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CARLESON’S ε2 CONJECTURE IN HIGHER DIMENSIONS AND

FABER-KRAHN INEQUALITIES

XAVIER TOLSA

Abstract. In this paper we survey the proof of Carleson’s ε2 conjecture in the plane and its
extension to higher dimensions. We also describe its connections with rectifiability and the so-
called Faber-Krahn inequalities for the first eigenvalue of the Laplacian.

1. Introduction

One of the main objectives of geometric measure theory is the characterization of n-rectifiable
sets. Recall that a set E ⊂ Rd is n-rectifiable if there are Lipschitz maps fi : Rn → Rd, i ∈ N,
such that

(1.1) Hn
(
E \

⋃∞
i=1 fi(Rn)

)
= 0.

We do not require n-rectifiable sets to have finite Hausdorff measure Hn. Instead, (1.1) ensures
that Hn(E) is σ-finite. Some well known classical characterizations of n-rectifiable sets, mainly
due to Besicovitch, Federer, Marstrand, Mattila, and Preiss, are in terms of existence of tangents,
densities, and the behavior of orthogonal projections.

In the 1990’s, there appeared a need to develop a quantitative theory of rectifiability because
of the possible applications to the Painlevé problem about removable singularities for bounded
holomorphic functions and also because of the wish to understand the L2 boundedness of sin-
gular integral operators on suitable rectifiable sets. This led to study the connection between
rectifiability and the boundedness of different square functions involving different coefficients en-
coding geometric information. One of these square functions is the so-called Carleson’s ε2-square
function.

Let Ω1 be a Jordan domain in R2, and set Γ = ∂Ω1 and Ω2 = R2 \ Ω1. For x ∈ R2 and r > 0,
denote by I1(x, r) and I2(x, r) the longest open arcs of the circumference ∂B(x, r) contained in
Ω1 and Ω2, respectively (they may be empty). Then one defines

(1.2) ε(x, r) =
1

r
max

(∣∣πr −H1(I1(x, r))
∣∣, ∣∣πr −H1(I2(x, r))

∣∣).
The Carleson ε2-square function is given by

(1.3) E(x)2 :=
ˆ 1

0
ε(x, r)2

dr

r
.

Carleson’s conjecture, now a theorem, asserts the following.
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Theorem 1.1. Let Ω1 ⊂ R2 be a Jordan domain, Ω2 = R2 \ Ω1, and Γ = ∂Ω1. Let E be the
associated square function defined in (1.3). Then the set of tangent points for Ω1 coincides with
the subset of those points x ∈ Γ such that E(x) < ∞, up to a set of zero measure H1. In particular,
the set G = {x ∈ Γ : E(x) < ∞} is 1-rectifiable.

The fact that E(x) < ∞ for H1-a.e. tangent point in a Jordan curve was proved by Bishop in
[Bi1] (see also [BCGJ]). The most difficult implication of Theorem 1.1, i.e, the fact that the set G
is 1-rectifiable and tangents to Γ exist for H1-a.e. x ∈ G, was proved more recently by Ben Jaye,
Michele Villa, and the author of this paper [JTV].

Regarding the notion of tangent for a domain, it is appropriate to consider a somewhat more
general notion involving two disjoint domains. For a point x ∈ Rn+1, a unit vector u, and an
aperture parameter a ∈ (0, 1) we consider the two sided cone with axis in the direction of u defined
by

Xa(x, u) =
{
y ∈ Rn+1 : |(y − x) · u| > a|y − x|

}
.

Given disjoint open sets Ω1,Ω2 ⊂ Rn+1 and x ∈ ∂Ω1 ∩ ∂Ω2, we say that x is a tangent point for
the pair Ω1,Ω2 if x ∈ ∂Ω1∩∂Ω2 and there exists a unit vector u such that, for all a ∈ (0, 1), there
exists some r > 0 such that

(∂Ω1 ∪ ∂Ω2) ∩Xa(x, u) ∩B(x, r) = ∅,

and moreover, one component of Xa(x, u) ∩ B(x, r) is contained in Ω1 and the other in Ω2.
The hyperplane L orthogonal to u through x is called a tangent hyperplane at x. In case that
Ω2 = Rn+1 \ Ω1, we say that x is a tangent point for Ω1.

Recently, in [FTV2], Ian Fleschler, Michele Villa, and the author have proven a higher dimen-
sional version of Carleson’s conjecture. Here we will review this result and the main ideas of the
proof. We will also see the connections of Carleson’s conjecture with Jones’ traveling salesman
theorem, the Alt-Caffarelli-Friedman formula, and quantitative Faber-Krahn inequalities which
motivate this extension.

2. Carleson’s conjecture and Jones’ traveling salesman theorem

In the pioneering work [Jo], inspired in part by the multi-scale Littlewood-Paley techniques
to characterize the regularity of functions in harmonic analysis, Peter Jones proved a celebrated
traveling salesman theorem which quantifies the length of the shortest curve that contains a given
set in the plane in terms of some β∞ coefficients associated with the set. Jones’ result has been
very influential and has been the starting point of what is known now as the theory of quantitative
rectifiability.

To state Jones’ theorem we need to introduce some notation. Given a cube Q ⊂ Rd, we denote

β∞,E(Q) = inf
L

{
sup

y∈E∩Q

dist(y, L)

ℓ(Q)

}
,

where the infimum is taken over all the lines L ⊂ Rd and ℓ(Q) is the side length of Q. So
2ℓ(Q)β∞,E(Q) is the width of the thinnest strip that contains E ∩Q. The coefficient β∞,E(Q) is
scale invariant and it measures how close E ∩Q is to some line.

Theorem 2.1 ([Jo]). A subset E ⊂ Rd is contained in a curve with finite length if and only if

(2.1)
∑
Q∈D

β∞,E(3Q)2ℓ(Q) < ∞,
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where D is the family of all dyadic cubes in Rd and 3Q stands for the cube concentric with Q with
triple side length. Further the length of the shortest curve Γ containing E satisfies

(2.2) H1(Γ) ≈ diam(E) +
∑
Q∈D

β∞,E(3Q)2ℓ(Q),

where the implicit constant is an absolute constant depending only on d.

The notation A ≈ B means that there exists an absolute constant C > 0, perhaps depending
on the ambient dimension, such that C−1A ≤ B ≤ CA. Theorem 2.1 was proved in the planar
case d = 2 by Jones [Jo], while the extension to subsets of Rd with d ≥ 3 (more precisely of the
fact that (2.2) holds for the shortest curve Γ containing E) is due to Okikiolu [Ok].

Next we will announce a theorem of Bishop and Jones from 1994 that characterizes the existence
of tangents to a Jordan curve in terms of the coefficients β∞. To this end, it is convenient to change
the cubes Q in the definition of the β∞ coefficients by balls B(x, r). So, given E ⊂ Rd and a ball
B, we denote

β∞,E(B) = inf
L

{
sup

y∈E∩B

dist(y, L)

r(B)

}
,

where the infimum is taken over all the lines L ⊂ Rd and r(B) denotes radius of B. We will
also write β∞,E(x, r) instead of β∞,E(B(x, r)). The aforementioned theorem of Bishop and Jones
asserts the following:

Theorem 2.2 ([BJ]). Let Ω ⊂ R2 be a Jordan domain and let Γ = ∂Ω. Then, up to a set o null
measure H1,

(2.3)

ˆ 1

0
β∞,Γ(x, r)

2 dr

r
< ∞ at x ∈ Γ ⇔ Ω has a tangent at x.

The proof of this theorem relies heavily on Jones’ Theorem 2.1. Remark the function

J(x)2 :=

ˆ 1

0
β∞,Γ(x, r)

2 dr

r

is called Jones’ square function.
Using Theorem 2.2, we can now prove the “easy” implication in Theorem 1.1.

Proof of the finiteness of Carleson’s square function at H1-a.e. tangent point. It is enough to show
that, for any x ∈ Γ and r > 0 small enough

ε(x, r) ≲ β∞,Γ(x, r).

This follows by elementary geometric arguments. Indeed, let y and z be the extremes of the
arc I1(x, r). Denote θi(x, r) the angles subtended by the arcs Ii(x, r). See Figure 1. It is clear
that the triangle with vertices x, y, z is contained in the thinnest strip containing Γ ∩B(x, r) (we
suppose that B(x, r) is closed). Then, β∞,{x,y,z}(x, r) ≤ β∞,Γ(x, r), or equivalently, the height of
the triangle from the vertex x till the side yz must be smaller than the width of that strip. That

is, r cos θ1(x,r)
2 ≤ 2r β∞,Γ(x, r). Thus,

|π − θ1(x, r)| ≈
∣∣∣∣sin π − θ1(x, r)

2

∣∣∣∣ = ∣∣∣∣cos θ1(x, r)2

∣∣∣∣ ≤ 2β∞,Γ(x, r).

Obviously, the same estimate holds interchanging θ1(x, r) by θ2(x, r), and so it follows that
ε(x, r) ≤ c β∞,Γ(x, r).

□
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β∞,Γ(x, r) 2r θ1

x

y
z

Γ

∂B(x, r)

Figure 1. Comparison between β∞,Γ(x, r) and ε(x, r).

The results of Bishop and Jones have been extended to higher dimensions in different ways.
In particular, David and Semmes, in the 1990’s, introduced and studied the notion of uniform
n-rectifiability for n-Ahlfors regular sets. A set E ⊂ Rd is n-Ahlfors regular if

Hn(E ∩B(x, r)) ≈ rn for all x ∈ E, 0 < r ≤ diam(E).

David and Semmes [DS1] proved that uniform n-rectifiable sets can be characterized in terms
of some coefficients βp,E which we proceed to define. Given an Hn-measurable set E ⊂ Rd,

1 ≤ p < ∞, x ∈ Rd, and r > 0, we denote

βp,E(x, r) = inf
L

(
1

rn

ˆ
E∩B(x,r)

(
dist(y, L)

r

)p

dHn(y)

)1/p

,

where the infimum is taken over all the n-planes L ⊂ Rd.
To describe the results of David and Semmes on uniform rectifiability would lead us too far

in this paper. See the monographs [DS1], [DS2]. Instead, we just recall the following result,
which characterizes n-rectifiable sets in terms of the finiteness of a square function involving the
β2 coefficients. It is worth comparing the rectifiability criterion below with the ones appearing in
Theorems 1.1 and 2.2.

Theorem 2.3. Let E ⊂ Rn be Hn-measurable and such that Hn(E) < ∞. Then E is n-rectifiable
if and only if

(2.4)

ˆ 1

0
β2,E(x, r)

2 dr

r
< ∞ for Hn-a.e. x ∈ E.

The fact that n-rectifiable sets satisfy (2.4) was proven in [To], while the converse implication
is by Azzam and the author of this paper [AT]. Remark that the connection between rectifiability
and the β2 coefficients has been used to study the singular set for harmonic maps by Naber and
Valtorta [NV]. Further, their techniques has been extended to the study of other related free
boundary problems.



CARLESON’S CONJECTURE 5

3. Carleson’s conjecture in higher dimensions. Getting rectifiability

One of the difficulties in trying to extend Carleson’s conjecture to higher dimensions is to guess
which could be such natural extension and which coefficients one could use. Indeed, in the plane
Carleson’s conjecture involves Jordan domains, and moreover the arguments in [JTV] make an
extensive use of the connectivity of the boundary of such domains. In particular, the connectivity
implies the lower content regularity of ∂Ω1 when Ω1 is Jordan domain. That is, it holds

H1
∞(B(x, r) ∩ ∂Ω1) ≳ r for all x ∈ ∂Ω1, 0 < r ≤ diam(Ω1).

Here Hs
∞ denotes the s-dimensional Hausdorff content, defined by Hs

∞(E) = inf{
∑

i diam(Ai)
s :

E ⊂
⋃

iAi} for any set E in the Euclidean space. In Rn+1, it is well known that the connectivity
of the boundary of a domain is a rather weak assumption and no quantitative information about
the n-dimensional content Hn

∞(B(x, r) ∩ ∂Ω1) can be obtained from this.
Next we will define the coefficients εn(x, r) introduced in [FTV2]. For x ∈ Rn+1, r > 0 and an

affine half-space H such that x ∈ ∂H, denote

(3.1) S1
H(x, r) = S(x, r) ∩H, S2

H(x, r) := S(x, r) ∩ (Rn+1 \H),

where S(x, r) = ∂B(x, r). Given two disjoint Borel sets Ω1,Ω2 ⊂ Rn+1, we put

(3.2) εn(x, r) :=
1

rn
inf
H

Hn
(
(S1

H(x, r) \ Ω1) ∪ (S2
H(x, r) \ Ω2)

)
.

It is clear that if Ω1 and Ω2 are complementary (open) half-spaces, then εn(x, r) = 0 for any
x ∈ ∂Ω1 = ∂Ω2 and r > 0. Note that in the plane ε1(x, r) ≲ ε(x, r), but the opposite inequality
fails, in general. We write

(3.3) En(x)2 :=
ˆ 1

0
εn(x, r)

2 dr

r
.

One of the main results from [FTV2] is the following:

Theorem 3.1. For n ≥ 1 let Ω1,Ω2 ⊂ Rn+1 be two disjoint Borel subsets. Then the set {x ∈
Rn+1 : En(x) < ∞} is n-rectifiable.

Remark that this theorem is valid for arbitrary disjoint Borel sets Ωi (not necessarily open)
and it is new even in the plane. So the finiteness of the square function En (smaller than E in
the case n = 1) on some set E ⊂ Rn+1 \ Ω1 ∪ Ω2 implies the n-rectifiability of E and so the
fact that E has σ-finite measure Hn. In turn, the n-rectifiability of E implies the existence of
approximate tangents of E at Hn-a.e. x ∈ E (in case that Hn(E) < ∞). So at first sight, this
result may look stronger that Theorem 1.1. However, Theorem 3.1 does not ensure the existence
of “true” tangents for the pair of sets Ω1, Ω2 (even if they are open). So the assumptions in the
this theorem are weaker than the ones in Theorem 1.1, but the conclusion is also weaker.

So to guarantee the existence of tangents for Ω1, Ω2 we need stronger assumptions, and probably
other coefficients than the εn’s. Indeed, notice that εn(x, r) does not detect sets of dimension
smaller than n, nor purely n-unrectifiable subsets. For example, let Ω2 be the lower (open) half
space Rn+1

− , and let Ω1 be Rn+1
+ minus a union of countably many compact sets which accumulate

on the hyperplane E := {xn+1 = 0} and either have dimension smaller than n or are purely
n-unrectifiable. Then it is clear that En(x) = 0 in E, but one may construct Ω1 so that there are
no tangents for the pair Ω1, Ω2, at any x ∈ E.
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The proof of Theorem 3.1 combines compactness arguments and a stopping time construction
inspired by techniques developed previously by David and Semmes, and extended to the non-
doubling setting by Léger. The arguments are more elaborated and difficult than the ones from
the planar case in [JTV].

4. The Alt-Caffarelli-Friedman monotonicity formula and the
Friedland-Hayman inequality

Given a bounded open set V in a Riemannian manifold Mn (such as Rn or Sn), we say that

u ∈ W 1,2
0 (V ) is a Dirichlet eigenfunction of V for the Laplace-Beltrami operator ∆Mn if u ̸≡ 0 and

−∆Mnu = λu,

for some λ ∈ R \ {0}. The number λ is the eigenvalue associated with u. It is well known that all
the eigenvalues of the Laplace-Beltrami operator are positive and the smallest one, i.e., the first
eigenvalue λV , satisfies

(4.1) λV = inf
u∈W 1,2

0 (V )

´
V |∇u|2 dx´
V |u|2 dx

.

Further the infimum is attained by an eigenfunction u which does not change sign, and so which
can be assumed to be non-negative. Also, from (4.1) we infer that, if that U, V ⊂ Mn are open,
then

(4.2) U ⊂ V ⇒ λU ≥ λV .

In the case Mn = Sn, one defines the characteristic constant of V as the positive number αV such
that λV = αV (n− 1 + αV ).

The Alt-Caffarelli-Friedman (ACF) monotonicity formula is an important inequality which
plays an essential role in many free boundary problems. It asserts the following:

Theorem 4.1 (Alt, Caffarelli, Friedman). Let x ∈ Rn+1 and R > 0. Let u1, u2 ∈ W 1,2(B(x,R))∩
C(B(x,R)) be nonnegative subharmonic functions such that u1(x) = u2(x) = 0 and u1 · u2 ≡ 0.
Set

(4.3) J(x, r) =

(
1

r2

ˆ
B(x,r)

|∇u1(y)|2

|y − x|n−1
dy

)
·

(
1

r2

ˆ
B(x,r)

|∇u2(y)|2

|y − x|n−1
dy

)
Then J(x, r) is an absolutely continuous function of r ∈ (0, R) and

(4.4)
∂rJ(x, r)

J(x, r)
≥ 2

r

(
α1 + α2 − 2

)
.

where αi, for i = 1, 2, are the characteristic constants of the open subsets Vi ⊂ Sn given by

Vi =
{
r−1(y − x) : y ∈ ∂B(x, r), ui(y) > 0

}
.

Further, for r ∈ (0, R/2), we have

(4.5)
1

r2

ˆ
B(x,r)

|∇ui(y)|2

|y − x|n−1
dy ≲

1

rn+1
∥∇ui∥2L2(B(x,2r)).
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The Friedland-Hayman [FH] inequality asserts that, for any two disjoint open subsets V1, V2 ⊂
Sn and αi ≡ αVi , we have

α1 + α2 − 2 ≥ 0,

so that J(x, r) is non-decreasing on r, by (4.4). In fact, more is known: by Sperner’s inequality
[Sp], among all the open subsets with a fixed measure Hn in Sn, the one that minimizes the
characteristic constant is a spherical ball with the same measure Hn. That is to say, given
V ⊂ Sn, if ∆ is a spherical ball such that Hn(∆) = Hn(V ) and ᾱV denotes its characteristic
constant, then

αV ≥ ᾱV .

Further, for V1, V2 ⊂ Sn, if one of the sets Vi differs from a hemisphere by a surface measure h,
that is, ∣∣∣Hn(Vi)−

1

2
Hn(Sn)

∣∣∣ ≥ h

either for i = 1 or i = 2, then

α1 + α2 − 2 ≥ c h2

for some fixed c > 0.
In [AKN2], Allen, Kriventsov and Neumayer have shown a very interesting connection between

the ε(x, r) coefficient of Carleson in the plane and the Friedland-Hayman inequality, which we pro-
ceed to describe. Consider two disjoint open sets V1, V2 ⊂ S1 and let αi = αVi be the characteristic
constant of Vi. Analogously, set λi = λVi . In [AKN2] it is remarked that

(4.6) ε(0, 1)2 ≲ α1 + α2 − 2,

where ε(0, 1) is defined as in (1.2), with Ωi∩S1 replaced by Vi. Indeed, Vi is the union of a finite or
countable collection of disjoint open arcs {J i

j}j , and from the definition of Dirichlet eigenvalues it
follows that the family of the Dirichlet eigenvalues of Vi coincides with the union of the Dirichlet
eigenvalues of all the intervals J i

j . Then, from (4.2) we infer that the first eigenvalue λi of Vi

equals the first eigenvalue of the largest interval Ii from the family {J i
j}j . That is, λIi = λi and

αIi = αi, for Ii := Ii(0, 1) as in (1.2).
Let γi = H1(Ii)/(2π). Since the first eigenfunction for Ii is the function ui(θ) = sin((2γi)

−1θ)

(modulo a translation in the torus), we have αi = (λi)
1/2 = (2γi)

−1. Suppose, for example, that
ε(0, 1) =

∣∣π −H1(I1)
∣∣. Let α̃2 the characteristic of S1 \ I1. Since I2 ⊂ S1 \ I1, we have α2 ≥ α̃2.

Thus,

α1 + α2 − 2 ≥ α1 + α̃2 − 2 =
1

2γ1
+

1

2(1− γ1)
− 2 =

1− 4γ1(1− γ1)

2γ1(1− γ1)
=

2(12 − γ1)
2

γ1(1− γ1)
≈ ε(0, 1)2

γ1(1− γ1)
,

which completes the proof of (4.6), since γ1 ∈ (0, 1). Further, in case that I1(0, 1) and I2(0, 1) are
complementary arcs, arguing as above, one can deduce

min
(
1, α1 + α2 − 2

)
≈ ε(0, 1)2.

See also [Bi2] for a very related discussion.
In higher dimensions a similar estimate holds:

Theorem 4.2 ([FTV1]). Let V1, V2 ⊂ Sn be disjoint relatively open sets and let εn(0, 1) be defined
as in (3.2), with Ωi replaced by Vi. Let αi = αVi for i = 1, 2. Then

εn(0, 1)
2 ≲ α1 + α2 − 2.
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The proof of this result is more difficult than the one for (4.6). It requires the application of a
quantitative Faber-Krahn inequality. The arguments will be explained in the next section.

5. Quantitative Faber-Krahn inequalities

Given a bounded open set V in a Riemannian manifold, we denote by λV the first Dirich-
let eigenvalue of V and by uV the associated non-negative eigenfunction, normalized so that
∥uV ∥L2(V ) = 1.

The classical Faber-Krahn inequality asserts that among all bounded open sets with a fixed vol-
ume, a ball minimizes the first eigenvalue. Following many previous works , Brasco, De Philippis,
and Velichkov proved in [BDV] the following quantitative version of the Faber-Krahn inequality.

Theorem 5.1. For n ≥ 2, let V ⊂ Rn be a bounded open set with Hn(V ) = 1. Then

(5.1) λV − λB ≥ c inf
B

Hn(V△B)2,

where c is a positive absolute constant and the infimum is taken over all balls B with Hn(B) = 1.

The inequality above is sharp in the sense that the power 2 on the right hand side cannot be
lowered.

The classical Faber-Krahn inequality also holds for subdomains of the sphere Sn or the hyper-
bolic space Hn. In this context one should consider geodesic balls. That is, for open subsets V
of Sn or Hn with a given volume, the minimal value of λV is attained again by a geodesic ball
among all open bounded open sets of the same volume. Recently Allen, Kriventsov, and Neumayer
[AKN1] have obtained the following quantitative form.

Theorem 5.2. For n ≥ 2, let Mn be either Rn, Sn, or Hn, and let β > 0. Let V be a relatively
open subset of Mn and let B be a geodesic ball in Mn such that Hn(B) = Hn(V ). In the case
Mn = Sn, suppose also that β ≤ Hn(V ) ≤ Hn(Sn) − β, and in the case Mn = Rn or Mn = Hn

just that Hn(V ) ≤ β. Denote by λV and λB the respective first Dirichlet eigenvalues of −∆Mn

in V and B, and let uV and uB be the corresponding eigenfunctions normalized so that they are
positive and ∥uV ∥L2(Mn) = ∥uB∥L2(Mn) = 1. Then

(5.2) λV − λB ≥ c(β) inf
x∈Mn

(
Hn(V△Bx)

2 +

ˆ
Mn

|uV − uBx |2 dHn
)
,

where c(β) > 0 and Bx denotes a ball centered at x with the same Hn measure as B. In the
case Mn = Sn, (5.2) also holds with the infimum over Sn replaced by the evaluation at x equal to
Sn-barycenter of V (possibly with a different constant c(β)).

The assumption involving the parameter β is necessary to prevent the domain from being too
big and, in the case Mn = Sn, also too small. The Sn-barycenter of V ⊂ Sn is defined by xV /|xV |,
with xV as above. So this belongs to Sn and it is defined only when xV ̸= 0. Notice the presence
of the additional term

´
Mn |uV − uBx |2 dHn in the inequality (5.2) when compared to (5.1). In

this term we assume that the functions uV and uBx vanish outside of V and Bx respectively.

Next we show how Theorem 4.2 can be deduced from the estimate (5.2) (with x equal to
Sn-barycenter of V in place of the the infimum over Sn).



CARLESON’S CONJECTURE 9

Proof of Theorem 4.2. Without loss of generality, we assume that Hn(V1) ≤ Hn(V2). Let ᾱi be
the characteristic of the spherical ball Bi ⊂ Sn with the same Hn measure as Vi. The Friedland-
Hayman inequality ensures that α1 + α2 − 2 ≥ 0. Then we write

(5.3) α1 + α2 − 2 = (α1 − ᾱ1) + (α2 − ᾱ2) + (ᾱ1 + ᾱ2 − 2) ≥ 0.

Recall that Sperner’s inequality asserts that, among all the open subsets with a fixed measure Hn

on Sn, the one that minimizes the characteristic constant is a spherical ball with that measure
Hn. Hence,

αi ≥ ᾱi.

So the three summands on the right hand side of (5.3) are non-negative. Further, if one of the
balls Bi differs from a hemisphere by a surface measure h0, that is,

h0 = max
i

∣∣∣Hn(Bi)−
1

2
Hn(Sn)

∣∣∣,
then

(5.4) ᾱ1 + ᾱ2 − 2 ≥ c h20.

See Corollary 12.4 from [CS], for example. So to prove the theorem we can assume that, for
i = 1, 2,

(5.5)
∣∣∣Hn(Bi)−

1

2
Hn(Sn)

∣∣∣ ≤ 1

100
Hn(Sn),

because otherwise
α1 + α2 − 2 ≳ 1

and the statement in the theorem is trivial. Observe that (5.5) implies that

(5.6) β ≤ Hn(Vi) = Hn(Bi) ≤ Hn(Sn)− β

for a suitable absolute constant β. From this estimate it follows that ᾱi ≈ 1 for i = 1, 2. So we
can assume that |αi − ᾱi| ≤ 1

2 ᾱi because otherwise the theorem follows trivially from (5.3). So
αi ≈ ᾱi ≈ 1. Then from the identity λi = αi(αi + n− 1) (where λi ≡ λVi) it follows immediately
that

(5.7) αi − ᾱi ≈ λi − λBi .

For i = 1, 2, let xi ∈ Sn be the barycenter of Vi. We assume that the barycenter exists

because otherwise this means that
´
Vi
y dHn(y) = 0, while

∣∣∣´Bi
y dHn(y)

∣∣∣ ≳ 1 because of (5.6)

(independently of the choice of its center in Sn). Hence, by the Allen-Kriventsov-Neumayer
theorem, using (5.6) and (5.7), we would obtain

αi − ᾱi ≈ λi − λBi ≳ Hn(Vi△Bi)
2 ≥

∣∣∣∣ˆ
Vi

y dHn(y)−
ˆ
Bi

y dHn(y)

∣∣∣∣2 ≳ 1,

which would yield the conclusion of the theorem. The same argument shows that, in fact, we have∣∣∣∣ˆ
Vi

y dHn(y)

∣∣∣∣ ≈ 1.

From now on we assume that the spherical balls Bi, i = 1, 2, are centered in the barycenters
xi of the Vi’s. In the case when Hn(Vi) +Hn(V2) = Hn(Sn) it follows easily that the barycenters
of V1 and V2 are opposite points in Sn, and B1 and B2 are complementary balls in Sn. When the
preceding condition does not hold, we need to be a little more careful.
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Let

θ0 = Hn(Sn)−Hn(V1)−Hn(V2),

and suppose that θ0 > 0. For i = 1, 2, let

yi =
1

Hn(Vi)

ˆ
Vi

y dHn(y),

so that xi = yi/|yi|. Also, let

y∗2 =
1

Hn(Sn \ V1)

ˆ
Sn\V1

y dHn(y).

Notice that y∗2 = y2 if θ0 = 0 and that

Hn(V1) y1 +Hn(Sn \ V1) y
∗
2 =

ˆ
Sn

y dHn(y) = 0.

So the barycenter x1 and the point x∗2 = y∗2/|y∗2| are antipodal points in Sn. We also have

|y2 − y∗2| ≤
∣∣∣∣ 1

Hn(V2)
− 1

Hn(Sn \ V1)

∣∣∣∣ˆ
Sn\V1

|y| dHn(y)

+
1

Hn(Sn \ V1)

∣∣∣∣ˆ
V2

y dHn(y)−
ˆ
Sn\V1

y dHn(y)

∣∣∣∣ ≲ θ0 + θ0 ≈ θ0.

Also, let B∗
2 be a spherical ball centered in x∗2 with measure Hn(B∗

2) = Hn(Sn \ V1). Since

|radSn(B2)− radSn(B
∗
2)| ≈ |Hn(B2)−Hn(B∗

2)| ≲ θ0,

using also (5.6), we infer that

(5.8) distH(∂SnB2, ∂SnB1) = distH(∂SnB2, ∂SnB
∗
2) ≲ θ0,

where distH denotes the Hausdorff distance. On the other hand, from the definition of θ0, it
follows that

h0 = max
i

∣∣Hn(Vi)−
1

2
Hn(Sn)

∣∣ ≥ 1

2
θ0.

Then, by (5.4),

(5.9) ᾱ1 + ᾱ2 − 2 ≳ θ20 ≳ distH(∂SnB2, ∂SnB1)
2.

To estimate εn(0, 1) we denote by L1 be the n-plane that contains ∂SnB1, and we let L0 be
the n-plane through the origin parallel to L1. Then we choose H to be the open half-space that
contains B1 and whose boundary is L0 (notice that B1 is contained in a hemisphere because of
the assumption Hn(V1) ≤ Hn(V2)). We denote S1 = Sn ∩H, S2 = Sn \H, and then we write

(5.10) εn(0, 1) ≤ Hn(S1 \ V1) +Hn(S2 \ V2) ≤
2∑

i=1

Hn(Bi \ Vi) +
2∑

i=1

Hn(Si△Bi)..

By the theorem of Allen-Kriventsov-Neumayer, recalling the assumption (5.5),

(5.11) Hn(Bi \ Vi)
2 ≲ αi − ᾱi.

To deal with the term Hn(Si△Bi) we will estimate distH(∂SnBi,Sn ∩ L0) for i = 1, 2. In the
case i = 1, since L0 is parallel to L1 and L0 splits Sn in two hemispheres, we have

(5.12) distH(∂SnB1, Sn ∩ L0) ≲ |Hn(B1)− 1
2H

n(Sn)| ≤ h0.
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Also, for i = 2,

distH(∂SnB2,Sn ∩ L0) ≤ distH(∂SnB2, ∂SnB
∗
2) + distH(∂SnB

∗
2 ,Sn ∩ L0).

Since ∂SnB
∗
2 = ∂SnB1, from (5.8) and (5.12) we get

distH(∂SnB2,Sn ∩ L0) ≲ θ0 + distH(∂SnB1, Sn ∩ L0) ≲ θ0 + h0 ≲ h0.

So, for a suitable C2 > 0,

(5.13) distH(∂SnBi,Sn ∩ L0) ≤ C2 h0 for both i = 1, 2.

By (5.10), (5.11), and the preceding estimate, we get

εn(0, 1)
2 ≲

2∑
i=1

(αi − ᾱi) + h20 ≲
2∑

i=1

(αi − ᾱi) + (ᾱ1 + ᾱ2 − 2) = α1 + α2 − 2.

□

Given two disjoint open sets Ω1,Ω2 ⊂ Rn+1 and x ∈ Rn+1, r > 0, we consider the sets
Vi(x, r) = {r−1(x− y) : y ∈ S(x, r) ∩ Ωi} and we denote

(5.14) αi(x, r) = αVi(x,r).

By Theorem 4.2,

(5.15) εn(x, r)
2 ≲ min(1, α1(x, r) + α2(x, r)− 2).

Recall that the same estimate holds in the planar case with εn(x, r) replaced by ε(x, r), and in
fact “typically” we have ε(x, r)2 ≈ min(1, α1(x, r) + α2(x, r) − 2), as we mentioned above. In
view of these facts, it is natural to wonder if a version of Carleson’s conjecture can hold in higher
dimensions in terms of the square function

(5.16) A(x)2 :=

ˆ 1

0
min(1, α1(x, r) + α2(x, r)− 2)

dr

r
.

The coefficient a(x, r) := min(1, α1(x, r) + α2(x, r)− 2) is a much stronger quantity than what
(5.15) suggests. Indeed, the coefficient a(x, r) also detects sets of dimension s ∈ (n − 2, n) in
S(x, r). To be more precise, we need some additional notation. For Ω1, Ω2 as above and for
x ∈ Rn+1, r > 0, we take a half-space H such that x ∈ ∂H and we consider the associated half
spheres S1

H(x, r), S2
H(x, r) introduced in (3.1). For a given b ∈ (0, 1), s ∈ (n − 2, n), c0 > 0, and

i = 1, 2, we consider the following subsets of “thick” points from S(x, r):

T i
s,b,c0(x, r,H) := {y ∈ Si

H(x, r)\Ωi : Hs
∞(B(y, bdistS(x,r)(y,H))∩S(x, r)\Ωi) ≥ c0 distS(x,r)(y,H)s},

where distS(x,r) denotes the geodesic distance in S(x, r), and we put

Vs,b,c0(x, r,H) := T 1
s,b,c0(x, r,H) ∪ T 2

s,b,c0(x, r,H).

We define

(5.17) εs(x, r) = inf
H

1

rs

ˆ
Vs,b,c0

(x,r,H)

(
dist(y,H)

r

)n−s

dHs
∞(y)

where the infimum is taken over all affine half-spaces H ⊂ Rn+1 such that x ∈ ∂H. Remark that
the integral of a function f : Rn+1 → [0,∞) with respect to the Hausdorff content Hs

∞ is given byˆ
Rn+1

f dHs
∞ =

ˆ ∞

0
Hs

∞({x ∈ Rn+1 : f(t) > t}) dt.
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In [FTV1] the following has been proven:

Theorem 5.3. Let n ≥ 1 and 0 < s < n. Let Ωi and εs(x, r) be as above. Then for any
s ∈ (n− 2, n), c0 > 0 and b ∈ (0, 1), we have

(5.18) εs(x, r)
2 ≲s,c0,b a(x, r).

The proof of this estimate in [FTV1] follows the same lines of the proof of Theorem 4.2.
The main difference is that, instead of the estimate (5.2), it uses new quantitative Faber-Krahn
inequalities involving s-dimensional Hausdorff contents and capacities, which are also proved in
[FTV1]. In the case n ≥ 3, one of these inequalities, which is sharp up to a constant factor, reads
as follows:

Theorem 5.4. Given n ≥ 3, let Mn be either Rn or Sn, and let β > 0, a ∈ (0, 1). Let Ω be a
relatively open subset of Mn and let B be a geodesic ball in Mn such that such that Hn(B) = Hn(Ω)
with radius rB. In the case Mn = Sn, suppose also that β ≤ Hn(Ω) ≤ Hn(Sn)−β, and in the case
Mn = Rn just that Hn(Ω) ≤ β. Denote by λΩ and λB the first Dirichlet eigenvalues of −∆Mn in
Ω and B, respectively. Then, there is some constant C(a, β) > 0 such that

(5.19) λΩ − λB ≥ C(a, β) inf
x∈Mn

(
sup

t∈(0,1)
−
ˆ
∂Mn ((1−t)Bx)

Capn−2(BMn(y, atrB) \ Ω)
(t rB)n−3

dHn−1(y)

)2

,

where Bx denotes a ball centered in x with radius rB. In the case Mn = Sn, (5.19) also holds with
the infimum over Mn replaced by the evaluation at x equal to Sn-barycenter of V (possibly with a
different constant C(a, β)).

In (5.19), ∂Mn(E) stands for the relative boundary of a set E ⊂ Mn and BMn(x, r) is a ball in
Mn with center x and (geodesic) radius r. Also, for any s > 0 and E ⊂ Mn ⊂ Rn+1, we consider
the capacity

Caps(E) = sup
{
µ(E) : µ ∈ M+(E), ∥Usµ∥∞,E ≤ 1

}
,

where M+(E) is the family of all Radon measures supported in E and Usµ(x) =
´

1
|x−y|s dµ(y).

6. Carleson’s conjecture in higher dimensions. Existence of tangents

The discussion in the previous section suggests that the square function A defined in (5.16)
is a good one for a possible extension of Carleson’s ε2 conjecture to higher dimensions. This is
confirmed by the next result from [FTV2].

Theorem 6.1. For n ≥ 1 let Ω1,Ω2 ⊂ Rn+1 be two disjoint open subsets. Suppose that Ω1 ∪ Ω2

satisfies the capacity density condition (CDC). Then, up to a set of zero Hn measure,

A(x) < ∞ if and only if x is a tangent point of the pair Ω1,Ω2.

The CDC for Ω1 ∪Ω2 is a thickness condition of the complement of Ω1 ∪Ω2 which is equivalent
to the existence of some s ∈ (n− 1, n+ 1] and some r0, c > 0 such that

Hs
∞(B(x, r) \ (Ω1 ∪ Ω2)) ≥ c rs for all x ∈ ∂(Ω1 ∪ Ω2) and all r ∈ (0, r0).

For example, if Ω1 is a Jordan domain and Ω2 = R2 \Ω1, then the CDC holds Ω1∪Ω2 (with s = 1
in the condition above). So Theorem 6.1 implies Theorem 1.1 in the case n = 1, and in fact it can
be applied to more general open sets.
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The fact that the square function A is finite at tangent points of the pair Ω1,Ω2 follows by a
rather easy application of the ACF monotonicity formula. Next we show the detailed arguments,
taken from [FTV1].

Proof of the finiteness of A(x) at Hn-a.e. tangent point x ∈ Rn+1. Let Ω1,Ω2 ⊂ Rn+1 be as in

Theorem 6.1. Let Ωj
1, Ω

k
2, for j, k ≥ 1, be the respective connected components of Ω1 and Ω2.

Notice that any tangent point for the pair Ω1, Ω2 is a tangent point for a pair of components Ωj
1,

Ωk
2. So it suffices to show that for every j, k ≥ 1, it holds A(x) < ∞ at every tangent point x of

the pair Ωj
1, Ω

k
2.

Denote by gj1, g
k
2 the respective Green functions of the domains Ωj

1, Ω
k
2. Let p1 ∈ Ωj

1, p2 ∈ Ωk
2,

and consider the functions

u1(y) = gj1(y, p1), u2(y) = gk2 (y, p2).

We extend u1 and u2 by 0 respectively in (Ωj
1)

c and (Ωk
2)

c and abusing notation we still denote by
u1, u2 such extensions. The CDC condition of Ω1 ∪ Ω2 ensures the Wiener regularity of Ωi and
thus the continuity of u1 and u2 away from the poles p1, p2.

Let d = 1
6 mini dist(pi, ∂Ω

j
1 ∪ ∂Ωk

2). For all x ∈ Rn+1 \ (Ωj
1 ∪Ωk

2) and all r ∈ (0, d), by the ACF
monotonicity formula, we have

∂rJ(x, r)

J(x, r)
≥ 2

r

(
α1(x, r) + α2(x, r)− 2

)
,

with J(x, r) and αi(x, r) = αi as in (4.3), (4.4), and (5.14). Integrating on r, for any ρ ∈ (0, d) we
derive ˆ d

ρ

α1(x, r) + α2(x, r)− 2

r
dr ≤ log

J(x, d)

J(x, ρ)
.

Thus, ˆ d

0

α1(x, r) + α2(x, r)− 2

r
dr ≤ log

J(x, d)

inf0<ρ≤d J(x, ρ)
.

Hence, in order to show that A(x) < ∞ for a given x ∈ ∂Ωj
1 ∩ ∂Ωk

2, it suffices to show that

J(x, d)

inf0<ρ≤d J(x, ρ)
< ∞.

Notice first that, by (4.5),

J(x, d) ≲ −
ˆ
B(x,2d)

|∇u1|2 dy · −
ˆ
B(x,2d)

|∇u2|2 dy.

By the Caccioppoli inequality and the subharmonicity of ui, for each i,

−
ˆ
B(x,2d)

|∇ui|2 dy ≲
1

r2
−
ˆ
B(x,3d)

|ui|2 dy ≲
1

r2

(
−
ˆ
B(x,4d)

ui dy

)2

.

So the continuity of ui implies that J(x, d) < ∞.
To estimate J(x, ρ) from below, let φx,ρ be a C∞ bump function such that χB(x,ρ/2) ≤ φx,ρ ≤

χB(x,ρ), with ∥∇φx,ρ∥∞ ≲ ρ−1. Then, denoting by ωpi
i the harmonic measure for Ωi with pole at
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pi, by the properties of the Green function, it holds

ωpi
i (B(x, ρ/2)) ≤

ˆ
φx,ρ dω

pi = −
ˆ

∇φx,ρ∇ui dy ≤ ∥∇φx,ρ∥2 ∥∇ui∥2,B(x,ρ)

≲ ρ(n−1)/2

(ˆ
B(x,ρ)

ρn−1|∇ui|2

|x− y|n−1
dy

)1/2

= ρn
(

1

ρ2

ˆ
B(x,ρ)

|∇ui|2

|x− y|n−1
dy

)1/2

.

Therefore,

J(x, ρ)1/2 ≳
ωp1
1 (B(x, ρ/2))

ρn
· ω

p2
2 (B(x, ρ/2))

ρn
.

Hence, it suffices to show that

(6.1) lim inf
ρ→0

ωpi
i (B(x, ρ/2))

ρn
> 0 for Hn-a.e. tangent point x ∈ ∂Ωj

1 ∩ ∂Ωk
2,

for i = 1, 2. To this end, consider a subset E of the tangent points for the pair Ωj
1, Ω

k
2 such that

Hn(E) < ∞. Since the set of tangent points is n-rectifiable, we have

(6.2) lim
ρ→0

Hn(B(x, ρ) ∩ E)

(2ρ)n
= 1 for Hn-a.e. x ∈ E.

By standard arguments, using that the tangent points for the pair Ωj
1, Ω

k
2 are cone points for Ωj

1

and Ωk
2, it follows that Hn|E is absolutely continuous with respect to ωpi |E for i = 1, 2 (see [AAM,

Theorem III], for example1). Then, by the Lebesgue-Radon-Nykodim differentiation theorem, we
have

lim
ρ→0

Hn(B(x, ρ) ∩ E)

ωpi
i (B(x, ρ) ∩ E)

< ∞ for ωpi-a.e. x ∈ E.

Since null sets for ωpi
i are also null sets for Hn|E , we infer that

(6.3) lim
ρ→0

ωpi
i (B(x, ρ) ∩ E)

Hn(B(x, ρ) ∩ E)
> 0 for Hn-a.e. x ∈ E.

Multiplying (6.2) and (6.3), we deduce (6.1). This completes the proof of the fact that A(x) < ∞
at Hn-a.e. tangent point of the pair Ω1, Ω2. □

Remark that the first proof by Bishop of the fact that E(x) < ∞ at H1-a.e. tangent point for
a Jordan domain is not the one shown in Section 2 relying on Theorem 2.2. Instead, the original
proof by Bishop is close in spirit to the one above showing the finiteness of A(x) at Hn-a.e.
tangent point for Ω1, Ω2. In place of the Alt-Caffarelli monotonicity formula, Bishop’s proof uses
an estimate for harmonic measure due to Beurling. See [BCGJ].

The proof of the converse implication in Theorem 6.1 is more complicated. The strategy is as
follows. First notice that, by Theorem 4.2, En(x) ≲ A(x), and then by Theorem 3.1 the set of
points G0 := {x ∈ Rn+1 : A(x) < ∞} is n-rectifiable. So it remains to show that approximate
tangents for this set are also “true” tangents of ∂Ω1 and ∂Ω2. To this end, we prove the following
slicing result, which may have some independent interest:

1Actually, in Theorem III from [AAM] it is assumed that ∂Ω is lower n-content regular in order to prove the
mutual absolute continuity of Hn|E and ωpi |E . However, a quick inspection of the arguments shows that for the
absolute continuity Hn|E ≪ ωpi

i |E one only needs Ωi to be Wiener regular.
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Proposition 6.2. Let B(0, r0) ⊂ Rn+1 and let Γ be a Lipschitz graph through the origin with
slope at most τ . Let B ⊂ B(0, r0) be a ball with rad(B) ≤ 1

10 r0 such that dist(B,Γ) ≥ 100τr0.
Let K ⊂ B and G ⊂ Γ both be compact sets. Then, for any s > 1,

Caps(K)
Hn(G)2

rn0
≤ C(τ)

ˆ
G

ˆ ∞

0
Caps−1(K ∩ S(z, r)) dr dHn(z).

To apply this proposition, we split G0 into a countable collection of subsets Gj contained in
Lipschitz graphs Γj with small slope and a set of zero measure Hn. By the CDC assumption,
Proposition 6.2 applied to Γ = Γj , G = Gj , x ∈ Γj , and a ball B(x, r0), ensures that if there is a
big piece of (∂Ω1∩∂Ω2)∩B(x, r0) far away from Γj , then, for some s > n−1, Caps−1((∂Ω1∪∂Ω2)∩
S(x, r)) is large for many x ∈ Gj and many radii r ≈ r0. In turn, this implies that εs(x, r) is large
for these points x and radii r. So by Theorem 5.3 the coefficients a(x, r) are large too. Integrating
on r, if follows that A(x) is large for many points x ∈ Gj , which leads to a contradiction if r0 is
small enough.
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