
This is the **accepted version** of the book chapter:

Ferreira, Virginia; González, Matías; Pianzzola, María Julia; [et al.]. «Molecular detection of *Ralstonia solanacearum* to facilitate breeding for resistance to bacterial wilt in potato». A: *Solanum tuberosum*. 2021, p. 375-385. 11 pàg. New York: Humana. DOI 10.1007/978-1-0716-1609-3_18

This version is available at <https://ddd.uab.cat/record/249288>

under the terms of the IN COPYRIGHT license

1 Virginia Ferreira¹, Matías González², María Julia Pianzzola¹, Núria S. Coll³, María Inés Siri^{1*} and Marc
2 Valls^{3,4*}

3

4 ¹Área Microbiología, DEPBIO, Facultad de Química, Universidad de la República, Uruguay.

5 ²Instituto Nacional de Investigaciones Agropecuarias (INIA), Estación Experimental Salto Grande,
6 Salto, Uruguay.

7 ³Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain

8 ⁴Department of Genetics, University of Barcelona, Barcelona, Catalonia, Spain

9

10 * Corresponding authors: msiri@fq.edu.uy; marcvalls@ub.edu

11

12 **Running head:** Detection of latent infections in potato breeding programs
13

14

15 **Molecular detection of *Ralstonia solanacearum* to facilitate breeding for**
16 **resistance to bacterial wilt in potato**
17

18 **Abstract**

19 Potato bacterial wilt is caused by the devastating bacterial pathogen *Ralstonia solanacearum*.

20 Quantitative resistance to this disease has been and is currently introgressed from a number of wild
21 relatives into cultivated varieties through laborious breeding programmes. Here, we present two
22 methods that we have developed to facilitate the screening for resistance to bacterial wilt in potato.

23 The first one uses *R. solanacearum* reporter strains constitutively expressing the *luxCDABE* operon or
24 the green fluorescent protein (*gfp*) to follow pathogen colonisation in potato germplasm.

25 Luminescent strains are used for non-destructive live imaging, while fluorescent ones enable precise
26 pathogen visualisation inside the plant tissues through confocal microscopy. The second method is a
27 BIO-multiplex-PCR assay that is useful for sensitive and specific detection of viable *R. solanacearum*
28 (IIB-1) cells in latently infected potato plants. This BIO-multiplex-PCR assay can specifically detect
29 IIB-1 sequevar strains as well as strains belonging to all four *R. solanacearum* phylotypes and is

30 sensitive enough to detect without DNA extraction 10 bacterial cells per ml in complex samples.

31 The described methods allow the detection of latent infections in roots and stems of asymptomatic
32 plants and were shown to be efficient tools to assist potato breeding programs.

33
34 **Key words:** Bacterial wilt, potato brown rot, *Ralstonia solanacearum*, *Solanum tuberosum*, plant
35 breeding, disease resistance.

36
37 **1. Introduction**

38 Bacteria can cause a range of diseases in economically important crops, leading to important losses.

39 *Ralstonia solanacearum*, the causal agent of bacterial wilt, also referred as brown rot in potato, is one
40 of the most devastating plant pathogens worldwide [1]. A recent taxonomic revision has led to the
41 distinction of three separate species within the species complex [2]. In cold and temperate regions of

42 the world, potato crops are mainly affected by *R. solanacearum* strains belonging to the phylotype
43 IIB, sequevar 1 [3].

44 Potato bacterial wilt disease control is difficult due to pathogen persistence in water, soil and latently
45 infected symptomless tubers. The use of resistant or tolerant potato varieties combined with
46 preventive measures throughout an integrated pest management approach is highly recommended
47 [4]. Breeding for resistance to *R. solanacearum* in Solanaceae is challenging and must combine
48 durable resistance with desirable agronomic traits. In potato, breeding for resistance to bacterial wilt
49 has been successfully introgressed from *S. phureja* [5], and the highly resistant wild potato *S.*
50 *commersonii* Dun is currently being used [6, 7, 8].

51 Knowledge on pathogen distribution and multiplication in plant tissues is critical to fully exploit the
52 potential of sources of bacterial wilt resistance through breeding programs. Asymptomatic latent
53 infections should also be considered to avoid the selection of tolerant varieties which promote
54 pathogen dissemination under favourable environmental conditions [9].

55 We present here two methodologies that we have developed to evaluate bacterial loads in inoculated
56 potato germplasm: the use of reporter strains [10, 11] and a BIO-multiplex-PCR assay.

57

58 **2. Materials**

59 **2.1 Plant varieties and plant growth materials.**

60 1. The potato cultivar *S. tuberosum* cv. Chieftain is used as a susceptible control. Susceptible
61 (13001.79, 13001.107) and resistant (1201.27, 09509.6) interspecific potato clones derived
62 from different breeding lines are selected from the National Institute for Agricultural
63 Research (INIA, Uruguay) germplasm collection.

64 2. Potato multiplication medium (PMM): mix 20 ml of nitrate solution (95 g/L KNO₃, 82,5 g/L
65 NH₄SO₃. Adjust to 1 L with sterile distilled water), 20 ml of sulphate solution (18,5 g/L
66 MgSO₄·7H₂O, 1,25 mg/L CuSO₄·5H₂O, 1,115 g/L MnSO₄·4H₂O, 0,43 g/L ZnSO₄·7H₂O. Adjust
67 to 1 L with sterile distilled water), 20 ml of halogens solution (22 g/L CaCl₂·H₂O, 41,5 mg/L

68 KI, 1,25 mg/L $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$. Adjust to 1 L with sterile distilled water), 1 ml of vitamin solution
69 (0,05 % folic acid, 0,1% biotin, 0,1% choline chloride, 0,1% pantothenic acid, 0,1% thiamine,
70 0,2 % nicotinamide, 0,2% pyridoxine, 0,2% aminobenzoic acid), 0,17 g/L KH_2PO_4 , 6,2 mg/L
71 H_3BO_3 , 0,25 mg/L $\text{Na}_2\text{MoO}_4 \cdot 2\text{H}_2\text{O}$, 37,9 mg/L $\text{Na}_2\text{EDTA} \cdot 2\text{H}_2\text{O}$, 27,8 mg/L $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$, 30
72 g/L sucrose, 0,2 g/L myo-inositol and 8 g/L agar. Adjust to pH 5,8 with KOH and to 1 L with
73 sterile distilled water.

74 3. Glass containers with autoclavable plastic lid.

75 4. Sterile glass petri dishes.

76 5. Metal clamps and scalpels.

77 6. Metal sterilizer.

78 7. Laminar flow cabinet.

79 8. In vitro growth chambers for healthy plants at 22°C with cycles of 16 h light/8 h darkness.

80 9. Soil mix (Tref Substrate).

81 10. 5 cm³ Multicell-trays.

82 11. 170-cm³ individual pots.

83 12. Greenhouse with natural light and room temperature.

84 13. Growth chambers with controlled temperature, humidity and light.

85

86 **2.2 Bacterial strains and bacterial culture.**

87 1. *R. solanacearum* UY031 strain [12], *R. solanacearum* reporter strains UY031 Pps-GFP and
88 UY031 Pps-lux [10, 11].

89 2. Rich B medium: 10 g/L Bacteriological peptone, 1 g/L Yeast extract and 1 g/L Casamino
90 Acids. Add 1.5% Agar for solid media before autoclaving. Before plating, add 0.5% Glucose
91 and 0.005% Triphenyltetrazolium chloride (TTC). Adjust to pH 7,0. Supplement with
92 gentamicin at 5 and 75 µg/ml in liquid and solid cultures respectively for selection of
93 reporter strains.

94 3. mSMSA medium [13]: 10 g/L Bacteriological peptone, 5 ml of glycerol and 1 g/L Casamino

95 Acids. Add 1.5% Agar for solid media before autoclaving. Before plating, add 10 ml of
96 polymyxin B sulfate (1%), 10 ml of cyclohexide (1%), 2,5 ml of bacitracin A (1%), 500 µl of
97 penicillin (0,1%), 500 µl of cloranfenicol (1%), 500 µl of crystal violet (1%) and 0.005% TTC.
98 Adjust to pH 7,0.

99 4. Sterile Petri dishes.
100 5. Sterile tubes.
101 6. Sterile saline solution: add 9 g/L NaCl in distilled water before autoclaving.
102 7. Spectrophotometer.

103

104 **2.3 Evaluation of bacterial colonisation using reporter strains.**

105 1. Luminometer (LAS4000 light imager system, FujiFilm).
106 2. Epifluorescence microscope.
107 3. Confocal fluorescence microscope.
108 4. Glass slides.
109 5. Coverslips.
110 6. Solid vaseline.
111 7. 20 ml syringe.
112 8. 200 µl pipette tips.
113 9. Razor blade.
114 10. Agarose 1 %.

115

116 **2.4 BIO-multiplex-PCR.**

117 1. Ethanol 70%.
118 2. Sterile water.
119 3. Sterile absorbent paper.
120 4. Sterile plastic bags.
121 5. 50mM phosphate buffer: 4,26 g/L Na₂HPO₄ and 2,72 g/L. Adjust to pH 7,0 and to 1 L with

122 sterile distilled water.

123 6. Laboratory blender.

124 7. 1000 and 200 μ l pipettes with sterile tips.

125 8. Sterile glass beads for liquid dissemination on Petri dishes.

126 9. 28°C Incubator.

127 10. Sterile loops.

128 11. Sterile tubes.

129 12. Centrifuge.

130 13. PCR tubes.

131 14. Thermocycler.

132 15. 5 units/ μ l Taq DNA polimerase and its concentrated buffer.

133 16. 25 mM MgCl₂

134 17. 5 mM Deoxyribonucleotide triphosphates (dNTPs).

135 18. 10 μ M of IIB-1 specific primers (00876F: 5'-GGATTCAAGGTATGCCAGA-3'; 00876R: 5'-

136 CATAGCCGCTTCTTCTTGG-3') and general primers [14] (759: 5'-

137 GTCGCCGTCAACTCACTTTCC-3'; 760: 5'-GTCGCCGTCAATGCCGGAATCG-3').

138 19. MiliQ water.

139

140 **3. Methods**

141 **3.1 Plant growth**

142 1. Start *in vitro* cultures from *in vitro* plants containing 3-4 internodes grown *in vitro* in tubes

143 or glass bottles with PMM medium.

144 2. Cut single-node pieces of plants and transfer them into glass bottles with fresh PMM

145 previously autoclaved (see **Note 1**). Put around 10-12 single-node pieces per glass bottle (Fig.

146 1a).

147 3. Leave plantlets growing for 15-20 days in the *in vitro* growth chamber at 22°C with cycles of

148 16 h light/8 h darkness.

149 4. Before transfer to soil, incubate closed glass bottles with plants in a greenhouse under natural
150 light and room temperature during 3-5 days for acclimatisation.

151 5. Transfer plants to soil either in plastic trays with 5-cm³ wells for bacterial wilt resistance
152 screening (Fig. 1b), or to individual pots with 170-cm³ for evaluation of bacterial colonisation
153 by inoculation with reporter strains (Fig. 1c) (*see Note 2*).

154 6. Incubate for 15-20 days in the greenhouse under natural light and room temperature, until
155 plants reach a height of 10 cm.

156 7. Water plants frequently checking that soil mix is wet but avoiding flooding.

157 8. Before inoculation, incubate plants 2-3 days for acclimation in the growth chamber at 28 °C
158 with cycles of 16 h light/8 h darkness and 65 % of humidity.

159

160 **3.2 Bacterial culture and inoculum preparation**

161 1. Streak bacterial strains from glycerol stocks kept at -80 °C on B medium. Grow for 2 days at
162 28 °C. Supplement the medium with gentamicin when reporter strains are used.

163 2. Pick a single colony to inoculate 20 ml of liquid rich B medium and incubate overnight at 28
164 °C with orbital shaking (200 rpm) (*see Note 3*).

165 3. Centrifuge the bacterial culture, discard the supernatant and carefully re-suspend the pellet
166 with 20 ml of sterile saline solution or sterile water.

167 4. Using a spectrophotometer, measure the optical density at 600 nm (OD₆₀₀) of the cell
168 suspension.

169 5. Add the required volume of cell suspension for adjusting the desired volume of inoculum to
170 a final concentration of 10⁷ cfu/ml (consider that an OD₆₀₀ of 0.1 corresponds to 10⁸ cfu/ml).

171 6. Confirm the final inoculum concentration by preparing 10-fold dilutions and colony
172 counting in rich B medium plates.

174 **3.3 Evaluation of bacterial colonisation using reporter strains**

175 Two types of *R. solanacearum* reporter strains are used: a bioluminescent strain for non-
176 disruptive, macroscopic assessment of bacterial colonisation, and a fluorescent strain for
177 microscopic evaluation of colonisation at the tissue level.

178 **3.3.1 Evaluation of colonisation using a luminescent strain.**

- 179 1. For evaluation of bacterial colonisation, use 5-10 replicate plants for each clone, grown in
180 individual pots and arranged using a completely randomized design (Fig. 1c).
- 181 2. Prior to inoculation, damage roots slightly by making three holes of 2 cm deep in the soil of
182 each pot with a disposable 1000 µl pipette tip.
- 183 3. Inoculate potato clones by drenching, using 40 ml of bacterial suspension of *R. solanacearum*
184 UY031 Pps-lux strain to reach a final density of 10⁶ cfu/g of soil. Inoculate plants with saline
185 solution as negative control treatment.
- 186 4. After inoculation, record daily, for 6-10 days, bacterial colonisation of plant tissues using the
187 Fuji Film LAS4000 light imager system with the chemiluminescence settings of incremental
188 exposure time each 2 min and sensitivity/resolution set to high binning (Fig. 2).

189

190 **3.3.2 Evaluation of colonisation using a fluorescent strain.**

- 191 1. Use the same plant inoculation procedure described for the luminescent strain using instead
192 *R. solanacearum* UY031 Pps-GFP strain.
- 193 2. Collect root and stem samples 2- and 7-days post inoculation (dpi) to follow pathogen
194 colonisation.
- 195 3. Remove plants from pots and wash roots with tap water to remove adherent soil.
- 196 4. Surface sterilize stem and roots of each plant with ethanol 70% for 1 min, rinse with sterile
197 water for 1 min and dry with sterile paper towels in a laminar flow cabinet.
- 198 5. Select colonized roots to be observed by confocal microscopy and put them on a glass slide
199 with agarose 1% to maintain sample hydrated during manipulations (*see Note 4*).

200 6. Put solid vaseline in the border of a coverslip with syringe, making a 2-3 mm wide retaining
201 wall (*see Note 5*).

202 7. Place the selected colonized roots (*see step 5*) on the coverslip surrounded by solid vaseline.

203 8. Cut 2-cm stem segments using a previously disinfected scalpel, cut from 1 cm above root.
204 Make six to 10 cross-sections by hand with razor blade on the end of each stem segment and
205 place them on the coverslip with root segments of each plant.

206 9. Add melted agarose 1% as immersion medium surrounding stem and root segments. Vaseline
207 wall should retain melted agarose (*see Note 6*).

208 10. Immediately place a glass slide to seal the chamber (Fig. 3a).

209 11. Observe stem cross-sections and roots using a confocal (*see Note 7*) microscope (Fig. 3b).

210

211 **3.4 Bacterial wilt resistance evaluation.**

212 1. Use two replicate trays, each containing eight plants per clone. Arrange the trays in the
213 growth chamber using a completely randomized design.

214 2. Prior to inoculation, damage roots slightly by making one hole of 2 cm deep in the soil of
215 each well with a disposable 1000 μ l pipette tip.

216 3. Inoculate each cell by adding 1 ml of bacterial suspension adjusted to 10^7 cfu/ml. Inoculate
217 plants with saline solution as negative control treatment.

218 4. Record wilting symptoms until almost all the susceptible control plants (cv. Chieftain) are
219 totally wilted (approximately 28 dpi). Disease scoring is performed using a semi-quantitative
220 scale that ranges from 0 to 4, in which 0= no wilting, 1 = 25% of the leaves wilted, 2= 50% of
221 the leaves wilted, 3= 75% of the leaves wilted, 4= 100% of the leaves wilted, dead plant (*see*
222 **Note 8**).

223 5. Estimate the resistance level by calculating the area under disease progression curve
224 (AUDPC) based on the average wilt scoring for each clone.

225

226 **3.5 Evaluation of latent infections using BIO-multiplex-PCR.**

227 1. The occurrence of latent infections is determined in genotypes with 0-30% of wilted plants
228 after 28 dpi (evaluated using **Method 3.4**).
229 2. Collect only asymptomatic plants and wash with tap water to remove the adherent soil.
230 Surface sterilise the plants with ethanol 70% for 1 min, rinse with sterile water for 1 min and
231 dry with sterile absorbent paper towels.
232 3. Using a sterile scalpel, cut 2 cm stem segments from the basal part of each plant, just above
233 the soil level.
234 4. Pool stem segments from each replicate tray of each genotype and place them into a sterile
235 bag. Weigh stem pools, add phosphate buffer (10 ml per gram of tissue) and mix in a
236 laboratory blender at high speed for 10 min.
237 5. Spread aliquots of 100 µl of stem extract onto each of two plates of mSMSA and incubate at
238 28 °C.
239 6. After 48 h wash one of the mSMSA plates with 2 mL of sterile water (*see Note 9*). The
240 remaining plate is maintained at 28 °C for visual recovery and enumeration of *R.*
241 *solanacearum* colonies.
242 7. Centrifuge washed suspensions at 8000 rpm for 5 min and re-suspend pellets in 100 µl of
243 sterile water in Eppendorf tubes. Boil for 20 min and store on ice until used as template for
244 amplification by multiplex-PCR.
245 8. Multiplex PCR: mix 5 µl of lysate; 1,5 mM MgCl₂; 0,2 mM each of four dNTPs; 10 pmol of
246 each IIB1-specific primer (00876F/00876R); 10 pmol of primers 759/760; 1,5 U Taq DNA
247 polymerase and the buffer supplied with the enzyme in 25 µl of reaction volume.
248 9. Amplification program: 5 min at 96 °C, followed by 40 cycles of 94 °C for 30 s, 60 °C for 30 s,
249 and 72 °C for 45 s, with a final extension step for 10 min at 72 °C.
250 10. See results by gel electrophoresis using agarose 1.5% for detection of both amplification
251 products. IIB-1 specific primers 00876F/00876R and 759/760 amplify products of 342 bp and
252 280 bp, respectively (Fig. 4).

253 11. Record the number of *R. solanacearum* colonies grown in the remaining mSMSA plate after
254 7-10 days of incubation at 28 °C. Latently infected plants usually have a pathogen
255 concentration of 10³ to 10⁶ cfu/g of stem tissue.

256

257 **4. Notes.**

- 258 1. Carry out micro-propagation procedures inside the laminar flow cabinet. Cut single-node
259 pieces with metal clamps and scalpels inside glass petri dishes previously autoclaved. Sterilize
260 metal clamps into the metal sterilizer every 3-4 plants. Before autoclaving, melt PMM and
261 transfer 30-50 ml inside the glass bottles. Single-node stem pieces should be in contact with
262 PMM for plant growth.
- 263 2. Before transfer plants to soil, remove agar from roots carefully avoiding root damage. Rinse
264 plants in tap water 2-3 times until no agar remains adhere to the roots.
- 265 3. Pick a colony with the typical morphology of *R. solanacearum*: large, fluidal, and either
266 entirely white or white with a red centre.
- 267 4. Put whole root system on a glass slide with agarose 1% to observe roots on epi-fluorescence
268 microscope and to maintain samples hydrated. Then, when colonized roots are selected
269 transfer root pieces to a new glass slide with agarose 1%.
- 270 5. Put a 200 µl pipette tip in the syringe tip to make a finest solid vaseline retaining wall.
- 271 6. Add agarose immediately after placing stem cross-sections. Tissue segments could dry out if
272 agarose addition is delayed.
- 273 7. Fluorescence can also be detected using an epifluorescent microscope, although, interference
274 with the chlorophyll autofluorescence often makes interpretation difficult. The intensity of
275 the GFP signal and the microscope fluorescence filters are key variables that have to be
276 evaluated in each case. The use of a confocal microscope highly improves signal specificity
277 and resolution and is always effective.

278 8. Scoring of disease symptoms has some degree of subjectivity. It is strongly recommended
279 that the same person carries out the whole symptom recording to avoid experimental bias.
280 9. The mSMSA plate should be washed only when no evident growth or pin-point colonies are
281 observed after 48 hs of incubation. If confluent growth is observed the washing should be
282 replaced by collecting the cells with a sterile toothpick and diluting in 100 µl of sterile water,
283 before following with the lysis and amplification procedure by multiplex PCR.

284

285

286 **5. References**

287 1. Mansfield J, Genin S, Magori S et al. (2012) Top 10 plant pathogenic bacteria in molecular plant
288 pathology. Mol Plant Pathol 13:614-629.

289 2. Safni I, Cleenwerck I, De Vos P et al. (2014) Polyphasic taxonomic revision of the *Ralstonia*
290 *solanacearum* species complex: proposal to emend the descriptions of *Ralstonia solanacearum* and
291 *Ralstonia syzygii* and reclassify current *R. syzygii* strains as *Ralstonia syzygii* subsp. *syzygii* subsp.
292 nov., *R. solanacearum* phylotype IV strains as *Ralstonia syzygii* subsp. *indonesiensis* subsp. nov.,
293 banana blood disease bacterium strains as *Ralstonia syzygii* subsp. *celebesensis* subsp. nov. and *R.*
294 *solanacearum* phylotype I and III strains as *Ralstonia pseudosolanacearum* sp. nov. Int J Syst Evol
295 Microbiol 64:3087-3103.

296 3. Siri MI, Sanabria A, Pianzzola MJ (2011) Genetic diversity and aggressiveness of *Ralstonia*
297 *solanacearum* strains causing bacterial wilt of potato in Uruguay. Plant Dis 95:1292-1301.

298 4. Huet G (2014) Breeding for resistances to *Ralstonia solanacearum*. Front Plant Sci 715:1-5.

299 5. Fock I, Collonnier C, Purwito A et al. (2000) Resistance to bacterial wilt in somatic hybrids
300 between *Solanum tuberosum* and *Solanum phureja*. Plant Sci. 160:165-176.

301 6. Carputo D, Aversano R, Barone A et al. (2009) Resistance to *Ralstonia solanacearum* of sexual
302 hybrids between *Solanum commersonii* and *S. tuberosum*. Am J Potato Res. 86:196-202.

303 7. Siri MI, Galván G, Quirici L et al. (2009) Molecular marker diversity and bacterial wilt resistance
304 in wild *Solanum commersonii* accessions from Uruguay. *Euphytica*. 165:371-382.

305 8. Gonzalez M, Galvan G, Siri MI et al. (2013) Resistencia a la marchitez bacteriana de la papa en
306 *Solanum commersonii* Dun. *Agrociencia*. 17:45-54.

307 9. Gutarra L, Kreuze J, Lindqvist-Kreuze H, De Mendiburu F (2014) Variation of resistance to
308 different strains of *Ralstonia solanacearum* in highland tropics adapted potato genotypes. *Am J
309 Potato Res* 92:258-265.

310 10. Cruz APZ, Ferreira V, Pianzzola MJ et al. (2014) A novel, sensitive method to evaluate potato
311 germplasm for bacterial wilt resistance using a luminescent *Ralstonia solanacearum* reporter
312 strain. *Mol Plant Microbe Interact* 27:277-285.

313 11. Ferreira V, Pianzzola MJ, Vilaró F et al. (2017) Interspecific potato breeding lines display
314 differential colonisation patterns and induced defense responses after *Ralstonia solanacearum*
315 infection. *Front Plant Sci* 8:1424-1437.

316 12. Guarischi-Sousa R, Puigvert M, Coll NS et al. (2016) Complete genome sequence of the potato
317 pathogen *Ralstonia solanacearum* UY031. *Stand Genomic Sci* 11:7-14.

318 13. Elphinstone JG, Hennessy J, Wilson JK, Stead DE (1996) Sensitivity of different methods for the
319 detection of *Ralstonia solanacearum* in potato tuber extracts. *EPPO Bull*. 26:663-678.

320 14. Opina N, Tavner F, Hollway G et al. (1997) A novel method for development of species and
321 strain-specific DNA probes and PCR primers for identifying *Burkholderia solanacearum*
322 (formerly *Pseudomonas solanacearum*). *Asia Pac J Mol Biol Biotechnol* 5:19-30.

323

324 **Figure legends**

325 **Fig 1. Representative photographs of the different potato plant growth stages. (a)** In vitro plants
326 growing on PMM in glass bottles. **(b)** Plants grown in plastic multicell-trays for bacterial wilt
327 resistance evaluation. **(c)** Plants grown in individual pots for inoculation with reporter strains.

328

329 **Fig 2. Bioluminescence imaging of *Ralstonia solanacearum* UY031 Pps-lux strain colonising**
330 **different potato genotypes. (a)** Susceptible potato cultivar *Solanum tuberosum* cv. Chieftain. **(b)**
331 Resistant potato clone 11201.27. Light gray indicates background luminescence and black regions
332 are colonized tissue by light-emitting bacteria. Images were acquired at 3 and 6 days post
333 inoculation (dpi).

334

335 **Fig 3. Evaluation of bacterial colonisation using the *Ralstonia solanacearum* fluorescent reporter**
336 **strain UY031 Pps-gfp. (a)** Confocal visualisation chamber containing stem cross-sections and root
337 segments. **(b)** Representative confocal fluorescence micrographs of stem cross-section (Resistant
338 potato clone 09509.6, left) and root (Susceptible potato clone 13001.79, right). Images were
339 acquired 7 days post inoculation (dpi). Dark arrows show bacterial colonisation.

340

341 **Fig 4. Gel electrophoresis showing positive results of the multiplex-PCR for detection of latent**
342 **infections in asymptomatic potato plants inoculated with *Ralstonia solanacearum* (IIB-1).**

343

Figure 1

344

Figure 2

345

Figure 3

346

Figure 4

347