problem according to the sampling 

fraction.  

 

For each dataset, we estimate the population quantile frontier ,
ˆ ( )Uq x  and the individual 

efficiency score ˆ
j  for each observation included in the sample 1,2,....,j n=  by running the 

order- quantile-type frontier model proposed by Aragon et al. (2005) (referred to hereinafter 

as the order- model) and our proposed adaptation of this model to include the sample 

weights (referred to hereinafter as the AGSS model) for 0.8 = , 0.9 =  and 1 = . Finally, 

for each dataset, we estimate the average population efficiency   from the sample, both 

omitting (which is the standard practice) and accounting for inclusion probabilities. Thus, we 

define the following estimators:  

 

1

1 ˆˆ
n

order order

j

jn

  − −

=

=    (19) 
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,

1

1 1 ˆˆ
n

order order

j

j jn

   


− −

=

=    (20) 

1

1 ˆˆ
n

AGSS AGSS

j

jn
 

=

=     (21) 

,

1

1 1 ˆˆ
n

AGSS AGSS

j

j jn

 
=

=    (22) 

 

Note that we use only the half of the sample drawn from a SRS design to estimate the 

population average efficiency in the two-stage sampling design. This means that the 

probabilities of inclusion are identical for all observations, and, consequently, it is not 

necessary to take this information into account. Thus, for this sampling design, we only provide 

the estimators ˆ order  − and ˆ AGSS . 

 

In summary, we simulate 36 scenarios (three sample designs, four sampling fractions and 

three levels of  ). In order to make the results more reliable, we undertook a Monte Carlo 

experiment, where B, the number of replicates, is 100. Therefore, all measures were computed 

in each replication and then averaged to get the results reported in the next section.  

 

4.2. Results 

 

4.2.1. Results on the population quantile-type frontier estimation 

In order to dimension the effect of taking into account the sample weights to estimate the 

order-  quantile-type frontier in finite population samples, we compare the results from both 

the order- and AGSS models. To do this, we compute the mean square error (MSE) for each 

model: 

 

( )
2

, ,

1

1
ˆ ( ) ( )

n

U j U j

j

MSE q x q x
n

 
=

= − ,  (23) 

where , ( )U jq x  is the population quantile-type frontier of order   evaluated at unit j and 

,
ˆ ( )U jq x  is the estimation of this order- frontier at the same point. Note that, for 1 = , the 

quantile production 1( )q x coincides with the production function ( )x . Results from this 

analysis are shown in Table 1. To illustrate the above ideas, we report the results for the 

population production frontier estimation from one particular simulation. Figures 1, 2 and 3 
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show these results for the non-informative design, informative design and two-stage design 

( 0.9 = and n=50, n=300, respectively). Note that these results are plotted merely for 

illustrative purposes, since they represent only one simulation. To properly compare model 

performance, we also compare the MSE of the Monte Carlo simulation. 

 

The first remarkable result from the Monte Carlo experiment is that, in the extreme case of 

1 = , i.e. when the quantile to be estimated is equal to the maximum (last two columns of 

Table 1), we obtain the same estimation of the population production function with both 

models, regardless of the sample design. Consequently, from now on, we will focus on the 

results for 1  .    

 

In the non-informative scenario, the results demonstrate that the order- model proposed by 

Aragon et al (2005) performs reasonably well. In other words, the omission of different 

probabilities of inclusion does not, in this case, pose a problem in terms of population frontier 

identification provided that they are independent of the efficiency. Moreover, the inclusion of 

the sample weights through the adaptation of the order- model leads to larger MSE values.  

 

Conversely, when the auxiliary variable in the PPS design is informative, i.e. it is correlated 

with the efficiency of the units in the population (e.g. larger schools are more efficient than 

smaller ones), failure to include the probability of inclusion information in the model 

significantly impairs the estimation of the population frontier for all levels of   and sample 

sizes. Figures 2 and 3 illustrate this result. Note that if we compare both PPS informative 

designs, the most pronounced improvements of considering the sample weights are observed 

in the informative scenario, because all the units included in the sample are used to estimate 

the frontier in this case. However, only half of the sample is used to identify the population 

frontier in the two-stage dataset.
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Figure 1 Estimation of  the population production f rontier using the order-  and AGSS models, non-

informative design  

 
Panel (a) Non-informative design n=50 and 0.9 =  

 

 
Panel (b) Non-informative design n=300 and 0.9 =  
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Figure 2 Estimation of  the population production f rontier using the order-  and AGSS models, 

informative design 

 
Panel (a) Informative design n=50 and 0.9 =  

 

 

Panel (b) Informative design n=300 and 0.9 =  
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Figure 3 Estimation of  the population production f rontier using the order-  and AGSS models, two-

stage design 

 
Panel (a) Two-stage design n=50 and 0.9 =  

 

 
Panel (b) Two-stage design n=300 and 0.9 =  
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Finally, an interesting finding in both informative designs for 1   is that the MSE also 

increases as the sample size increases. This means that the negative effect of omitting 

information about different sample weights across the sample intensifies in these contexts as 

the sample size increases. The accurate estimation of the population production frontier is 

extremely important when we set out to measure technological change over time or compare 

the performance between different sectors or groups of units. In these contexts, if there is any 

previous evidence about the potential correlation between the auxiliary variable and 

population efficiency, it would be recommendable to use the AGSS model instead of 

overlooking the probabilities of inclusion. In fact, since there is not a substantial difference in 

the MSE between both models in the non-informative scenario, it might be preferable, if there 

is any inkling, even if there is no robust evidence, of such a correlation, to include, rather than 

omit, the sample weights. 

 

 Table 1 Mean square error for the estimation of  the population f rontier f rom PPS sample 

designs 

  
α=0.8 α=0.9 α=1 

order-α AGSS order-α AGSS order-α AGSS 

Non-informative             

n=50 0.095 0.103 0.089 0.095 0.168 0.168 

n=100 0.093 0.102 0.088 0.096 0.152 0.152 

n=300 0.079 0.087 0.074 0.082 0.102 0.102 

n=500 0.060 0.070 0.055 0.063 0.063 0.063 

Informative       

n=50 0.250 0.144 0.156 0.102 0.052 0.052 

n=100 0.400 0.159 0.241 0.099 0.044 0.044 

n=300 1.028 0.200 0.579 0.104 0.015 0.015 

n=500 1.626 0.226 0.910 0.093 0.000 0.000 

Two-stage       

n=50 0.161 0.133 0.104 0.083 0.054 0.054 

n=100 0.245 0.151 0.151 0.090 0.053 0.053 

n=300 0.549 0.192 0.322 0.094 0.035 0.035 

n=500 0.838 0.169 0.481 0.089 0.022 0.022 

Note: Mean values after 100 replications.      

 

 

4.2.2. Results on the population average efficiency 

We are also interested in exploring the effect of taking into account the existence of different 

probabilities of inclusion j  when we aggregate the individual efficiencies to estimate the 

population average efficiency  . To do this, we compute, after the 100 replications, the mean 

bias relative to the true population average efficiency   for each estimator ̂  (Equations 19 

to 22): 
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and the MSE relative to the true population efficiency  : 
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Note that, for 1  , some observations will be located above the quantile frontier ( )q x , i.e. 

the efficiency level of these units will be lower than 1. Then, the parameter  and the 

estimators ̂  could also take values smaller than 1, leading to a positive or a negative bias. 

Results for the bias and the MSE are shown in Tables 2 and 3, respectively. 

 

As in the previous case, for 1 = , the results from both models are equal. Thus, we will focus 

on 1  . In the first scenario, the non-informative design, both the bias and the MSE results 

show that omission of the sample weights is, in this case, the best strategy for estimating the 

population average efficiency for all sample sizes and levels of  .  

 

In the informative design, the bias and MSE lead to different conclusions. In terms of bias, it 

appears to be better to take into account the information on the probabilities of inclusion to 

estimate the population frontier and then aggregate the individual efficiencies to estimate the 

population average efficiency. This result holds for all sample sizes and both levels of 0.8 =  

and 0.9 = . However, if we focus on the MSE, the conclusion is the exact opposite. In this 

case, the estimator ˆ order  −
performs best for all sample sizes and levels of  , which means 

that it is more accurate to ignore this information. Note that, in this scenario, there is a trade-

off between population frontier estimation accuracy and population average efficiency. With a 

view to population frontier estimation accuracy, it would be necessary to include the sample 

weights (i.e. using the AGSS model). However, this implies a considerable deterioration in 

terms of the MSE in the estimation of the population average efficiency.  

 

Finally, the two-stage design addresses this trade-off. In this context, it is also more accurate 

to include the probabilities of inclusion in the model for estimating the population average 

efficiency for all sample sizes and levels of  , and there are no contradictory results between 
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bias and MSE. Moreover, the estimation of the population average efficiency   from this 

sampling design is much more accurate than the informative design, regardless of the 

estimator that we use. This finding is notable in terms of public policy design, since large-scale 

assessment surveys are usually used to measure technical efficiency through production 

frontiers. However, current sample designs (PPS) are not designed for estimating either 

population production frontiers or average technical efficiency. If there is any previous 

evidence (e.g. earlier studies) indicating that there is any correlation between the auxiliary 

variable (e.g. school size) and the efficiency of the schools in the population, it would be 

advisable to define a two-stage sampling design instead of a standard PPS to enhance future 

population efficiency and productivity estimations using samples. This issue is even more 

important when the aim of the analysis is to compare school performance over time (i.e. 

technological change) or different educational sectors (e.g. public and private schools).  
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Table 2 Bias for the estimation of  the population average ef f iciency  

  
Non-informative Informative Two-stage 

order-α order-α (π) AGSS AGSS(π) order-α order-α (π) AGSS AGSS(π) order-α order-α (π) AGSS AGSS(π) 

α=0.8 

n = 50 -0.002 -0.008 0.006 0.002 -0.107 0.135 -0.194 -0.028 0.054 --- -0.032 --- 

n = 100 -0.017 -0.012 -0.015 -0.009 -0.115 0.084 -0.208 -0.003 0.087 --- 0.005 --- 

n = 300 -0.011 -0.009 -0.012 -0.010 -0.120 0.086 -0.208 -0.041 0.101 --- -0.008 --- 

n = 500 -0.010 -0.009 -0.012 -0.010 -0.121 0.068 -0.211 -0.054 0.108 --- 0.001 --- 

α=0.9 

n = 50 -0.020 -0.026 -0.017 -0.021 -0.151 0.108 -0.215 -0.017 0.004 --- -0.054 --- 

n = 100 -0.032 -0.026 -0.029 -0.023 -0.158 0.054 -0.226 0.017 0.045 --- -0.017 --- 

n = 300 -0.022 -0.020 -0.022 -0.020 -0.163 0.062 -0.227 -0.031 0.065 --- -0.014 --- 

n = 500 -0.017 -0.016 -0.022 -0.020 -0.163 0.041 -0.229 -0.048 0.078 --- -0.004 --- 

α=1 

n = 50 -0.151 -0.157 -0.151 -0.157 -0.313 -0.036 -0.313 -0.036 -0.189 --- -0.189 --- 

n = 100 -0.122 -0.115 -0.122 -0.115 -0.299 -0.067 -0.299 -0.067 -0.114 --- -0.114 --- 

n = 300 -0.069 -0.067 -0.069 -0.067 -0.280 -0.028 -0.280 -0.028 -0.053 --- -0.053 --- 

n = 500 -0.046 -0.045 -0.046 -0.045 -0.274 -0.044 -0.274 -0.044 -0.024 --- -0.024 --- 

Note: Mean values after 100 replications.  
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Table 3 Mean square error for the estimation of  the population average ef f iciency 

  
Non-informative Informative Two-stage 

order-α order-α (π) AGSS AGSS(π) order-α order-α (π) AGSS AGSS(π) order-α order-α (π) AGSS AGSS(π) 

α=0.8 

n = 50 0.005 0.007 0.006 0.008 0.000 0.274 0.047 0.087 0.030 --- 0.027 --- 

n = 100 0.003 0.004 0.003 0.004 0.018 0.155 0.053 0.437 0.017 --- 0.011 --- 

n = 300 0.001 0.001 0.001 0.001 0.019 0.090 0.051 0.049 0.013 --- 0.004 --- 

n = 500 0.000 0.000 0.001 0.001 0.019 0.040 0.052 0.022 0.013 --- 0.003 --- 

α=0.9 

n = 50 0.006 0.009 0.006 0.010 0.032 0.313 0.061 0.145 0.028 --- 0.030 --- 

n = 100 0.003 0.004 0.003 0.004 0.035 0.173 0.066 0.490 0.012 --- 0.011 --- 

n = 300 0.001 0.001 0.001 0.001 0.036 0.105 0.065 0.074 0.007 --- 0.003 --- 

n = 500 0.000 0.001 0.001 0.001 0.036 0.044 0.066 0.032 0.007 --- 0.002 --- 

α=1 

n = 50 0.022 0.027 0.022 0.027 0.123 0.342 0.123 0.342 0.065 --- 0.065 --- 

n = 100 0.012 0.012 0.012 0.012 0.113 0.220 0.113 0.220 0.024 --- 0.024 --- 

n = 300 0.003 0.003 0.003 0.003 0.101 0.137 0.101 0.137 0.006 --- 0.006 --- 

n = 500 0.001 0.001 0.001 0.001 0.097 0.061 0.097 0.061 0.002 --- 0.002 --- 

Note: Mean values after 100 replications.  
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5. Concluding remarks 

 

Nowadays, it is quite common to find educational databases based on complex sampling 

designs used to minimize survey costs and improve the precision of the estimates of some 

parameters of interest for the population. However, the use of the information provided by 

sample weights has been repeatedly overlooked in the literature on production frontier 

estimation, leading to estimations (from sample data) that are not representative of the 

population under study. In this research, we develop an extension of robust nonparametric 

order-  frontier methods to incorporate sample weight information into the estimation of the 

population production frontier. Monte Carlo results show that when the auxiliary variable in the 

PPS sample design contains information about the level of efficiency in the population, the 

estimation of the population frontier can be improved if the nonparametric model accounts for 

information on sample weights. In this context, however, the PPS sample design should be 

transformed into a two-stage sampling design in order to properly estimate the average 

educational efficiency for the target population.  

 

This research should be regarded as a foundation stone for addressing the issue of 

incorporating sample weight information into the estimation of technical efficiency. More 

research is needed in several directions to explore other potential solutions for improving the 

accuracy of nonparametric estimations. Probably, the most straightforward and intuitive 

alternative is to explore the potential of incorporating sample weight information into the 

conventional bootstrap methodology (Simar and Wilson, 1998). In particular, it is important to 

test its validity and performance, since the basic assumption of this method (i.e. observed data 

in the sample come from independent and identically distributed random variables) does not 

hold in the case of complex sampling designs in finite populations. Another fruitful line of 

research would be to address this issue in the parametric framework, for example, by 

incorporating sample weights into the corrected ordinary least square (COLS) model. 
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