
This is the accepted version of the book part:

Sanjuan Gómez, Gemma; Margalef, Tomàs; Cortés Fité, Ana. «Wind field
parallelization based on Python multiprocessing to reduce forest fire
propagation prediction uncertainty». Computational Science - ICCS 2020, 2020,
p. 550-560 DOI 10.1007/978-3-030-50436-6_41

This version is available at https://ddd.uab.cat/record/324463

under the terms of the license.

https://ddd.uab.cat/record/324463

1

Wind field parallelization based on Python
multiprocessing to reduce forest fire propagation

prediction uncertainty

G. Sanjuan, T. Margalef and A. Cortés

Computer Architecture and Operating Systems Department
Universitat Autònoma de Barcelona, Spain.

{gemma.sanjuan, tomas.margalef, ana.cortes}@uab.cat

Abstract. Forest fires provoke significant loses from the ecological, so-
cial and economical point of view. Furthermore, the climate emergency
will also increase the occurrence of such disasters. In this context, forest
fire propagation prediction is a key tool to fight against these natural
hazards efficiently and mitigate the damages. However, forest fire spread
simulators require a set of input parameters that, in many cases, cannot
be measured and must be estimated indirectly introducing uncertainty in
forest fire propagation predictions. One of such parameters is the wind.
It is possible to measure wind using meteorological stations and it is
also possible to predict wind using meteorological models such as WRF.
However, wind components are highly affected by the terrain topography
introducing a large degree of uncertainty in forest fire spread predictions.
Therefore, it is necessary to introduce wind field models that estimate
wind speed and direction at very high resolution to reduce such uncer-
tainty. Such models are time consuming models that are usually executed
under strict time constrains. So, it is critical to minimize the execution
time, taking into account the fact that in many cases it is not possi-
ble to execute the model on a supercomputer, but must be executed on
commodity hardware available on the field or at control centers. This
work introduces a new parallelization approach for wind field calculation
based on Python multiprocessing to accelerate wind field evaluation. The
results show that the new approach reduces execution time using a single
personal computer.

Keywords: Wind field parallelization, Forest Fire Spread Simulation,
Python multiprocessing

1 Introduction
Forest fire propagation prediction is a key tool to fight against such disasters.
Several simulators [6][2] have been developed to provide hints on fire evolution
to guide the field means and control centres to fight against these events. Most of
these simulators are based on Rothermel’s model [10], which is a semi-empirical
model that takes into account the terrain topography, the vegetation conditions
and the meteorological conditions to provide forest fire expected propagation.
So, this model actually requires a set of parameters that, in many cases, are

2

not single values, but they have values over all the terrain where the fire is
going on. For example, the type of vegetation changes over the terrain or the
moisture contents of the same kind of vegetation can change over the terrain
according to sun exposition. So, for these parameters, a field of values at high
resolution is required to calculate the fire propagation. A very particular case
is the wind. This parameter actually has two components: speed and direction,
and it presents several features that makes it a very particular case:

– Wind speed and wind direction are, jointly with slope, the parameters that
most significantly affect fire propagation [1]. Therefore, an accurate estima-
tion of such values is critical for forest fire propagation prediction.

– The meteorological conditions change quickly and, some meteorological
model, such as WRF [13], is required to estimate beforehand the values
of the meteorological variables and, in particular, wind speed and direction
at a surface level.

– The meteorological wind at surface level that can be measured on meteoro-
logical stations or estimated by meteorological models is affected by terrain
topography, so that at each point of the terrain the wind values (speed and
direction) could be different. This spatially varying wind values for a given
area constitutes the so called wind field. To obtain this wind field for the
underlying terrain, one should apply a diagnostic wind field model such as
WindNinja [7]. WindNinja is a wind field model widely used in the forest
fire simulation community, that can provide wind speed and wind direction,
given a certain meteorological wind values at a surface level, in very high
resolution, typically 30 meters.

In this context, for each forest fire propagation simulation step, it is neces-
sary to evaluate several values for the meteorological wind at surface level and,
for each one of these meteorological winds, it is necessary to calculate the cor-
responding wind field. Then, once those wind fields are obtained, they must be
introduced to the forest fire propagation model to obtain the forest fire prop-
agation prediction [4]. This scheme is represented in figure 1. It must also be
considered that the spatial resolution of the involved models, particularly wind
field model, must be very high. So, the whole coupled system involves several
components that must solve complex systems of equations at a very high reso-
lution, what implies large computing requirements and long computation times.
These tight needs are critical in real time emergency situations where the re-
sponse time is a key factor for efficient and effective actuation. In most cases a
trade off between accuracy and time must be reached to provide useful predic-
tions in operational time. Therefore, applying high performance techniques to
accelerate model execution and reduce prediction time, also contributes to in-
crease the map resolution, reducing the uncertainty and providing more reliable
predictions. So, all the efforts to accelerate the involved models have a direct
impact in improving the quality and effectiveness of forest fire propagation pre-
diction.

Several efforts have been devoted to reduce the execution time of the models
involved in the fore fire spread prediction process and also to improve the accu-

3

Fig. 1. Coupling Meteorological, Wind Field and Forest Fire Propagation models

racy of the results delivered by those model [8][12][11][3][5]. In particular, this
work is focused on the wind field model. As it has been previously mentioned,
in this work the WindNinja wind field model is used. More precisely, a new par-
allelization approach based on Python multiprocessing has been done. This new
parallel approach has been compared to previous parallelization schemes based
on MPI (Message Passing Interface). Since one of the goals of this work is being
able to developed a forest fire spread prediction system that could be brought
closer to the field where the firefighter’s command is taken operational decisions,
as execution platform one has selected commodity hardware. The parallelization
scheme proposed is based on a map partitioning strategy that has been proven
to work well for this kind of problem [11] .

The rest of this paper is organised as follows. Section 2 is devoted to describe
WindNinja wind field model. In section 3 different WindNinja parallel implemen-
tations are introduced. Section 4 shows some preliminary results comparing the
different parallel implementations described in the previous section and, finally
section 5 presents the main conclusions.

2 WindNinja wind field simulator
As it has been mentioned above, wind speed and wind direction are critical
parameters to determine forest fire propagation. In particular, meteorological
wind at surface level is modified by terrain topography, so that there is a spa-
tial distribution of wind values along the terrain map. This wind field must be
determined to effectively predict forest fire propagation because there exist sev-
eral high resolution wind phenomena such as, for example, wind speedup over
ridges or flow channeling in valleys, that cannot be forecast otherwise. In this
context, WindNinja [7] is a wind field simulator that takes the meteorological
wind at a surface level and the terrain topography to determine wind speed and
wind direction at each point of the underlying map grid at a given resolution,
usually around 30 meters. WindNinja is based on mass conservation equations
that are used to generate the system of equations. In order to solve this system,
the Conjugate Gradient method with Preconditioner is used (PCG). PCG is an
iterative method that can only be applied when the sparse matrix representing
the system is symmetric, positive define and real. It uses a matrix M as a pre-
conditioner, which determines the convergence of the system. The native solver

4

implementation of WindNinja includes SSOR and Jacobi as preconditioners.
The SSOR preconditioner is used by default. Furthermore, WindNinja includes
an OpenMP parallelization, so that the PCG can exploit the parallelism by using
the available cores in the system nodes.

WindNinja can be divided into five basic blocs, as is shown in figure 2, where
each bloc corresponds to one particular phase of the wind field generation pro-
cess. The functionality of each one of these five phases are subsequently de-
scribed:

1. Discretization of the terrain map into a mesh.
2. Application of the mass conservation equations to each point of the mesh to

generate the system of equations represented as Ax = b.
3. Generation of the CRS (Compressed Row Storage) format to store the sparse

matrix A.
4. Application of the Preconditioned Conjugate Gradient (PCG) method to

solve the system of equations [9].
5. Construction of the resulting wind field.

Fig. 2. WindNinja System

In the next section, the description of three parallel implementations of one
single WindNinja execution are introduced. As it is subsequently explained, the
proposed paralellization will not affect the way WindNinja works because they
will not imply any change on WindNinja’s code. In fact, the proposed paral-
lel approaches could also benefit from the OpenMP parallelization included in
WindNinja.

3 WindNinja parallelization
In a previous work [11], a map partitioning strategy was developed to divide
the underlying terrain into equal size regions, with the aim of evaluating the

5

complete wind field as a composition of a set of smaller wind fields coming from
those previous regions. In particular, the map partitioning strategy divides the
map in square parts introducing an overlapping halo on each one to avoid border
effects. The optimal overlapping size has been proven to be 25 cells of the original
mesh. Figure 3 illustrates this map partitioning scheme for two different map
division, 2x2 and 4x4 map partitioning configurations.

Fig. 3. Map partitioning

Once the map has been divided in partitions, the wind field corresponding
to each partition can be calculated in parallel generating as many wind field
maps as divisions of the map we have. Once all these computation has been
done, a joining process is done in order to merge those wind field maps into
one single wind field map. The main advantage of this approach is that the
individual wind field map for a given region could be evaluated independently
of the others, therefore, a straight forward parallelization scheme consists of
executing each wind field calculation in a different computing element using
the so called Master/Worker parallel programming paradigm. In the following
subsections, we present three different parallel implementation of this strategy:
MPI for C++, MPI for Python, and Python Multiprocessing.

6

3.1 MPI C++ parallelization

An MPI C++ application was developed to distribute the partitions of the map
among the nodes of the system to execute them independently. As it has been
mentioned, for each partition one WindNinja execution has been performed using
the corresponding region of the map of that partition. The size of the overlapped
halo has set to 25 cells what has been proven to be enough to avoid border
effects. In this implementation a set of processes is created when launching the
application with MPIRUN and each process calculates the wind field for each
partition of the terrain map. Moreover, the OpenMP parallelization integrated
in WindNinja has also been used. Actually this implementation is more feasible
on a cluster with several nodes, but nowadays desktop computers or even laptops
can run this kind of hybrid application efficiently. The resulting implementation
is shown in Figure 4.

Fig. 4. MPI C++ parallelization

3.2 MPI Python parallelization

Currently there is a clear trend to extend the use of Python programming lan-
guage on many different areas. So, many libraries and current applications have
been adapted to be used on Python programs. One particular case is MPI. MPI
for Python provides MPI bindings for the Python language, allowing program-
mers to exploit multiple processor computing systems. mpi4py is constructed
on top of the MPI-1/2 specifications and provides an object oriented interface
which closely follows MPI-2 C++ bindings. So, the same map partitioning ap-
proach has been implemented using this MPI binding. The implementation can
be represented as shown in Figure 5.

7

Fig. 5. MPI Python parallelization

This approach is very similar to the previous one, but it is using Python
as programming language and the MPI binding. The terrain map is split into
a set of partitions and the wind field for each partition is calculated by each
worker process. In this case, it is also possible to exploit the OpenMP WindNinja
parallelization to calculate the wind field for each partition.

3.3 Python multiprocessing parallelization

Multiprocessing is a package that supports spawning processes using an API
similar to the threading module. It allows the programmer to fully leverage
multiple processes on a given machine. The implementation can be represented
as shown in Figure 6.

Fig. 6. Python Multiprocessing parallelization

In this case, no MPI is used, but the Python package to manage processes is
used directly. The same master-worker parallel programming paradigm that has

8

been used before, is also used in this approach. In this case, it is also possible
to exploit the OpenMP WindNinja parallelization to calculate the wind field for
each partition.

4 Experimental results
As it has been stated in the introduction of this paper, one of the objectives
that we faced up when doing this work, was to be able to deploy a WindNinja
parallel version that could be executed on the field during and on going event.
That is, we are interested in having prediction systems that could be used in
an operational fashion, instead of designing very complex forecast system that
requires access to high cost computational resources either in economic terms
but also in real time connectivity access possibilities. Typically, forest fires that
occur in complex terrains with difficult access to the burn area, are the ones
that clearly require the evaluation of the underlying wind field at high resolution
because the shape of the landscape directly affects wind speed and wind direction
at different points of the terrain. Since in these situations the connectivity of the
computing systems in not always guaranteed, commodity hardware that could
be available on the field, such a single laptop, could became an extremely useful
tool. However, one cannot ignore that time constrains and accuracy of the results
could not be dismissed. Thus, the experimental results outlined in this section
have been obtained using a commodity hardware, in particular a single laptop
based on an Intel i7-7700 processor that has 4 cores with hyperthreading, 8MB
of cache memory and works at a base frequency of 3.60GHz. The system has 16
GB-DDR4 RAM.

As a test cases, we have used two map sizes having 775x775 and 1500x1500
cells each. The resolution in both cases has been set to 30 meters and different
map partitionings have been also selected. Windninja 3.5.3 version has been used
for all the experiments reported.

The first experiment that has been conducted corresponds to executing
WindNinja in its native version with SSOR preconditioner and using its OpenMP
implementation considering 1, 2, 4 and 8 threads. Tables 1 and 2 shows, re-
spectively, the execution time and the speed up obtained when evaluating the
windfield of the 775x774 cells map. This experiment has been done as a basic
parallel reference using the native OpenMP parallelization and it has been used
to normalize the comparison with the proposed parallel approaches.

These execution times are not extremely large, but if it is considered that the
wind field calculation is only one of the steps of the fire propagation prediction
and, moreover, it must be executed for each value of the meteorological wind, it
is mandatory to reduce the execution time as much as possible.

In order to analyze the effect of the different parallelization schemes described
in section 3, one have first conducted an experiment that uses the map size of
775x775. Two partitioning have been used: a 2x2 and a 4x4 with an overlap of 25
cells in both cases. So, in the first case, there are 4 partitions and in the second
one, there are 16 partitions. For each case, Windninja has been executed using
1, 2 and 4 threads. The results are summarized in Table 3. These results can be

9

Memory Execution Time
Map Size (GB) (seconds)

threads
1 2 4 8

775x775 7 205 157 136 135

Table 1. WindNinja memory requirements and Execution times using native SSOR
preconditioner

SpeedUp
Map size # threads

2 4 8
775x775 1.30 1.50 1.52

Table 2. WindNinja speed up using native SSOR preconditioner

compared with the results shown in Table 1 that reproduces the execution time
for the original WindNinja implementation for a 775x775 cells map. It must be
considered that the hardware used to run the application is just a laptop with a
single processor with 4 cores and hyperthreading (8 threads). It can be observed
that, for this map size, the Python multiprocessing implementation with a 2x2
partition and 4 OpenMP threads reaches an execution time of 50 seconds which
represents less than 25% of the original time of 205 seconds and is clearly faster
than the MPI C++ and the MPI for Python implementations. Actually, using
just one OpenMP thread the execution time is just 60 seconds, which is a sig-
nificant execution time improvement. However, in the case of 4x4 partitioning
all the implementations are around 50 seconds (from 47 to 53) independently
from the number of OpenMP threads. This is due to the fact that we start from
16 partitions and the amount of actual work involved to solve each partition is
really small, and the number of cores of the system and threads support is too
small. But, in any case, the execution time reached is quite good.

2x2 4x4
775x775 # Threads # Threads

1 2 4 8 1 2 4 8
MPI C++ 115 92 91 93 48 48 50 48

MPI for Python 108 85 81 85 47 47 49 52
Python Multiprocessing 60 53 50 57 49 48 53 52

Table 3. WindNinja Execution time for a 775x775 cells map (in seconds)

Then a 1500x1500 cells map with a resolution of 30 meters has been consid-
ered. This map cannot be solved in the laptop used due to memory limitations
(24 GBs required), so that the map partitioning strategy also solves this problem

10

and allows to calculate the wind field. In this case, also a 2x2 and a 4x4 par-
titioning have been used, and 1, 2, 4 and 8 OpenMP threads have been tested.
The results are summarized in Table 4.

2x2 4x4
1500x1500 # Threads # Threads

1 2 4 8 1 2 4 8
MPI C++ 262 222 225 225 187 179 169 153

MPI for Python 232 192 183 172 175 167 157 149
Python Multiprocessing 223 183 175 164 137 139 130 124

Table 4. WindNinja Execution time for a 1500x1500 cells map (in seconds)

In this case, the Python Multiprocessing implementation is also the faster
one and reduces the execution time up to 164 seconds for the 2x2 partition and
124 seconds for the 4x4 partition using 8 OpenMP threads in both cases.

5 Conclusions

Wind field calculation is a critical issue to provide reliable forest fire propaga-
tion predictions. However, in the case of emergency fighting there are several
constraints that should be considered. These constraints include propagation
prediction time and hardware availability:

– The propagation predictions must be provided well in advance to allow the
control centres to manage the field means to take the appropriate actions on
the adequate time.

– It is not feasible to use extremely powerful computers by the control centres,
or even the field means, but it is more feasible that they have commodity
hardware available.

So, the WindNinja wind field simulator has been parallelized using three
approaches based on map partitioning and tested on a single laptop. All parallel
implementations reduces the execution time significantly, although the Python
Multiprocessing implementation is the one that reaches the best execution time,
especially for large maps. Using this parallelization it is more feasible to integrate
WindNinja in an operational forest fire propagation prediction system that could
be used on the field, reducing the uncertainty in propagation predictions.

Acknowledgments

This research has been supported by MINECO-Spain under contract TIN2017-
84553-C2-1-R, and by the Catalan government under grant 2017-SGR-313.

11

References

1. Abdalhaq, B., Cortés, A., Margalef, T., Luque, E.: Accelerating optimization of
input parameters in wildland fire simulation, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 3019. Springer, Berlin, Heidelberg (2004)

2. Andrews, P.L.: Current status and future needs of the behaveplus fire mod-
eling system. International Journal of Wildland Fire. 23, 21–33 (2014).
https://doi.org/10.1071/WF12167, https://doi.org/10.1071/WF12167

3. Brun, C., Margalef, T., Cortés, A., Sikora, A.: Enhancing multi-model forest fire
spread prediction by exploiting multi-core parallelism. Journal of Supercomputing
70(2), 721–732 (2014)

4. Brun, C., Artés, T., Margalef, T., Cortées, A.: Coupling wind dynamics into a
dddas forest fire propagation prediction system. Procedia Computer Science 9,
1110–1118 (2012)

5. Carrillo, C., Margalef, T., Espinosa, A., Cortés, A.: Accelerating wild fire simulator
using GPU, Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11540 LNCS.
Springer, Berlin, Heidelberg (2019)

6. Finney, M.A.: Farsite: Fire area simulator—model development and evaluation.
Research Paper RMRS-RP-4 Revised 236 (1998)

7. Forthofer, J.M., Shannon, K., Butler, B.W.: Simulating diurnally driven slope
winds with windninja. In: 8th Symposium on Fire and Forest Meteorological So-
ciety (2009)

8. Ihshaish, H., Cortés, A., Senar, M.A.: Parallel multi-level genetic ensemble for
numerical weather prediction enhancement. In: Procedia Computer Science. vol. 9,
pp. 276–285 (2012)

9. Nocedal, J., Wright, S.J.: Conjugate gradient methods. Springer (2006)
10. Rothermel, R.: A mathematical model for predicting fire spread in wildland fuels

(US Department of Agriculture, Forest Service, Inter- mountain Forest and Range
Experiment Station Ogden, UT, USA 1972)

11. Sanjuan, G., Brun, C., Margalef, T., Cortés, A.: Wind field uncertainty in forest
fire propagation prediction. In: Procedia Computer Science. vol. 29, pp. 1535–1545
(2014)

12. Sanjuan, G., Margalef, T., Cortés, A.: Hybrid application to accelerate wind field
calculation. Journal of Computational Science 17, 576–590 (2016)

13. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W.,
Powers, J.G.: A description of the advanced research wrf version 2. Tech. rep.,
DTIC Document (2005)

https://doi.org/10.1071/WF12167
https://doi.org/10.1071/WF12167

