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Cone 3-manifolds

Joan Porti

Abstract This is an overview on hyperbolic cone 3-manifolds, their deformation
theory and their role in Thurston’s orbifold theorem.We also describe the phenomena
thatmay occurwhen deforming the cone angles, like cusp opening or collapses, under
the assumption that the cone angles are less than π.

1 Introduction

Cone 3-manifolds are manifolds equipped with metrics of constant curvature that
are singular at an embedded graph, and the singularity follows a specific conical
structure. They can be obtained from 3-dimensional polyhedra of constant curvature
by identifying their faces along isometries, thus the singular locus is contained in
the 1-skeleton.

Cone 3-manifolds were considered by Thurston in his proof of the orbifold the-
orem. The underlying space of an orientable orbifold of constant curvature has a
natural metric of cone manifold. The starting point in the proof of the orbifold
theorem is another well known theorem of Thurston: the hyperbolic Dehn filling
theorem. The proof of the hyperbolic Dehn filling theorem provides cone manifolds
with small cone angles; then the main strategy of the orbifold theorem is to increase
those cone angles (until the angles determined by the topology of the orbifold) and to
analyze the possible phenomena that may occur. This motivates the study of geomet-
ric properties of cone 3-manifolds, like their deformation theory or the convergence
of sequences of cone 3-manifolds.

The first sketch, or program, of the proof of the orbifold theorem was the content
of a preprint by Thurston in 1982 [48], see also [49]. Then the proof was completed
by several contributors [3, 4, 14, 25, 45, 54]. There are some later results that give
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a more natural argument in some parts of the proof, like the local rigidity theorems
surveyed here. The goal of this paper is not to provide a proof of the orbifold theorem,
but to give an overview of some properties of cone 3-manifolds.

Kleiner and Lott have proved the orbifold theorem with Ricci flow on orbifolds
[30], without using cone manifolds. Cone manifolds remain however an interesting
geometric object, that may have an intuitive visualization. Besides, cone manifolds
have applications other than the orbifold theorem: Hodgson and Kerckhoff use them
in [27] to find a uniform upper bound on the number of non-hyperbolic Dehn fillings.
The deformation theory of cone manifolds is used by Bromberg in the proof of the
Bers density conjecture [10], by Brock and Bromberg in in a generalization of this
conjecture [8], by Brock, Bromberg, Evans and Souto in the tameness conjecture
[7], as well as by Bonahon and Otal [5] to study bending measured laminations.

It is worth mentioning that there are a lot of contributions on cone 3-manifolds
that are not overviewed here. For instance, the many examples of deformations and
volume computations of the Siberian school around Alexander D. Mednykh, as well
as the pioneering examples from the long term collaboration between Mike Hilden,
José Maria Montesinos Amilibia and Maite Lozano Imízcoz. Here we just mention
a few examples from these authors.

This paper is organized as follows: Section 2 reviews the definition, basic con-
structions, and elementary properties of cone manifolds, focusing in dimensions 2
and 3. Section 3 is devoted to Thurston’s hyperbolic Dehn filling theorem, that ex-
plains how cone 3-manifolds with small cone angles occur, and the natural questions
that arise. Then Section 4 reviews local rigidity results, in particular the results that
allow to deform cone angles. Section 5 is devoted to sequences of cone 3-manifolds,
more precisely to the notions of convergence, a compactness theorem, a description
of thin parts and their applications (eg. global rigidity), all for cone angles strictly
less than π. Finally Section 6 is devoted to some examples, that illustrate previous
sections and give examples of different phenomena that occur to cone manifolds,
including some examples with cone angles larger than π.

2 Cone manifolds

In this section we give the definition and basic constructions of cone manifolds,
focusing on dimensions two and three.

We start with the definition in dimension 2, with curvature κ ∈ R. To describe the
metric in constant curvature κ, consider the function

sk(r) =


sin(r
√
k)

√
k

if κ > 0
r if κ = 0
sinh(r

√
−k)

√
−k

if κ < 0
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This function is the unique solution to the differential equation s′′
k
+ κsk = 0 with

initial conditions sk(0) = 0, s′
k
(0) = 1. In the next definition, the local description of

the metric in polar coordinates for a cone surface (1) is a modification of the metric
of the plane of constant curvature, ds2 = dr2 + s2

k
(r)dθ2, with r ∈ (0, r0), θ ∈ [0, 2π].

Definition 1 A cone surface of constant curvature κ ∈ R is a surface equipped with
a length distance, where the metric is locally described, in polar coordinates, by

ds2 = dr2 +
( α
2π

)2
s2
k(r)dθ

2, r ∈ (0, r0), θ ∈ [0, 2π], (1)

where θ = 2π is identified to θ = 0. The parameter α > 0 is called the cone angle at
the point with coordinate r = 0.

When α , 2π, we say that the point is singular, or a cone point.
For α = 2π the metric is locally a Riemannian metric of constant curvature κ and

the point is called regular.

In Equation (1), r ∈ (0, r0) is the radial coordinate and θ ∈ [0, 2π] is the angle
parameter. Furthermore, when κ > 0 we require r0 ≤

π√
κ
.

Notice that the metric in (1) can be changed to the standard metric by re-
parameterizing and changing the domain of the coordinate θ:

ds2 = dr2 + s2
k(r)dθ

2, r ∈ (0, r0), θ ∈ [0, α], (2)

where θ = α is identified to θ = 0. Namely, we consider a sector of angle α in the
space of constant curvature κ and we identify its sides by a rotation, Figure 1.

Fig. 1 A singular point of
cone angle α < 2π is viewed
as a cone (though the def-
inition allows cone angle
α > 2π)

α
α

Example 1 Consider a triangle with angles 0 < α1
2 ,

α2
2 ,

α3
2 < π. It lies in a plane of

constant curvature κ, with
κ < 0 if α1

2 +
α2
2 +

α3
2 < π,

κ = 0 if α1
2 +

α2
2 +

α3
2 = π,

κ > 0 if α1
2 +

α2
2 +

α3
2 > π (and αi

2 +
αj

2 < αk

2 + π, for i , j , k , i).

We double the triangle with angles α1
2 , α2

2 , and α3
2 along its boundary: in this way

we obtain a Riemannian metric on S2 of constant curvature everywhere except at the
vertices. Namely we obtain a cone surface with three cone points, of respective cone
angles α1, α2 and α3, subject to αi + αj < αk + 2π, for i , j , k , i. This example
is called a turnover and it is denoted by S2(α1, α2, α3), see Figure 2, left.
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α1 α2

α3

α1 + α2 + α3 = 2π
κ = 0

α1 α2

α3

α1 + α2 + α3 < 2π
κ < 0

α1 α2

α3

α1 + α2 + α3 > 2π
κ > 0

α

α

Fig. 2 On the left, three turnovers: cone surfaces S2(α1, α2, α3) of curvature κ (subject toαi+αj <
2π + αk , for i , j , k , i). On the right, cone surfaces S2(α, α) of curvature > 0.

Example 2 Consider a spherical bigon of angle 0 < α < 2π, namely the region of S2

bounded by two meridians at angle α. In spherical coordinates it is the region with
parameters (ρ, θ) ∈ (0, π) × [0, α] where ρ is the distance to the north pole and θ the
longitude (and π/2 − ρ the latitude). We identify the sides by a rotation. The result
is a cone manifold with two cone points of angle α, that we denote by S2(α, α). See
Figure 2 right. It is the spherical suspension of a circle of length α, namely with the
metric

ds2 = dρ2 + sin2(ρ)dθ2, for ρ ∈ (0, π) and θ ∈ [0, α]/α ∼ 0.

The cone manifold S2(α, α) can be seen as the limit of S2(α1, α2, α3) when α3 →
2π, because |α1 − α2 | ≤ 2π − α3.

The definition of cone manifold is inductive on the dimension. The construction
uses the metric cone. Start with the topological cone: for a compact topological space
X , consider the product X × [0, R) for some R > 0 and collapse X × {0} to a point
(the tip of the cone), and denote the quotient by X × [0, R)/∼.

Definition 2 Let (X, dX ) be a metric space of diameter ≤ π. The metric cone of
constant curvature κ on X is the topological cone X × [0, R)/∼ (we require that R <
2π/
√
κ when κ > 0) equipped with the distance d so that (x1, r1), (x2, r2) ∈ X ×(0, R]

and the tip of the cone (∗, 0) form a triangle isometric to the triangle in the plane of
constant curvature κ with edge lengths r1, r2, d((x1, r1), (x2, r2)), and angle dX (x1, x2)
at the tip (∗, 0). It is denoted by

ConeR,κ(X) = (X × [0, R)/∼, d).

The space X is called the link of the tip of the cone.

When the distance on X is provided by a Riemannian metric ds2
X , then the metric

on ConeR,κ(X) is described by

ds2 = dr2 + s2
κ(r)ds2

X .

Notice that in Definition 1 the local description of a cone surface is the metric
cone of constant curvature over a circle.
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Definition 3 A d-dimensional cone manifold of constant curvature κ is a metric
length space C satisfying the following local property. For each x ∈ C there exists
a cone manifold Link(x) of curvature 1 homeomorphic to Sd−1 such that a neigh-
borhood of x is isometric to the metric cone of constant curvature κ on Link(x),
Coneε,κ(Link(x)).

When the curvature κ is equal to 1 the cone manifold is called spherical, when
κ = 0, Euclidean, and when κ = −1, hyperbolic.

Remark 1 We require thatLink(x) is homeomorphic (not isometric) to a sphere Sd−1,
so that C is topologically a manifold.

If we do not require Link(x) to be homeomorphic to a sphere, then we talk about
conifolds, but we will not consider them here. The easiest example of conifold that
is not a cone manifold is the cone on the projective plane.

Proposition 1 The underlying space of an orientable orbifold of constant curvature
and dimension 2 or 3 inherits naturally the structure of a cone manifold.

Proof The underlying space of an orbifold of constant curvature is locally modeled
on Xn

κ /Γ, where Xn
κ is the space of constant curvature κ, and Γ ⊂ SO(n) is a finite

group of isometries fixing a point.
By construction, there exists ε > 0 such that a neighborhood of a point x in the

underlying space is isometric to B(x̃, ε)/Γ, where B(x̃, ε) is a metric ball of radius
ε > 0 in Xn

κ . Notice that B(x̃, ε)/Γ is the metric cone of radius ε > 0 on its link
Sn−1/Γ. Since we assume orientability, for n = 2, S1/Γ is homeomorphic to a circle
and for n = 3, S2/Γ is homeomorphic to a 2-sphere. �

The previous proposition holds in any dimension if we allow conifolds instead of
cone manifolds, i.e. if we do not require the link to be homeomorphic to a circle.

Proposition 2 (Gluing polygons in dimension 2) Let P1, . . . , Pk ⊂ X
2
κ be polygons

of constant curvature κ. Assume that their edges (Pi)j are paired by isometries si j .
Then the metric space obtained by identification along the isometries

(P1 t · · · t Pk)/∼si j

is a cone surface.

The cone structure is easily constructed frommatching the cones on the polygons.
The key point is to prove that the link of each point is a circle; this follows from the
classification of 1-dimensional manifolds (see also Theorem 6.7.6 in [42]).

Remark 2 Proposition 2 generalizes to dimension 3 if we can guarantee that links
of equivalence classes of vertices are homeomorphic to spheres. This holds true for
instance if cone angles of edges are ≤ 2π, by Gauss-Bonnet (Proposition 3).

Proposition 2 is illustrated in Examples 1 and 2. By means of the Dirichlet
polyhedron (below inDefinition 5 and Proposition 5) we show that all conemanifolds
can be constructed from Proposition 2.
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Definition 4 On a cone d-manifold C, a point x ∈ C is singular if its link is not
isometric to the standard (d − 1)-sphere Sd−1, and regular otherwise. The singular
locus of C is denoted by Σ.

Remark 3 The singular locus Σ is a stratified subspace of codimension ≥ 2. In
particular, for a cone surface, Σ is a discrete subset.

For a 2-dimensional cone manifold, we have a Gauss-Bonnet formula, see for
instance [50, 34]:

Proposition 3 (Gauss-Bonnet formula for cone surfaces) LetC2 be a cone surface
of constant curvature κ, with finite area and n cone points of respective cone angles
α1, . . . , αn. Then

κ area(C2) +
∑
i

(2π − αi) = 2πχ(C2),

where χ(C2) denotes the Euler characteristic of the underlying surface.

It follows from the Gauss-Bonnet formula that if κ = 1 and the cone angles
are ≤ π, then there are at most three cone points. With some extra work, one can
determine geometrically those cone manifolds:

Proposition 4 Let C2 be a spherical cone surface with cone angles ≤ π. If C2 is
orientable, then it is one of the following:

1. A smooth sphere S2.
2. S2(α, α), the spherical suspension of a circle.
3. S2(α, β, γ), a turnover with α + β + γ > 2π.

If C2 is not orientable, then it is the quotient of S2 or S2(α, α) by the antipodal map,
i.e. the projective plane with possibly a cone point, P2 or P2(α).

Furthermore, the isometry class of C2 is determined by the cone angles (namely
they are rigid).

This rigidity does not hold anymore for spherical conemanifolds with cone angles
larger than π; consider for instance the double of a spherical quadrilateral. See [34]
for a description of the moduli space of spherical cone surfaces.

From Proposition 4, as the link of a point is a spherical cone manifold, we have:

Corollary 1 A3-dimensional conemanifoldwith cone angles≤ π is locally isometric
to one of the following:

1. A smooth point (the cone of a smooth sphere).
2. A singular edge (the cone of S2(α, α)).
3. A trivalent vertex of a singular graph (the cone of S2(α, β, γ)).

In particular, the singular locus Σ is a disjoint union of circles and trivalent graphs,
see Figure 3.

Furthermore, the isometry class of a neighborhood is determined by the cone
angles.
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Fig. 3 The models of the
singular locus Σ when cone
angles are ≤ π.

α α

βγ

α + β + γ > 2π

Fig. 4 Locally, a singular edge
is the result of identifying the
sides of a sector in the space
of constant curvature by a
rotation.

α α

For a singular edge, the cone angle of the link at every point is also called the
cone angle of the edge, see Figure 4.

Definition 5 Let C be a cone 3-manifold and x ∈ C \Σ a regular point. The cut locus
of C centered at x is

Cutx = {y ∈ C | y ∈ Σ or y has at least 2 minimizing segments to x}.

The complement of the cut locus is the Dirichlet domain centered at x ∈ C \ Σ,
Dx = C \ Cutx :

Dx = {y ∈ C \ Σ | there is a unique minimizing segment from x to y}.

Proposition 5 The Dirichlet domain embeds as a star-shaped domain in X3
κ , the

space of constant curvature κ ∈ R, and for κ ≤ 0 its closure is a polyhedron.
Furthermore, when the cone angles are ≤ π, this Dirichlet polyhedron is convex.

This proposition helps to explain why the hypothesis on cone angles ≤ π is
relevant for cone manifolds. The fact that the Dirichlet polyhedron is convex allows
to reproduce arguments in Riemannian geometry in this context. We see examples
in Section 5.

Before finishing this section, we state a result related to the following section.

Proposition 6 Let C be a closed hyperbolic cone 3-manifold without singular ver-
tices (i.e. Σ is a link). Then |C | \ Σ is a hyperbolic manifold (namely, it admits a
complete hyperbolic metric).

Proof Deform the non-complete metric on |C | \ Σ to a complete metric of variable
negative curvature. Then one can show that it has the topological properties required
for being hyperbolic (irreducible, atoroidal, and π(|C | \ Σ) has no center) and apply
geometrization for Haken manifolds. �



8 Joan Porti

The complete structure on this proposition can be seen as a conemanifold structure
of angle zero. This is better explained in the next section, by Thurston’s hyperbolic
Dehn filling.

Remark 4 Let C be a closed hyperbolic cone 3-manifold without singular vertices as
in Proposition 6. Then the volume of the complete hyperbolic structure on |C | \ Σ is
larger than the volume of the cone 3-manifold C. The maximality of the volume is
due to Gromov–Thurston–Goldman, and written by Dunfield [20]. More precisely,
as explained in [20], Goldman notices in [21] that the proof of Mostow rigidity in
Thurston’s notes [47] applies to representations, a proof that Thurston attributes to
Gromov.

3 Hyperbolic Dehn filling

Thurston’s hyperbolic Dehn filling provides examples of hyperbolic cone three-
manifolds, with small cone angles, and it is the starting point of the proof of the
orbifold theorem. Those cone 3-manifolds are obtained by deforming cusped mani-
folds and then taking the metric completion.

We first consider a two-dimensional example:

Example 3 Start with a hyperbolic triangle with ideal vertices and double it along
its boundary. This yields a planar hyperbolic surface with three cusps, that we call
S2(0, 0, 0). Next consider triangles with finite vertex and angle α/2 > 0 at every
vertex, for α in a neighborhood of 0. By taking the double of the triangles along the
boundary, we get a family of turnovers S2(α, α, α) as in Example 1 and Figure 2.
As triangles with small angles are deformations of ideal triangles, the turnovers
S2(α, α, α) are deformations of the cusped surface S2(0, 0, 0).

H2

S2(0, 0, 0)

α

αα

S2(α, α, α)

Fig. 5 Triangle of small angles as perturbation of the ideal triangle, with angles 0 (left). The double
of the ideal triangle is the cusped surface S2(0, 0, 0) (center) and the double of the compact triangle
is the turnover S2(α, α, α) (right).

In dimension three, we first recall the topological description of filling. Consider
a compact 3-manifold M3 with boundary a 2-torus ∂M3 � T2 � S1 × S1. Attach a
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solid torus D2 × S1 (a product of a disc and a circle) to its boundary:

M3 ∪ϕ D2 × S1 =
(
M3 t D2 × S1

)
/x ∼ ϕ(x)

where ϕ : ∂D2 × S1 → ∂M3 is a homeomorphism. The solid torus D2 × S1 is called
the filling torus and the curve {0} × S1 its soul.

The homeomorphism type of the Dehn filling depends only on the unoriented
isotopy class of the curve ϕ(∂D2×{∗}) in ∂M3 � T2, the filling meridian. In its turn,
this unoriented isotopy class is determined by its homology class in H1(T2,Z) up to
sign, hence it may be described by a rational slope, an element ofQ∪{∞}, as follows.
Fix a basis for the first cohomology group, namely an isomorphism H1(T2,Z) � Z2;
the filling meridian with homology class ±(p, q) via this isomorphism is described
by the slope p/q ∈ Q ∪ {∞}.

When the 3-manifold is a knot exterior in S3, a Dehn filling on its exterior is
called Dehn surgery on the knot.

Next we state the well known Thurston hyperbolic Dehn filling theorem in terms
of cone manifolds. To simplify, we state it for only one cusp.

Theorem 1 (Thurston’s generalized hyperbolicDehnfilling)Let M3 be a compact
orientable 3-manifold with boundary a 2-torus. Assume its interior is hyperbolic.

For every slope q ∈ Q ∪ {∞} there exists Θq > 0, depending on the slope q and
the manifold M3, so that there is a family of cone manifold structures on the Dehn
filling with slope q, with singular locus the soul of the filling torus, and with cone
angles in the interval (0,Θq).

Furthermore, the number of slopes q ∈ Q ∪ {∞} such that Θq ≤ 2π is finite.

Notice that when Θq > 2π, Thurston’s hyperbolic Dehn filling provides a honest
hyperbolic three-manifold (e.g. with a metric with no singularities), and we recover
the usual statement of Thurston’s hyperbolic Dehn filling theorem. The last statement
in Theorem1 guarantees that almost all Dehn fillings are hyperbolicmanifolds. In fact
the statement is even more general. Thurston’s proof provides a deformation space
with a complex parameter. In this deformation space, the metric is non complete
and its metric completion may yield a topological manifold (with singular metric or
not) or a singular space, a so-called singularity of “generalized Dehn type”. In this
deformation space, the manifold Dehn filings are a countable set of points, joined
by lines to the initial point, corresponding to the angle deformation of the cone
manifolds.

Remark 5 Cone manifolds in Theorem 1 are constructed by deforming the complete
metric structure and taking the metric completion. As in Example 3, we may view
the metric at angle zero as the complete metric on the interior of M3, hence the cone
angle varies in [0,Θq).

Remark 6 In Theorem 1 one can replace 2π in the last sentence by any positive
constant C > 0; the conclusion is that the number #{q ∈ Q ∪ {∞} | Θq ≤ C} is
finite. Of course this number depends on C, and a priori it depends also on M3.
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Theorem 2 Let M3 be a compact orientable 3-manifold with boundary a 2-torus
and with hyperbolic interior. Then, for every slope q ∈ Q ∪ {∞}, Θq ≥ 2π/3.

This theorem is part of the proof of Thurston’s orbifold theorem, and can be
found in the different approaches to the proof [3, 4, 14, 25, 45, 54]. We discuss it
later in Section 5. When Θq > 2π/n Theorem 1 yields a hyperbolic orbifold, with
branching locus the soul of the filling torus, and branching index n. Thus, as corollary
of Theorem 2:

Corollary 2 Let M3 be a compact orientable 3-manifoldwith boundary a 2-torus and
with hyperbolic interior. For every slope q ∈ Q ∪ {∞}, the orbifold with underlying
space the q-Dehn filling, branching locus the soul of the filling torus, and branching
index n ≥ 4 is hyperbolic.

The bound n = 4 is optimal: for instance the orbifold with underlying space the
three-sphere, branching locus the figure eight knot and ramification 3 is Euclidean.
Equivalently, there exists a Euclidean cone manifold structure on S3, with singular
locus the figure eight knot and cone angle 2π/3.

If we focus on nonsingular Dehn fillings, then a natural question is to find a
uniform bound on the number of Dehn fillings that are not hyperbolic. This has been
found by Hodgson and Kerckhoff in [27]:

Theorem 3 (Hodgson–Kerckhoff) Let M3 be a compact orientable 3-manifold with
boundary a 2-torus and with hyperbolic interior. ThenΘq ≤ 2π for at most 60 slopes
q ∈ Q ∪ {∞}, independently of M3.

The statement in [27] involves the so-called normalized length of a slope in the
hororspherical torus. This torus has a natural Euclidean structure up to homotety,
and one normalizes it so that it has area 1. Hodgson and Kerckhoff prove that for
slopes q so that its normalized length in the horospherical torus is at least 7.515, we
have Θq > 2π. Besides the tools we describe here, one of the main innovations of
Hodgson and Kerckhoff are infinitesimal harmonic deformations. They succeed in
controlling the radius of a metric tube around the singular geodesic when deforming.
We recall more results of [27] in Section 5.

In the proof of Theorem 2 there are two basic ingredients: deforming the structures
by changing the cone angles and studying the limits of sequences. In Section 4 we
describe how cone manifolds are deformed, and in Section 5 we analyze sequences
of cone manifolds.

4 Local rigidity

In this section we overview results that allow to deform the cone angles of cone
manifolds. Those are local rigidity results because they show that the multiangles
are local parameters of the deformation space.
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Given a cone manifold C, the underlying manifold is denoted by |C |. The topo-
logical pair formed by (|C |, Σ) is called the topological type, where Σ ⊂ |C | is the
singular locus. Themeridians are (conjugacy classes of) elements in the fundamental
group π1(|C | \ Σ) represented by loops around the arcs and circles of Σ (that in |C |
bound a disc that intersects Σ in its center), Figure 6.

Fig. 6 Loops representing
meridians of the singular
locus in π1( |C | \ Σ)

Σ Σ

We are interested in deformations that preserve the topological type. The comple-
ment |C | \ Σ inherits a non-singular hyperbolic metric that is not complete, whose
metric completion is C. The incomplete structure on |C | \ Σ has a holonomy repre-
sentation

holC : π1(|C | \ Σ) → Isom+(H3) � PSL(2,C)

that is unique up to conjugation. We consider the topology in the deformation space
of C induced by the variety of representations up to conjugation

hom(π1(|C | \ Σ), PSL(2,C))/PSL(2,C).

Here we are using Ehresmann principle to say that deformations of structures are
described by conjugacy classes of representations, cf. [13].

Notice that not all representations in hom(π1(|C | \Σ), PSL(2,C))/PSL(2,C) close
to the holonomy of the initial cone manifold correspond to the holonomy of a cone
manifold structure: we must require that the holonomy of the meridians of Σ are
rotations.

Theorem 4 (Hyperbolic local rigidity [26, 33, 51, 53]) Let C be a compact ori-
entable hyperbolic 3-manifold with topological type (|C |, Σ). Then the deformation
space with fixed topological type is locally parameterized by the cone angles (in
particular it cannot be deformed without changing the cone angles).

This theorem was first proved by Hodgson and Kerckhoff [26] when the sin-
gular locus Σ is a link. For arbitrary Σ but cone angles ≤ π (hence the singular
locus is a trivalent graph) it was proved by Weiss [51], and the general case was
proved independently by Montcouquiol-Mazzeo [33] and Weiss [53]. The approach
of Hodgson–Kerckhoff and Weiss uses infinitesimal deformations as differential
forms valued on the Lie algebra and their cohomology theory, though Mazzeo and
Montcouquiol use the deformation theory of Einstein metrics.

The local rigidity theorem requires a fixed topological type (|C |, Σ). This hy-
pothesis is satisfied when the singular locus Σ is a manifold (there are no singular
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vertices) or when all cone angles are at most π. In general there are deformations
that may change the singular locus: for instance a 4-valent vertex of Σ may split into
two 3-valent vertices joined by a graph (this does not change the topology of |C | \Σ).
See [36].

Infinitesimal rigidity has been generalized by Bromberg to noncompact geomet-
rically finite manifolds (without rank one cusps nor singular vertices):

Theorem 5 ([9]) IfC3 is a geometrically finite cone-manifold without rank one cusps
and if all cone angles are ≤ 2π, then M is locally rigid relative to the cone angles
and the conformal boundary.

Remark 7 There is a stronger notion, infinitesimal rigidity, that implies local rigidity.
In fact Theorems 4 and 5 are proved by establishing infinitesimal rigidity first.

When the cone angles are larger than 2π, infinitesimal rigidity does not hold.
In a talk at the Third MSJ regional workshop in Tokyo in 1998 (devoted to the
orbifold theorem), Casson gave an example of infinitesimally non-rigid hyperbolic
cone 3-manifolds with singular vertices. Izmestiev has given further examples of
infinitesimally non-rigid hyperbolic cone 3-manifolds, including examples without
singular vertices. Furthermore, Izmestiev has provided examples that are not locally
rigid in [28].

We conclude the section discussing spherical and Euclidean geometry.

Theorem 6 (Spherical local rigidity [51]) Let C be a spherical cone 3-manifold
with cone angles ≤ π and such that the topological pair (|C |, Σ) is not Seifert fibered;
then it is locally rigid.

We say that the pair (|C |, Σ) is Seifert fibered when |C | is Seifert fibered and Σ
consists of fibres. The Seifert fibered case has been discussed by Kolpakov in [32].
Essentially, it corresponds to the deformation space of the basis.

By means of polyhedra, Schlenker constructed examples of spherical cone 3-
manifolds that are not locally rigid, with singular vertices and cone angles ≤ 2π
[43]. Without singular vertices and allowing cone angles ≥ 2π, non locally rigid
spherical cone manifolds are found in [38].

Theorem 7 (Euclidean local rigidity [41]) Let C be a closed orientable Euclidean
cone 3-manifold with cone angles ≤ π. If C is not an almost product, then in a
neighborhood U of the space of multiangles there is a cone manifold structure with
topological type (|C |, Σ) with these angles. To determine the type of structure, there
exists a smooth, properly embedded hypersurface E ⊂ U consisting of multiangles of
Euclidean cone structures that splits U into 2-connected components corresponding
to multiangles of spherical and hyperbolic cone structures respectively, Figure 7.

Furthermore, for each ᾱ ∈ E the tangent space of E at ᾱ is orthogonal to the
vector of singular lengths l̄.

Almost productmeans that it can be realized as a productC2×S1 divided by a finite
group of isometries. For instance the cone manifold structure on S3 with singular
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Fig. 7 The open setU in the
space of multiangles and the
hypersurface E ⊂ U as in
Theorem 7 α1

α2

E

Hyperbolic

Spherical U

locus the Borromean rings and cone angle π is an almost product. In Section 6 we
describe the deformation space of the Borromean rings, as well as an example that
illustrates Theorem 7.

The last result we review in this section is Schläfli’s formula. It is named so
because it can be established from the classical formula for the volume variation in
a family of polyhedra of constant curvature (due to Schläfli for spherical tetrahedra).
See for instance [24, 37].

Proposition 7 (Schläfli’s formula) Let Ct be a deformation of cone manifolds of
constant curvature κ, for t ∈ I. Assume that it has fixed topological type (|C |, ΣC)
and that it is of class C1 (in the variety of representations of |C | \ ΣC). Then the
volume is differentiable and

κ
d Vol(Ct )

dt
=

1
2

∑
e

le
dαe
dt

,

where the sum runs on the singular edges and circles e of Σ, le denotes the length
and αe, the cone angle at e.

A consequence of this formula is that, when cone angles increase, then the volume
decreases for hyperbolic cone manifolds, but the volume increases for spherical cone
manifolds. It also explains why the space of multiangles of Euclidean structures is
perpendicular to the vector of singular lengths in Theorem 7.

5 Sequences of cone manifolds

After reviewing results that allow us to deform cone angles, we look for applications
by considering sequences of cone manifolds with fixed topological type. We start
with the notion of convergence and a compactness result in Subsection 5.1. Then,
in Subsection 5.2 we analyze the thin part, in order to describe the possible limiting
cone manifolds. Finally, applications are described in Subsections 5.3 and 5.4, by
decreasing and increasing respectively the cone angles.
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5.1 Compactness theorem

Let C be a compact cone 3-manifold of constant curvature κ. By definition, for every
x ∈ C a metric ball B(x, ε) centered at x of radius ε > 0 is isometric to the cone (of
curvature κ) of its link Link(x), see Definition 2, which is a spherical cone surface:

B(x, ε) � Coneκ,ε(Link(x)).

This is called a standard ball.

Definition 6 The injectivity radius of C at x is

inj(x) = sup{δ > 0 such that B(x, δ) is standard ball in C}.

The cone-injectivity radius of C at x is

cinj(x) = sup{δ > 0 such that B(x, δ) is contained in a standard ball in C}.

Notice that in a compact cone manifold, a point x can be arbitrarily close to the
singular locus, therefore its injectivity radius can be arbitrarily small, this is why
Thurston defined the cone injectivity radius. The standard ball in the definition of
cone injectivity radius does not need to be centered at x, in this way regular points
arbitrarily close to the singular locus may have cone-injectivity radius away from
zero. The definition of injectivity radius inj(x) can also be given in terms of the
exponential map.

Let X and Y be metric spaces and ε > 0. We call a map φ : X → Y a (1 + ε)-bi-
Lipschitz embedding if

1
1 + ε

<
d(φ(x1), φ(x2))

d(x1, x2)
< (1 + ε)

holds for all x1 , x2 ∈ X .

Definition 7 (Geometric convergence) Let (Cn, xn)n∈N be a sequence of pointed
cone-3-manifolds. We say that the sequence (Cn, xn) converges geometrically to
a pointed cone-3-manifold (C∞, x∞) if for every R > 0 and ε > 0 there exists
N = N(R, ε) ∈ N such that for all n ≥ N there is a (1 + ε)-bi-Lipschitz embedding
φn : BR(x∞) → Cn satisfying:

1. d(φn(x∞), xn) < ε,
2. B(xn, (1 − ε)R) ⊂ φn(B(x∞, R)), and
3. φn(B(x∞, R) ∩ Σ∞) = φn(B(x∞, R)) ∩ Σn.

If the Cn have curvature κn ∈ R, then C∞ has curvature κ∞ = limn→∞ κn. The cone-
angle along an edge of Σ∞ is the limit of the cone-angles along the corresponding
edge in Σn. Notice also that part of the singular locus of the approximating cone-3-
manifolds may disappear at the limit by going to infinity.
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Theorem 8 (Compactness) Let (Cn, xn)n∈N be a sequence of pointed cone-3-
manifolds with curvature κn ∈ [−1, 1] and cone-angles ≤ π. Suppose that for some
ρ > 0, inj(xn) > ρ. Then (possibly after passing to a subsequence) the sequence
(Cn, xn) converges geometrically to a pointed cone-3-manifold (C∞, x∞) with curva-
ture κ∞ = limn→∞ κn.

There are two remarks to be made:

• Firstly, we fix a lower bound ρ > 0 on the injectivity radius of the base point xn,
not the cone-injectivity radius. We can use the cone injectivity radius if we fix a
lower bound away from zero for the cone angles.

• Secondly, Theorem 8 is analogous to a well known compactness theorem for
sequences of pointed Riemannian manifolds with bounded sectional curvature
and injectivity radius at the base point bounded away from zero. One of the main
steps is to establish a uniform lower bound on the cone-injectivity radius at every
point in balls B(xn, R), depending only on ρ and R. This uses the hypothesis on
cone angles ≤ π, see Proposition 5.

In view of applications we consider sequences of cone manifolds with fixed
topological type (|C |, Σ) and with bounded volume. To analyze the limits, we need to
understand non compact hyperbolic cone manifolds with finite volume. In particular
their thin or cone-thin parts.

5.2 Cone-thin part

For a non-singular hyperbolic 3-manifold, Margulis theorem yields a description
of the set of points with injectivity radius less than a uniform constant µ3, called
the Margulis constant. Those are either cusps or tubular neighborhoods of short
geodesics. Besides the cone manifold version of cusps and tubes, we still need
another model to describe regions with small injectivity radius, called necks.

Let S2(α, β, γ) be a turnover, with constant curvature −1, 0 or +1 according to the
sign of α + β + γ − 2π, Example 1 and Figure 2. View it as the double of a triangle
T = T(α2 ,

β
2 ,
γ
2 ) and consider the following constructions:

• When α+ β+γ < 2π, view the triangle T = T(α2 ,
β
2 ,
γ
2 ) in a totally geodesic plane

H2 ⊂ H3. Consider

NR(T) = {x ∈ H3 | d(x,H2) ≤ R and pr(x) ∈ T}

where pr : H3 → H2 denotes the orthogonal projection, see Figure 8.
A neck of radius R over S2(α, β, γ) is the double of NR(T) along ∂T × [−R, R]. In
the smooth part, the metric is written locally as

ds2 = dt2 + cosh2(t)
(
dr2 + sinh2(r)dθ2

)
,
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where
(
dr2+sinh2(r)dθ2) is the hyperbolicmetric on the smooth part of S2(α, β, γ)

and t ∈ [−R, R] is the signed distance to the turnover.
The boundary of a neck consists of two umbilical turnovers of curvature
− cosh−2(R).

• When α + β + γ = 2π, view the triangle T = T(α2 ,
β
2 ,
γ
2 ) in a horosphere H

centered at an ideal point center(H) ∈ ∂∞H3. Consider

N∞(T) = {x ∈ H3 | x lies in a geodesic from T to center(H)},

see Figure 8. A cusp with horospherical cross-section S2(α, β, γ) is the double of
N∞(T) along ∂T × [0,+∞). In the smooth part, the metric is locally written as

ds2 = dt2 + e−2t
(
dr2 + r2dθ2

)
,

where
(
dr2+ r2dθ2) is the Euclidean metric on the smooth part of S2(α, β, γ) and

t ∈ (0,+∞) is the distance to the turnover.
The boundary of a cusp is an umbilical Euclidean turnover.

Those necks and cusps are naturally foliated by umbilical cone surfaces, that
are turnovers. Here we have considered hyperbolic and Euclidean turnovers. For
spherical turnovers the corresponding region foliated by umbilical turnovers is a
standard ball.

Cusps have always small cone injectivity radii. Hyperbolic necks may have small
cone injectivity radius. If we fix a lower bond on the cone angle, small cone injectivity
radius at necks only occurs when α + β + γ approaches π.

Fig. 8 The models whose
double are a neck (left) and a
cusp (right).

NR (T (
α
2 ,

β
2 ,

γ
2 ))

α + β + γ < 2π
N∞(T (

α
2 ,

β
2 ,

γ
2 ))

α + β + γ = 2π

Theorem 9 (Cone-thin part [3]) For D > 0 and 0 < α ≤ β < π there exists
ρ = ρ(D, α, β) > 0 such that the following holds: If C is an orientable cone-3-
manifold (without boundary) of constant curvature κ ∈ [−1, 0) with cone-angles
∈ [α, β] and diam(X) ≥ D, then the set of points {x ∈ C | cinj(x) < ρ} is contained
in the disjoint union of:

1. Tubular neighborhoods of (perhaps singular) closed geodesics.
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2. Cusps with horospherical cross-section a 2-torus or a Euclidean turnover
3. Necks on a hyperbolic turnover.

Here are some remarks about Theorem 9:

• The theorem assumes that the diameter is larger than a positive constant D > 0. In
fact there are hyperbolic cone manifolds with small cone-injectivity radius every-
where, but they have small diameter: they correspond to sequences of hyperbolic
cone manifolds that collapse to a point.

• The theorem does not hold when we allow cone angles close to π: we show
in Section 6 sequences of hyperbolic cone manifolds that Hausdorff converge
to a two-dimensional cone manifold, hence with a positive lower bound of the
diameter.

• Notice that the necks describe the only way two singular edges can approach,
under the assumptions that cone angles are bounded above away from π and that
the diameter is bounded below away from zero.

Remark 8 In [3] a stronger version of this theorem is proved, with the description of
points with injectivity radius less than some constant, i.e. including regular points
close to the singularity. This includes cones over turnovers, that have a large cone
injectivity radius but small injectivity radius at all regular points. One of the conclu-
sions is that the boundary of the components of the thin part includes a point with
large injectivity radius.

Theorem 9 and the stronger statement in Remark 8 need a careful analysis to
construct, from short loops, foliations by umbilical surfaces. Theorem 9 can also be
proved from the classification of non-compact Euclidean cone manifolds with cone
angles less than π.

Next we give two applications of Theorem 9. Notice that the boundary of the
neighborhoods of small cone-injectivity radius contains always a point with large
injectivity radius. Thus we have:

Corollary 3 (thickness) There exists r = r(D, α, β) > 0 such that if C is as in
Theorem 9, then C contains an embedded smooth standard ball of radius r .

Corollary 4 (finiteness) Let C be as in Theorem 9 and suppose in addition that
vol(C) < ∞. Then C has finitely many ends and all of them are (smooth or singular)
cusps with compact horospherical cross-sections.

5.3 Decreasing cone angles: global rigidity

Definition 8 We say that a hyperbolic cone 3-manifold C is globally rigid if, when
C ′ is a hyperbolic cone manifold with the same topological type, (|C ′ |, Σ |C′ |) �
(|C |, Σ |C |), and the same cone angles, then C ′ is isometric to C.
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Theorem 10 (Hyperbolic global rigidity [31, 52])Hyperbolic cone manifolds with
cone angles less than π are globally rigid.

This theorem was first proved by Kojima in [31] when there are no singular
vertices, using the local rigidity theorem of Hodgson and Kerckhoff, available at that
time, and the case with vertices was proved by Weiss in [52], after he had proved
local rigidity when there are vertices.

Here is a sketch of the proof. Assume first that C has no singular vertices, i.e. that
Σ is a link. The proof consists in decreasing the cone angles, until one reaches a
hyperbolic orbifold. The angles can be decreased by local rigidity, and one has to
analyze the limits to prove that the space of angles realized by a hyperbolic cone
structure on (|C |, Σ) is not only open but closed. We consider sequences of cone
manifold structures with decreasing cone angles. The volume of these sequences
increases (by Schläfli’s formula), in particular the diameter is bounded below by
D > 0. Furthermore the volume of C is bounded above by the volume of the
complete structure on |C | \ Σ, Remark 4. As the diameter is bounded below by
D > 0, by the compactness theorem (Theorem 8) the sequence of cone manifolds
converges to a finite volume hyperbolic manifold C∞. If C∞ is compact, then it has
the same topological type as Cn, which means that we can continue decreasing the
angles. If C∞ is non compact, then one uses the finiteness theorem (Corollary 4) and
a topological argument to get a contradiction with the opening of cusps.

When C has singular vertices, then one has to take into account that some of the
singular vertices can go to infinity, i.e. the cone on a spherical turnover becomes a
cusp with horospherical cross-section a turnover.

Once one reaches cone angles that are 2π/n, the argument concludes from
Mostow–Prasad rigidity on orbifolds: the structure on the orbifold is unique, and, by
local rigidity, the path to reach it is also unique.

In the spherical case, Weiss establishes also global rigidity by increasing cone
angles; here Mostow–Prasad is replaced by a rigidity theorem in the spherical case
due to de Rham:

Theorem 11 (Spherical global rigidity [52]) Non Seifert fibered spherical cone
manifolds with cone angles less than π are globally rigid.

From Theorems 7, 10 and 11, we get:

Theorem 12 (Euclidean global rigidity [41]) Let C be a closed orientable Eu-
clidean cone 3-manifold with cone angles ≤ π. If C is not an almost product, then C
is globally rigid (up to homoteties).

Furthermore, for every multiangle ᾱ ∈ (0, π)q there exists a unique cone manifold
structure of constant curvature in {−1, 0, 1} on C with those cone angles:

• If all cone angles of C are π, then every point in (0, π)q is the multiangle of a
hyperbolic cone structure on C.

• If some of the cone angles is < π, then the subset E ⊆ (0, π)q of multiangles of
Euclidean cone structures is a smooth, properly embedded hypersurface that splits
(0, π)q into 2 connected components, corresponding to multiangles of spherical
and hyperbolic cone structures respectively.
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Sequences of cone manifolds without singular vertices can also be analyzed by
controlling the radius of a metric tube around the singular locus, so the singular
locus does not crosses itself. This is the technique of Hodgson and Kerckhoff to
prove Theorem 3, and by decreasing the cone angle they also prove the following
theorem for short geodesics (cf. Proposition 6):

Theorem 13 ([27]) Let M3 be a closed hyperbolic 3-manifold and γ a geodesic in
M3 of length less than 0.111; then there exists a family of hyperbolic cone structures
on M3 with singular locus γ and cone angle in [0, 2π] (the cone angles decrease
from 2π, the non-singular metric, to 0, the complete structure on M3 \ γ).

This has applications in Kleinian groups [7, 8, 10].

5.4 Increasing cone angles

Next we discuss sequences of cone manifolds with increasing cone angles. We
assume that the cone angles are bounded above away from π.

Theorem 14 Let Cn be a sequence of compact hyperbolic cone manifolds with fixed
topological type and increasing cone angles that are bounded above by η < π. Then,
up to a subsequence, there are three possibilities:
• It converges geometrically (Definition 7) to a compact hyperbolic cone manifold

with the same topological type.
• It converges geometrically to a hyperbolic cone manifold C∞ of finite volume with

cusps, each cusp with horospherical cross-section a turnover (singular cusps
opening).

• It collapses to a point and, after rescaling, it converges geometrically to a Eu-
clidean cone manifold.

The idea of the proof is to apply the compactness theorem (Theorem 8) and the
finiteness theorem (Corollary 4). More precisely, if the diameter ofCn stays bounded
below away from zero, then we apply the compactness theorem, and the limit C∞
is a manifold of finite volume (the deformation decreases the volume by Schläfli’s
formula). Furthermore we can get rid of the case where C∞ has some nonsingular
cusp by a topological argument on Dehn fillings. Hence all cusps of C∞ are singular,
and they have horospherical cross-section a turnover. This yields the first two items
of the conclusion of the theorem. The remaining case occurs when the diameter of
Cn converges to zero: then the cone manifold collapses to a point. In this case we
rescale by the diameter, so that the curvature converges to zero. We apply again the
compactness theorem and we get convergence to a compact Euclidean cone manifold
(of diameter one).

Recall that Theorem 2 says that, for an orientable hyperbolic manifold with a
single cusp M3 and for any slope q, we have Θq ≥

2π
3 , i.e. the cone manifold is

hyperbolic for cone angles α ∈ (0, 2π
3 ). With all the results we have reviewed, we

can sketch its proof.
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Sketch of the proof of Theorem 2

Assume that for some slope q, Θq < 2π
3 and, seeking a contradiction, consider

a sequence of angles αn < Θq converging to Θq . Apply Theorem 14; then there
are three possibilities. The first one is that the sequence converges to a compact
hyperbolic manifold with the same topological type. In this case the cone angle
can be increased by the local rigidity theorem and we get a contradiction by the
definition of Θq . The second case of Theorem 14 is that a singular cusp opens, with
horospherical cross-section a Euclidean turnover. But a Euclidean turnover has at
least one cone angle ≥ 2π

3 . Therefore this case does not occur because Θq < 2π
3 .

The third case is that the sequence of cone manifolds collapses to a Euclidean cone
manifold with cone angle Θq . Since Θq < 2π

3 , the Euclidean cone manifold is not
an almost product. By Theorem 7 the cone angle can be increased to be spherical.
Then, by Weiss’s theorem (Theorem 11 and its proof), or by Theorem 12, the cone
manifold with cone angle 2π

3 is spherical. As the cone angle is 2π
3 and M3 (the

smooth part) is hyperbolic, then the spherical orbifold is not Seifert fibered. Finally,
we look at the classification of Dunbar of spherical orbifolds that are not Seifert
fibered [19], and we reach a contradiction.

This finishes the sketch of the proof of Theorem 2.

6 Examples

In this sectionwe discuss a few examples of deformations of conemanifolds, possibly
with cone angles π or larger.

6.1 Hyperbolic two-bridge knots and links

A two-bridge knot or link is the result of gluing two tangles (a tangle is the pair
formed by a ball with two unknotted arcs), Figures 9 and 10. Such a link is either a
torus link or hyperbolic. See [11] for details.

We next discuss the canonical tunnels. The arcs in the tangle may be joined by
a third arc, called tunnel, so that they form a letter H shape, Figure 9. These arcs
are indeed tunnels: the exterior of the union of the link and any of the tunnels is a
handlebody. These tunnels are geodesic in the complete hyperbolic structure [1], see
also [2] for hyperbolic cone manifold structures singular along the tunnels. Here we
show that the tunnels play a role in the limit of spherical cone structures.

The double covering of S3 branched along a two-bridge link L is a lens space (it
is the union of two solid tori, the double covering of the balls branched along the
tangles). Hence the orbifold on S3 with ramification locus L and branching index 2
is spherical.
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Fig. 9 Two tangles, with
the arcs and the canonical
tunnels. The union along the
boundaries yields a 2-bridge
link of one or two components.

Fig. 10 The figure eight
knot as a two bridge knot.
The canonical tunnels are
represented by a blue thin line

Proposition 8 ([39]) Let L be a hyperbolic 2-bridge knot or link. There exists αEuc ∈
[ 2π3 , π) such that S3 has a cone manifold structure with singular locus L and cone
angle α (the same cone angle in both components if it is a link) of the following type:

• hyperbolic for α ∈ (0, αEuc),
• Euclidean for α = αEuc,
• spherical for α ∈ (αEuc, 2π − αEuc).

Furthermore, when α → 2π − αEuc the singular locus intersects itself transversely
along two points (the length of the canonical tunnels converges to zero) and the cone
manifold converges to the spherical suspension of a sphere with four cone points of
cone angle 2π − αEuc.

From Theorem 1 the cone manifold is hyperbolic for angles in the interval (0, 2π
3 ).

Furthermore, as it is spherical for angle α = π, it has to become Euclidean at
some angle αEuc ∈ [

2π
3 , π), by [4, Appendix A]. By Theorem 12 it is spherical for

α ∈ (αEuc, π]. The spherical structures with cone angles (π, 2π−αEuc) are constructed
in [39], using the symmetry of the variety of representations of π1(S3 \K) in SU(2),
as SU(2) × SU(2) is the universal covering of SO(4). In [35] the explicit example of
the figure-eight knot is explained.

Notice that for the figure eight knot αEuc =
2π
3 . From Dunbar’s classification or

Euclidean orbifolds [18], form any other 2-bridge knot or link αEuc >
2π
3 .

For links we may consider different cone angles on each component, Theorem 12
applies. We describe it with one example, the Whitehead link.

Example 4 Consider the cone manifold structures on S3 with singular locus the
Whitehead link, and cone angles α and β (Proposition 8 assumes α = β). Cone
manifold structures have been described by several authors, for instance Shmatkov
[44]. Here we follow [41].
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Fig. 11 The Whitehead link.

α

β

For (α, β) ∈ [0, π)2 there exists a cone manifold structure on S3 with singular
locus the Whitehead link and angles α, and β according to Figure 12.

Fig. 12 The kind of geometric
structures on the Whitehead
link according to cone angles
α and β (0, 0) (π, 0)

(0, π) (π, π)( π2 , π)

( π2 , π)

hyperbolic

Euclidean

spherical

The curve of Euclidean cone manifolds is described by

x6y2 − 2x4y4 + 2x4y2 + x2y6 + 2x2y4 − 11x2y2 + 32

− 48x2 − 48y2 + 24y4 + 24x4 − 4x6 − 4y6 = 0. (3)

where x = ±2 cos(α/2) and y = ±2 cos(β/2). Here is an explanation of Equa-
tion (3). The fundamental group of a two bridge link exterior S3 − L is gener-
ated by two elements µ1 and µ2, that are represented by meridians. The variety
of SL(2,C)-characters of π1(S3 − L) is an affine surface in C3, with coordinates
x([ρ]) = trace(ρ(µ1)), y([ρ]) = trace(ρ(µ2)) and z([ρ]) = trace(ρ(µ1µ2)), for every
conjugacy class (or character) of a representation ρ : π1(S3 − L) → SL(2,C). Then
the curve (3) is the discriminant of the projection of the variety of characters to the
plane with coordinates (x, y), intersected with R2.

For fixed β < π, when α→ π−:

• for β < π/2 the cone manifold collapses to a two-dimensional hyperbolic cone
manifold with boundary.

• for β = π/2 it collapses to a point (the corresponding orbifold has Nil geometry,
see [46] and [38]).
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• β ∈ (π/2, π], the limit is a spherical cone 3-manifold.

This is because the double branched covering along one of the components of the
Whitehead link is again S3, and the other component lifts to a torus link. This
assertion can be extrapolated to general hyperbolic links with two bridges, but the
limits α→ π− depend on the geometry of the partial double covering.

6.2 Montesinos links

Montesinos links are links L ⊂ S3 such that the double covering of S3 branched
along L is Seifert fibered, and the fibration is transverse to the branching locus.
For instance, 2-bridge links are Montesinos. The Seifert fibration of the double
covering induces an orbifold Seifert fibration of the orbifold structure on S3 with
ramification locus L and ramification index 2, see [6] or [11]. The orbifold basis
of this fibration is a 2-orbifold, with underlying space a polygon PL , mirror edges
and corner reflectors (corresponding to rational tangles). The polygonal 2-orbifold
is geometric: the polygon PL can be realized in a plane of constant curvature (the
angles being π/n for a corner reflector of order 2n, hence determined by the topology
of the link). For a 2-bridge link, PL is a spherical bigon. For the link L in Figure 13,
PL is a hyperbolic quadrilateral. Notice that when PL has more than three vertices,
then the 2-orbifold has a nontrivial Teichmüller space.

Proposition 9 Let L ⊂ S3 be a hyperbolic Montesinos link. Consider the cone
manifold C(α) with underlying space S3, branching locus L and cone angle α. Let
PL be the polygonal basis of the orbifold Seifert fibration:

• IfPL is spherical, then there exists an angleαE ∈ [ 2π3 , π) so thatC(α) is hyperbolic
for α ∈ [0, αE ), Euclidean for α = αE and spherical for α ∈ (αE, π].

• Otherwise C(α) is hyperbolic for α ∈ [0, π).

Furthermore, when PL is hyperbolic, as α → π−, C(α) Hausdorff converges to the
polygon with minimal perimeter among all polygons with given angles.

In the spherical case, the discussion is the same as for two-bridge links. Further-
more, if a collapse occurs before π then PL must be spherical.

The assertion on the hyperbolic case is proved in [40], including the minimal
perimeter of the polygon PL with given angles.

When PL is Euclidean, the orbifold has naturally a Nil or Euclidean structure. In
the Nil case, for α > π the cone manifold C(α) becomes spherical [38]. When PL

is hyperbolic, the natural way to continue the deformations is by means of anti-de
Sitter structures [15].
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Fig. 13 Example of Montesinos knot. When α→ π, the corresponding hyperbolic cone manifold
C(α) collapses to a hyperbolic quadrilateral with angles π

2 ,
π
3 ,

π
3 and π

5 .

6.3 A cusp opening

Fix three angles α, β, γ ∈ (0, π) subject to

α +
γ

2
< π, β +

γ

2
< π.

By Andreev’s theorem, there exists a truncated hyperbolic tetrahedron with angles
α and β at opposite edges, and γ

4 at the remaining 4 edges. The truncation triangles
are totally geodesic and perpendicular to the sides of the tetrahedron, so that we can
view the polyhedron as a hyperbolic tetrahedron with vertices outside the hyperbolic
space (in the de Sitter sphere). See Figure 14.

Fig. 14 The truncated hyper-
bolic tetrahedron.

α

β

γ
4

γ
4

γ
4

γ
4

To construct a cone manifold identify the faces of the tetrahedron by rotations
along the edges of angles α and β. After the identification, the four edges of angles γ4
correspond to a single equivalence class. We obtain in this way a cone manifold with
totally geodesic boundary consisting of two turnovers S2(α, α, γ) and S2(β, β, γ),
with underlying space S2 × [0, 1], and singular locus three arcs of cone angles α, β
and γ as in Figure 15.

Fig. 15 The cone manifold
after side pairings of the
tetrahedron in Figure 14

α β
γ
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Notice that when 2α+ γ = 2π or when 2β+ γ = 2π, some of the exterior vertices
of the truncated tetrahedron in Figure 14 become ideal (i.e. the truncation triangles
go to infinity, to an ideal vertex). This means that the corresponding totally geodesic
boundary component goes to infinity and the end becomes a cusp, with horospherical
cross-section a turnover.

If we furthermore assume α = β, then we may identify one boundary component
with the other by an isometry (turnovers are rigid). In this way we get a family of
closed hyperbolic cone manifolds with an embedded totally geodesic turnover when
2α + γ ≤ 2π, that develops a cusp with horospherical cross-section a turnover when
2α + γ → 2π. This example can be found in [25], see Figure 16.

Fig. 16 Surgery description
of [25], due toHodgson.When
2α + γ < 2π the turnover is
totally geodesic, and when
2α + γ → 2π it converges to
a horospherical turnover.

0
α

γ

6.4 Borromean rings

Next we are interested in cone manifold structures on S3 with singular locus the
Borromean rings. Those have been described by many authors, starting by Thurston
in his notes [47] for the Euclidean structures, and including for instance [23, 22]. To
my knowledge, the different degenerations of hyperbolic structures at angle π are
first described in Hodgson’s thesis [24], and they are also in [14].

The building block for the hyperbolic cone manifold structures is the Lambert
cube. For α, β, γ ∈ (0, π), the hyperbolic Lambert cube L(α2 ,

β
2 ,
γ
2 ) is a hyperbolic

cube with three dihedral angles α
2 ,

β
2 , and

γ
2 , as in Figure 18, and all other angles

right. By Andreev’s theorem, it exists and is unique. Its name comes from its faces,
that are Lambert quadrilaterals, Figure 19. The hyperbolic Lambert cube has been
considered by several authors, see for instance [12, 17, 29].

We consider eight copies of the Lambert cubeL(α2 ,
β
2 ,
γ
2 ), after duplicating it three

times, to obtain a polyhedron as in Figure 20. We identify faces of this polyhedron
by side pairings along rotations as indicated in Figure 20, so that we get a hyperbolic
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Fig. 17 The Borromean rings.
They are the singular locus of
a hyperbolic cone manifold
structure on S3 with cone
angles α, β, γ ∈ [0, π).

α

β γ

Fig. 18 (A Euclidean repre-
sentation of) the hyperbolic
Lambert cube L( α2 ,

β
2 ,

γ
2 ),

with three dihedral angles
α
2 ,

β
2 ,

γ
2 ∈ (0,

π
2 ), the other

dihedral angles are π/2.

α
2

γ
2

β
2

Fig. 19 A Lambert quadrilat-
eral with angle θ ∈ (0, π

2 ).
Edges A and B can be ar-
bitrarily short. For a given
θ ∈ (0, π

2 ) the length of A′
and B′ is bounded below away
from zero.

θ

B

A

A′

B′

cone structure on S3 with singular locus the Borromean rings and cone angles α, β
and γ, as explained in Thurston’s notes [47].

Fig. 20 Eight copies of the
Lambert cube, after dupli-
cating it three times. We
identify the pentagonal faces
by rotations along the red axis
we obtain the cone manifold
B(α, β, γ) of Proposition 10.

α

α

γ

γ

ββ

Thus we have:
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Proposition 10 For every multiangle (α, β, γ) ∈ [0, π)3 there exists a hyperbolic
cone structure B(α, β, γ) on S3 with singular locus the Borromean rings and cone
angles α, β and γ.

When some of the angles are zero, we just replace the corresponding edge in
the Lambert cube by an ideal point. Notice that Andreev’s Theorem applies to the
polyhedron of Figure 20, but the computations are easier for the Lambert cube.

Next we ask what happens when some angles converge to π. We do not give the
explicit formulas, we just mention that the results below on the limits of Lambert
cubes L(α2 ,

β
2 ,
γ
2 ) can be determined from the formulas in [12, 17, 29].

First assume that all angles converge to π.

Lemma 1 When α → π−, then the Lambert cube L(α2 ,
α
2 ,

α
2 ) converges to a point,

and after rescaling it converges to a Euclidean cube.
More precisely, if α, β, γ → π− and the ratios π−α

π−β and π−α
π−γ converge to positive

reals, then L(α2 ,
β
2 ,
γ
2 ) converges to a point and, after rescaling it converges to a

right rectangular prism.

Corollary 5 When α, β, γ → π−, and if π−α
π−β and π−α

π−γ converge to positive real
numbers, thenB(α, β, γ) collapses to a point. Furthermore, after rescalingB(α, β, γ)
converges to a Euclidean orbifold.

This Euclidean orbifold is an almost product and Theorem 7 does not apply.
Next assume that one of the angles remains constant.

Lemma 2 Fix α ∈ (0, π). The Hausdorff limit of the Lambert cube L(α2 ,
β
2 ,
γ
2 )

when β, γ → π− is a, possibly degenerate, Lambert quadrilateral (a hyperbolic
quadrilateral with three right angles and a fourth angle α/2, Figure 21), provided
that π−βπ−γ converges in [0,+∞].

Furthermore, any (possibly degenerate) Lambert quadrilateral of angle α
2 is

realized as a limit, depending on the limit of π−βπ−γ .

Fig. 21 A Lambert cube
collapsing to a quadrilateral,
when β/2 and γ/2 approach
π/2. Four of the Lambert
quadrilaterals on the boundary
collapse to segments.

α

2

β

2

γ

2

By a possibly degenerate Lambert quadrilateral we mean a triangle with an ideal
vertex and two finite vertices, of angles π

2 and α
2 .

AgainLemma2 is proved using the formulas for Lambert cubes and quadrilaterals.
It is useful to have in mind the following remark, to know what edge lengths can
converge to zero:
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Remark 9 Given θ ∈ (0, π2 ), a Lambert quadrilateral is determined by an angle
θ and the length of any of the edges, Figure 19. Allowing degenerate Lambert
quadrilaterals, the length of an edge takes any value in the interval:
• [arccosh(1/sin(θ)),+∞], if the edge is adjacent to the vertex of angle θ;
• [0,+∞], if the edge is disjoint from to the vertex of angle θ.

From Lemma 2, by gluing two Lambert quadrilaterals of angle α
2 we have:

Corollary 6 For fixed α ∈ (0, π), when β, γ → π− and π−β
π−γ converges in [0,+∞],

then B(α, β, γ) Hausdorff converges to a (possibly degenerate) hyperbolic cone
surface with boundary and corners, a bigon with right angles and a cone point α in
the interior, Figure 22 (or Figure 24 for the degenerate case).

Fig. 22 A cone surface that
is the limit when β, γ → π−.
The singular components with
angles β and γ converge to the
segments in the boundary.

α

Next we fix two angles α, β ∈ (0, π) and look at the limit when γ → π−. We
describe the behavior of its six sides. It can be computed that:
• The sides that are Lambert quadrilaterals of angle γ/2 collapse to a segment.
• The sides that are Lambert quadrilaterals of angle α/2 or β/2 converge to ideal

triangles.
In particular four of the edge lengths converge to zero, four of them converge
to infinity, and the remaining four have a non-vanishing finite limit. This can be
visualized by a “long” Lambert cube as in Figure 23.

Lemma 3 For fixedα, β ∈ (0, π), when γ → π− the diameter ofL(α2 ,
β
2 ,
γ
2 ) converges

to infinity. There are choices of base points so that the pointed Hausdorff limit is
either an ideal triangle of angle α

2 , an ideal triangle of angle β
2 , or a line. See

Figure 23.

Two phenomena occur simultaneously when γ → π−. On the one hand, there is
a cusp opening, whose horospherical cross section is a sphere with 4 cone points
S2(π, π, π, π) (corresponding to the middle quadrilateral in Figure 23) that separates
the cone manifold in two components see Figure 25. On the other hand, each one of
these pieces collapses to a hyperbolic cone surface with boundary and finite area,
Figure 24. The end of this surface is the quotient of a cusp by an involution, and
corresponds to a collapse of the Euclidean cone manifold S2(π, π, π, π) to a segment.

Corollary 7 For fixed α, β ∈ (0, π), when γ → π−, B(α, β, γ) develops a cusp with
horospherical cross-section S2(π, π, π, π), that separates B(α, β, γ) in two pieces
that collapse to cone surfaces as in Figure 24.
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γ
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α

2
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2

Fig. 23 A “long” Lambert cube, when γ/2 approaches π/2 (top) and the limiting ideal triangles
(bottom).

Fig. 24 One of the cone
surfaces that appear when
γ → π− (the other is obtained
by replacing α by β).

α

Fig. 25 One of the compo-
nents after splitting B(α, β, π)
along the Euclidean cone 2-
manifold S2(π, π, π, π). It is
Seifert fibered over the surface
of Figure 24.

α

ππ

6.5 Borromean rings revisited: spherical structures

Next we consider cone angles ≥ π. For dihedral angles between π/2 and π, the
Lambert cube is spherical, and it has been studied for instance by Díaz [17] and
Derevnin and Mednykh [16].

Proposition 11 ([17]) For α, β, γ ∈ (π, 2π):

• The Lambert cube L(α2 ,
β
2 ,
γ
2 ) with dihedral angles

α
2 ,

β
2 ,

γ
2 is spherical and rigid.

• S3 admits a unique spherical structure with singular locus the Borromean rings
and cone angles (α, β, γ), B(α, β, γ).

Now we look at the spherical Lambert cube when some dihedral angles approach
π/2 (hence some of the cone angles of B(α, β, γ) converges to π).

Lemma 4 When γ → π+ and α, β > π remain constant, L(α2 ,
β
2 ,
γ
2 ) Hausdorff

converges to a spherical tetrahedron with right angles, except at two opposite edges,
that have angles α/2 − π/2 and β/2 − π/2, Figure 26.
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In Lemma 4, the edge with dihedral angle α/2− π/2 is the result of merging two
edges, one with dihedral angle α/2 and another one with a right angle, hence its
dihedral angle is

(
α
2 +

π
2
)
− π.

α
2 −

π
2

β
2 −

π
2

Fig. 26 The tetrahedron in Lemma 4, with the dihedral angles (when they are not right). The length
of an edge is the dihedral angle of the opposite edge, thus lα = β

2 −
π
2 , lβ =

α
2 −

π
2 , and lγ =

π
2 .

When two of the cone angles converge to π, we have a collapse similar to the
hyperbolic case:

Lemma 5 When β, γ → π+ and α > π remains constant, L(α2 ,
β
2 ,
γ
2 ) Hausdorff

converges to a spherical Lambert quadrilateral of angle α
2 , provided that the ratio

β−π
γ−π converges in [0,+∞].

Furthermore, any (possibly degenerate) Lambert quadrilateral of angle α
2 is

realized as a limit, according to the limit of the ratio β−π
γ−π .

Finally, the case where all cone angles converge to π− is similar to the hyperbolic
case.

Lemma 6 When α, β, γ → π+, and the ratios α−π
β−π and α−π

γ−π converge to positive
real numbers, then L(α2 ,

β
2 ,
γ
2 ) converges to a point. After rescaling, it converges to

a right rectangular prism.

The translation of the results on Lambert cubes to conemanifolds is the following:

Corollary 8 1. When γ → π+, and α, β > π remain constant, the Hausdorff limit of
B(α, β, γ) is S3 with a singular locus as in Figure 27. The singular components
of angle α and β intersect the component of angle π and are folded to a segment
with cone angle 2α − 2π and 2β − 2π respectively.

2. When β, γ → π+, α > π remains constant and the ratio β−π
γ−π converges in [0,+∞],

then B(α, β, γ) converges to a cone surface as in Figure 22, possibly degenerate
(if the cone point goes to the boundary).

3. When α, β, γ → π+, and the ratios β−π
γ−π and α−π

γ−π converge in (0,+∞), then
B(α, β, γ) Hausdorff converges to a point, and after rescaling it converges to a
Euclidean orbifold.

We can also consider limits when the cone angles α, β or γ approach 2π; the
Hausdorff limits of the spherical Lambert cubeL(α2 ,

β
2 ,
γ
2 ) are described in Figure 28.

We describe the limits of the cone manifold in the following remark.



Cone 3-manifolds 31

Fig. 27 Singular locus of
the limit of B(α, β, γ) when
γ → π+.

π

2α−2π

2β−2π
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γ
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γ
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2 =

γ
2 = π
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Fig. 28 The Hausdorff limit of the spherical Lambert cube when some of the dihedral angles
converge to π.

Remark 10 When α → 2π−, β → β0 ∈ (π, 2π], and γ → γ0 ∈ (π, 2π], B(α, β, γ)
Hausdorff converges to the spherical suspension over a cone surface S. The first
singular geodesic converges to a geodesic in S, and, at the limit, the other singular
components intersect at the tips of the suspension.

Notice that we allow the limit β0 or γ0 to equal 2π. The suspension structure of
the remark is obtained from doubling the cones of the Lambert cubes in Figure 28.
Hence the Hausdorff limit of B(α, β, γ) has a suspension structure for each cone
angle that becomes 2π.
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