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Abstract

Average efficiency is popular in the empirical education literature for comparing the aggregate
performance of regions or countries using the efficiency results of their disaggregated
decision-making units (DMUs) microdata. The most common approach for calculating average
efficiency is to use a set of inputs and outputs from a representative sample of DMUs, typically
schools or high schools, in order to characterize the performance of the population in the
analysed education system. Regardless of the sampling method, the use of sample weights
is standard in statistics and econometrics for approximating population parameters. However,
weight information has been disregarded in the literature on production frontier estimation
using nonparametric methodologies in education. The aim of this chapter is to propose a
preliminary methodological strategy to incorporate sample weight information into the
estimation of production frontiers using robust nonparametric models. Our Monte Carlo results
suggest that current sample designs are not intended for estimating either population
production frontiers or average technical efficiency. Consequently, the use of sample weights
does not significantly improve the efficiency estimation of a population with respect to an
unweighted sample. In order to enhance future efficiency and productivity estimations of a
population using samples, we should define an independent sampling design procedure for
the set of DMUs based on the population’s production frontier.
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1. Introduction

Large-scale assessment surveys have played a growing role in educational research over the
last three decades. Broadly defined, large-scale assessments are standardized surveys of
cognitive skills in different subjects that provide comparable data about many different
students, schools and, in short, education systems in one region, country or even several
countries around the world. Because both home and school play an important role in how
students learn, large-scale surveys also collect extensive information about such background
factors at individual, teacher and school level. Some of the best-known international databases
worldwide are the Programme for International Student Assessment (PISA), the Trends in
International Mathematics and Science Study (TIMSS) or the Progress in International
Reading Literacy Study (PIRLS). Additionally, in many developed countries, ministries of

education gather similar data for analysing their educational systems.

Researchers can use this information for three important purposes. First, educational
databases are useful for making cross-country comparisons of the achievements of different
education systems, as well as for introducing the quality of human capital in economic growth
regressions (Hanushek and Kimko, 2000; De la Fuente, 2011; Hanushek and Woessmann,
2012). Second, these databases are analysed for disentangling the causal effects of
educational policies, law changes and different social factors on educational outcomes
through the use of counterfactuals (Strietholt et al., 2014; Cordero et al. 2017). Finally, large-
scale assessment surveys are used for measuring technical efficiency through production
frontiers in order to benchmark the most successful educational policies (Afonso and St
Aubyn, 2005, 2006; De Jorge and Santin, 2010, Agasisti and Zoido, 2018). This latter research
line is the focus of this chapter, also addressed in recent related publications by Aparicio et al.
(2017a, 2017b), Aparicio et al. (2018) and Aparicio and Santin (2018).

Furthermore, the use of representative samples of a population is an extremely widespread
practice in statistics. Multiple methods have been developed for characterizing a population
through a sample (see Hedayat and Sinha, 1991 and Sarndal et al., 1992). There are some
reasons for introducing weight designs in educational databases. First, sampling could
oversample or undersample some major school types within the population. For example, the
sample could include schools from major, albeit small, territories or regions, which, depending
on the sampling method applied, could be either not well represented or overly significant
when results are averaged to draw conclusions about the population. Second, school sizes
vary across the school population. Therefore, average results at school level hide the fact that



the analysis covers all students at some schools and just a group of students at others. Finally,

weighting is used to address non-response issues from some schools.

However, the sample weights that appear in many educational databases have been
repeatedly ignored in econometrics. Recently, Lavy (2015) investigated whether instruction
time has a positive impact on academic performance across countries using unweighted PISA
2006 data pooled at student level. Jerrim et al. (2017, p54) reanalysed Lavy’s data, running
the same regression analysis with the PISA final weights to capture the population size of
each country. Their results show that the effect of an additional hour of instruction is almost
50% greater in developed countries and 40% smaller in Eastern European countries than
Lavy’s estimations. As a result, the parameters estimated from a sample might not be

representing the population under study.

The same problem could affect production frontiers applied to educational databases when
researchers assume that the average efficiency results for an unweighted sample can be
straightforwardly identified as a good estimation for the population. So far, extensions have
not been developed to incorporate the sample weights when estimating the production frontier

and the efficiency scores for comparing the performance of different sets of schools.

Under the production frontier framework, there are basically two potential concerns affecting
the estimation of technical efficiency. First, there is a representativeness problem, since only
the weighted sample is representative of the population. Thus, sample weights are necessary
to make valid estimates and inferences about any population parameter from the sample.
Therefore, a straightforward adjustment could be to expand the sample to the population using
the sample weights. Basically, this means including these weights to compute the aggregate
(average) efficiency of the sector (region, country, etc.) and ensure that the entire population
is represented. Second, the DMUs included in the analysis are only one of many possible
sampling realizations of the population. Because not all DMUs have the same probability of
inclusion in the sample, the omission of best-performers information might affect the shape of
the estimated true production frontier. The potential misidentification of the true frontier also
impairs the estimation of individual efficiency scores, since they are computed as the relative
distance to the estimated frontier.

PISA, TIMSS and PIRLS are based on multi-stage probability proportional to size (PPS)
sampling schemes. Basically, the sampling design is composed of two stages. First, schools
are randomly selected from different strata taking into account the size of the schools. Second,

students are randomly selected within each sampled school. As a result, each school and
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each student have different probabilities of being included in the sample, i.e. different sample
weights'. This makes weighting information crucial for getting unbiased estimates of
population characteristics. As stated in the PISA 2015 Technical Report (OECD, 2017, p.116):
“Survey weights are required to analyse PISA data, to calculate appropriate estimates of
sampling error and to make valid estimates and inferences of the population”... “While the
students included in the final PISA sample for a given country were chosen randomly, the
selection probabilities of the students vary. Survey weights must be incorporated into the
analysis to ensure that each sampled student appropriately represents the correct number of
students in the full PISA population.” For this reason, it could be misleading to extrapolate
results from sample to population regardless of weighting. This problem can also arise in other

sectors, like health, banking, agriculture, etc., where the use of samples is commonplace too.

How can we deal with weights in production frontiers? Nonparametric methods, and especially
data envelopment analysis, have been applied for measuring efficiency much more often than
parametric methods in the education literature. Their extensive application is a consequence
of their flexibility, as there is no theoretical education production function (Levin, 1974) and
few assumptions are needed to envelop the best performers. Nonparametric methods do not
explicitly estimate the parameters of a production technology. Instead, they determine an
efficiency index reflecting how much use each unit makes of its available resources based on

a mathematical model implicitly describing the estimated technology.

Taking insights from the conditional quantile-based approach proposed by Aragon et al.
(2005), this paper provides a preliminary methodological strategy to incorporate the
information of sample weights into the estimation of the production frontier using robust
nonparametric models. The final aim is to enhance the estimation of the technical efficiency
of a population of DMUs using a representative sample and its weights as is common practice
in education. The reason why we select Aragon et al. (2005), among other possibilities, is that
it allows extending the standard frontier analysis to contexts with sample weights? in a simple

way.

The remainder of the paper is organized as follows. In Section 2, we discuss the main
methodological issues related to the estimation of nonparametric production from sample

designs. In Section 3 we propose a method to add the sample weights to the estimation of

1 For a detailed explanation of this sampling design, see Chapter 4 of the PISA 2015 Technical Report.
2 In the DEA literature, we can find some references that include weights like, for example, Allen et al. (1997)
and Fare and Zelenyuk (2003). However, they do not consider sample weights from sample designs.



robust nonparametric frontier models. Section 4 is devoted to check the performance of this
method through a Monte Carlo experiment. Finally, Section 5 outlines the main conclusions.

2. Methodological issues

In this section, we briefly review the main nonparametric frontier estimators, their robust
estimation through partial frontiers, and some key notions about finite population sampling in
statistics before extending Aragon et al.’s approach (2005) to the context where information
on the sampling design is available. See also Daouia and Simar (2007) and Daraio and Simar
(2007).

2.1. Nonparametric frontier models

In frontier analysis, most of the nonparametric approaches —free disposal hull (FDH)and data
envelopment analysis (DEA)—are based upon enveloping the set of observations from above
to let the data speak forthemselves, as well as requiring certain properties (like monotonicity).
According to economic theory (Koopmans, 1951; Debreu, 1951; Shephard, 1953), the

production set, where the activity is described by a set of m inputs x € R used to produce
aset of p outputs y € R”, is defined as the set of all physically producible activities given a

certain knowledge (x,y): ¥ = {(X,y) e R™P: x can produce y} (see also Pastor et al.,

2012).

In this paper, we assume that ¥ is a subset of R""” that satisfies the following postulates

(see Fare et al., 1985).

(P1) ¥ =D
(P2) ¥ (x):= {(u,y) eV:w< x} is bounded Vx e R”;

(P3) (xy)eW.(x—y)<(X,—y)=(X.y)e¥, ie, inputs and outputs are freely

disposable;
(P4) Y is aclosed set;

(P5) ¥ is a convex set.



A certain activity (observation) is considered to be technically inefficientif it is possible to either
expand its output bundle y without requiring any increase in its inputs x or contract its input
bundle without requiring a reduction in its outputs. The capacity for expanding the output
bundle reflects output-oriented inefficiency. Likewise, potential input savings indicate input-
oriented inefficiency. Exactly which of these two orientations is selected depends on the
analysed empirical framework. On the one hand, it is assumed, in the case of input-oriented
contexts, that the output bundle (like the number of patients to be treated at a hospital) is fixed
or given by the demand side. Hence, it is reasonable to save on the use of inputs to contain
costs. In this case, determining input-oriented technical efficiency measurements by scaling
down x (the frontier of ¥ ) as far as possible is the most rational first step. On the other hand,

when the input bundle is predetermined (like land at a farm), output-oriented technical
efficiency measurements would appear to be a better option.

For simplicity’s sake, we assume in this paper that firms, schools if we refer to the education
sector, cannot change their inputs in the short run or that they are given. Consequently, output-
orientation is the best choice, and we will evaluate their performance based on the assessment
of the production of outputs from a certain level of inputs. In this context, it is common practice

to work with the notion of requirement set. The requirement set, denoted as Y(x), is the set

of all outputs that a firm can produce using X € R as inputs. Mathematically speaking,

Y(x):{yeRf:(x,y)e‘P}.

Assumptions on the data generating process (DGP) encompass the statistical model, which

defines how the observations in ¥ are generated. There are many alternatives. However,
since nonparametric methods for estimating frontiers have no need of parametric assumptions

about the DGP, we will simply assume that the production process, which generates the set
of observations ©, = {(X,,y,.) = 1,...,n} , is defined by the joint distribution of the random
vector (X,Y)eRT xRP, where X represents the random inputs and Y represents the

random outputs. Where ¥ is equal to the support of the distribution of (X ,Y) and p=1,

another way to define the production frontier is through the notion of production function. The

production function, denoted as ¢, is characterized for a given level of inputs X € R by the

upper boundary of the support of the conditional distribution of the univariate Y given X < x



, i.e., (p(x):sup{yeR+:F(y|x)<‘I}, where F(y|x) is the conditional distribution

function of Y given X < x. The inequality X < x should be interpreted componentwise. We
owe this formulation of the production function to Cazals et al. (2002), and it is useful for

expressing the customary notion of production function by distribution functions.

Regarding the practical determination of the technology from a data sample, economists
before Farrell (1957) used to parametrically specify the corresponding production functions
(e.g. a Cobb-Douglas function) and apply ordinary least squares (OLS) regression analysis to
estimate an ‘average’ production function, assuming that disturbance terms had zero mean.
However, the notion of production function moves away from the concept of average. In this
respect, Farrell (1957) was the first author to show how to estimate an isoquant enveloping all
the observations and, therefore, was the first to econometrically implement the idea of

production frontier.

The line of research initiated by Farrell in 1957 was later taken up by Charnes et al. (1978)
and Banker et al. (1984), resulting in the development of the data envelopment analysis (DEA)
approach, where the determination of the frontier is only constrained by its axiomatic
foundation and the property of convexity plays a major role. Additionally, Deprins et al. (1984)
introduced a more general version of the DEA estimator, depending exclusively upon the free
disposability assumption of inputs and outputs and neglecting convexity. Indeed, the two main
nonparametric frontier techniques in the literature nowadays are: DEA and FDH. In the case
of DEA, the frontier estimator is, as already mentioned, constructed as the smallest polyhedral
set that contains the observations and satisfies free disposability, whereas FDH makes fewer
assumptions than DEA. Graphically, the convex hull of the FDH estimate is the same as the

DEA estimate of the production technology.

Aigner and Chu (1968) reported a more natural follow-on from previous research by
econometricians than DEA and FDH. They showed how to apply a technique based on
mathematical programming to yield an envelope ‘parametric’ Cobb-Douglas production
function by controlling the sign of the disturbance terms and, consequently, following the
standard definition of production function. A more general parametric approach is the
stochastic frontier analysis (SFA) by Aigner, Lovell and Schmidt (1977) and Meeusen and Van
den Broeck (1977).



Generally speaking, two different approaches have been introduced in the literature:

deterministic frontier models, like DEA and FDH, which assume with probability one that all
the observations in ®, belong to ¥, and stochastic frontier models, like SFA, where, due to

random noise, some observations may be outside of V¥ .

2.2. Nonparametric robust estimators: partial frontiers

Nonparametric deterministic frontier models, like DEA and FDH, are very attractive because
they depend on very few assumptions. However, by definition, they are very sensitive to
extreme values. To solve this problem, Cazals et al. (2002) and Aragon et al. (2005) proposed
robust nonparametric frontier techniques. In this section, we briefly review the main features

of these two approaches.

Cazals et al. (2002) introduced the notion of expected maximal output frontier of order

meN’, where N denotes the set of all integers m>1. It is defined as the expected
maximum achievable level of output across m units drawn from the population using less
than a given level of inputs. Formally, for a fixed integer m e N™ and a given level of inputs

X € R, the order- m frontier is defined as

0 (X) = E[max(¥',...¥")] = ["(1-[F (v 1)]" ). (1)

where (Y1,...,Y’") are m independent identically distributed random variables generated by
the distribution of Y, given X <Xx. Its nonparametric estimator is defined by
gz“)m(x)=f:(1—[lf(y|x)]m)dy, which is based upon the estimation of the distribution
function. In particular, lf(y | X) = IE(X,y)//f(X) is the empirical version of the conditional

distribution function of Y given X <x, with If(x,y)=121(X, <xY,<y) and
n-3



1(X < x). Cazals et al. (2002) were also able to rewrite the FDH estimator of
i=1

S|

the production function in terms of the conditional distribution function as

@FDH(X) :SUp{y eR. : If(y | X)<1} :max{Y,.}.

inX;<x

By definition, the order-m frontier does not envelop all the observations in the sample.
Consequently, it is more robust to extreme values and outliers than the standard FDH

estimator. Additionally, using an appropriate selection of m as a function of the sample size,

gﬁm(x) estimates the production function go(x) while, at the same time, retaining the

asymptotic properties of the FDH estimator.

Later, Aragon et al. (2005) proposed a nonparametric estimator of the production function that
is, as they demonstrated, more robust to extreme values than the standard DEA and FDH
estimators and the nonparametric order-m frontier by Cazals et al. (2002). This model is
based upon quantiles of the conditional distribution of Y given X < x. These conditional
quantiles define a natural notion of a partial production frontierin place of the order- m frontier.
Moreover, Aragon et al. (2005) proved that their estimators satisfy most of the good properties
of the order- m estimator.

In particular, the quantile production function of order o, a € [0,1], given a certain level of

inputs X € R, can be defined as

q,(x)=F"(a|x)=inf{y eR, :F(y|x)2a}. 2)

This conditional quantile is the production threshold exceeded by 100(1—05)% of units that

use less than the level x of inputs. Notice that, by the traditional production function definition,

¢(x) coincides with the order-one quantile production function, i.e. ¢(x)=gq,(x).



The natural way of estimating q, (x) is to substitute the conditional distribution function by its

empirical estimation F (-1x):

c“ya(x)=l-=‘1(a|x)=inf{yeR+:I—:(y|x)2a}. (3)

This estimator may be computed explicitly as follows (see Aragon et al., 2005). Let

S, = {i1,...,in } be the subset of observations in the data sample such that X, < x, where

n, = 21(X, < x), i.e. the number of elements in S, . Hence, Y,1Y, corresponds to the
i=1 *

outputs observed in S, , while Y(I.1),...,Y(i ) are their ordered values. Additionally, it is assumed

that the labels i,,...,i, contain no information as to the ordering of the values of \/,1,...,\’, )

nx

For example, it is not necessarily true that Y, < Y,k for j < k. However, Y('*) < Y(I.k) for all

Ui

Jj < k.We also assume that n, #0.

The estimation of the conditional distribution function is

/E(le)Z iX;<x _ = . (4)
nX nX
Hence,
0, ify <Y,
F(ylx)=4k/n,, ifY, <y <Y, A<k<n -1 (5)
1, fy=Y,

10



Consequently, for any « >0, we have that

Y if an, e N’

G, (x)=1 " , ©®)
Y([an L otherwise

where [omx] is the largest integer less than or equal to an, . Consequently, the conditional

empirical quantile c“ya(x) is computed as the simple empirical quantile of Y,.1,...,Y,n .

Additionally, note that ¢(x)=q,(x)= Y(i ) = rg(ax{\/i}, i.e. it is equal to the FDH estimation.

In this research, we extend Aragon et al.’s notion of « -quantile production function (Aragon
et al., 2005) in order to deal with situations where the data sample is the result of applying a

particular sampling design on a finite population.

2.3. Sampling designs on a finite population
Let us now assume that the first stage of the production process generates a finite population
of production units ®,, = {(X,,Y,) = 1,...,N} . For simplicity’s sake, let the i -th element be
represented by its label i . Thus, we denote the finite population as U ={1,...,N} . Additionally,
we assume that we are an observer outside the production process. Hence, the values X,-

and Y, i =1,...,N, are unknown to us. Let us also suppose that, in a second stage, we select

a subset of the population, called a sample and denoted as s < U, with the aim of estimating
some parameters associated with the population. Specifically, we are able to observe and
collect the values of X; and Y, forall i €s.In particular, as is very commonin social science,

we consider samples that are realized by a probabilistic (randomized) selection scheme.

11



Given a sample selection scheme, it is possible, although not always simple, to establish the

probability of selecting a specified sample s. We shall use the notation p(s) for this
probability. In this way, we assume that there is a function p(-) such that p(s) gives the

probability of selecting s under the scheme in use. The function p() is usually called the

sampling design in finite population sampling theory. This notion plays a central role because
it determines the essential statistical properties (sampling distribution, expected value and
variance) of random quantities calculated from the data sample (estimators) in order to

estimate certain population parameters or functions of parameters.

For a given sampling design p() we can regard any sample s as the outcome of a set-
valued random variable S, whose probability distribution is specified by the function p(-). Let

" be the set of all samples. Thus the cardinal of T is 2" if we consider the empty set as well

as U itself. Then we have that Pr(S=s)=p(s) for any seS. Because p(-) is a

probability distribution on the set T, we have (i) p(s)=0, s€ S, and (ii) Zp(s) =1. Note

sel’

that the probability of some (usually many)of the 2 samples contained in T is equal to zero.

The subset of I" composed of any samples for which p(s) is strictly positive constitutes the

set of possible samples. They are the only ones that can be drawn given the specified design.

The sample size, denoted as N, is the number of elements in s . Note that N depends on

the sample and is not, therefore, necessarily the same for all possible samples. If, in fact, all
possible samples have the same size, then the sample size is denoted, as usual, as n. For
example, Bernoulli sampling can generate different sample sizes, while simple random
sampling without replacement always yields the same sample size (Sarndal et al., 1992). For

simplicity’s sake, we will assume hereafter that all possible samples have the same size n .

An interesting feature of a finite population of N units is that each unit can be given different
probabilities of inclusion in the sample. The sampling statistician often takes advantage of the
identifiability of the population unit by deliberately attaching different inclusion probabilities to
the various elements. This is one way to get more accurate estimates, for example, by using

strata, clusters or some known auxiliary variable related to the size of the population units.

12



Given a sampling design p() the probability that unit k was included in a sample, denoted

7, is obtained from the given design p(-) as 7, =Pr(keS)= > p(s).

s:kes

One very usual parameter to be estimated in these contexts is the total of a population, defined

for a response variable Z as t, = ZZ,. . An unbiased estimator of t,, under any sampling
ieU

design, is the so-called 7 estimator, which resorts to the use of the inclusion probabilities of

the units belonging to the data sample. In particular, it is expressed as follows:

N Z.
i-y5. ()

The 7 estimator expands the values collected in the sample by increasing the importance of
the observed population units. Because the sample contains fewer elements than the original

population, an expansion is required to reach the level for the total population. The / -th unit,
when present in the sample, will represent 1/ 7; population units. As it is unbiased, the 7

estimator is the cornerstone of the main estimators in finite population sampling theory.
Formulations of the variance and estimations of the variance of the 7 estimator can be found
in many textbooks (see, for example, Sarndal et al. 1992 and Hedayat and Sinha, 1991).
Horvitzand Thompson (1952) were the first authors to use this expansion principle to estimate
the total of a population, on which ground the 7 estimator is also called the Horvitz-Thompson

(HT) estimator in the literature.

3. An adaptation of the order-a quantile-type frontier for dealing with sampling designs

In this framework, we adapt the estimation of the order-a quantile production function,

o 6[0,1], to work with a data sample derived from a sampling design p() The results

reported in this section are completely new.

13



The conditional distribution function of the survey variable Y given X < x in afinite population

of size N is defined as follows:

F,(ylx)=+ , (8)

N
where N, = Z1(X,. < x) represents the number of units in the population such that X < x .
i=1

Notice that, from the point of view of finite population sampling, F, ( y|x) is a population
parameter since it is defined through the unknown values of survey variables X and Y for
all the population units U . At the same time, F, ( y| x) could be considered the empirical
estimation of F (y| x) (see Section 2) for the original production process from the N

generated observations, which are, as already pointed out, unknown to us.

Note also that the estimation process linked to the quantile production function described

above could be applied to U instead of the observed s in order to determine an estimation

for g, (x). In this case, If(y | x) should be substituted by F,(y | x).

In our framework, however, we are an observer outside the production process. Consequently,

the values X,. and Y, i =1,...,N, are unknown to us. It implies that we cannot apply the

estimation process by Aragon et al. (2005) for the quantile production function directly on U .

Instead, we select a subset of the population s < U and try to accurately estimate some

population parameters of interest, like F,(y | X).
N

To do this, note first that tl(x,y) = Z1(X L <X,Y, < y) is really the total of the population for the
i=1

binary membership indicator variable /(x,y) defined as:

14



(%)= 1, ifX,<xandY,<y
\XY)= 0, otherwise '

N
Additionally, N =Z1(X,. < x) is the total of the population for the binary membership

i=1

indicator variable I(x) defined as:

I,(X):{1’ if X, < x (10)

0, otherwise’

Then, Fu(y|x)=t,(xyy) /NX is the ratio of two population totals. The HT estimator can

estimate each total without bias. Hence, we propose the following estimator for F, ( Y x) :

N Z1<X’ <XY, < }/)/ﬁ, — 1(Y("j) < y)/ﬂ("/)

£ (12~ E | )
DX, < x)/x, Z1/7Z,j
ies j=1

Using (first-order) Taylor linearization of the ratio £, (y1x), we get

oy 1) =y (y 1)+ 3 OBV D) (1

NX ies 72./

This  implies  that E[Au(YIX)]zE{Fu(.V|X)+izli(x’y)_FU(y|X>Ii(x>}:

Nx ies 7T,

i

PRI I S IC ) BT SR

X ies 72-,' ies 7[,'

15



B[y e s i | g s O | e g )|
{Z} AZEID> } {Zﬁ } L (v 1%) LZ }

ies 7T/ ies 7T/ ies 72-,' ies 71-,'
t R
by ~Fu (VIX)N =t ) = II(\XI’y) N_ =0, which means that E[FU (vl x)] ~F,(y1x).

X

In other words, the estimator F, (¥ | x) is approximately unbiased for £, (y | x), which is, at

the same time, the estimator that Aragon et al. (2005) would use for approximating F ( v x).

Moreover, F, (¥ 1 x) may be expressed as

0, if y < Y(h)
k
- ;1/”(’}') .
Fo(yIx)=1H—, |if Y, <Y <Y, 1<k<n -1, (13)
V7,
Sy,
1, fyzY,

k
Let us now introduce some new notation. Let W, = 21/72'(’,') . Additionally, let g, , (x) be the
=t

empirical quantile of Y calculated from Y;, i eU such that X, < x .

Then, following Aragon et al’s (2005) approach, an estimator of g, ,(x) would be

c“]a,u (x) = Y(,k), where k, 1<k <n,, isthe smallest index such that W, > aW, ,for > 0.

In the extreme case of & =1, i.e. when the quantile to be estimated is equal to the maximum,

note that q,,(x)=Y, ,=max{Y;}. This means that the estimation of the traditional
w (Inx) i:X;<x !
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production function constructed from the N population units is equal to the standard FDH

estimation calculated from n observations, regardless of the sampling design.

The following proposition establishes that any sampling design that generates identical
inclusion probabilities for all the elements of the population produces the same quantile

production function estimator as Aragon et al.’s (2005) approach applied directly to the n

observations, i.e. without using the information contained in 7;, ieU.

Proposition 1. Let p(-) such that 7, =7 VieU,then g, ,(x)=4q,(x) forany a>0.

DAX <x.Y, <y)/x DAX <xY, <y)/x
Proof. From (11), F,(y|x)=-1= = f= =
DAX <x)/m,  yhweetesis N A(X, < x)/z

Yix <xY,<y) 2 UYi<y)

ies iiX;<x

== , since n, = > 1(X; < x). By expression (4), we have

(X, <x) x E

ies

that F, (v 1x) is equal to If(y | X) in Aragon et al. (2005). Consequently, g, ,(X) =4, (x)

forany a>0.m

Several well-known sampling designs satisfy the hypothesis in Proposition 1, including
Bernoulli sampling, simple random sampling without replacement and systematic sampling.
The following result establishes that, under these designs, our approach generates the same

estimations as the approach by Aragon et al. (2005).

Corollary 1. Applying Bernoulli sampling (BE), simple random sampling without replacement

(SRS) and systematic sampling (SS), §,,,(x) =4, (x) forany a>0.
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As a consequence of Corollary 1, BE, SRS and SS generate the same estimation for the
quantile production function of order « >0 as by directly applying Aragon et al.’s approach
(2005) without taking into account that the sample has been drawn from a finite population U
. Hence, if a researcher’s database is built from the above sampling design types, then it
suffices, as suggested by Aragon et al. (2005), to determine the empirical quantile of
observations in the sample such that X < x. The problem arises when the data used in the
empirical study come from a sampling design with non-equal inclusion probabilities. For
example, the sampling statisticians in the famous PISA report resort to random schemes
based on inclusion probabilities proportional to a positive and known auxiliary variable, such
as the number of students in each school. This means that the inclusion probabilities vary
across the population units and, therefore, the hypothesis stated in Proposition 1 does not
hold. The effect of this deviation on the estimation of the quantiles is something that warrants
detailed investigation due to the importance of reports like PISA. Indeed, the PISA technical
report states that “While the students included in the final PISA sample for a given country
were chosen randomly, the selection probabilities of the students vary. Survey weights must
therefore be incorporated into the analysis to ensure that each sampled student represents
the appropriate number of students in the full PISA population” (PISA 2012 Technical Report,
p. 132).

The above process of estimation is able to generate a point estimation for the population
quantile g, , (x) However, a confidence interval of this parameter sometimes has to be used

to make other inference types. Next, we propose an approximate confidence interval for the

population quantile g, , ().

Our approach is inspired by Woodruff (1952). This method was used by Woodruff (1952) for

confidence intervals of medians, although it can be generalized to other quantiles. In our

context, the approach requires computing a confidence interval for F, ( y| x) . Assuming that
these values are F, and F,, the confidence interval for q,,, (x), namely (q,,q,,), is implicitly

defined by the equations: F,, (g,1x)=F and F, (g,1x)=F,.
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In order to determine a confidence interval for the population parameter F, ( V| x), we first

need to propose an estimation of the variance of the estimator IEU ( v x). Following Sarndal

et al. (1992), an approximate variance of the 7 estimator of the ratio of two totals is

V(F,(v1x))=

s (% y)=Fy (y 1), (x) [, (xy)=F, (y 1 X)1,(x) - (14)
Nf;lezuA” T 7T
which can be estimated through
\7( AU(yIX) =
1 2> YA, L(xy)- AU(V|X)I:'(X) l(xy)- AU(V|X)IJ(X), (15)

where A; = 7; — 7,7, Aij =A;/m; and 7, =Pr(i €S, jeS).

Then, a confidence interval for F, ( v x) at the approximate level 1— f# can be computed as

Ay 10z, V(A (1) (16)

where z, ,, is the constant exceeded with probability 5/2 by the N(O,1) random variable.
Let us define the following two elements, which we will use to define the confidence interval:

F/ = IEU (y | X)_Zp,g/z [V(ﬁu (y | X)):|1/2 (17)

and
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Fu:lfu(y|x)+z1M{\?(I%(Hx)ﬂvz. (18)

Then, a confidence interval for g, ,(x) at the approximate level 1-4 is (g,,q,) with
q, =Y, where [, 1</ <n,, is the largest index such that W, < FW, ,and q, = Y, - where
u, 1<u<n,,is the largest index such that W, <F W, . The problem in this case is that we

need to know not only 7, but also 7; to determine the approximate confidence interval.

Unfortunately, the database owner (e.g. the OECD for PISA) does not always provide this
information.

4. Monte Carlo experiment

In order to test the performance of the proposed method, we perform a Monte Carlo
experiment applied to three different scenarios assuming different sample designs. As
discussed in Section 3, it is common in the educational context to observe complex sample
designs where the probabilities of inclusion in the sample are not equal across the population
units. Particularly, most large-scale international educational assessments (e.g. PISA, TIMSS,
PIRLS, etc.) are based on a probability proportional to size (PPS) design, where the inclusion
probabilities are proportional to a positive and known auxiliary variable (e.g. the number of
students in each school).

4.1. Experimental design

To carry out the experiment, we replicate Aragon et al.’s Example 1 (2005). Thus, the data
generation process is rooted in a Cobb-Douglas log-linear single-input single-output model

given by Y =X exp ¥, where the input X is uniformly distributed between (0,1) and the
1
efficiency component U is exponentially distributed with mean (Ej Finally, the true frontier

is defined by ¢(x)=x"’.
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All scenarios in this Monte Carlo experiment are based on a PPS design with a population
size (N)equal to 1,000. First, we compute a scenario assuming that the sample is drawn using

a PPS design and the auxiliary variable 7 is not correlated with the efficiency level (referred

to hereinafter as the non-informative design scenario). The second scenario is generated

drawing the sample from a PPS design and assuming that the auxiliary variable 7', is highly

correlated with the level of efficiency by 7, =(exp V)" (referred to hereinafter as the

informative design scenario). Finally, the third scenario is simulated using a two-stage
sampling design. In this scenario, half of the sample is drawn using an informative design and
the second half of the sample is drawn using a simple random sample (SRS) design (referred
to hereinafter as the two-stage design scenario). In this scenario, we use the first half of the
sample only to estimate the frontier and the second half of the sample only to estimate the

average efficiency.

We replicate each scenario for different sample sizes (50, 100, 300 and 500), i.e. we simulate

four different sampling fractions f = ﬁ In large-scale international assessment, we usually

observe sample sizes of around 50 schools. This is usually no more than 10% of the population

at country level. However, there are some exceptions where f can be very large (even equal

to 1), for example, when some countries expand the sample at regional level. In this vein, we
aim to simulate different sample sizes to dimension the problem according to the sampling
fraction.

For each dataset, we estimate the population quantile frontier c}a,U(x) and the individual

efficiency score éj for each observation included in the sample j =1,2,....,n by running the
order-  quantile-type frontier model proposed by Aragon et al. (2005) (referred to hereinafter
as the order-a model) and our proposed adaptation of this model to include the sample

weights (referred to hereinafter as the AGSS model) for « =0.8, «=0.9 and a=1. Finally,

for each dataset, we estimate the average population efficiency ¢ from the sample, both

omitting (which is the standard practice) and accounting for inclusion probabilities. Thus, we

define the following estimators:

morder—a 1 N Aorder—
/Jorder a _ _Ze;)rder o (19)
nj=
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~ order— IS 1 Ao
/Jozder a,m :_Z_ejider a (20)

n = ”j
. 14
‘uAGSS _ ;zgfmss (21)
Jj=1
ciosse 11 oa
J=LE

Note that we use only the half of the sample drawn from a SRS design to estimate the
population average efficiency in the two-stage sampling design. This means that the
probabilities of inclusion are identical for all observations, and, consequently, it is not

necessary to take this information into account. Thus, for this sampling design, we only provide

the estimators 4”“~*and "% .

In summary, we simulate 36 scenarios (three sample designs, four sampling fractions and
three levels of « ). In order to make the results more reliable, we undertook a Monte Carlo
experiment, where B, the number of replicates, is 100. Therefore, all measures were computed

in each replication and then averaged to get the results reported in the next section.

4.2. Results

4.2.1. Results on the population quantile-type frontier estimation

In order to dimension the effect of taking into account the sample weights to estimate the
order- ¢ quantile-type frontier in finite population samples, we compare the results from both

the order- @ and AGSS models. To do this, we compute the mean square error (MSE)foreach

model:

MSE = % > (40 @), ~4.0),)

=

(23)

where ¢, (x) ; is the population quantile-type frontier of order « evaluated at unit j and
qﬂa,U (x) ; is the estimation of this order-« frontier at the same point. Note that, for a =1, the

quantile production g¢,(x) coincides with the production function ¢(x). Results from this

analysis are shown in Table 1. To illustrate the above ideas, we report the results for the

population production frontier estimation from one particular simulation. Figures 1, 2 and 3
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show these results for the non-informative design, informative design and two-stage design
( ¢=0.9and n=50, n=300, respectively). Note that these results are plotted merely for
illustrative purposes, since they represent only one simulation. To properly compare model

performance, we also compare the MSE of the Monte Carlo simulation.

The first remarkable result from the Monte Carlo experiment is that, in the extreme case of
a =1, i.e. when the quantile to be estimated is equal to the maximum (last two columns of
Table 1), we obtain the same estimation of the population production function with both

models, regardless of the sample design. Consequently, from now on, we will focus on the

results for a <1.

In the non-informative scenario, the results demonstrate that the order- & model proposed by
Aragon et al (2005) performs reasonably well. In other words, the omission of different
probabilities of inclusion does not, in this case, pose a problem in terms of population frontier
identification provided that they are independent of the efficiency. Moreover, the inclusion of

the sample weights through the adaptation of the order- o model leads to larger MSE values.

Conversely, when the auxiliary variable in the PPS design is informative, i.e. it is correlated
with the efficiency of the units in the population (e.g. larger schools are more efficient than
smaller ones), failure to include the probability of inclusion information in the model
significantly impairs the estimation of the population frontier for all levels of o and sample
sizes. Figures 2 and 3 illustrate this result. Note that if we compare both PPS informative
designs, the most pronounced improvements of considering the sample weights are observed
in the informative scenario, because all the units included in the sample are used to estimate
the frontier in this case. However, only half of the sample is used to identify the population

frontier in the two-stage dataset.
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Figure 1 Estimation of the population production frontier using the order-or and AGSS models, non-

informative design

1,2

o

X

Sample *  Population AGSS e order-alpha Population frontier

Panel (a) Non-informative design n=50 and ¢x = 0.9

1,2

o

X

Sample *  Population AGSS e order-alpha Population frontier

Panel (b) Non-informative design n=300 and a =0.9
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Figure 2 Estimation of the population production frontier using the order-oxr and AGSS models,

informative design

1,2

X

o Sample «  Population AGSS === order-alpha Population frontier

Panel (a) Informative design n=50 and ¢ =0.9

1,2

B Sample *  Population

AGSS e order-alpha Population frontier

Panel (b) Informative design n=300 and o =0.9

25



stage design

1,2

X
o Informative sample B Random sample «  Population
AGSS e order-alpha Population frontier

Panel (a) Two-stage design n=50 and ¢ =0.9

1,2

X
5 Informative sample ®  Random sample *  Population
AGSS e orrder-alpha Population frontier

Panel (b) Two-stage design n=300 and & =0.9

Figure 3 Estimation of the population production frontier using the order-¢r and AGSS models, two-
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Finally, an interesting finding in both informative designs for a <1 is that the MSE also
increases as the sample size increases. This means that the negative effect of omitting
information about different sample weights across the sample intensifies in these contexts as
the sample size increases. The accurate estimation of the population production frontier is
extremely important when we set out to measure technological change over time or compare
the performance between different sectors or groups of units. In these contexts, if there is any
previous evidence about the potential correlation between the auxiliary variable and
population efficiency, it would be recommendable to use the AGSS model instead of
overlooking the probabilities of inclusion. In fact, since there is not a substantial difference in
the MSE between both models in the non-informative scenario, it might be preferable, if there
is any inkling, even if there is no robust evidence, of such a correlation, to include, rather than

omit, the sample weights.

Table 1 Mean square error for the estimation of the population frontier from PPS sample

designs

a=0.8 a=0.9 a=1
order-a AGSS order-a AGSS order-a AGSS

Non-informative

n=50 0.095 0.103 0.089 0.095 0.168 0.168
n=100 0.093 0.102 0.088 0.096 0.152 0.152
n=300 0.079 0.087 0.074 0.082 0.102 0.102
n=500 0.060 0.070 0.055 0.063 0.063 0.063
Informative

n=50 0.250 0.144 0.156 0.102 0.052 0.052
n=100 0.400 0.159 0.241 0.099 0.044 0.044
n=300 1.028 0.200 0.579 0.104 0.015 0.015
n=500 1.626 0.226 0.910 0.093 0.000 0.000
Two-stage

n=50 0.161 0.133 0.104 0.083 0.054 0.054
n=100 0.245 0.151 0.151 0.090 0.053 0.053
n=300 0.549 0.192 0.322 0.094 0.035 0.035
n=500 0.838 0.169 0.481 0.089 0.022 0.022

Note: Mean values after 100 replications.

4.2.2. Results on the population average efficiency
We are also interested in exploring the effect of taking into account the existence of different
probabilities of inclusion 7, when we aggregate the individual efficiencies to estimate the
population average efficiency u . Todo this, we compute, after the 100 replications, the mean

bias relative to the true population average efficiency u for each estimator 4 (Equations 19
to 22):
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MSE=21 (24)

Note that, for « <1, some observations will be located above the quantile frontier ¢, (x), i.e.

the efficiency level of these units will be lower than 1. Then, the parameterxz and the
estimators 4 could also take values smaller than 1, leading to a positive or a negative bias.

Results for the bias and the MSE are shown in Tables 2 and 3, respectively.

As in the previous case, for a =1, the results from both models are equal. Thus, we will focus
on «a <1. In the first scenario, the non-informative design, both the bias and the MSE results
show that omission of the sample weights is, in this case, the best strategy for estimating the

population average efficiency for all sample sizes and levels of « .

In the informative design, the bias and MSE lead to different conclusions. In terms of bias, it
appears to be better to take into account the information on the probabilities of inclusion to
estimate the population frontier and then aggregate the individual efficienciesto estimate the
population average efficiency. This result holds for all sample sizes and both levels of o =0.8

and o =0.9. However, if we focus on the MSE, the conclusion is the exact opposite. In this

A order—a

case, the estimator performs best for all sample sizes and levels of « , which means

that it is more accurate to ignore this information. Note that, in this scenario, there is a trade-
off between population frontier estimation accuracy and population average efficiency. With a
view to population frontier estimation accuracy, it would be necessary to include the sample
weights (i.e. using the AGSS model). However, this implies a considerable deterioration in
terms of the MSE in the estimation of the population average efficiency.

Finally, the two-stage design addresses this trade-off. In this context, it is also more accurate
to include the probabilities of inclusion in the model for estimating the population average

efficiency for all sample sizes and levels of «, and there are no contradictory results between
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bias and MSE. Moreover, the estimation of the population average efficiency yp from this

sampling design is much more accurate than the informative design, regardless of the
estimator that we use. This finding is notable in terms of public policy design, since large-scale
assessment surveys are usually used to measure technical efficiency through production
frontiers. However, current sample designs (PPS) are not designed for estimating either
population production frontiers or average technical efficiency. If there is any previous
evidence (e.g. earlier studies) indicating that there is any correlation between the auxiliary
variable (e.g. school size) and the efficiency of the schools in the population, it would be
advisable to define a two-stage sampling design instead of a standard PPS to enhance future
population efficiency and productivity estimations using samples. This issue is even more
important when the aim of the analysis is to compare school performance over time (i.e.

technological change) or different educational sectors (e.g. public and private schools).
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Table 2 Bias for the estimation of the population average efficiency

Non-informative Informative Two-stage
order-a  order-a () AGSS  AGSS(m) order-a  order-a () AGSS  AGSS(m) order-a  order-a (m) AGSS  AGSS(m)

a=0.8

n =50 -0.002 -0.008 0.006 0.002 -0.107 0.135 -0.194 -0.028 0.054 -0.032
n =100 -0.017 -0.012 -0.015 -0.009 -0.115 0.084 -0.208 -0.003 0.087 0.005
n =300 -0.011 -0.009 -0.012 -0.010 -0.120 0.086 -0.208 -0.041  0.101 -0.008
n =500 -0.010 -0.009 -0.012 -0.010 -0.121 0.068 -0.211  -0.054 0.108 0.001
a=0.9

n=50 -0.020 -0.026 -0.017  -0.021 0151 0.108 -0.215 -0.017 0.004 -0.054
n=100 -0.032 -0.026 -0.029 -0.023 09158 0.054 -0.226 0.017 0.045 -0.017
n =300 -0.022 -0.020 -0.022  -0.020 0163 0.062 -0.227 -0.031 0.065 -0.014
n =500 -0.017 -0.016 -0.022  -0.020 _0.163 0.041 -0229 -0.048 0.078 -0.004
a=1

n=>50 -0.151 -0.157 -0.151  -0.157  _0.313 -0.036 -0.313 -0.036 -0.189 -0.189
n=100 -0.122 -0.115 -0.122 -0115 9299 -0.067 -0.299 -0.067 -0.114 -0.114
n =300 -0.069 -0.067 -0.069 -0.067 _0.280 -0.028 -0.280 -0.028 -0.053 -0.053
n =500 -0.046 -0.045 -0.046  -0.045 274 -0.044 -0.274 -0.044 -0.024 -0.024

Note: Mean values after 100 replications.
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Table 3 Mean square error for the estimation of the population average efficiency

Non-informative Informative Two-stage
order-a order-a (m) AGSS  AGSS(m)  order-a order-a () AGSS  AGSS(m) order-a order-a () AGSS  AGSS(m)

a=0.8

n=50 0.005 0.007 0.006 0.008 0.000 0.274 0.047 0.087 0.030 - 0.027 -
n =100 0.003 0.004 0.003 0.004 0.018 0.155 0.053 0437 0.017 - 0.011 -
n =300 0.001 0.001 0.001 0.001 0.019 0.090 0.051 0.049 0.013 - 0.004 -
n =500 0.000 0.000 0.001  0.001 0.019 0.040 0.052 0.022 0.013 - 0.003 -
a=0.9

n=>50 0.006 0.009 0.006 0.010 0.032 0.313 0.061 0.145 0.028 - 0.030 -
n=100 0.003 0.004 0.003 0.004 0.035 0173 0.066 0.490 0.012 - 0.011 -
n =300 0.001 0.001 0.001  0.001 0.036 0.105 0065 0.074 0.007 - 0.003 ---
n =500 0.000 0.001 0.001 0.001 0.036 0.044 0.066 0.032 0.007 - 0.002 -
oa=1

n=50 0.022 0.027 0.022  0.027 0.123 0.342 0123 0.342 0.065 - 0.065 ---
n =100 0.012 0.012 0.012 0.012 0.113 0.220 0113 0.220 0.024 - 0.024 -
n =300 0.003 0.003 0.003 0.003 0.101 0.137 0.101 0.137 0.006 - 0.006 -
n =500 0.001 0.001 0.001  0.001 0.097 0.061 0.097 0.061 0.002 - 0.002 -

Note: Mean values after 100 replications.
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5. Concluding remarks

Nowadays, it is quite common to find educational databases based on complex sampling
designs used to minimize survey costs and improve the precision of the estimates of some
parameters of interest for the population. However, the use of the information provided by
sample weights has been repeatedly overlooked in the literature on production frontier
estimation, leading to estimations (from sample data) that are not representative of the
population under study. In this research, we develop an extension of robust nonparametric
order- « frontier methods to incorporate sample weight information into the estimation of the
population production frontier. Monte Carlo results show that when the auxiliary variable in the
PPS sample design contains information about the level of efficiency in the population, the
estimation of the population frontier can be improved if the nonparametric model accounts for
information on sample weights. In this context, however, the PPS sample design should be
transformed into a two-stage sampling design in order to properly estimate the average

educational efficiency for the target population.

This research should be regarded as a foundation stone for addressing the issue of
incorporating sample weight information into the estimation of technical efficiency. More
research is needed in several directions to explore other potential solutions for improving the
accuracy of nonparametric estimations. Probably, the most straightforward and intuitive
alternative is to explore the potential of incorporating sample weight information into the
conventional bootstrap methodology (Simar and Wilson, 1998). In particular, it is important to
test its validity and performance, since the basic assumption of this method (i.e. observed data
in the sample come from independent and identically distributed random variables) does not
hold in the case of complex sampling designs in finite populations. Another fruitful line of
research would be to address this issue in the parametric framework, for example, by

incorporating sample weights into the corrected ordinary least square (COLS) model.
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