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Abstract

In this work, lossless compression algorithms are evaluated on a variety of real, current as-
tronomical images. The test dataset comprises raw (integer) and processed (floating-point)
images of discrete and extensive astronomical objects, captured by spatial or terrestrial tele-
scopes. Compression techniques herein analyzed are chosen to be representative of the most
recent algorithms devised for astronomical data, as well as the most commonly employed
compressors employed in real observatories. Experimental results suggest that coding tech-
niques such as RICE and HCOMPRESS, typically employed in world-class observatories
such as Roque de los Muchachos, do not produce the best possible lossless compression
results. Instead, JPEG-LS, LZMA and NDZIP yield the best compression ratio results for
16-bit data (2.72), floating-point data (2.38) and radio data (1.81), respectively. Therefore,
the efficiency with which data are stored and transmitted by these observatories could be
significantly improved by selectively employing the aforementioned algorithms.

Introduction

The field of astronomy experienced a radical transformation due to the appearance of
Charge-Coupled Devices (CCDs). As telescopes and detectors are improved, larger
data quantities of higher quality are retrieved, which results in larger data volumes
and acquisition rates [1,2]. This is reflected in the next generation of satellites and
telescopes, led by The James Webb Space Telescope (JWST) [3], launched late 2021;
and The European Extremely Large Telescope (E-ELT) [4]. The E-ELT is the biggest
land telescope ever built, and is expected to be operative by 2024 at The European
Southern Observatory. While JWST will generate 100 TB every year, E-ELT will
produce 1 TB every night [5]. In this context, efficient data compression is paramount
to control the storage and transmission costs associated to these enormous volumes
of data.

In astronomy, compressed data are not always used. Sometimes data obtained
after an observation night in an observatory is shared to the astronomer or scientist
using an FTP link.! When compression is required, the key aspects of astronomical
images compression are the modeling and compression of noise, the random space
objects distribution [6], and the possible data values and their differences (floating-
point values lower than 1 are the most difficult to compress). This is due to the

thttps:/ /www.ing.iac.es/astronomy /computing /recording.html



long exposure times needed to acquire data and the random noise introduced by the
atmosphere, space background and heat noise. The resulting images are typically
composed of a dark space background with some discrete astronomical objects, e.g.,
stars and galaxies, which are the ones of scientific interest. To study high-redshift
and faint objects in a precise way, it is also necessary to preserve weak object signals
as faithfully as possible.

Astronomical images consist of either floating-point or integer samples. Original
images taken from the instrument CCD always retrieve integer samples, each pixel
value being roughly proportional to the number of photons received. This primary
signal is then calibrated based on known statistics to suppress noise, producing a
floating-point image. The use of integer or floating-point data for storage and trans-
mission depends on the observatory and survey.

The main contribution of this work is to disclose what existing compression tech-
niques perform best on different types of astronomical images. Techniques hereafter
analyzed include those nowadays employed in observatories, as well as others repre-
sentative of the state of the art in integer and floating-point lossless data compression.
To the best of our knowledge, this is the first time a study with this scope is conducted.

The rest of the article is organized as follows. Next section describes the employed
dataset, followed by a state-of-the-art of the different coding techniques used for as-
tronomical data. Then, compression results for all described techniques and different
datasets are investigated. Conclusions and future work are presented last.

Materials and methods

Astronomical dataset

The astronomical surveys chosen for this study represent a wide variety of astronom-
ical images, including optical, radio, infra-red and multi-spectral. They are acquired
from both terrestrial and spatial telescopes. Table 1 introduces each dataset, report-
ing width, height and spectral dimension. Sets with a spectral dimension higher than
1 correspond to extensive object images. CALIFA, CHEOPS and SDSS-MaNGA are
multi-spectral images, so they have the same two spatial dimensions as the rest of the
dataset plus a third spectral dimension. The Type column indicates if the dataset
contains integer and/or floating point data (IEEE 754 standard), complemented by
the data format: 16, 32 and 64-bits®. The last column indicates the acquisition year
of the images.

The dataset consists of 103 images, with a combined uncompressed size of 16 GB.

Coding techniques for integer data

Currently, the most commonly used compression techniques applied on observato-
ries are designed for integer lossless compression. These are HCOMPRESS [9] and
RICE [10]. HCOMPRESS uses a wavelet-transform followed by a quadtree coding,

2All the data used for this research is available at the following public repository:
https://gicilab.uab.cat/omaireles/astronomical-compression in FITS (original) format or in raw (un-
coded) format.



Survey/Telescope| Dimensions | Type Format Year
DESI 2036x2048x1 | Integer 16-bit 2015
INT 2154x4200x1 | Integer 16-bit 2004
JKT 2148x2148x1 | Integer 16-bit 2007
WHT 1024x1024x1 | Integer 16 & 32-bit 2005
CALIFA 78x73x1877 | Floating-point 32-bit 2013
GAIA 4000x3000x1 | Floating-point 64-bit 2015
HerMES 315x2354x1 | Floating-point 32 & 64-bit 2011
LOFAR 7564x7564x1 | Floating-point 32 & 64-bit 2012
SDSS-BOSS [7] | 2048x1489x1 | Floatingpoint | 32-bit o
SDSS-MaNGA [§] 54x54x4563 | Floating-point 16, 32 & 64-bit 38}2_
VIMOS 2108x2108x1 | Floating-point 32 & 64-bit 2018
WISE 4095x4095x1 | Floating-point 32-bit 2009
CHEOPS 50x50x3070 g(l)ﬁer & floating | 15 39 & bt | 2019
TJO 4096x4108x1 g;ﬁer & Floating |16 ¢ o130 | 2016

Table 1: List of all the datasets and their main features.

while RICE technique uses a set of variable-length codes. These two techniques are
supported by fpack and funpack software [11]. These compressing and decompress-
ing programs are designed specifically to compress Flexible Image Transport System
(FITS) format, which is the one universally used in astronomical data. The tech-
nique of [11] divides the image in rectangular tiles, to compress and store them in a
FITS binary table. Each HDU (Header/Data Units) of a multi-extension FITS file
is compressed separately, so it is not necessary to uncompress the entire file to read
a single image. This adaptation to the FITS format makes reference [11] the most
popular approach to work with astronomical data.

On the other hand, there exist techniques devised for image compression that
provide 16-bit integer support, such as JPEG-LS [12]. JPEG-LS uses a modeling step,
which assigns probabilities to data, and a Golomb (or an arithmetic) coder. Another
JPEG family standard, i.e., JPEG 2000 [13], is also considered. This technique
performs compression by applying a discrete wavelet transform, quantization and
entropy coding.

Coding techniques for floating-point data

To the best of our knowledge, no specific floating-point compression technique has
been devised for astronomical images. The most used and the newest technique for
floating-point data type is, respectively, ZFP [14] and NDZIP [15]. ZFP uses vector
quantization and orthogonal block transform. NDZIP follows 3 main steps: data



division into fixed blocks, Lorenzo transform [16] and residual value encoding,.
Coding techniques for integer and floating-point data

Finally, there are several techniques supporting both integer and floating point data
simultaneously. One of the first coding techniques used for floating-point astronom-
ical data was LZ77 [17], a dictionary compression technique. LZF technique [18] is
an implementation of the most basic LZ77. The LZ77 technique can also be applied
by combining it with another one, such as i) LZMA [19], which after using LZ77
technique, encodes the output with a range encoder; ii) ZSTANDARD [20], which,
after applying the LZ77 dictionary, uses Finite State Entropy (FSE) and Huffman
coding; iii) GZIP, which has two stages, the first using LZ77 technique and the sec-
ond one using Huffman coding; and iv) LZ4 [21], performing LZ77 compression by
representing data as series of sequences.

One of the most used computer compression techniques is BZIP2 [22]. This tech-
nique uses Run-Length Encoding (RLE) and then the Burrows-Wheeler transform
and Huffman coding.

Besides these, there are other techniques that have different compression ap-
proaches depending on the input data, such as FAPEC [23] or SPDP [24]. FAPEC
can use different pre-processing stages depending on the data. SPDP uses its own
framework, called CRUSHER, to select the better compression techniques depending
on the input data. In CRUSHER, Run Length Encoding (RLE), LZIn (LZ77 variant)
or zero encoder [25], can be selected to perform compression.

The last technique is SZIP, an implementation of the extended-RICE lossless com-
pression technique, to adapt it to lossless floating-point data compression.

Experimental Results and Analysis

Since not all the techniques work for each image type, compression tests have been
organized according to the type-format and the most significant astronomical image
types. Thus, experiments and analysis are grouped by Integer (16 bits), Float (32
and 64 bits), Extensive objects, Discrete objects, and Radio data. Compression
performance is provided for lossless mode and is measured in terms of compression
ratio. The next sections provide a discussion of the coding performance results for
each data type. In addition, Table 2 summarizes the results.

Integer (16 bits)

This first dataset is used to assess the best compressors to use on the acquired data
(without post-processing). The techniques evaluated are: RICE, HCOMPRESS,
GZIP, LZF, SZIP, LZ4, SPDP, BZIP2, FAPEC, LZMA, ZSTANDARD, JPEG-LS
and JPEG 2000 (with 0 and 5 wavelet levels).

Fig. 1(a) shows that the most efficient coding techniques are JPEG-LS, BZIP2 and
JPEG 2000, providing compression ratios of 2.72, 2.69 and 2.69, respectively. Con-
sidering that JPEG-LS and BZIP2 employ Golomb and Huffman as entropy encoder,
respectively; results suggest that the predictor of JPEG-LS and the Burrows-Wheeler
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Figure 1: Mean values of the compression ratio of (a) integer 16-bit data (b) floating-point
data (32 & 64-bit) (c) extensive objects data (CALIFA, CHEOPS and MaNGA) (d) discrete
objects data (DESI, GAIA, INT, JKT, HerMES, LOFAR, BOSS, MaNGA, WHT, VIMOS,
WISE, TJO) (e) radio data (LOFAR).

transform of BZIP2 provide similar results decorrelating this data. For JPEG 2000
there does not exist significant gain when 0 and 5 wavelet levels are applied. This
suggests that spatial information is not properly exploited.

On the opposite side, the worst performances are those of SPDP, LZF and LZ4, the
representative techniques of the LZ77 dictionary that employ very simple dictionary
strategies.



Technique Integer | Float | Extense | Discrete | Radio
HCOMPRESS 2.63 - - - -
JEPG2000 level 5 2.69 - - - -
JPEG-LS 2.72 - - - -
RICE 2.55 - - - -
NDZIP - 1.36 - - 1.81
ZFP - 1.73 - - 1.43
BZIP2 2.69 2.22 1.85 2.74 1.43
FAPEC 2.53 1.94 1.89 2.39 1.79
GZIP 2.11 2.00 1.85 1.95 1.44
LZF 1.43 1.61 1.54 1.58 1.27
Lz4 1.75 1.68 1.56 1.83 1.27
LZMA 2.63 2.38 2.01 2.77 1.73
SPDP 1.35 1.31 1.35 1.43 1.77
SZIP 2.43 1.66 1.91 2.10 1.72
ZSTANDARD 2.46 2.09 1.82 2.48 1.44

Table 2: Compression ratio mean values for each technique tested in that particular data
type. ”-” indicates the technique is not able to perform lossless compression for that dataset
type (integer or floating-point). Best performing technique is highlighted in green back-
ground and bold type.

Float (32 and 64 bits)

This dataset is made of floating-point images, both 32 and 64-bit data. The investi-
gated techniques are: LZF, SZIP, GZIP, LZ4, ZFP, SPDP, BZIP2, NDZIP FAPEC,
LZMA and ZSTANDARD.

Fig. 1(b) shows that the most efficient coding techniques are LZMA, BZIP2 and
ZSTANDARD. In this case, there is a higher compression ratio difference than for the
integer (16 bits) case between the best technique and the following ones. Note that
LZMA provides the best performance with a compression ratio of 2.38 followed by
BZIP2 and ZSTANDARD with 2.22 and 2.09, respectively. LZMA and ZSTANDARD
are based on LZ77, but LZMA uses a huge dictionary (up to 4GB) followed by a range
encoder, whereas ZSTANDARD employs a dictionary with a large search window.
The large dictionary of LZMA can manage more efficiently all the codewords provided
by images with dynamic ranges of 32 and 64 bits than ZSTANDARD or BZIP2.

For this data type, the less efficient techniques are NDZIP and, again, SPDP
and LZF. This fact hints that LZ77 alone (in its most basic form) is not an efficient
compression technique for this kind of data. This also shows the efficiency of the range
encoder, given that just adding a range encoder after LZ77 —with a large dictionary,
like LZMA — makes the whole approach to become the best one.



Ezxtensive objects

This dataset assesses the most efficient techniques on extensive objects, which are
stored in multi-component images. These images have two short spatial dimensions
and a wide third spectral dimension. The astronomical object covers almost all of
the image surface, so the standard structure in astronomical images with a dominant
background and some discrete small object is not met. Given that integer and floating-
point data are used, the compressors able to compress such different data types are:
BZIP2, FAPEC, LZF, SZIP, GZIP, LZ4, LZMA, SPDP and ZSTANDARD.

Fig. 1(c) shows that the best coding technique again is LZMA followed by SZIP
and FAPEC. Now that the image represents an extensive object instead of discrete
ones, LZMA is still way better than the other techniques. LZMA provides a compres-
sion ratio of 2.01 and SZIP 1.91. In this case, LZ77 becomes more useful, given that
the shape of the astronomical data objects has a major presence on the image and has
an approximate radial distribution. In this case, there are no dominant background
values, but a wide variety of similar probability values. The complexity of the LZMA
dictionary becomes more useful than in the previous section to efficiently encode these
values. In the previous case, the third best technique was ZSTANDARD, using LZ77
plus FSE plus Huffman coding; now GZIP has a higher compression ratio, which
follows the same structure without FSE, noticing that there is a gradient between
the center and the image edges that does not benefit FSE technique (based on value
probability).

Discrete objects

This dataset assesses the performance of the same techniques as in the extensive
objects test, but applied to discrete astronomical objects (stars and far galaxies).

Fig. 1(d) shows that the most efficient coding techniques are LZMA, BZIP2 and
ZSTANDARD. The same result as in the floating-point section. The better compres-
sion ratio is mostly caused by the addition of integer data to the dataset.

Radio data

This dataset considers the radio data from LOFAR survey (floating-point), so the
same techniques as in floating-point section are assessed. Radio data values are the
lowest in the dataset and some of them are even negative, due to the treatment
process of the data, which requires extra steps than optical or IR acquisition.

Fig. 1(e) reports the results. NDZIP is now the most efficient compressor, followed
by FAPEC, SPDP and LZMA. The competitive behaviour of NDZIP is attributed
to performing residual value encoding, which benefits from very low values; FAPEC
pre-processing stage allows it to adapt properly to really low values and SPDP uses a
zero encoder useful on very low values. After these three coding techniques LZMA is
the one that provides competitive coding performance, possibly due to the large dic-
tionary and the poor spatial redundancy exploitation by the pre-processing strategies
of FAPEC and NDZIP.



Conclusions and Future Work

Astronomical data compression is a compelling topic attracting the interest of practi-
tioners in both data compression and astronomical research communities. This work
establishes a starting point to disclose the most interesting techniques to be employed
for astronomical data in general terms.

Our contribution investigates, for the first time, the performance of several coding
techniques in more than one type of astronomical data. In particular, astronomical
images in this study contain a dominant sky background representation and some
dispersed objects with a number of pixel values much higher than the background.
These images are not one-shot pictures, but long exposure data acquisition files.

Experimental results reveal that LZMA has almost always the best coding per-
formance, except for 16-bit integer data, where the best compressor is JPEG-LS, and
for radio data, where NDZIP is the most efficient one. Currently, RICE and HCOM-
PRESS compression techniques supported by fpack are the most widespread tech-
niques, because they are designed to work with the FITS astronomical data format.
However, our research indicates that these techniques are not the most competitive
for lossless data compression. The average compression ratio obtained with HCOM-
PRESS for 16-bit integer data is 2.63, whereas the compression ratio obtained with
JPEG-LS is 2.72. LZMA achives 2.38, 2.01 and 2.77 on floating-point data, extensive
objects and discrete objectes, respectively. On radio data, NDZID compression tech-
nique achieves a compression ratio of 1.81. In light of our results, LZMA, JPEG-LS
or NDZIP (for radio data) could be adapted to work directly on FITS data format,
thus increasing the coding performance.
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