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Abstract. The exponential growth of data handled by Deep Learning
(DL) applications has led to an unprecedented demand for computational
resources, necessitating their execution on High Performance Computing
(HPC) systems. However, understanding and optimizing Input/Output
(I/O) of the DL applications can be challenging due to the complexity
and scale of DL workloads and the heterogeneous nature of 1/O opera-
tions. This paper addresses this issue by proposing an I/O traces pro-
cessing method that simplifies the generation of reports on global I/O
patterns and performance to aid in I/O performance analysis. Our ap-
proach focuses on understanding the temporal and spatial distributions
of I/O operations and related with the behavior at I/O system level. The
proposed method enables us to synthesize and extract key information
from the reports generated by tools such as Darshan tool and the seff
command. These reports offer a detailed view of I/O performance, pro-
viding a set of metrics that deepen our understanding of the I/O behavior
of DL applications.

Keywords: DL - I/O Analysis - HPC - 1/O behavior patterns.

1 Introduction

Deep learning (DL) is one of the most popular computational approaches in the
field of machine learning (ML) and has been shown to improve performance in
areas such as natural language processing [1], computer vision [2], and compu-
tational biology [3]. However, the exponential growth of data handled by DL
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Spain, and the Fondo Europeo de Desarrollo Regional (FEDER) UE, under con-
tract PID2020-112496GB-100 and partially funded by the Fundacion Escuelas Uni-
versitarias Gimbernat (EUG). The authors thankfully acknowledge RES resources
provided by CESGA in FinisTerrae III to RES-DATA-2022-1-0014.
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applications has led to an unprecedented demand for computational resources,
necessitating their execution on High Performance Computing (HPC) systems
[4].

A critical and often challenging aspect of running DL applications in HPC
systems is efficiently managing file Input/Output (I/O) operations. These op-
erations are essential for loading data and storing results. Optimal handling of
these operations is important, especially when the application needs to deal with
datasets containing thousands of samples (i.e., thousands of small images) pro-
cessed by the parallel file system of the HPC systems. These operations present
I/O patterns that can become bottlenecks, limiting the overall performance of
DL applications [5].

To understand the impact of I/O on the performance of DL applications, it
is necessary to comprehend their I/O behavior in HPC systems. However, due to
the complexity of the I/O software stack for these applications, there is a need
for a method to process and depict I/O metrics and patterns in a structured way
that can guide users in the analysis of I/O performance.

In this context, we propose an I/O traces processing method that simplifies
the generation of reports about global I/O patterns and performance by utiliz-
ing specific outputs from monitoring and profiling tools. Our approach focuses
on analyzing temporal and spatial I/O patterns and their distribution on the
parallel filesystem, which can be correlated with the obtained performance met-
rics. As the authors note in [6], analyzing and understanding an application’s
I/O access patterns provides key insights into how an application’s I/O behavior
affects its performance on different systems. This allows us to understand the
I/0 behavior on the HPC system and identify and data access and distribution
patterns that minimize their impact on application I/O performance. Therefore,
our paper aims to contribute in the following ways:

— Introducing an I/O trace processing method that extracts and synthesizes
critical information from outputs generated by I/O monitoring and profiling
tools in HPC systems.

— Providing insights to aid in the identification of potential 1/O bottlenecks
within the output of compute nodes and/or storage nodes.

The structure of this article is presented as follows: Section 2 highlights the
usefulness of understanding I/O patterns by using profiling, monitoring and
tracing tools and it also provides a review of related works. Section 3 presents
our I/0 trace processing method step by step. Section 4 applies our approach to
a case study. Finally, in Section 5, we present our conclusions and future work.

2 Background

In this section we present a brief review on the importance of using I/0 tracing,
monitoring, and profiling tools to understand the 1/O behavior of DL applica-
tions. Furthermore, we review some works related to our approach.
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2.1 Analysis from data traces and Monitoring Tools

Understanding the I/O behavior in DL applications requires a meticulous and
structured approach to capturing and analyzing meaningful data. This section
breaks down into two main components that our approach needs: 1) Patterns of
Data Access in Files and 2) Profiling, Tracing and Monitoring tools to capture
these access patterns at the different levels of the I/O software stack.

Patterns of Data Access in Files: According to the authors of [7], data ac-
cess characteristics in DL workloads differ markedly from traditional workloads,
with unique patterns in memory and random accesses to large files. Tracing
and analysing I/O operations provide a detailed insight into data access and
allow measurement of the impact on application performance. This is essential
for understanding and optimizing the I/O of the DL application. Traces collect
important information about resource usage and I/O operations behavior. These
traces help in identifying bottlenecks and potential issues, and they are essential
for validating and reproducing experiments.

Profiling, Tracing and Monitoring tools: To analyze the I/O behavior
of the DL applications addressed in this study, the Darshan tool [6] has been
selected. Darshan is a tool designed to investigate the I/O performance of HPC
applications at large scale. Darshan is composed of different modules that allow
it to capture the I/O operations at different levels. Furthermore, Darshan can
be used for profiling, tracing, or monitoring of the file system operations, but
on the client side. That is, this tool is deployed in the same environment where
the DL application is running, providing direct, real-time monitoring of its 1/O
performance.

Darshan logs contains detailed information about I/O operations, timing,
performance, I/O counters and so on. Synthesizing and organizing this extensive
information is essential for practical analysis, which requires a processing method
that condenses and clarifies the data. Using as input Darshan’s logs, our proposed
method simplifies the information and facilitates the visualization of the results
of I/O behavior.

2.2 Related work

The behavior of I/O operations in DL is very important, being the focus of
studies such as [8] and [9], which examine some existing analytical tools and
compare some DL models. In [10], the authors use DXT Explorer to optimize
these I/O operations. The DLIO tool, introduced in [11], replicates I/O behavior
in scientific DL workloads, which is helpful for DL performance evaluation and
improvement. Additionally, the research in [12] focuses on the evolution of I/O
evaluation, while the research in [13]| deals with the emulation of I/O behavior
in scientific workflows. These studies highlight the influence of new workloads
on HPC systems and the need to understand data transfer between modules.
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Our work distinguishes itself by developing a method that processes I/O traces,
providing a detailed analysis of I/O behavior and identifying potential improve-
ments, thus contributing to research on I/0 performance in DL applications.

3 Proposed Trace Analysis Method

This section describes our proposed method with the essential steps to perform
the I/O trace processing of a DL application. The objective is to accurately
obtain the required information, which is fundamental for analyzing the DL
application I/O. The proposed method is composed by three main stages: Input,
Processing and Output.

3.1 Stage 1: Input

In this stage, we set the right environment for the different tools used to capture
the information related to I/O activities.

I/0 Data Acquisition Tool Deployment: In the initial phase, we enable the
DXT Darshan[6] module to obtain traces of the I/O operations at POSIX-IO
level. This detail is needed to identify and model the I/O spatial and temporal
pattern of the application. Darshan is loaded by using the LD_PRELOAD environ-
ment variable and this is exported in job submission script before the command
to run the application in the HPC system. If the application runs without any
problems, a Darshan log file is generated per each job identifier. Furthermore,
the information related with counters and performance is provided by Darshan
parser and perf.

As we deploy this tool in HPC systems, we implement scripts to take the job
identifier of each execution of the application to relate with each Darshan log
generated. This allows us to process several Darshan logs at the same time. It is
useful when users need to analyze scaling issues.

Additionally, to see CPU and memory usage for a job and evaluate if the
I/0O is having impact on these resources we use the seff command output of the
Slurm Workload Manager.

3.2 Stage 2. Processing.

In this stage, we initiate monitoring of the application by submitting the job to
the SLURM queuing system (using the command sbatch script.sh), ensuring
that the monitoring configuration established in the previous stage is fully active.
To guarantee the accuracy and reliability of the data obtained, it is essential to
perform each experiment several times. During this process, we verify that our
Job is running correctly (command squeue) to confirm that the monitoring
system is working correctly and that the binary file .darshan is being generated
completely and consistently. This step ensures the integrity of the collected data
and provides a basis for subsequent analysis.
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Data Preparation: It involves organizing and preparing the collected data for
analysis, including cleaning, filtering out irrelevant data, and transforming it into
a format suitable for analysis. The data selected from the different reports are
presented in Table 1. This table describes the relevant information extracted from
the original Seff and Darshan reports, which were obtained directly without any
additional processing. Additionally, it details the specific element extracted from
each report and explains its usefulness in the context of our work.

Table 1. Data selected for the traces I/O analysis

Report |Information provided| Element extracted from the report Utility
§ - § Allows you to track and audit resource usage.
Job Metadata Job ID, cluster, user/group, status Provides context for the execution of the job.
CPU and Memory CPU used, CPU efficiency, Core-walltime, Identifies resource utilization efficiency, helping
Seff - - . L
Efficiency memory efficiency. to optimize CPU and memory allocation.
Computing and Nodes, cores per node, job clock time, Provides data on the processing Ca‘p‘dc.lty used.
Helps evaluate execution time in relation to
Memory Resources memory used.
allocated resources.
General Job Metadata |Job ID, nprocs, runtime, file id, fs type, Allows mapping I/O operations to specific
and File System Lustre stripe size, Lustre OST obdidx. resources.
Darshan - -
. . Provides data on the volume of I/O generated.
DXT . File name, rank, hostname, write count, !
POSIX Module Data . Helps to understand how the workload
Report read count, Lustre stripe count, Module. S
is distributed.
Temporal and Spatial ~|[Wt/Rd, Segment, Offset, Length, Start(s), Provides specific details about I/O operations,
Tracking Metrics End(s), OST. essential for identifying and resolving bottlenecks.
Identification and Job ID, nprocs, run time, record _id, Module,|Defines the context and uniqueness of the
Darshan| - . T ! -
Parser Context of Work fs type, file name analyzed work.
POSIX READS/WRITE, POSIX BYTES, . . .
Report i’gtsrléis Performance POSIX MAX BYTE, POSIX SIZE, ig)é;()l(ez acnjszijliesd view of the performance of
POSIX F READ, POSIX F WRITE B P )
Performance Number of OSTs, stripe parameters, Provides a detailed understanding of how I/O
Analysis in LUSTRE POSIX time resources are configured and used.
Darshan|General Job Metadata |Job ID, nprocs, run time, total bytes Hclp§ undqstand the scale of operations and
I/0O intensity.
Perf 1/0 timing for unique files (seconds) X
Report |I/O Performance /2 ming Jue "Les 18econcs), Allows you to evaluate the impact of concurrent
. I/0 timing for shared files (seconds), .
Metrics operations on overall performance.
Aggregate performance

Report Generation and Analysis: the collected traces are processed to gen-
erate reports summarizing the performance and efficiency of I/O operations.
This includes descriptive statistics, visualizations, and the detection of initial
patterns.

A- Report: Utilized Resources by the job. The utilized resources per
job can be obtained by the seff command line. seff’s output presents mainly
information related to the memory utilization and CPU efliciency for completed
jobs. The data obtained includes the following:

1. Left Column - Job Metadata: Job ID: This is the unique identifier assigned
to the job by the cluster management system. Cluster: The specific cluster
in which the job was run that is relevant to understanding the operational
context. User/Group: The identity of the user or user group that submitted
the job is critical for auditing and tracking resource utilization. State: The
final status of the job (e.g., successfully completed, failed, canceled), pro-
viding an immediate view of the job’s outcome without going into specific
performance details.
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2. Center Column - CPU and Memory Usage Efficiency Metrics: CPU Utilized:
is the total CPU time the job has utilized. CPU Efficiency: A measure that
reflects how effectively the allocated CPU time has been used, calculated as
the ratio of CPU time to total available CPU time. Core-walltime: The
product of the wall time and the number of cores, providing a composite
measure of processing time consumed. Memory Efficiency: Similar to CPU
efficiency, this metric evaluates the efficiency of memory usage allocated to
the job.

3. Right Column - Compute and Memory Resources Used: Nodes: The total
number of compute nodes assigned to the job. Cores per node: The number
of processor cores available per node, which is essential to understanding the
computing capacity per node. Job Wall-clock time: The total time from
start to completion. Memory Utilized: The memory used during the job
execution.

Fig. 1 shows in orange the data from the original report and in sky-blue the data
extracted for the performance analysis in the next steps of our method. The three
main columns represent the different categories of data to be extracted for the
report.

Report: Utilized Resources by the Job
REPORTS IDENTIFIER

(seff + Job ID)
b DATA FROM THE
ORIGINAL REPORT
Job ID CPU Utilized Nodes
EXTRACTED DATA
Cluster CPU Efficiency Cores per node FROM THE ORIGINAL
REPORT FOR THE
User/Group Core-walltime Job Wall-clock time PERFORMANCE
State Memory Efficiency Memory Utilized ANALYSIS REPORT

Fig. 1. Utilized resources by the Job

B- Darshan Log Files: We run our scripts, which process the log files gener-
ated by Darshan while monitoring the application, to generate the DXT, PARSER,
and PERF reports. These reports are then used to apply our method for analyzing
the I/O performance of the application. Our method focuses on the I/O done
by the application on the datasets.

Darshan DXT Report Processing: This processing consists of extracting
and organizing the relevant information from the DXT reports. Fig. 2 shows the
main information into three columns, representing different strata of metadata
and metrics:

1. General Metadata of the Job and the File System (Left Column): Job ID,
nprocs, run time: These attributes define the operational context of the
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computational job, including the unique job identification, process concur-
rency, and duration. file id, fs type: These are the identifiers that spec-
ify the file and the type of file system used, essential for mapping I/O op-
erations to a specific storage resource. Lustre stripe size, Lustre 0ST
obdidx: These are parameters related to the configuration of LUSTRE, a
parallel file system, where the ’stripe size’ and ’OST obdidx’ are critical to
understanding data distribution and storage location.

. POSIX DXT Module Data (Central Column): file name, rank, hostname:
These fields directly reference the file and execution context, including the
rank of the MPI process and the compute node. write count, read count:
Quantitative metrics of read and write operations provide insight into the
volume of I/O that a specific job generates. Lustre stripe count, Module:
Lustre’s stripe count and the identification of the Darshan module used
indicate the parallelization configuration and the active tracking subsystem.

. Temporal and Spatial Tracking Metrics (Right Column): Wt/Rd, Segment,
Offset, Length, Start(s), End(s), O0ST: These parameters outline the
I/0 profile at a granular level, detailing whether the operations are read or
write, the specific location within of the file (segment and offset), the amount
of data involved (length), and the timing of the operations (start and end),
as well as the Object Storage Targets (OSTs).

Darshan Extended Tracing (DXT) Report REPORTS IDENTIFIER

(darshan-dxt-parser file_name.darshan > ~/file_name.txt)
DXT POSIX module data

1
extract

DATA FROM THE
ORIGINAL REPORT

-Job ID file name — Wt/Rd EXTRACTED DATA
| o - [Seament FROM THE ORIGINAL
REPORT FOR THE
—— run time - hostname . Offset PERFORMANCE
ANALYSIS REPORT
. file id - write count Length
EXTRACTED DATA
—. fs type - read count . Start(s) FROM THE ORIGINAL
. Lustre stripe size - Lustre stripe count —— End(s) REPORT FOR THE
SPATIAL AND
- Lustre OST obdidx - Module - OST TEMPORAL PATTERN

Fig. 2. Main I/O data extracted from DXT report

Darshan Parser Report Processing: darshan parser command provides
detailed set of I/O performance metrics and counters for a specific job executed
in a HPC system. Below, we summarize the main information extracted from

the report to be used by our method:

1. Job Identification and Context: attributes such as Job ID, number of pro-

cesses (nprocs), run time (run time), record identifier (record id), module
used (Module), file system type (fs type), and file name (file name) are essen-
tial to characterize the operational context and uniqueness of the analyzed
job.
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2. POSIX Performance Metrics: metrics related to the POSIX module, offering
an overview of the number and volume of read and write operations (POSIX
READS/WRITE), byte access (POSIX BYTES and POSIX MAX BYTE),
and the sizes of the I/O operations (POSIX SIZE * - *). The specific entries
for reading and writing files (POSIX F READ and POSIX F WRITE) offer
a more focused look at individual file operations.

3. Performance Analysis in LUSTRE: The metrics associated with the LUS-
TRE file system provide detailed insight into the configuration and perfor-
mance of a parallel file system. Metrics include the number of Object Storage
Targets (OSTs), which directly influence the capacity and speed of I/0O op-
erations, and stripe parameters (size and width), which determine how data
are distributed and accessed across multiple OSTs. Additionally, the time
associated with metadata operations (POSIX F META TIME) is important
to understanding the metadata management overhead.

Darshan Parser Report
(darshan-parser file_name.darshan > ~/file_name.txt)
POSIX module data, LUSTRE module data

extract

1

- Job ID . file name - POSIX F READ - LUSTRE MDTS

- nprocs - rank - POSIX F META TIME - LUSTRE OSTS

- run time - POSIX READS - POSIX F WRITE - LUSTRE STRIPE SIZE

- record_id - POSIX WRITES . POSIX SIZE * _* - LUSTRE STRIPE WIDTH

. Module - POSIX BYTES - POSIX MAX BYTE . LUSTREOSTID *

- fs type - POSIX CONSEC * - POSIX SEQ * L - LUSTRE STRIPE OFFSET
REPORTS IDENTIFIER EXTRACTED DATA FROM THE ORIGINAL REPORT FOR THE

PERFORMANCE ANALYSIS REPORT
DATA FROM THE ORIGINAL REPORT

Fig. 3. Darshan Parser Report

In Fig. 3, it can be observed in sky-blue the selected information from the
original report to be used to synthesize new analytical reports. These reports are
important for understanding the performance of a specific job and for helping
to identify potential I/O bottlenecks and optimization points.

Darshan Perf Report Processing: darshan perf command provides I/0
performance metrics for shared and independent files accessed by application.
As our focus is on performance evaluation, we extract the following data:

1. General Job Metadata (Left Column): Job ID: It is the identifier of the job,
providing a unique reference to the set of supercomputing tasks in question.
nprocs: Indicates the number of parallel processes running, which is critical
to understanding the scale of parallelism involved. run time: Represents
the duration of the supercomputing work, which is essential for evaluating
time efficiency. total bytes: Quantifies the total volume of data handled,
providing a metric of the I/O intensity of the work.
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2. 1/0O Performance Metrics (Right Column): I/0 timing for unique files
(seconds): Reflects the I/O time spent on unique files, essential for dis-
cerning file system performance when processes access their own files with-
out sharing. I/0 timing for shared files (seconds): Measures the I/O
timing for files shared between processes, which can indicate how concurrent
operations affect performance. Aggregate performance: Displays aggregate
performance metrics based on the slowest time recorded, which could iden-
tify the worst-case performance among all processes and provide insights for
optimizations.

Darshan Parser Perf Report

darshan-parser —perf file_name.darshan > ~/file_name.txt)
POSIX module data

extract

Job ID 1/0 timing for unique files (seconds) unique files: slowest rank io time
nprocs 1/0 timing for shared files (seconds): shared files: time by slowest
run time Aggregate performance: agg time by slowest
total bytes Aggregate performance: agg perf by slowest
REPORTS IDENTIFIER EXTRACTED DATA FROM THE ORIGINAL REPORT FOR

THE PERFORMANCE ANALYSIS REPORT
DATA FROM THE ORIGINAL REPORT

Fig. 4. Perf report

Fig. 4 presents data selected in sky-blue from the original report, which are
used in performance analysis in our method.

Performance analysis report: Based on the previous reports obtained in the
base processing, our automated method processes the files and creates an overall
report consolidating the previous reports, using the JobID as an index.

This global report summarizes the calculation of the information relevant
to our analysis. Among the relevant data and its calculations are the following:
Total Metadata Operations, Total Data Access Operations, Data Access Oper-
ations by Nodes, Data Access Process Operations, I/O Operations per second
(IOPs), Bytes per Node, Bytes per Process, Total Operations. Fig. 5 depicts
the different original reports and data selected from them to be used by our
method. The selected data allows us to analyze the I/O performance of the DL
application.

3.3 Stage 3. Output:

Taking all the information selected from the original reports two main outputs
are available for the user: 1) Spatial and Temporal Pattern Analysis and 2)
Performance Analysis.
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Spatial and Temporal Pattern Analysis: An analysis of the I/O opera-
tions from DXT reports is carried out to identify temporal and spatial patterns.
Users can plot these patterns and analyze the behavior of I/O events based on
their order or timestamp. This analysis enables users to identify if there is a
serialization of I/O operations by examining the sequence and timing of these
operations. If a large number of I/O operations occur in a sequential manner
without overlapping, this indicates serialization.

Furthermore, by comparing these patterns against expected parallel behavior,
users can determine if the serialization is caused by the underlying I/0 system’s
inability to handle parallel requests efficiently or by the 1/O pattern generated
by the application itself. Spatial and temporal access patterns are influenced by
both the file type and the file system. While the file type dictates the logical
organization of data, the file system’s design and performance characteristics
can affect how efficiently these patterns are handled, especially in parallel file
systems.

Additionally, these patterns can be used to extrapolate the count of I/0O
operations and total bytes for different numbers of processes and 1/0O workloads,
providing valuable insights for scaling and optimization.

Performance Analysis: Finally, the performance of the I/O operations is eval-
uated based on the previous analysis, as shown in Fig. 5. This step may involve
comparing performance metrics to identify optimization opportunities. Fig. 5
shows the detailed procedure for monitoring and evaluating job performance in
HPC systems. Using data selected from the seff command and the different re-
ports of Darshan tool, we provide a comprehensive view of I/O performance that
spans from memory utilization to distribution of I/O operations on the paral-
lel file system. This comprehensive approach allows for pinpointing inefficiencies
and understanding the interaction between application I/O patterns and the file
system’s capabilities.

4 Experimental Validation

In this section, we apply our proposed method in a real DL application. We use
Deep Galaxy application that aims to leverage the pattern recognition capability
in modern DL to classify the properties of galaxy mergers [14]. The dataset
contains 35,784 black and white images from simulations of galaxy mergers of
different mass and size ratios. These images are stored in a compressed HDF5
dataset, with an internal structure of 36 folders each with 14 subfolders that
represent the different positions of the camera and in each subfolder 71 images
are stored with a resolution of 1024*1024 pixels each one, for a total dataset file
size of 6.1 GiB. Below we show some graphical reporters designed to analyze
DeepGalaxy 1/0.

Figures 6 and 7 focus on the spatial and temporal pattern of the I/O op-
erations. In Figure 6, which is a 3D representation, the X-axis, identified as
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"Process 10", represents the different processes involved in the I/O opera-
tions; the Y-axis displays the "Temporal Order", indicating the sequence in
which the I/O operations occurred; and the Z-axis is the "Offset (GiB)", rep-
resenting the position in the file where the read or write operations take place,
expressed in Gibytes (GiB). The legend on the right indicates the size of the read
requests ("Read Request Size (KiB)") with a color scale ranging from green,
red and blue. In Figure 7, which is a 2D representation, the X-axis again repre-
sents "Process 10," while the Y-axis shows the "Offset (GiB)." The color scale
remains the same, indicating the size of the read requests. To understand the
underlying patterns and detect potential performance bottlenecks, we proceed
to perform a comparative analysis of two graphs representing I/O operations.

4.1 Spatial and Temporal Pattern Analysis

The interaction of I/O operations within a distributed computing environment
is very complex. This analysis aims to show these operations’ spatial orientation
and temporal progression. With this information, we aim to gain insight into
the efficiency of data management and the effectiveness of resource utilization
in HPC systems.

Spatial and temporal pattern of I/0 operations. Spatial and temporal pattern of 1/0 operations.
Format File: HDFS5. File System: nfs Format File: HDF5. File System: nfs
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Fig. 6. Temporal I/0O pattern on a NFS file system. All processes access a single shared
file at a different file offset. 4 MPI processes per compute node.

Fig. 6 shows the spatial and temporal pattern of DeeGalaxy when the dataset
is read from an NFS file system. However, it is important to note that this pattern
is similar on the Lustre file system. This is because the dataset is stored in an
HDF5 file; therefore, the observed pattern is the same on both file systems. The
only difference will be observed in the timing of the I/O operations, but not in
their order.

Fig. 6(a) and Fig. 7(a) depicts the variety in the size of I/O requests. The
largest request is 66.91 KiB and the smallest request is noticeably smaller, at only
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8 bytes. The average size of requests hovered at a median of 6.32 KiB. A total of
1,038,638 read-only I/O operations were performed. These read operations were
spread over a set of 4 nodes and orchestrated by 16 I/O processes, following a
shared data access pattern. Additionally, we observed a balanced number of I/0O
operations per process at POSIX-IO level. In terms of data volume, a total of
6.92 GiB is moved on the filesystem, which is 0.82 GiB more than the file size
of the dataset.

Fig. 6(b) and Fig. 7(b) show variability in the size of I/O requests, with the
maximum request size reaching 66.91 KiB and the minimum at only 8 Bytes.
The average request size was approximately 5.91 KiB. Throughout the same
period, there were 1,226,949 I/O operations performed, this time distributed
over 16 nodes and managed by 64 I/O processes. The I/O aggregate data for
these operations was also 6.92 GiB. In these pictures, we can also see whether
there is an overlap in accesses or if each process read at a different file offset.

Fig. 6(a) and Fig. 6(b) depict how requests are distributed across time and
file offset, which is critical for understanding access patterns and performance.
Increasing from 4 to 16 nodes and from 16 to 64 I/O processes, suggesting that
the NFS infrastructure can efficiently handle a growing number of operations
without significantly degrading performance.

Figures 7(a) and 7(b) provide a 2D view of the I/O operations per process
and their file offset, making it easier to identify whether the I/O processes access
different offsets or if there are overlapping accesses to the same offset. In this
case, each process reads its part of the file in parallel, so there is no overlap in
accesses. This means that if we see any I/0 serialization at runtime, it will be
due to the underlying I/O system rather than application’s I/O pattern.

Spatial and temporal pattern of 1/0 operations. Spatial and temporal pattern of 1/0 operations.
Format File: HDFS5. File System: nfs Format File: HDF5. File System: nfs
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Fig. 7. Spatial I/O pattern on a NFS file system. All processes access a single shared
file at a different file offset. 4 MPI processes per compute node.
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4.2 DeepGalaxy Performance Analysis

Extending our previous exploration of DeepGalaxy’s I/O operations, we present
four new plots for performance analysis, each showcasing results for a different
number of processes. Furthermore, we executed the application reading dataset
from a NFS and a Lustre filesystem. Fig. 8(a) and Fig. 8(b) present the I1/0
performance of the Deep Galaxy application, highlighting the influence of the
count of processes and nodes. The x-axis represents the mapping used in each
experiment. In all the cases, 4 processes are mapping in each compute node.
So the label 16p-4N means a mapping of 16 processes distributed in 4 compute
nodes. The y-axis correponts to time in seconds and the secondary y-axis displays
the data transfer rate in GiB/s.

Fig. 8(a) indicates that NFS filesystem has significant performance fluctu-
ations. At 16p-4N, the average I/O time was 14.26 seconds with a standard
deviation of 4.30. The data transfer rate was relatively stable at 0.48 GiB/s
(Std of 0.16). As the process count increased to 32 on 8 nodes, the average I/0
time dropped to 8.39 seconds with a data transfer rate of 0.79 GiB/s. With 48
processes on 12 nodes, the I/O time slightly reduced to 7.54 seconds, though
variability increased (Std of 3.39) with a peak data transfer rate of 1.00 GiB/s.
However, at 64 processes on 16 nodes, the I/O time surged to 37.05 seconds,
suggesting instability or potential bottlenecks and the data transfer rate signifi-
cantly fell to 0.30 GiB/s with Std of 0.22.

In Fig. 8(a), it can be seen that despite initial reductions in I/O time, a
significant spike and high variability in I/O time occur for the 64p-16N mapping.
The data transfer rate increases up to 48p-12N, peaking at 1.00 GiB/s, before
dropping sharply for 64p-16N. The high standard deviations in both I/O time
and data transfer rate at 64p-16N indicate that NFS has problems managing
the increasing number of small I/O operations for 64 1/O processes. This is an
expected behavior because NFS is not designed to manage parallel I/O accesses.

Fig. 8(b) present the I/O performance of DeepGalaxy when reading dataset
from a LUSTRE file system. For the 16p-4N mapping, an average 1/O time of
9.64 seconds is reported with a stable data transfer rate of 0.66 GiB/s. With
32 processes on 8 nodes, I/O time decreases slightly to 9.15 seconds with an
increased data transfer rate of 0.72 GiB/s. For 48 processes on 12 nodes, the
I/O time further declines to 7.60 seconds and the data transfer rate climbs to
0.91 GiB/s. At the highest scale tested, 64 processes on 16 nodes, the average
I/O time improves to 6.63 seconds with a data transfer rate peaking at 1.05
GiB/s.

Therefore, as the number of processes and nodes increases, both filesystems
exhibit improved I/O times and similar data transfer rates. However, the vari-
ability in I/O times suggests that the Lustre filesystem is more appropriate
for a larger number of I/O processes. The comparison clearly favors the Lus-
tre filesystem, which consistently outperforms NFS in all metrics at the scales
tested, underscoring its superior management capabilities in handling parallel
I/O and load balancing on the data servers.



An Empirical Method for Processing 1/O Traces 15

PERFORMANCE ANALYSIS: 10 TIME(S) AND DATA TRANSFER RATE PERFORMANCE ANALYSIS: 10 TIME(S) AND DATA TRANSFER RATE
FILE SYSTEM: NFS - FILE FORMAT: H5 - DATA LOADING MODE SHARED FILE SYSTEM: LUSTRE - FILE FORMAT: H5 - DATA LOADING MODE SHARED

7 Data Transfer Rate (GiB/s) — 10 Time(s) 11

Data Transfer Rate (GiB/s) — 10 Time(s) |

Y

3

Time(s)
©

Time(s)

16p-aN 48p-12N 64p-16N 16p-4N 48p-12N 64p-16N

32p-8l 8| 32p-8| 8|
Processes 10(p) - Nodes(N) Processes 10(p) - Nodes(N)

(a) Data Transfer Rate and IO Time. File (b) Data Transfer Rate and 10 Time. File
System: NFS System: LUSTRE

Fig. 8. DeepGalaxy I/O Performance by using different number of processes.

5 Conclusions

We have presented our method for analyzing I/O traces of DL applications ex-
ecuted in HPC systems. Experimental validation has shown that our method
provides useful information to guide users in analyzing the I/O behavior of DL
applications. The temporal and spatial analysis of I/O patterns has offered a
comprehensive understanding of 1/O behavior, enabling the identification of po-
tential bottlenecks and areas for performance improvement. Additionally, our
approach has proven effective in synthesizing and extracting key information
from reports generated by monitoring tools like Darshan and the seff com-
mand from SLURM.

Our research has shown that using a Lustre file system instead of NFS for
specific workloads can significantly reduce 1/O time and increase data transfer
rates. In our experiments, the DeepGalaxy application demonstrated a reduction
in I/O time from 37.05 seconds on NFS to 6.63 seconds on Lustre when the
number of processes was increased from 16 to 64.

Understanding spatial and temporal I/O patterns is fundamental to explain-
ing performance variations. For instance, significant differences in I/O perfor-
mance were observed for the DeepGalaxy application when using different com-
pute nodes and processes across various file systems. These differences highlight
issues such as inefficient data access sequences and uneven distribution of I/0
loads. By analyzing these patterns, we can identify and address these issues,
leading to improved performance and efficiency.

For future work, we propose to apply the results of our method to address
I/O optimization techniques such as caching and prefetching, distributing I/0
operations across data servers, and identifying I/O intensity during peak de-
mand periods to avoid I/O system saturation. Although I/0 intensity largely
depends on the application, it can be managed by implementing adaptive 1/0O
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strategies that respond to varying load conditions. For example, during periods
of high demand, dynamically reallocating I/O resources and prioritizing critical
I/O operations can help mitigate saturation. Additionally, predictive modeling
based on historical I/O patterns can forecast high-intensity periods, allowing
for preventive adjustments in the I/O infrastructure. By implementing these
optimization techniques, we aim to balance the load and improve the overall
efficiency of the I/O system.
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