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CARLESON’S £2 CONJECTURE IN HIGHER DIMENSIONS AND
FABER-KRAHN INEQUALITIES

XAVIER TOLSA

ABSTRACT. In this paper we survey the proof of Carleson’s €2 conjecture in the plane and its

extension to higher dimensions. We also describe its connections with rectifiability and the so-
called Faber-Krahn inequalities for the first eigenvalue of the Laplacian.

1. INTRODUCTION

One of the main objectives of geometric measure theory is the characterization of n-rectifiable
sets. Recall that a set £ C R? is n-rectifiable if there are Lipschitz maps f; : R* — R¢, i € N,
such that

() (B \ U, fi(R)) =0.

We do not require n-rectifiable sets to have finite Hausdorff measure H". Instead, (1.1) ensures
that H"(E) is o-finite. Some well known classical characterizations of n-rectifiable sets, mainly
due to Besicovitch, Federer, Marstrand, Mattila, and Preiss, are in terms of existence of tangents,
densities, and the behavior of orthogonal projections.

In the 1990’s, there appeared a need to develop a quantitative theory of rectifiability because
of the possible applications to the Painlevé problem about removable singularities for bounded
holomorphic functions and also because of the wish to understand the L? boundedness of sin-
gular integral operators on suitable rectifiable sets. This led to study the connection between
rectifiability and the boundedness of different square functions involving different coefficients en-
coding geometric information. One of these square functions is the so-called Carleson’s e2-square
function.

Let 1 be a Jordan domain in R?, and set I' = 9Q; and Qy = R? \Qil For z € R? and r > 0,
denote by I1(z,r) and I3(z,7) the longest open arcs of the circumference dB(x,r) contained in
Oy and Qq, respectively (they may be empty). Then one defines

(1.2) e(x,r) = % max (‘m‘ — 7-[1(]1(56, 7))

T — ’Hl(Ig(x,r))D.

)

The Carleson £2-square function is given by

L r
(1.3) E(x)? ::/0 e(z,r)? d7

Carleson’s conjecture, now a theorem, asserts the following.
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2 XAVIER TOLSA

Theorem 1.1. Let Q; C R? be a Jordan domain, Qo = R?\ Qi, and I' = 0Qy. Let £ be the
associated square function defined in (1.3). Then the set of tangent points for Q1 coincides with
the subset of those points x € T’ such that £(x) < oo, up to a set of zero measure H'. In particular,
the set G = {x € I': £(x) < oo} is 1-rectifiable.

The fact that £(x) < oo for H!-a.e. tangent point in a Jordan curve was proved by Bishop in
[Bil] (see also [BCGJ]). The most difficult implication of Theorem 1.1, i.e, the fact that the set G
is 1-rectifiable and tangents to I' exist for H'-a.e. z € G, was proved more recently by Ben Jaye,
Michele Villa, and the author of this paper [JTV].

Regarding the notion of tangent for a domain, it is appropriate to consider a somewhat more
general notion involving two disjoint domains. For a point 2 € R"*!, a unit vector u, and an
aperture parameter a € (0, 1) we consider the two sided cone with axis in the direction of u defined
by

Xo(z,u) = {y e R" 1 |(y —z) - u| > aly — z[}.
Given disjoint open sets 1,0y C R™! and x € 901 N 0Ny, we say that z is a tangent point for
the pair 1, Qs if z € 9Q; N 0N, and there exists a unit vector u such that, for all a € (0, 1), there
exists some r > 0 such that

(09 U02) N Xy (z,u) N B(x,r) =,

and moreover, one component of X,(z,u) N B(x,r) is contained in 2 and the other in Qs.
The hyperplane L orthogonal to u through x is called a tangent hyperplane at x. In case that
0y = R 1 \971, we say that x is a tangent point for ;.

Recently, in [FTV2], Ian Fleschler, Michele Villa, and the author have proven a higher dimen-
sional version of Carleson’s conjecture. Here we will review this result and the main ideas of the
proof. We will also see the connections of Carleson’s conjecture with Jones’ traveling salesman
theorem, the Alt-Caffarelli-Friedman formula, and quantitative Faber-Krahn inequalities which
motivate this extension.

2. CARLESON’S CONJECTURE AND JONES’ TRAVELING SALESMAN THEOREM

In the pioneering work [Jo], inspired in part by the multi-scale Littlewood-Paley techniques
to characterize the regularity of functions in harmonic analysis, Peter Jones proved a celebrated
traveling salesman theorem which quantifies the length of the shortest curve that contains a given
set in the plane in terms of some [, coefficients associated with the set. Jones’ result has been
very influential and has been the starting point of what is known now as the theory of quantitative
rectifiability.

To state Jones’ theorem we need to introduce some notation. Given a cube Q C R%, we denote

, dist(y, L) }
pr— f N
Boo,(Q) in {ysgg@ Q) J

where the infimum is taken over all the lines L C R and £(Q) is the side length of Q. So
20(Q) Boo,r(Q) is the width of the thinnest strip that contains £ N Q. The coefficient So g(Q) is
scale invariant and it measures how close F N @ is to some line.

Theorem 2.1 ([Jo]). A subset E C R? is contained in a curve with finite length if and only if
2.1) 3 o 5(3Q)%(Q) < o0,

QeD



CARLESON’S CONJECTURE 3

where D is the family of all dyadic cubes in R® and 3Q stands for the cube concentric with Q with
triple side length. Further the length of the shortest curve I' containing E satisfies

(2.2) HI(D) & diam(E) + ) foo0(3Q)*Q),
QeD
where the implicit constant is an absolute constant depending only on d.

The notation A =~ B means that there exists an absolute constant C' > 0, perhaps depending
on the ambient dimension, such that C~'A < B < CA. Theorem 2.1 was proved in the planar
case d = 2 by Jones [Jo], while the extension to subsets of R? with d > 3 (more precisely of the
fact that (2.2) holds for the shortest curve I' containing F) is due to Okikiolu [Ok].

Next we will announce a theorem of Bishop and Jones from 1994 that characterizes the existence
of tangents to a Jordan curve in terms of the coefficients 5. To this end, it is convenient to change
the cubes @ in the definition of the . coefficients by balls B(x,r). So, given E C R? and a ball

B, we denote
dist(y, L)

) = i1 { 20, S |

where the infimum is taken over all the lines L € R? and r(B) denotes radius of B. We will
also write foo p(z, ) instead of oo p(B(x,r)). The aforementioned theorem of Bishop and Jones
asserts the following:

Theorem 2.2 ([BJ]). Let Q C R? be a Jordan domain and let T = 02. Then, up to a set o null
measure H!,

1
d
(2.3) / Boor(z,1)? T'e atzel & Qhasa tangent at x.
0 T

The proof of this theorem relies heavily on Jones’ Theorem 2.1. Remark the function

1 dr
J(x)? = / Boor(z,7)? —
0 T
is called Jones’ square function.
Using Theorem 2.2, we can now prove the “easy” implication in Theorem 1.1.

Proof of the finiteness of Carleson’s square function at H'-a.e. tangent point. It is enough to show
that, for any z € I' and r > 0 small enough

5('1;’ T‘) S Boo,l"(l'a T)‘

This follows by elementary geometric arguments. Indeed, let y and z be the extremes of the
arc I;(xz,r). Denote 0;(x,r) the angles subtended by the arcs I;(z,r). See Figure 1. It is clear
that the triangle with vertices x,y, z is contained in the thinnest strip containing I' N B(z,r) (we
suppose that B(z,r) is closed). Then, B 154 1 (2,7) < Boo,r(,7), or equivalently, the height of
the triangle from the vertex x till the side yz must be smaller than the width of that strip. That
is, T cos % < 2r Boor(z, 7). Thus,

m—01(x,T)

2

Obviously, the same estimate holds interchanging 6, (z,r) by 62(x,r), and so it follows that
e(z,r) < cPoor(, 7).

|m — 61(x,r)| = |sin

01(x,r)
2

= ’cos ’ <2Bsr(z, 7).

g
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Boo,r(z,7) 27

FIGURE 1. Comparison between oo r(x,r) and e(z, 7).

The results of Bishop and Jones have been extended to higher dimensions in different ways.
In particular, David and Semmes, in the 1990’s, introduced and studied the notion of uniform
n-rectifiability for n-Ahlfors regular sets. A set E C R? is n-Ahlfors regular if

H'(ENB(xz,r))~r" forallz e FE,0<r <diam(E).

David and Semmes [DS1] proved that uniform n-rectifiable sets can be characterized in terms
of some coefficients 38, p which we proceed to define. Given an H"-measurable set £ C R4,
1<p<oo, zeR? and r > 0, we denote

1 dist(y, L) \? Vp
Bp.p(x,7) = inf (n/ <> dH”(l/)) ,
L ™" JENB(z,r) r

where the infimum is taken over all the n-planes L C R,

To describe the results of David and Semmes on uniform rectifiability would lead us too far
in this paper. See the monographs [DS1], [DS2]. Instead, we just recall the following result,
which characterizes n-rectifiable sets in terms of the finiteness of a square function involving the
B2 coefficients. It is worth comparing the rectifiability criterion below with the ones appearing in
Theorems 1.1 and 2.2.

Theorem 2.3. Let E C R"™ be H"-measurable and such that H"(E) < oco. Then E is n-rectifiable
if and only if

1
(2.4) / Ba. g (,7)? dr < 00 for H"-a.e. xz € E.
0 r

The fact that n-rectifiable sets satisfy (2.4) was proven in [To], while the converse implication
is by Azzam and the author of this paper [AT]. Remark that the connection between rectifiability
and the §s coefficients has been used to study the singular set for harmonic maps by Naber and
Valtorta [NV]. Further, their techniques has been extended to the study of other related free
boundary problems.
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3. CARLESON’S CONJECTURE IN HIGHER DIMENSIONS. GETTING RECTIFIABILITY

One of the difficulties in trying to extend Carleson’s conjecture to higher dimensions is to guess
which could be such natural extension and which coefficients one could use. Indeed, in the plane
Carleson’s conjecture involves Jordan domains, and moreover the arguments in [JTV] make an
extensive use of the connectivity of the boundary of such domains. In particular, the connectivity
implies the lower content regularity of 9€2; when ; is Jordan domain. That is, it holds

HL (B(z,r)n o) > r forall z € 0Q, 0 < r < diam(€;).

Here HZ, denotes the s-dimensional Hausdorff content, defined by H5 (F) = inf{), diam(A;)* :
E C |J; A;} for any set E in the Euclidean space. In R"*1 it is well known that the connectivity
of the boundary of a domain is a rather weak assumption and no quantitative information about
the n-dimensional content H? (B(z,r) N d81) can be obtained from this.

Next we will define the coefficients e, (z,r) introduced in [FTV2]. For x € R**! 7 > 0 and an
affine half-space H such that © € 0H, denote

(3.1) S}q(x,r) = S(x,r)N H, S%{(x, r) = S(x,r) N (R \ H),

where S(x,7) = OB(x,7). Given two disjoint Borel sets 01, C R we put

1
(3.2) (.7 = imEH ((Sh( ) \ ) U (5 () \ )
It is clear that if ©Q; and €y are complementary (open) half-spaces, then e,(x,r) = 0 for any
x € 0001 = 0Q and r > 0. Note that in the plane e1(x,r) < e(z,7), but the opposite inequality
fails, in general. We write

dr

1
(33) gn(x)Q = / En({L‘,T‘)Q o
0 T
One of the main results from [FTV2] is the following:

Theorem 3.1. For n > 1 let Q1,0 C R be two disjoint Borel subsets. Then the set {z €
R &, (z) < oo} is n-rectifiable.

Remark that this theorem is valid for arbitrary disjoint Borel sets €; (not necessarily open)
and it is new even in the plane. So the finiteness of the square function &, (smaller than £ in
the case n = 1) on some set E C R7H1 \ Q1 U Qy implies the n-rectifiability of E and so the
fact that E has o-finite measure H". In turn, the n-rectifiability of £ implies the existence of
approximate tangents of E at H™-a.e. z € E (in case that H"(E) < 00). So at first sight, this
result may look stronger that Theorem 1.1. However, Theorem 3.1 does not ensure the existence
of “true” tangents for the pair of sets €, Qs (even if they are open). So the assumptions in the
this theorem are weaker than the ones in Theorem 1.1, but the conclusion is also weaker.

So to guarantee the existence of tangents for {21, {29 we need stronger assumptions, and probably
other coefficients than the e,’s. Indeed, notice that e,(x,r) does not detect sets of dimension
smaller than n, nor purely n-unrectifiable subsets. For example, let {25 be the lower (open) half
space R™™! and let ©Q; be ]RTFI minus a union of countably many compact sets which accumulate
on the hyperplane F := {z,41 = 0} and either have dimension smaller than n or are purely
n-unrectifiable. Then it is clear that &,(z) = 0 in E, but one may construct ; so that there are
no tangents for the pair 21, (2o, at any = € E.
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The proof of Theorem 3.1 combines compactness arguments and a stopping time construction
inspired by techniques developed previously by David and Semmes, and extended to the non-
doubling setting by Léger. The arguments are more elaborated and difficult than the ones from
the planar case in [JTV].

4. THE ALT-CAFFARELLI-FRIEDMAN MONOTONICITY FORMULA AND THE
FRIEDLAND-HAYMAN INEQUALITY

Given a bounded open set V in a Riemannian manifold M" (such as R™ or S™), we say that
u € I/VO1 ’Q(V) is a Dirichlet eigenfunction of V' for the Laplace-Beltrami operator Ay if u #Z 0 and

—Apru = A u,

for some A € R\ {0}. The number X is the eigenvalue associated with w. It is well known that all
the eigenvalues of the Laplace-Beltrami operator are positive and the smallest one, i.e., the first
eigenvalue Ay, satisfies

Vu|?d
(4.1) o= g Vel
wew2(vy [y lul? dx

Further the infimum is attained by an eigenfunction v which does not change sign, and so which
can be assumed to be non-negative. Also, from (4.1) we infer that, if that U,V C M™ are open,
then

(4.2) UcV = Ay>Ay.

In the case M = S", one defines the characteristic constant of V' as the positive number oy such
that Ay = ay(n — 1+ ay).

The Alt-Caffarelli-Friedman (ACF) monotonicity formula is an important inequality which
plays an essential role in many free boundary problems. It asserts the following:

Theorem 4.1 (Alt, Caffarelli, Friedman). Let x € R"*! and R > 0. Let uy,us € WH2(B(z, R))N
C(B(z, R)) be nonnegative subharmonic functions such that uy(x) = uz(x) = 0 and uy - ug = 0.
Set

1 [Vui (y) [ 1 / [Vua(y)”
4.3 J(x,r) = / ——2dy |- | = =y
( ) ( ) <T2 B(z,r) |y - $|n—1 r? B(z,r) |y - x|n—1

Then J(x,r) is an absolutely continuous function of r € (0, R) and

orJ(z,7r) _ 2
Ty 2@t

(4.4)

where «;, for i = 1,2, are the characteristic constants of the open subsets V; C S™ given by
Vi={r"'(y —2):y € dB(x,r), ui(y) > 0}.

Further, for r € (0, R/2), we have

1 [Vui(y)®
2 B(z,r) |y - x‘n—l

<

(45) ~ ntl ”vulH%?(B(er))
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The Friedland-Hayman [FH] inequality asserts that, for any two disjoint open subsets V;, Vo C

S™ and o; = avy;, we have
oy + ag — 2 > 07
so that J(z,r) is non-decreasing on r, by (4.4). In fact, more is known: by Sperner’s inequality
[Sp|, among all the open subsets with a fixed measure H™ in S™, the one that minimizes the
characteristic constant is a spherical ball with the same measure H". That is to say, given
V c S", if A is a spherical ball such that H"(A) = H"(V) and &y denotes its characteristic
constant, then
ay = ay.

Further, for Vq, Vo C S™, if one of the sets V; differs from a hemisphere by a surface measure h,
that is,

1
HU (Vi) = 5H"(S")| 2 h
either for ¢ = 1 or ¢ = 2, then
o] +og —2> ch?
for some fixed ¢ > 0.
In [AKNZ2], Allen, Kriventsov and Neumayer have shown a very interesting connection between
the e(z, r) coefficient of Carleson in the plane and the Friedland-Hayman inequality, which we pro-

ceed to describe. Consider two disjoint open sets Vi, Vo C S! and let o = ay; be the characteristic
constant of V;. Analogously, set A; = Ay;. In [AKN2] it is remarked that

(4.6) (0,12 < ag +ay—2,

where (0, 1) is defined as in (1.2), with Q;NS" replaced by V;. Indeed, V; is the union of a finite or
countable collection of disjoint open arcs {JJz };, and from the definition of Dirichlet eigenvalues it
follows that the family of the Dirichlet eigenvalues of V; coincides with the union of the Dirichlet
eigenvalues of all the intervals JJ’ Then, from (4.2) we infer that the first eigenvalue A; of V;
equals the first eigenvalue of the largest interval I; from the family {J;}] That is, A\;;, = A\; and
ag, = a, for I := I;(0,1) as in (1.2).

Let v; = H'(I;)/(27). Since the first eigenfunction for I; is the function u;(6) = sin((27;)~10)
(modulo a translation in the torus), we have oy = (\)"/? = (27;)~!. Suppose, for example, that
£(0,1) = }77 — 7—[1([1)‘. Let &s the characteristic of St \ I7. Since Iy C S'\ I, we have as > ds.
Thus,
artar—2>2m+ar—-2= L4-71 —-2= Lo dmd-m) 23 —m)° ~ aUb ;

2n 2(1-m) 2n(1—m) nl=m) nl-mn)
which completes the proof of (4.6), since 1 € (0,1). Further, in case that 1;(0,1) and I5(0,1) are
complementary arcs, arguing as above, one can deduce

min (1,1 4+ az — 2) ~(0,1)%

See also [Bi2] for a very related discussion.
In higher dimensions a similar estimate holds:

Theorem 4.2 ([FTV1]). Let V1,Va C S™ be disjoint relatively open sets and let €,(0,1) be defined
as in (3.2), with Q; replaced by V;. Let a; = avy, fori=1,2. Then

sn(O, 1)2 S al + ag — 2.
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The proof of this result is more difficult than the one for (4.6). It requires the application of a
quantitative Faber-Krahn inequality. The arguments will be explained in the next section.

5. QUANTITATIVE FABER-KRAHN INEQUALITIES

Given a bounded open set V' in a Riemannian manifold, we denote by Ay the first Dirich-
let eigenvalue of V and by wuy the associated non-negative eigenfunction, normalized so that
luvlz2qy = 1.

The classical Faber-Krahn inequality asserts that among all bounded open sets with a fixed vol-
ume, a ball minimizes the first eigenvalue. Following many previous works , Brasco, De Philippis,
and Velichkov proved in [BDV] the following quantitative version of the Faber-Krahn inequality.

Theorem 5.1. Forn > 2, let V C R" be a bounded open set with H"(V) = 1. Then

(5.1) Av = Ap > cinf H™(VAB)?,

where ¢ is a positive absolute constant and the infimum is taken over all balls B with H™(B) = 1.

The inequality above is sharp in the sense that the power 2 on the right hand side cannot be
lowered.

The classical Faber-Krahn inequality also holds for subdomains of the sphere S™ or the hyper-
bolic space H™. In this context one should consider geodesic balls. That is, for open subsets V'
of S™ or H" with a given volume, the minimal value of Ay is attained again by a geodesic ball
among all open bounded open sets of the same volume. Recently Allen, Kriventsov, and Neumayer
[AKN1] have obtained the following quantitative form.

Theorem 5.2. Forn > 2, let M" be either R™, S, or H", and let 5 > 0. Let V be a relatively
open subset of M"™ and let B be a geodesic ball in M"™ such that H"(B) = H™(V'). In the case
M"™ = S", suppose also that B < H™(V) < H™(S™) — B, and in the case M"™ = R™ or M" = H"
gust that H™(V') < B. Denote by \y and Ap the respective first Dirichlet eigenvalues of —Ayn
'V and B, and let uy and up be the corresponding eigenfunctions normalized so that they are
positive and ||uy ||p2qiny = [[usllp2quny = 1. Then

(5.2) = Ap > () inf (H'(VAB,) + /

zeMn

luy — ug,|? d’H"),

where ¢(B) > 0 and B, denotes a ball centered at x with the same H™ measure as B. In the
case M = S™, (5.2) also holds with the infimum over S™ replaced by the evaluation at x equal to
S™-barycenter of V' (possibly with a different constant c(3)).

The assumption involving the parameter [ is necessary to prevent the domain from being too
big and, in the case M" = §", also too small. The S™-barycenter of V' C S" is defined by xy /|zv|,
with xy as above. So this belongs to S™ and it is defined only when xy # 0. Notice the presence
of the additional term [y, |uy — up, |*dH" in the inequality (5.2) when compared to (5.1). In
this term we assume that the functions uy and up, vanish outside of V' and B, respectively.

Next we show how Theorem 4.2 can be deduced from the estimate (5.2) (with x equal to
S™-barycenter of V' in place of the the infimum over S™).
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Proof of Theorem J.2. Without loss of generality, we assume that H"(V;) < H"(V32). Let a; be
the characteristic of the spherical ball B; C S™ with the same H"™ measure as V;. The Friedland-
Hayman inequality ensures that oy + ag —2 > 0. Then we write

(5.3) a1 +ag—2= (g —ay)+ (g —ag) + (a1 + @2 — 2) > 0.
Recall that Sperner’s inequality asserts that, among all the open subsets with a fixed measure H"
on S”, the one that minimizes the characteristic constant is a spherical ball with that measure
‘H"™. Hence,

a; > Q.
So the three summands on the right hand side of (5.3) are non-negative. Further, if one of the
balls B; differs from a hemisphere by a surface measure hg, that is,

1
ho = max |H"(B;) — 57{”(8”) ,

(]
then
(5.4) @y 4 as —2 > chi.
See Corollary 12.4 from [CS], for example. So to prove the theorem we can assume that, for
i=1,2,
(5.5) B — 2an(s)| < = wn(sn)

2 — 100 ’

because otherwise

o]+ ag — 2 Z 1
and the statement in the theorem is trivial. Observe that (5.5) implies that
(5.6) B<H" (V) =H"(Bi) <H"(S") - B

for a suitable absolute constant 8. From this estimate it follows that a; ~ 1 for ¢ = 1,2. So we
can assume that |a; — a;] < %o_zi because otherwise the theorem follows trivially from (5.3). So
a; ~ &; ~ 1. Then from the identity A\; = a;(o; + n — 1) (where \; = Ay;) it follows immediately
that

(57) o — 0y RN — )\Bi’
For i = 1,2, let ; € S™ be the barycenter of V;. We assume that the barycenter exists
because otherwise this means that fVi ydH"(y) = 0, while )fBi yd’l—["(y)‘ 2 1 because of (5.6)

(independently of the choice of its center in S™). Hence, by the Allen-Kriventsov-Neumayer
theorem, using (5.6) and (5.7), we would obtain

2

a; —a; =N — Mg, 2 H'(V,AB;)? > >1

)

/Viycm"(w - /Biycm"(m

which would yield the conclusion of the theorem. The same argument shows that, in fact, we have

/_ ydH"(y)

3

~ 1.

From now on we assume that the spherical balls B;, ¢ = 1,2, are centered in the barycenters
x; of the V;’s. In the case when H"(V;) + H"(Va) = H"(S™) it follows easily that the barycenters
of V1 and Vs are opposite points in S”, and By and By are complementary balls in S”. When the
preceding condition does not hold, we need to be a little more careful.
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Let
bo = H"(S") = H" (V1) — H"(V2),
and suppose that 6y > 0. For ¢ = 1,2, let

w1
i = dH" )

so that x; = y;/|yi|. Also, let

. 1 / n
Yg = —— ydH"(y).
2 f}_ln (Sn \ V’l) S"\Vl ( )

Notice that y5 = vy if 6y = 0 and that

HAVE) o+ HME™\ V) g = / ydH" (y) = 0

(e

So the barycenter x; and the point x3 = y5/|y;| are antipodal points in S”. We also have

1 1
T ™ T oy, M0
) e = [ VA ()| < o+ 0o ~ 0o
Also, let B3 be a spherical ball centered in x3% with measure H"(B3) = H™(S™ \ V1). Since
radsn (Bz) — rads» (Bs)| = [H"(B2) — H"(B3)| < bo,
using also (5.6), we infer that
(5.8) dist gy (Osn By, Osn By ) = dist g (Osn B2, dsn B3) < 6o,

where disty; denotes the Hausdorff distance. On the other hand, from the definition of 6, it
follows that

ly2 — y3| <

1

N =

Then, by (5.4),
(5.9) a1+ o — 2 Z 9(2) Z diStH(aSnt, 8§nB1)2.

To estimate £,(0,1) we denote by L; be the n-plane that contains ds» By, and we let Ly be
the n-plane through the origin parallel to Li. Then we choose H to be the open half-space that
contains B; and whose boundary is Ly (notice that Bj is contained in a hemisphere because of
the assumption H" (V1) < H"(V2)). We denote S; = S" N H, Sy = S™\ H, and then we write

2 2
(5.10) en(0,1) SH"(S1\ V1) + H"(S2\ V2) €D H" (B \ Vi) + Y_H"(SiAB;)..
=1 1=1
By the theorem of Allen-Kriventsov-Neumayer, recalling the assumption (5.5),
(5.11) Hn<BZ\VZ)2 SO&Z‘—@Z‘.
To deal with the term H"(S;AB;) we will estimate distg(ds»B;,S™ N Lg) for i = 1,2. In the
case 1 = 1, since Lg is parallel to L; and Lg splits S in two hemispheres, we have

(5.12) dist g (0sn B1,S™ N Lo) S [H™(B1) — 3H™(S™)| < ho.
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Also, for i = 2,
dist g (Osn B2, S™ N L) < dist g (Osn Ba, Osn B3 ) + dist g (0s» B3, S™ N Lyg).
Since Osn By = Osn By, from (5.8) and (5.12) we get
dist g (Osn B2, S™ N Lo) < 6o + distg (Osn B1,S™ N Lo) S 0o + ho < ho.
So, for a suitable Cy > 0,
(5.13) distg (Osn B, S" N Ly) < Cohy  for both i =1, 2.
By (5.10), (5.11), and the preceding estimate, we get

2 2
en(0,1)? S (i — @) +hg S (i — @) + (@1 + a2 — 2) = o + ag — 2.
=1

i=1

g

Given two disjoint open sets Q1,02 C R"™ and 2 € R™™, r > 0, we consider the sets
Vi(z,r) ={r Yz —y) : y € S(x,r) N Q'} and we denote

(5.14) (T, 7) = Qv (zr)-
By Theorem 4.2,
(5.15) en(z,7)? < min(l, oy (x,r) + as(z, ) —2).

Recall that the same estimate holds in the planar case with &, (z,r) replaced by e(x,r), and in
fact “typically” we have e(z,7)? ~ min(1, a1(z,7) + as(x,7) — 2), as we mentioned above. In
view of these facts, it is natural to wonder if a version of Carleson’s conjecture can hold in higher
dimensions in terms of the square function

! r
(5.16) A(z)? = /0 min(1, ay(z,7) + as(z,r) — 2) d7

The coefficient a(x,r) := min(1, a1 (x,r) + aa(x,r) — 2) is a much stronger quantity than what
(5.15) suggests. Indeed, the coefficient a(z,r) also detects sets of dimension s € (n —2,n) in
S(z,r). To be more precise, we need some additional notation. For €, Q9 as above and for
x € R" > 0, we take a half-space H such that © € 0H and we consider the associated half
spheres S} (z,7), S%(z,7) introduced in (3.1). For a given b € (0,1), s € (n —2,n), ¢g > 0, and
i = 1,2, we consider the following subsets of “thick” points from S(z,r):

si,b,co (z,r, H) := {y € S4(x,r)\Q; : H: (B(y, bdistg (g, (y, H))NS (2, 7)\Q) > co distga (y, H)®},

where distg(, ) denotes the geodesic distance in S(x,r), and we put

Vs beo(@,r, H) := Tsl,b,co (x,r, H)U TS%MO (x,r, H).
We define
1 dist(y, H)\"°
(5.17) es(x,r) = inf — (18(‘%)> dHi(y)
H 1% JV, oo (@r,H) r

where the infimum is taken over all affine half-spaces H C R"*! such that € OH. Remark that
the integral of a function f : R"*! — [0, 00) with respect to the Hausdorff content H3_ is given by

/ fdHi, = /OO He ({z € R™L: £(t) > t}) dt.
R7+1 0
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In [FTV1] the following has been proven:

Theorem 5.3. Let n > 1 and 0 < s < n. Let Q; and es(z,r) be as above. Then for any
s€(n—2,n),co>0andbe (0,1), we have

(5.18) Es(x,T)Q gs,co,b a(x,?“).

The proof of this estimate in [FTV1] follows the same lines of the proof of Theorem 4.2.
The main difference is that, instead of the estimate (5.2), it uses new quantitative Faber-Krahn
inequalities involving s-dimensional Hausdorff contents and capacities, which are also proved in
[FTV1]. In the case n > 3, one of these inequalities, which is sharp up to a constant factor, reads
as follows:

Theorem 5.4. Given n > 3, let M" be either R™ or S™, and let § > 0, a € (0,1). Let Q be a
relatively open subset of M™ and let B be a geodesic ball in M™ such that such that H™(B) = H"(Q)
with radius rg. In the case M™ = S™, suppose also that f < H™(Q) < H™(S™) — 3, and in the case
M"™ = R"™ just that H"(2) < 5. Denote by Ao and Ap the first Dirichlet eigenvalues of —Aym in
Q and B, respectively. Then, there is some constant C(a, ) > 0 such that

Capn—Q(BM" (yv atTB) \ Q)
(t TB)n_3

where B, denotes a ball centered in x with radius rp. In the case M" = S", (5.19) also holds with
the infimum over M™ replaced by the evaluation at x equal to S™-barycenter of V' (possibly with a

different constant C(a, 3)).

In (5.19), Oy (E) stands for the relative boundary of a set E C M™ and By (x,r) is a ball in
M" with center z and (geodesic) radius r. Also, for any s > 0 and E C M™ C R"*!, we consider
the capacity

2
(5.19) Ao —Ap >C(a,B) inf ( sup ][ dHnl(y)) ,
n((1—t)Bz)

zeM™ \ ¢e(0,1)

Cap,(E) = sup {u(E) : p € My (E), ||Usplloo,p < 1},
where M, (E) is the family of all Radon measures supported in E and Usp(z) = [ ﬁ du(y).

6. CARLESON’S CONJECTURE IN HIGHER DIMENSIONS. EXISTENCE OF TANGENTS

The discussion in the previous section suggests that the square function A defined in (5.16)
is a good one for a possible extension of Carleson’s 2 conjecture to higher dimensions. This is
confirmed by the next result from [FTV2].

Theorem 6.1. Forn > 1 let Q1,0 C R™ be two disjoint open subsets. Suppose that Qy U Qy
satisfies the capacity density condition (CDC). Then, up to a set of zero H™ measure,

A(x) < oo if and only if x is a tangent point of the pair O, Qs.

The CDC for €7 U, is a thickness condition of the complement of 21 U9 which is equivalent
to the existence of some s € (n — 1,n + 1] and some rp, ¢ > 0 such that

Hi (B(z,r)\ (1 UQ9)) >cr® forall x € 9(Q UQ) and all r € (0,rp).

For example, if Q; is a Jordan domain and Qs = R? \971, then the CDC holds 2 UQs (with s =1
in the condition above). So Theorem 6.1 implies Theorem 1.1 in the case n = 1, and in fact it can
be applied to more general open sets.
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The fact that the square function A is finite at tangent points of the pair Q1, s follows by a
rather easy application of the ACF monotonicity formula. Next we show the detailed arguments,
taken from [FTV1].

Proof of the finiteness of A(x) at H"-a.e. tangent point x € R"1. Let Q1,0 C R be as in
Theorem 6.1. Let Q{, Qg, for j,k > 1, be the respective connected components of €21 and €.
Notice that any tangent point for the pair 2, 29 is a tangent point for a pair of components Q]i,
Qk. So it suffices to show that for every j,k > 1, it holds A(z) < oo at every tangent point x of
the pair QJ, Q5.

Denote by g{, gé the respective Green functions of the domains Q{, ng Let p1 € Q{, p2 € Q’Q“,
and consider the functions

ui(y) = gl(y.p1),  ua(y) = g5 (y.pa).

We extend u; and ug by 0 respectively in (le)C and (925)¢ and abusing notation we still denote by
u1, ue such extensions. The CDC condition of €1 U s ensures the Wiener regularity of €2; and
thus the continuity of u; and ug away from the poles py, po.
Let d = § min; dist(p;, 9Q] UIQE). For all z € R™1\ (] UQ%) and all r € (0,d), by the ACF
monotonicity formula, we have
OrJ(x,r)
J(z,7)

with J(x,r) and o;(x,7) = oy as in (4.3), (4.4), and (5.14). Integrating on r, for any p € (0,d) we
derive

> %(al(ll?, T‘) + 042(1‘,’/“) - 2)7

<

d —
/ ar(z,r) + oz, r) — 2 dr < log J(ac,d).
P r (z, p)

Thus,

d _
/ ay(z,r) + oz, r) — 2 dr < log - J(x,d) '
0 T infop<a J(z, p)

Hence, in order to show that A(x) < co for a given x € 8Q{ N 00k, it suffices to show that
J(x,d)
infO<p§d J(l‘, p)

< 00

Notice first that, by (4.5),

Iz, d) < ][

Va2 dy ][ Vs ? dy.
B(z,2d) B(w,2d)

By the Caccioppoli inequality and the subharmonicity of w;, for each i,

1 1 2
][ Vui|*dy < — |Ui|2dy§2(][ Uidy> -
B(z,2d) " JB(x,3d) r B(z,4d)

So the continuity of u; implies that J(x,d) < oo.
To estimate J(z, p) from below, let ¢, , be a C° bump function such that xp(z,p/2) < Pup <
XB(z,p)> With [[Vu plloc S p~t. Then, denoting by w!* the harmonic measure for €; with pole at
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pi, by the properties of the Green function, it holds

A (B.pfD) < [ prpde? = [ Vpu, Vusdy < |Vion,
e =L Wy, 1/2 nf 1 Vu;|? 1/2
< 1)/2(/ P n—‘l dy) _, <2/ \ |n_1 dy) .

B(z,p) ‘.ZL' - y‘ P~ JB(z,p) ‘J} - y‘

T 2 > L (B:p/2) 5 (B(,p/2)
2 o -

2 ||V

2,B(z,p)

Therefore,

Hence, it suffices to show that

(6.1) lim inf wi' (B(z,p/2))

>0 for H"-a.e. tangent point x € 89{ N ok,
p—0 pr

for i = 1,2. To this end, consider a subset E of the tangent points for the pair Q{, Q’; such that
H"(E) < oco. Since the set of tangent points is n-rectifiable, we have

(6.2) lim 7 (B@ )N E)

lim o) =1 for H"-a.e z € E.

By standard arguments, using that the tangent points for the pair Q{, Q’g are cone points for Q{
and Q5 it follows that H"| is absolutely continuous with respect to w?i|g for i = 1,2 (see [AAM,
Theorem 111}, for examplel). Then, by the Lebesgue-Radon-Nykodim differentiation theorem, we
have

L H(Bp)N B

p—0 Wl (B(z, p) N E)

Since null sets for w!* are also null sets for H"|g, we infer that

P (B NE

(6.3) lim & (B@,p) N E)
oS0 FH(B(w, p) N E)

Multiplying (6.2) and (6.3), we deduce (6.1). This completes the proof of the fact that A(x) < oo

at H"-a.e. tangent point of the pair 24, Qs. O

< oo for wPi-ae. x € FE.

>0 for H"-ae x € FE.

Remark that the first proof by Bishop of the fact that £(x) < co at H'-a.e. tangent point for
a Jordan domain is not the one shown in Section 2 relying on Theorem 2.2. Instead, the original
proof by Bishop is close in spirit to the one above showing the finiteness of A(x) at H"-a.e.
tangent point for 21, Q9. In place of the Alt-Caffarelli monotonicity formula, Bishop’s proof uses
an estimate for harmonic measure due to Beurling. See [BCGJ].

The proof of the converse implication in Theorem 6.1 is more complicated. The strategy is as
follows. First notice that, by Theorem 4.2, &,(z) < A(z), and then by Theorem 3.1 the set of
points Go = {z € R*""! : A(x) < oo} is n-rectifiable. So it remains to show that approximate
tangents for this set are also “true” tangents of 9€2; and 0€22. To this end, we prove the following
slicing result, which may have some independent interest:

1Actually, in Theorem III from [AAM] it is assumed that 9 is lower n-content regular in order to prove the
mutual absolute continuity of H"|g and w”?|g. However, a quick inspection of the arguments shows that for the
absolute continuity H"|r < wf ‘|g one only needs ; to be Wiener regular.
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Proposition 6.2. Let B(0,79) C R and let T be a Lipschitz graph through the origin with
slope at most 7. Let B C B(0,79) be a ball with rad(B) < 31 such that dist(B,T') > 10077.
Let K C B and G C T both be compact sets. Then, for any s > 1,

an(G)Z 00
Cap,(K) o < C(T)/ / Cap,_{(KNS(z,r))drdH"(2).
0 aJo
To apply this proposition, we split G into a countable collection of subsets G contained in
Lipschitz graphs I'; with small slope and a set of zero measure H". By the CDC assumption,
Proposition 6.2 applied to I' =I'j, G = G, « € I';, and a ball B(x,r(), ensures that if there is a
big piece of (021NIN2)NB(z,19) far away from I';, then, for some s > n—1, Cap,_; ((02;UIQ2)N
S(x,r)) is large for many = € G; and many radii » ~ rg. In turn, this implies that es(z, ) is large
for these points = and radii 7. So by Theorem 5.3 the coefficients a(z, r) are large too. Integrating
on 7, if follows that A(x) is large for many points € G, which leads to a contradiction if r¢ is
small enough.
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