
This is the accepted version of the book part:

Fraga, Edigley [et al.]. «Cloud-Based Urgent Computing for Forest Fire Spread
Prediction under Data Uncertainties». 2021 IEEE 28th International Conference
on High Performance Computing, Data, and Analytics (HiPC), 2021, p. 430-435
DOI 10.1109/HiPC53243.2021.00061

This version is available at https://ddd.uab.cat/record/324479

under the terms of the license.

https://ddd.uab.cat/record/324479

Cloud-Based Urgent Computing for Forest Fire
Spread Prediction under Data Uncertainties

Edigley Fraga, Ana Cortés, Tomàs Margalef, and Porfidio Hernández
Department of Computer Architecture and Operating Systems

Universitat Autònoma de Barcelona
Bellaterra, Spain

e-mail: edigley@gmail.com,{ana.cortes,tomas.margalef,porfidio.hernandez}@uab.cat

Abstract—Forest fires severely affect many ecosystems every
year, leading to large environmental damages, casualties, and
economic losses. Emerging and established technologies are used
to help wildfire analysts determine fire behavior and spread,
aiming at more accurate prediction results and efficient use of
resources in fire fighting. We propose a novel forest fire spread
prediction platform based on a proven two-stage prediction model
devised to deal with input data uncertainties. The model is able
to calibrate the unknown parameters based on the real observed
data using an iterative process. Since this calibration is compute-
intensive and due to the unpredictability of urgent computing
needs, we exploit an elastic and scalable cloud-based solution
platform implemented through coarse-grain parallel processing
using a work queue.

Keywords-cloud computing; data uncertainty; forest fires; ur-
gent computing;

I. INTRODUCTION

Fire is a natural element of many ecosystems, and even
large wildfires are part of a defined disturbance regime [1].
For that reason, the challenge from both a prevention and
a suppression point of view is to anticipate and reduce the
spread potential of large wildfires and the succeeding risk to
human lives, property, and land-use systems [2]. Wildfires have
a relatively unpredictable nature as their spread can vary based
on the flammable material and can differ by their extent and
wind speeds. Forest fire prevention’s strategies for detection
and suppression have improved significantly through the years,
both due to technological innovations and the adoption of
various skills and methods.

Nowadays, wildfire researchers use technologies that inte-
grate data on weather prediction, topography, and other factors
to predict how fires spread. Forest fire prediction, preven-
tion, and management measures have become increasingly
important over the decades. Systems for wildfire prediction
represent an essential asset to back up forest fire monitoring
and extinction. They also serve to predict forest fire risks and
to help in fire-control planning and resource allocation.

When dealing with the extinction phase, an accurate pre-
diction of fire propagation is a critical issue to minimize its
effects. Actually, while used in a fire extinction activity, a
wildfire spread prediction is a hard-deadline-driven task. For

This research has been supported by MINECO-Spain under contract
TIN2017-84553-C2-1-R, MICIN-Spain under contract PID2020-113614RB-
C21 and by the Catalan government under grant 2017-SGR-313.

instance, a complex wildfire simulation that could accurately
predict the perimeter of a wildfire a couple of days ahead can
drive firefighters to put firebreaks where they would be most
effective to stop the fire propagation. In this particular case,
an accurate prediction that comes up late compared to the
actual event is useless to the task of fire suppression. These
characteristics represent an urgent computing system, from
which the simulation results are needed by relevant authorities
in making timely informed decisions to mitigate financial
losses, manage affected areas and reduce casualties [3]. In
the mentioned forest fire propagation system, we can find the
three urgent computing requirements:

a The computation operates under a strict deadline, after
which the computation results may give little practical
value (”late results are useless”);

b The beginning of the event that demands the computation
is unpredictable;

c The computation requires significant resource usage.
A solution must be deadline-driven, on-demand provi-

sioned, and scalable to fulfill these requirements. To deal
with them, High-Performance Computing (HPC) community
used to rely on dedicated high-end clusters, supercomputers,
or distributed computing platforms [4].

As an enabling technology, cloud computing allows new
strategies to deal with the urgent computing challenge. Con-
sidering cloud computing characteristics of on-demand provi-
sioning, immediate scalability, and abundant offer of resources
(b), one might consider it a natural choice as a platform to
run urgent computing applications. Regarding strict deadline
(a) and resource usage (c) requirements, although in the early
days cloud offerings suffered to run HPC applications, today
they are an alternative to on-premise clusters [5].

An important aspect of any system is the incurred cost.
Traditional HPC applications involve a high Total Cost of
Ownership (TCO) on the subjacent platform, but cloud-based
solutions allow access to supercomputing-like features at the
cost of a few dollars per hour. This is particularly important
for fire propagation systems due to 1) the seasonality of the
wildfire occurrences and 2) because forest fire prevention
services or fire brigades usually can’t afford the TCO to keep
an infrastructure idle until eventually needed by an urgent
computation.

The use of simulators for forest fire propagation requires

sufficient time for the processing, precise fuel model data,
and accurate knowledge of small and large-scale interaction of
weather and topography [2]. To start a simulation, a plethora
of input parameters is necessary. They include spatial data
describing the elevation, slope, aspect, and fuel type. Fig 1
illustrates the input data commonly used for fire simulations.

Fig. 1. Fuel and topographic grid data used for wildfire simulations.

In reality, the input data describing the actual scenario
where the fire is taking place is usually subject to high
levels of uncertainty that represent a serious drawback for the
correctness of the prediction [6]. Any designed solution faces
a real challenge while accurately predicting a fire spread in a
scenario with uncertainties regarding input data, under a strict
deadline constraint, and in a cost-effective way.

Taking into account new advancements in cloud computing
offerings, it is possible to achieve more accurate prediction
results in less time even for larger fire occurrences when
compared to traditional HPC-based solutions. But besides
guaranteeing short execution time (performance) one must also
take into consideration the total simulation cost (total expense)
involved in the designed solution [7]. As a consequence, we
propose a performance-efficient and cost-effective cloud re-
source management platform built upon a proven methodology
for forest fire prediction.

So far, on-premises HPC solutions were usually built un-
der the restriction of the scarcity of available computing
resources [8]–[10] or on multi-million dollar supercomputing
infrastructures [11]. In contrast, one of cloud computing char-
acteristics is abundance, which results in the illusion of infinite
computing resources available on demand [12]. Therefore, our
working hypothesis is that a solution based on cloud offerings
allows improving the accuracy of fire propagation prediction
results. Obviously, some challenges arise since there are still
some gaps between HPC and cloud paradigms regarding
computing power and communication efficiency [13].

The remainder of this document is organized as follows.
Related work is discussed in Section II and a brief introduction
of the FARSITE simulator is presented in section II-A. Section
II-B describes the two-stage prediction method used to deal
with input-data uncertainty. Section III presents the proposed
cloud-based solution. A proof-of-concept implementation is
discussed in Section IV. Finally, some concluding remarks are
given in Section V.

II. RELATED WORKS

Abdalhaq [14] proposed a two-stage methodology to cal-
ibrate the input parameters in an adjustment phase so that
the calibrated parameters are used in the prediction stage to
improve the quality of the predictions. Cencerrado [9] applied
Genetic Algorithm as the calibration technique in the adjust-
ment phase, which requires the execution of many simulations
to generate the best-calibrated set of input parameters. Similar
work was also carried over by Mendez-Garabetti et al. [15].
Cencerrado also devised one strategy based on Decision Trees
to identify long-running execution individuals of a fire spread
simulation. Such a strategy was the base for a classification
method that allows estimating in advance the execution time
of a simulation given a certain set of input parameters.

More recently, Artés [8] proposed and evaluated a set of re-
source allocation policies to assign more computing resources
to estimated long-running executions and fewer resources to
the fast ones, allowing to reduce the adjustment stage time
to a more acceptable deadline. That was possible due to the
use of a parallel version of the FARSITE model that could
reduce long-running execution times by 35%. To work in a
time-constrained fashion, a hybrid MPI-OpenMP application
based on the Master-Worker paradigm was developed to
take advantage of the execution in a parallel HPC cluster
environment. Fraga [16] proposed, implemented, and evaluated
an early adaptive evaluation strategy to further speed up the
calibration process, reducing the overall calibration time by
60%. The two-stage framework has been proved to be a good
methodology to deal with the input data uncertainties, and it
is leveraged in this current work.

Altintas et al. [11] conducted the comprehensive WIFIRE
Firemap project, which is a dynamic data-driven system to
predict wildfire progress through data analysis that is relayed
through map visualizations. FARSITE is one of the leveraged
fire spread simulator models coupled with a wind simulator.
Compute-intensive tasks are executed in parallel on distributed
computing environments and public cloud offerings.

Kalabokidis and others [17] implemented a cloud applica-
tion composed of wildfire risk and spread simulation service.
End users access the application in a software as a service
delivery model, being charged for their consumed processing
time during the actual wildfire simulation period. The appli-
cation presents the flexibility to scale up or down the number
of computing nodes needed for the requested processing de-
pending on the number of simultaneous users. Although being
a step toward the spread of adoption of simulation techniques
to local fire agencies, the solution does not address the issues
related to input data uncertainties, neither was developed to
be applied in urgent computing firefighting scenarios.

A. Forest Fire Spread Simulator

In the field of forest fire behavior modeling, there are fire
propagation simulators based on different physical models,
whose main objective is to predict the fire evolution. Among
those, FARSITE [18] is a well-known fire growth simulation
modeling system that uses spatial information on topography

and fuels along with weather and wind inputs. It makes it pos-
sible to compute wildfire growth and behavior for long periods
under heterogeneous conditions of terrain, fuels, and weather.
It also incorporates existing models for surface fire, crown fire,
spotting, post-frontal combustion, and fire acceleration into a
two-dimensional fire growth model. Its simulation generates a
sequence of fire perimeters representing the growth of a fire
under a given input condition. For that purpose, it incorporates,
among others, the simple but effective Rothermel’s surface fire
spread behavior model [19] along with Huygens’s Principle
of wave propagation [18]. A wildfire simulation is a process
inherently complex, from which a long execution time for an
individual simulation is not atypical.

B. Two-Stage Prediction Method

Usually, to predict forest fire behavior, a simulator takes the
initial state of the fire front perimeter (P0) along with other
parameters as input. As output, the simulator then returns the
fire front spread prediction for a later instant in time (P̂1). After
comparing the simulation result with the real advanced fire
front (P1), the predicted fire line tends to differ from the actual
one. Besides the natural phenomena modeling complexity
uncertainty, the reason for this mismatch is that the Prediction
Stage in the classic scheme calculation is based solely on a
single set of input parameters, affected by the aforementioned
data uncertainty. To overcome this drawback, a simulator-
independent data-driven prediction scheme was proposed to
calibrate model input parameters [9]. Fig. 2 illustrates this
Two-Stage Prediction Method.

Fig. 2. Two-Stage Prediction Method.

Introducing a Calibration Stage, the set of input parameters
is adjusted before every prediction step. Thus, the solution
comes from reversing the problem, coming up with a param-
eter configuration such that the fire simulator would produce
predictions that match the actual fire behavior. After detecting
the simulator input that better reproduces the observed fire
propagation, the same set of parameters is used to describe
the conditions for the next prediction (P̂2), assuming that
meteorological circumstances remain constant during the next
prediction interval. Prediction is then the result of a series
of adjusted input configurations. The process can be applied
again for subsequent fire perimeters (P̂3), (P3) and so on.

As a data-driven prediction scheme, to enhance the quality
of the predictions, the two-stage method is applied con-

tinuously. Providing calibrated parameters at different time
intervals and taking advantage of observed fire behavior, this
approach has been proven to be appropriate to enhance the
quality of the predictions. In particular, a Genetic Algorithm
(GA) based adjustment technique gives accurate results.

III. A CLOUD-BASED URGENT COMPUTING SOLUTION

Fig. 3 shows a high-level architecture for a Cloud-based
urgent Computing (dubbed CuCo) solution. Apart from the
Prediction Engine based on the two-stage prediction method,
there is also an Optimized Cost Estimator, capable of preparing
a resource allocation plan that minimizes cost while maintain-
ing the prediction deadline.

Fig. 3. High-Level Architecture of CuCo’s Solution.

The main components are the following:
• Prediction Engine: it is based on the two-stage prediction

method, running a calibration phase before the actual
fire spread prediction. Currently, the calibration’s Or-
chestrator is based on an iterative data-driven compute-
intensive Genetic Algorithm that runs FARSITE as the
Core Simulator.

• Optimized Cost Estimator: a domain-specific module,
tailored to statistically model the core simulator, specify
the available computational resources properties and de-
termine the user preferences through strict deadlines or
utility functions.
– Core Runtime and Memory Consumption Mod-

els: to estimate the execution time of a fire spread
simulation, it is necessary to perform a large set of
executions of the underlying simulator on the target
architecture and then analyze its behavior from the
obtained results. We use the results presented in [8]
and [9] as characterization models.

– User’s Utility Model: to capture user’s satisfaction
over prediction time and monetary cost of the overall
fire spread prediction, we propose to foster utility
functions, as they are commonly used to communicate
the value of work and other quality of service aspects
such as its timely completion [20].

– Price / Resource Model: in this work, we consider
an Infrastructure-as-a-Service (IaaS) cloud system, in

which a number of data centers deliver on-demand
storage and compute capacities over the Internet. These
computational resources are provided in the form of
an abstract unit of compute and storage called Virtual
Machine (VM for short), object storage, or remote file
systems volumes. In a cloud, VMs are offered in dif-
ferent types, each of which has different characteristics
such as different numbers of CPUs, amount of memory,
and network bandwidths capacity.

• Storage: as an urgent computing solution, it is necessary
to have on-demand access to the input data. It is needed
a persistent repository consisting of all the static data
for the areas with a greater probability of forest fire
occurrence (those with high fire danger indices). For these
static data, as a data lake, the proposed solution leverage
object storage service that offers industry-leading scala-
bility, data availability, security, and performance.

• Queue: it integrates the different components providing
an Application Programming Interface (API) to create
queues as well as send, receive, and delete messages.
Messages are used to represent simulation tasks; queue
states to trigger orchestration or scheduling activities.

• Scheduler: its function is to assign resources to perform
computing tasks. It determines which resources are valid
placements for each task according to their constraints.

• Resource Provisioner: it is responsible for providing
the virtual resources in which the actual simulation will
be run. After understanding the memory consumption
and runtime of the core simulator, a suitable memory or
compute-intensive pool of instances can be provisioned
in order to overcome this potential point of congestion.

IV. PROOF-OF-CONCEPT IMPLEMENTATION

As a proof-of-concept implementation, we decided to lever-
age well-established cloud tools, favoring a decoupled solution
that can be easily deployed on a public cloud or on-premise
infrastructure. Considering Fig. 3, the orchestrating compo-
nent is responsible for generating all the compute demands
based on a stream of GA generations. The Core Simulator
is the FARSITE simulation model. The Scheduler function is
delegated to the Kubernetes orchestration engine whereas the
Resource Provisioner is linked to the AWS EC2 infrastructure.
Docker is the container runtime engine of choice.

FARSITE simulator has been isolated as a cloud component,
deployed initially as a containerized application. The way to
deal with the data acquisition latency problem is to rely on
a well-established scalable object-storage service to allow the
efficient parallel retrieval and storage of input and output data.

A. Kubernetes

A working Kubernetes deployment is called a cluster, in-
cluding the control plane and the compute machines, or nodes.

Control plane: it manages the worker nodes and the pods in
the cluster. It includes API, scheduler, and controller modules,
apart from etcd, a consistent and highly-available key-value
store used as Kubernetes’ backing store for all cluster data.

Pods: A pod is the smallest/simplest unit in the Kubernetes
object model, representing a single instance of an application.
It can be a container or a series of tightly coupled containers,
along with options that govern how the containers are run.

Nodes: A Kubernetes cluster needs at least one compute
node, but will normally have many. Pods are scheduled and
orchestrated to run on nodes. A direct way to scale up the
capacity of a cluster is to add more nodes.

Container runtime: to run the containers, each compute
node has a container runtime engine. Kubernetes supports
Open Container Initiative-compliant runtimes. Docker has
been chosen due to its consistent and standard binary format.

Container registry: the container images that Kubernetes
relies on are stored in a container registry. This can be a
locally-configured registry or a third-party one.

B. Underlying Virtual Infrastructure

Kubernetes can be run on bare metal servers, virtual ma-
chines, public cloud providers, private clouds, and hybrid
cloud environments. One of Kubernetes’s key advantages is
that it works on many different kinds of underlying infras-
tructure, being a perfect fit for CuCo’s architecture.

Amazon Elastic Compute Cloud (EC2) is the part of Ama-
zon’s cloud-computing platform that allows users to rent VMs
(called ”instances”). A user can create, launch, and terminate
instances as needed, paying by the second for active servers.
Like other providers, Amazon offers a plethora of pricing and
service model. Spot Instances are spare compute capacity in
the AWS cloud available at up to 90% discount compared
to On-Demand prices. As a trade-off, AWS offers no SLA
on these instances and customers take the risk that it can be
interrupted at any moment. Speed-ups obtained through works
from Artés [8] and Fraga [16] made it possible to take the
mentioned risk. Considering this, we have chosen the Spot
option as the most appropriate one due to its cost-effectiveness.

C. CuCo’s Implementation Model

Supporting the driving GA Prediction Engine Orchestrator,
we use a simple Kubernetes Job that performs a coarse parallel
processing using a work queue.

Integration using a message queue service: the initial
population is randomly generated and for each one of its
individuals a task definition is created and pushed to the task
queue. We opted for using Simple Queue Service from Amazon
AWS, although any queue service could be used.

Kubernetes Job: the job starts several pods, and each of
them takes one task from the message queue, processes it, and
repeats until the end of the queue is reached. Once the task
queue is empty, a new generation can be computed and the
message queue can be filled up again. The process is repeated
until the pre-defined number of generations is reached. In the
end, the best individuals are made available in the output
bucket and they can then be used for the Prediction Stage.

Filling the queue with tasks: one task is a scenario
describing parameters for every single FARSITE’s execution,
representing a GA individual. A message must include the

TABLE I
AWS EC2 COMPUTE INSTANCES FAMILY

Model Number of vCPU Memory (GiB) Cost per Hour
c5.large 2 4 $ 0.085

c5.xlarge 4 8 $ 0.17
c5.2xlarge 8 16 $ 0.34

c5.4large 16 32 $ 0.68
c5.9large 36 72 $ 1.53

c5.18xlarge 72 144 $ 3.06

input bucket and the input directory name. Likewise, the output
bucket needs to be informed, accompanied by the name of the
directory where output files will be pushed to.

Dockerizing FARSITE: A Docker template has been pre-
pared to build a containerized version of FARSITE. In its
first execution, the container attempts to consume a message
from the task queue and, in case there is at least one task,
proceeds to run the scenario and at the end push the results
to the output directory defined in the received message for
the scenario being executed. At the end of the execution, the
message is permanently deleted from the queue.

Reconciling: Once the queue is empty, the Genetic Algo-
rithm can take back the control of the execution and, if the
evolution is not complete yet, applies the genetic operators
resulting in a new generation. The queue is filled up again
and Kubernetes takes the control in order to deploy, start, and
at the end terminate all the pods used to run the individuals.

Fig. 4 illustrates the interaction flow between the main
CuCo’s components for the Calibration Stage, the most com-
pute and time-consuming one. Each interaction is accompanied
by a number representing its order in the flow. First of
all, in CuCo’s UI, the user (wildfire analyst) informs the
scenario’s configuration (1), with all the static data mentioned
in Fig. 1 being available in a storage service (Amazon Simple
Storage Service - S3, in this current implementation). For each
generation, the Optimized Cost Estimator is consulted (2) and
a resource allocation plan is defined (3). The list of resources
to be acquired is then informed to (4) and provisioned by
the Resource Provisioner that, in its turn, request (5), receives
(6), and passes them to the Genetic Algorithm Orchestrator
(7). The orchestrator can finally provide the resources to
the Scheduler (8) that starts the Kubernetes Job (9). The
queue is then filled up with the tasks (10) used to define
each FARSITE’s scenario that will be consumed (11) by the
pods running in the Kubernetes cluster. Calibration results
are pushed to the output bucket (12) until the end of the
Calibration Stage. Once the calibration finishes, the adjusted
params are passed on to the Prediction Stage (13) that runs
the actual prediction on a special high-performance container
(14). In the end, the prediction result (15) is made available
to the wildfire analyst.

D. Cost Estimator: The Cost-Performance Trade-Off

We consider the FARSITE characterization performed in [8]
and [9] to define the most cost-effective AWS EC2 instance
types to be used as the underlying virtual infrastructure. As a
result, the Compute Optimized family listed in Table I has been

Fig. 4. Cuco’s components interaction flow

chosen. The Optimized Cost Estimator is fed with these prices
and resource characteristics and, based on the Core Runtime
and Memory Consumption Models (see Fig. 3), generates as
output the average cost per individual per calibration time. In
Fig. 5 we can see the result for configuration spanning 1, 2,
4, 8, 16, and 32 nodes in the Kubernetes cluster.

The final step is to decide which configuration will be
used based on the user’s preference. We model the user’s
preference as a utility function, a mathematical function that
ranks alternatives according to their utility to an individual. A
commonly used utility function is the simplified version of the
Cobb-Douglas production function u(x1, x2) = xb1

1 xb2
2 , where

b1 and b2 are positive numbers describing the preferences
of the consumer. Applying it for b1 = 1

2 and b2 = 1
2 , i.e.

the user is equally concerned with price and runtime, the
resulting ranking of preference is shown in Table II. There
are 6× 6 = 36 configurations in total (the number of instance
types × the number of options for cluster size). Considering
the results, the configuration that gives more utility to user
preferences is the one with 4 nodes of type c5.2xlarge. For
different parameters of the utility function, a new ranking is
provided, but it is up to the user, i.e. the wildfire analyst, to
inform his/her preferences. The Resource Provisioner module
can provision the corresponding virtual resources and then
trigger Kubernetes to perform the scheduling task.

V. CONCLUSION

In this work we propose a novel forest fire spread predic-
tion cloud platform based on a proven two-stage prediction
method devised to deal with input data uncertainties. Based
on the performance and cost estimation, together with the user
preferences modeled as a utility function, the platform is able

Fig. 5. La Jonquera cloud execution cost for the calibration phase.

TABLE II
RESULTING RANKING OF PREFERENCE TO RUN THE CALIBRATION

Ranking Utility Number of Nodes Model
1 0.5529 4 c5.2xlarge
2 0.5037 2 c5.xlarge
3 0.4976 1 c5.xlarge
4 0.4593 16 c5.large
5 0.3828 2 c5.2xlarge

...
35 0.0847 2 c5.large
36 0.0603 1 c5.large

to suggest, allocate, and run a cloud virtual infrastructure that
better satisfy the user’s preferences and the workload demands.

Even for HPC applications, when dealing with cloud com-
puting flexibility, we can explore new models and possibilities
enabled by the economies of scale. A cluster-optimized appli-
cation might not be always suitable for a cloud environment,
then it is crucial to make cloud-friendly design choices.

Nevertheless, considering that HPC physical machines offer
more performance than compute-optimized cloud instances,
hybrid approaches are also worthy of further investigation. One
point of future improvement is to consider different user objec-
tives as, for example, accelerating application runtime within
a given budget constraint instead of simply complying with
a time constraint. We also plan to perform a comprehensive
scalability analysis of CuCo’s platform considering different
workloads for persisting wildfires.

REFERENCES

[1] J. San-Miguel-Ayanz, J. M. Moreno, and A. Camia, “Analysis of
large fires in european mediterranean landscapes: Lessons learned and
perspectives,” Forest Ecology and Management, vol. 294, pp. 11 – 22,
2013, the Mega-fire reality.

[2] P. Costa, M. Castellnou, A. Larrañaga, M. Miralles, and D. Kraus,
Prevention of Large Wildfires using the Fire Types Concept. European
Forest Institute, Jan 2011.

[3] S. H. Leong and D. Kranzlmüller, “Towards a general definition of
urgent computing,” Procedia Computer Science, vol. 51, pp. 2337 –
2346, 2015, proc. of the International Conference on Computational
Science, ICCS 2015.

[4] R. Buyya, High Performance Cluster Computing: Architectures and
Systems. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1999.

[5] A. Gupta and D. Milojicic, “Evaluation of HPC applications on cloud,”
in 2011 Sixth Open Cirrus Summit, Oct 2011, pp. 22–26.

[6] M. P. Thompson and D. E. Calkin, “Uncertainty and risk in wildland
fire management: A review,” Journal of Environmental Management,
vol. 92, no. 8, pp. 1895 – 1909, 2011.

[7] A. G. Carlyle, S. L. Harrell, and P. M. Smith, “Cost-effective HPC:
The community or the cloud?” in 2010 IEEE Second International
Conference on Cloud Computing Technology and Science, Nov 2010,
pp. 169–176.

[8] T. Artés, A. Cencerrado, A. Cortes, and T. Margalef, “Relieving the
effects of uncertainty in forest fire spread prediction by hybrid mpi-
openmp parallel strategies,” proc. of the International Conference on
Computational Science, ICCS 2013, vol. 13, no. 2, pp. 2277–2287, 2013.

[9] A. Cencerrado, A. Cortés, and T. Margalef, “Genetic algorithm char-
acterization for the quality assessment of forest fire spread prediction,”
Procedia Computer Science, vol. 9, pp. 312 – 320, 2012, proc. of the
International Conference on Computational Science, ICCS 2012.

[10] G. Bianchini, P. Caymes-Scutari, and M. Méndez-Garabetti,
“Evolutionary-statistical system: A parallel method for improving
forest fire spread prediction,” Journal of Computational Science, vol. 6,
pp. 58 – 66, 2015.

[11] I. Altintas, J. Block, R. de Callafon, D. Crawl, C. Cowart, A. Gupta,
M. Nguyen, H.-W. Braun, J. Schulze, M. Gollner, A. Trouve, and
L. Smarr, “Towards an integrated cyberinfrastructure for scalable data-
driven monitoring, dynamic prediction and resilience of wildfires,”
Procedia Computer Science, vol. 51, pp. 1633 – 1642, 2015, proc. of
the International Conference On Computational Science, ICCS 2015.

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view
of cloud computing,” Communications of the ACM, vol. 53, no. 4, pp.
50–58, Apr 2010.

[13] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F. Cunha,
and R. Buyya, “HPC cloud for scientific and business applications:
Taxonomy, vision, and research challenges,” ACM Computing Surveys,
vol. 51, 10 2017.

[14] B. Abdalhaq, A. Cortés, T. Margalef, and E. Luque, “Enhancing wildland
fire prediction on cluster systems applying evolutionary optimization
techniques,” Future Generation Computer Systems, vol. 21, no. 1, pp.
61 – 67, 2005.

[15] M. Méndez-Garabetti, G. Bianchini, M. L. Tardivo, and P. Caymes-
Scutari, “Comparative analysis of performance and quality of prediction
between ESS and ESS-IM,” Electronic Notes in Theoretical Computer
Science (ENTCS), vol. 314, no. C, p. 45–60, Jun. 2015.

[16] E. Fraga, A. Cortés, A. Cencerrado, P. Hernández, and T. Margalef,
“Early adaptive evaluation scheme for data-driven calibration in forest
fire spread prediction,” in Computational Science – ICCS 2020. Cham:
Springer International Publishing, 2020, pp. 17–30.

[17] K. Kalabokidis, N. Athanasis, C. Vasilakos, and P. Palaiologou, “Porting
of a wildfire risk and fire spread application into a cloud computing en-
vironment,” International Journal of Geographical Information Science,
vol. 28, no. 3, pp. 541–552, 2014.

[18] M. Finney, “FARSITE: Fire Area Simulator-Model. Development and
Evaluation,” USDA Forest Service Research Paper, RMRS-RP-4, 1998.

[19] R. Rothermel, A mathematical model for predicting fire spread in wild-
land fuels, ser. USDA Forest Service research paper INT. Intermountain
Forest & Range Experiment Station, U.S. Dept. of Agriculture, 1972.

[20] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility functions
in autonomic systems,” in International Conference on Autonomic
Computing, 2004. Proceedings., May 2004, pp. 70–77.

