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Abstract. The Lightning Network (LN) is a second layer payment protocol on
top of Bitcoin. It creates a peer-to-peer (P2P) network of payment channels that
enable instant payments. The LN can be accessed through different implementa-
tions or clients, the most popular being Lightning Network Daemon (LND), Core
Lightning Network (CLN), and Eclair. The first step in many known attacks to
the LN is to infer the software client the node is running. This paper presents two
classification models based on decision trees to infer the implementation of LN
clients from either the traffic of the gossip protocol or the announced BOLT #9
features, offering a cost-free means of identification. The accuracy presented by
both models in our experiments is high, ranging from 87% to 100% depending
on the model and the environment where it is deployed. The application of our
inference models on the LN shows a prevalence of LND clients.

Keywords: Bitcoin, Blockchain, Lightning Network (LN), Machine Learning

1 Introduction

The Lightning Network (LN) [112]] is a layer 2 payment scheme deployed on top of
Bitcoin [3]. Its main goal is to address the scalability problems of Bitcoin, allowing for
fast transactions outside the blockchain and lower fees. Additionally, by moving trans-
actions out of the blockchain, better privacy properties are provided. The LN operates
on a peer-to-peer (P2P) network, where LN nodes exchange the necessary data to create
and manage payment channels, over which payments to other nodes can be routed.

Nodes within the LN can operate using various software alternatives. The most pop-
ular implementations, namely Lightning Network Daemon (LND) [4], Core Lightning
Network (CLN) (former c-lightning) [5]], and Eclair [6], come with distinct default pa-
rameters and methods for routing payments. Determining the specific LN client running
on a node is an area of interest for several reasons. Firstly, previous works have shown
that inferring the LN client is a first key step for different attacks on the network. In
turn, inferring clients is useful in analysing the resilience of the network to those at-
tacks. Secondly, decentralization in P2P networks often considers the diversity of client
implementations [7], thus this information is needed to evaluate decentralization.

In this context, the contribution of this work is twofold. On the one hand, we present
two robust classification models to infer LN client implementation without relying on



default-based heuristics. These models address two distinct scenarios: one which is
based on network traffic and the other which is based on feature flags announced by
the nodes themselves. One the other hand, we apply these models on the live Lightning
Network and report the distribution of nodes for each implementation.

The rest of the paper is organized as follows. First, Section 2] introduces the nec-
essary background and Section [3] presents the state of the art, explaining attacks that
require client identification and previous methods used to do so. After that, Section
describes the threat model and the two inference scenarios. Then, the experimental part
of this work is presented: first, Section [5] describes the experimental setup; secondly,
Section [6] evaluates the models; and finally, Section [7] presents the results of applying
the models to obtain a view of the current distribution of nodes in the LN. Lastly, Sec-
tion 8] presents the conclusions and lines for future work.

2 Lightning Network Background

The Lightning Network is a layer 2 protocol on top of the Bitcoin blockchain. It was
created as a solution to the Bitcoin scalability problem and provides four main benefits:
better transaction throughput, fast payments, improved privacy, and lower fees.

The LN is a network of bidirectional payment channels between pairs of nodes.
A channel is opened by sending a transaction (called the funding transaction) to the
blockchain, depositing a certain amount of coins (the capacity of the channel). Once
a channel is opened, the two participants of the channel can pay to each other in both
directions without needing to send transactions to the blockchain. These payments are
made by commitment transactions that update the balance each party has in the channel.
As long as the peers behave correctly, commitment transactions will not be sent to the
blockchain and will only reflect balances. However, if necessary, these can be sent to the
blockchain to retrieve funds from the channel or even penalize fraudulent behavior. The
channel can be closed by sending another transaction (called the closing transaction) to
the blockchain, which reflects the final state of the channel.

Payment channels are established between pairs of nodes, allowing payments ex-
clusively between the two nodes. The strength of the LN lies in the ability to perform
multihop payments, enabling third parties to route payments between other parties’
channels.

Nodes in the LN relay on a P2P network to communicate and operate the channels.
This network is mainly used for channel management (opening, updating and closing
channels) and routing information propagation (discovering nodes and channels).

2.1 Gossip protocol

One of the main features of the LN is the ability to create multihop payments that use
third party channels to make a payment between two users that do not directly share a
channel. For nodes to make such payments, they need to be able to find routes in the
LN channel graph. The gossip protocol is used for nodes in the LN to share information
about the network topology, that is, discover other nodes and existing channels, and
create their own view of the LN channel graph.
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Fig. 1: Features announced by LN nodes (sample obtained by the authors on September
2023)

Gossip protocols are commonly used in P2P networks to disseminate information
through the whole network using the direct connections that peers have with each other.
The LN gossip protocol supports three different messages: node announcements, chan-
nel announcements, and channel updates [8].

Peers can join the LN P2P network and receive gossip messages from their direct
peers without having to open any LN channel. Therefore, listening to gossip messages
and using their data to construct a local channel graph can be done by any party for free
(i.e. without having to pay transaction fees).

2.2 Feature flags

The BOLTEI #9 - Assigned Feature Flags [9] describes how to identify features within
the LN based on flags. Flags are used to show what features a node supports, either
as optional or compulsory. Channel and node announcement messages (among others)
contain a feature field to describe the features nodes support and require. Figure[T|shows
the percentage of nodes announcing each of the features (data from September 2023).

2.3 LN clients

Lightning Network clients are the actors of the LN that open and close channels for
sending bitcoin transactions outside the blockchain. In order to coordinate with each
other they exchange data using the P2P network and the gossip protocol.

3 The BOLTS (Basis Of Lightning Technology) are specifications for the LN, used to ensure that
different Lightning Network node implementations can interact seamlessly.



Unlike on-chain clients, where nodes are inspired by the same original implementa-
tion (Bitcoin Core), the LN has a wider variety of implementations. The most notewor-
thy are LND [4], CLN [5]], and Eclair [6], each one written in a different programming
language.

As they do not follow an original implementation, they implement the protocol that
is specified in the different BOLTSs in order to ensure interoperability.

3 State of the art

Previous works have focused on designing attacks and resilience analysis that needed
to infer LN client implementations. Examples of such attacks are the balance discovery
attack [10]], the lockdown attack [[11], the congestion attack [12]], the flood and loot
attack [13]], or route hijacking and DoS attacks [14]. Additionally, other papers that
do not focus on security but on describing the network, also use client identification
techniques [[13]].

In any case, these papers tried to infer the client implementation based on the pa-
rameters announced in the nodes’ policies, assuming nodes were using default values.
Inference was quite accurate because different implementations had different default
values. However, as new versions of the clients appear with modified defaults, some
start to collude and inference losses accuracy.

In this paper, we present two different methods to infer LN client implementations
without resorting to manually identify default configurations in the nodes’ policies. Un-
like previous works, our models are robust to nodes that change the default policy values
of their implementation (e.g. cltv_expiry.deltaor htlcminimum msat).

4 LN client inference scenarios

In this article, two different techniques to discover the Lightning Network node imple-
mentation are presented. In both scenarios, the attacker (who wants to infer the client
used by a target node) only needs to run a single node connected to the LN P2P network
(no channels have to be opened by the attacker), so from an economic cost point of view
both techniques are free (i.e. no fees need to be paid nor there is any need to own BTC).

4.1 Scenario 1: traffic based inference

The first scenario bases the classification of the nodes on features extracted from the
network traffic between the attacker and the target. Therefore, the attacker must be able
to obtain LN P2P network packets from the target. This can be accomplished either
by sniffing traffic from a target’s node already existing connection, or opening a direct
LN P2P connection with the target. In the experimental part of this paper, we opt for
the second option (Figure 2a). However, given the extracted features, both settings are
equivalent. Note that the attack can be carried out simultaneously for many nodes (by
opening connections or capturing traffic from all of them).

The LN P2P traffic is encrypted between the two peers, but as the attacker only uses
traffic metadata, the content of the packets is not relevant.
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Fig. 2: Topology diagrams for the two scenarios. Note that, for clarity purposes, the rep-
resentation places the attacker and targets outside the P2P network cloud. Nevertheless,
technically speaking, both the attacker and targets exist within this network.

Six features are derived from the traffic between the attacker and the target node,
which correspond to the minimum, maximum, and mean packet length in each direction
of the connection.

4.2 Scenario 2: BOLT #9 features based inference

The second scenario bases the classification model on the BOLT #9 features that the
target node has enabled. These features are public information that nodes share.

Using this information the strategy becomes even easier than the previous case,
as now it is not necessary to connect directly with the target node. As shown in the
Figure[2b] only a node connected to the LN P2P network is needed by the attacker, and
this is enough to infer any node publicly announcing their feature flags.

The underlying assumption of this model is that, as not all features are mandatory
and many are still under development, different implementations will announce differ-
ent sets of features.

S Experimental setup

Bitcoin clients can be deployed on different networks (and blockchains). The real Bit-
coin network (in which the coins have actual value in the market) is called the mainnet.
However, developers often need to test protocols before deploying them in production
environments. A regtest network is a private Bitcoin network, that replicates the be-
haviour of the real network, but allows developers to control the nodes that join the
network and the mining process. Regtest networks thus allow to execute the Bitcoin
protocol in a controlled setting.

Our experiments are conducted using two different environments: one based on a
regtest network and the other on the mainnet.



5.1 Regtest network environment

Our regtest network environment has been deployed using the Polar [16] software.

Nodes are deployed using docker containers, which facilitates deploying nodes ex-
ecuting different client implementations and versions.

The ground of truth for the regtest network environment can be thus directly ob-
tained, since we are in control of all the nodes joining the network and know which
implementations they are running.

The traffic based inference (scenario 1) requires the attacker to capture LN traffic
between the attacker and the target node. In the regfest environment, both the attacker
and the target are docker containers running in the same physical machine. The traffic
sniffing software Wireshark with a lightning-dissector plugin is then used to capture
and analyse network traffic between the attacker and the target during 30 minutes.

The scenario is composed by one attacker node using LND and fifteen other nodes
divided in three groups of five, each group running one different implementation; LND,
Eclair, and CLN.

During the experiments, in order to simulate the real LN, we have emulated some
actions such as opening and closing channels or sending payments.

Extracting the data for the BOLT #9 features based inference (scenario 2) is easier
than the first technique, as we do not need to sniff network traffic using third party pro-
grams, nor directly connect with the target node. Only running one LN node is enough
to extract the needed information. After connecting to the Lightning Network, the LN
channel graph from that node’s point of view is obtained. This graph contains infor-
mation about each node’s BOLT #9 features as announced by the nodes themselves.
This scenario is composed by one attacker node using the LND implementation and
two other nodes, each using a different implementation (CLN and Eclair).

5.2 Mainnet network environment

Our mainnet network environment uses the standard Lightning Network environment,
running on top of the real Bitcoin mainnet. Our environment is composed by a full
Bitcoin node and a LN node running a LND client, which acts as the attacker.

To obtain labeled mainnet nodes to train and validate our models, we rely on pub-
lic information provided by the node operators themselves. Particularly, we have used
information from the “LN Search and Analysis Engine” [17]], where public nodes are
listed with their public keys, IP addresses, and other public attributes, and node opera-
tors may provide further information about their nodes (such as the software implemen-
tation) ]

With the public key, IP address, and port, our attacker node can connect to those
nodes using standard CLI commands and collect data in the same way we did in the
regtest environment, with Wireshark and the lightning-dissector plugin.

4 Although these nodes currently share this information voluntarily, the data collected in this
project in mainnet network environment will not be published, to prevent this critical informa-
tion from being perpetuated over time.



For the traffic based inference (scenario 1), our node has connected to 81 different
node{] (68 of which claim to use the LND, 3 Eclair, and 10 CLN), and has captured
traffic from that connection for around one hour.

Data for the BOLT #9 features based inference (scenario 2) has been collected
by looking at the LN channel graph from the point of view of our LND attacker (again,
we only needed the attacker to be connected to the LN P2P network, and no direct
connections with the target node where required).

5.3 Model training and testing

In order to determine our classification algorithm, two main characteristics have been
taken into account. First, the algorithm must be explainable, that is, its decisions should
be easy to interpret by humans. This allows us to understand what properties of the LN
protocol are being used to classify, and would facilitate future design of countermea-
sures. Second, since large datasets are not straight forward to obtain (particularly, for
the mainnet environment we are limited by the current size of the LN network), we
avoid algorithms that require a large training set. Given these characteristics, we select
a decision tree algorithm to tackle our classification problem.

A decision tree consists of a set of internal nodes (decision nodes) and leaf nodes.
The internal nodes are associated with one of the features and have two branches, each
one representing the possible values that the associated feature can take. Leaf nodes are
labelled with a class and represent the final output of a series of decisions.

We use k-fold to validate the models. On both scenarios, mainnet and regtest, we
use k-fold with k = 5 over the network traffic and BOLT #9 features datasets built from
the interactions with the labeled nodes.

Then, the performance of a model is evaluated with a confusion matrix [[18], a two-
dimensional matrix that compares the labels of the predicted classes with the true labels.
Each column of the matrix represents the number of predictions for each class, while
each row represents the instances in the actual class.

6 Evaluation of the models

This section presents the analysis conducted on the two models across the two scenarios.
Its purpose is to assess the models’ accuracy, examine the features used for classifica-
tion, and determine potential correlations between the regtest and mainnet scenarios.

6.1 Regtest network environment

In the following two subsections we present the results over the regfest environment:
the training and evaluation of the traffic based model, and the analysis of the BOLT #9
features that allow us to differentiate between the three LN node implementations.

3 This corresponds to all nodes that inform their implementation and accepted our incoming P2P
connections.



Scenario 1: traffic based inference The regtest scenario based on the network traffic
has been used to test the model and confirm the viability of differentiating the different
implementations based on the P2P network packets.

As mentioned before, we run 5-fold on the traffic captures of the 15 nodes from
the environment. The decision tree generated by the model (Figure [3a) only uses two
features to differentiate the three classes: first, the mean of the size of the outgoing
packets is used to separate CLN nodes from the rest; then, the maximum size of the
incoming packets separates Eclair and LND nodes.

We achieved an average accuracy of 86.68% (three executions obtained a 100%
accuracy and the other two got a 67%). The confusion matrix in Figure 3] displays the
outcomes of these executions, showing that the model misclassified only two nodes.
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Fig. 3: Traffic based inference over the regtest environment.

Scenario 2: BOLT #9 features based inference The regtest scenario based on the
features enabled on each implementation has been used to know and compare the fea-
tures on each node with the certainty of knowing what implementation they are using
(without having to rely on third parties). Therefore, instead of training a decision tree,
we analyse the features exhibited by the studied implementations.

Figure [fa] displays the features enabled on each implementation. As it can be seen,
LND can be easily identified if features 0, 9, 12, 31, or 2023 are enabled.

Similarly, the presence of feature 39 distinguishes Eclair, while features 47, 51, and
55 serve as identifiers for CLN E| The fact that there are unique features on different
implementations seems to indicate that it would be indeed possible to create a decision
tree to classify nodes from these features.

6 These features correspond to data-loss-protect (0), tlv-onion (9), static-remote-key (12), amp
(31), and script-enforced-lease (2023), for LND; unknown (39), for Eclair; and scid-alias (47),
zero-conf (51), and keysend (55), for CLN .



Figure {4b|shows the similarityﬂ of the BOLT #9 features configuration between the
different nodes implementations. We can see that LND should be the easiest to identify
due that the similarity between LND and the other implementations is the lowest one,
while Eclair and CLN have a higher similarity.
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Fig. 4: Comparison of the features enabled on each LN node implementation.

6.2 Mainnet network environment

After the favorable results achieved on the regfest scenario, we build the two models on
the mainnet environment. In the following two subsections, the results of these execu-
tions are analyzed and compared to the regtest models.

Scenario 1: traffic based inference The complexity of the decision tree has increased
in comparison with the regtest environment, as shown in Figure[Sa} The root of the tree
divides nodes in two groups with respect to the the mean incoming packet size. Then,
maximum packet sizes are used over the first group to differentiate the three classes;
and the minimum size of incoming packets is used on the second group to divide CLN
and LND nodes (there are no Eclair nodes on this second group).

We achieved an average accuracy of 94%. The confusion matrix in Figure [5b] dis-
plays the outcomes of these executions, showing that the model misclassifies some CLN
and LND nodes by confusing them between these two implementations, which is the
same kind of error shown in the regtest environment.

Scenario 2: BOLT #9 features based inference Figure |6a| shows the decision tree
the classification model has built. It only uses two features (flags 0 and 5) to infer the
implementation.

7 The similarity is calculated based on the intersection of two lists with the attributes of each
implementation.
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Fig. 5: Traffic based inference over the mainnet environment.

This selection of features is aligned with our previous analysis over the regtest en-

vironment (recall Figure fa), since feature 0 seems to appear only on LND and feature
5 allows to differentiate between CLN and Eclair.

This model achieves an average accuracy of 100% (Figure[6b] depicts the execution
results).
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Fig. 6: Features based inference over the mainnet environment.

In order to further explore whether regtest behaviors can be extrapolated to the
mainnet environment, we also compared the similarity between the features used by
each node in the mainnet training dataset with the reference feature vector extracted
from regtest. The results of this comparison can be seen in Table [T} where we can see
that the similarity percentage is quite high. The lowest values are around 75% for CLN
and LND, but the mode for these is around 92-93%, so we can assume that the lowest
values are from a small group of nodes that are running some old or modified version.
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Implementation H Mean Mode Median Range

LND 93.53% 92% 92% 74-100%
CLN 88.25% 93% 90% 75-96%
Eclair 94.67% 96% 94% 92-96%

Table 1: Similarity metrics between mainnet and regtest nodes

7 Inferring the distribution of LN client implementations

After training and evaluating the models for the two inference scenarios in the mainnet,
we used them to infer the LN client implementation of all nodes we were able to connect
to on the real LN. Since we do not have a ground of truth for this dataset, we cross-
checked the predictions of the two models to evaluate their accuracy. The coincidence
between both models is 97.63% (288 out of 295 nodes).

Our inference models indicate a prevalence of LND with 85% of the clients, fol-
lowed by a 15% of CLN, and less than 0.5% of Eclair. Specifically, the traffic based
model identifies 250 LND, 42 CLN, and 1 Eclair clients, while the BOLT #9 feature
flags identifies 252 LND, 42 CLN, and 1 Eclair.

8 Conclusions and further research

This paper has presented two different techniques to infer the LN client implementa-
tion. The two techniques assume different attacker’s abilities: one stronger attacker who
is able to connect to the LN client of the target node or sniff its already existing connec-
tions; and one weaker attacker which only needs to be able to connect to the Lightning
Network.

In both cases, the success rates of the inference are high: the traffic based model
obtains an accuracy of 86.68% on the regtest network and 94% on the mainnet network;
the BOLT #9 features based model achieves 100% accuracy.

With these results, we have shown that it is possible to infer the implementation of
a LN node by observing only the encrypted network traffic or public node information
like BOLT #9 features.

Even though the BOLT #9 features model based has a 100% accuracy, using both
models in parallel may be useful to validate the results and enhancing resilience to
potential future changes in client implementations.

The application of the obtained models to the live Lightning Network has resulted
in a client distribution comprising 85% of nodes for LND, 14% for CLN, and less than
0.5% for Eclair. This aligns with previous research works that were based on default
configuration parameters [15].

Our work has focused on inferring the LN client nodes are running. Future work
could be done to further refine the classifiers in order to distinguish not only the client
but also the specific version it is running. Another improvement would be to include
additional features like transaction fingerprints, that could be used to classify nodes
depending on the funding and closing transactions from Lightning Network channels.
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