
Catalan Journal of Linguistics 20, 2021  77-114

ISSN 1695-6885 (in press); 2014-9718 (online)	 https://doi.org/10.5565/rev/catjl.354

Computational Perspectives on Phonological
Constituency and Recursion*

Kristine M. Yu
University of Massachusetts Amherst. Department of Linguistics
krisyu@linguist.umass.edu

Received: June 30, 2021
Accepted: September 24, 2021

Abstract

Whether or not phonology has recursion is often conflated with whether or not phonology has
strings or trees as data structures. Taking a computational perspective from formal language theory
and focusing on how phonological strings and trees are built, we disentangle these issues. We
show that even considering the boundedness of words and utterances in physical realization and
the lack of observable examples of potential recursive embedding of phonological constituents
beyond a few layers, recursion is a natural consequence of expressing generalization in phonologi-
cal grammars for strings and trees. While prosodically-conditioned phonological patterns can be
represented using grammars for strings, e.g., with bracketed string representations, we show how
grammars for trees provide a natural way to express these patterns and provide insight into the
kinds of analyses that phonologists have proposed for them.

Keywords: prosody; recursion; computational phonology; tree transducers

Resum. Perspectives computacionals de la constituència fonològica i de la recursivitat

Que la fonologia mostri o no recursivitat sovint va lligat al fet que tingui o no cadenes o arbres
en l’estructura de les seves dades. A partir de la perspectiva computacional de la teoria formal
del llenguatge i tenint en compte com es construeixen les cadenes i els arbres fonològics, mirem
de destriar aquestes qüestions. Mostrem que, fins i tot tenint en compte la limitació de paraules
i enunciats en la realització física i la manca d’exemples observables d’incorporació recursiva
potencial de constituents fonològics més enllà d’unes poques capes, la recursivitat és una conse-
qüència natural de l’expressió de generalitzacions fonològiques per a cadenes i arbres. Tot i que
els patrons fonològics condicionats prosòdicament es poden representar utilitzant gramàtiques per
a cadenes, per exemple amb representacions amb claudàtors, mostrem com les gramàtiques amb
arbres proporcionen una manera natural d’expressar aquests patrons i proporcionen coneixement
rellevant sobre els tipus d’anàlisis d’aquests patrons que s’han proposat des de la fonologia.

Paraules clau: prosòdia; recursivitat; fonologia computacional; transductors arboris

*	 This paper builds on a talk with the same title, presented at RecPhon 2019: Recursivity in pho-
nology below and above the word, in November 2019 at Universitat Autònoma de Barcelona,
Bellaterra. Many thanks to the conference organizers and presenters for inspiring this work, espe-
cially Francesc Torres-Tamarit for sheperding this manuscript through the submission process.
Thank you to Ed Stabler for inspiring discussions that helped shape this work and to an anonymous
reviewer whose suggestions helped me greatly improve the manuscript.

78  CatJL 20, 2021	 Kristine M. Yu

1. Introduction

The question of whether or not phonology has recursion is often conflated with
the question of whether or not phonology has strings or trees as data structures. This
question of strings or trees, in turn, is often linked to the question of whether or not
there are such things as phonological constituents. This paper disentangles these
issues and shows that once they are factored out and considered from a derivational
perspective, it becomes uncontroversial that: (i) phonological grammar is defined
over trees in addition to strings, (ii) phonological grammar has recursive structures,
if it is acknowledged that there is no principled upper bound on the length of a
word, (iii) prosodic tree representations assumed by phonologists—even those that
satisfy the Strict Layer Hypothesis (Selkirk 1984; Nespor & Vogel 1986)—place
the same kinds of restrictions on chunking strings into constituents as syntactic
grammars, including self-embedding of prosodic constituents, and (iv) introducing
prosodic constituents and introducing recursion over prosodic constituents into
phonological grammar is necessary to capture generalizations and can reduce the
computational complexity of the grammar in a precise sense.

An idea that has appeared in the phonological literature is that recursion can
only occur in trees and not in strings. For instance, Scheer (2004: xlvi) states: “there
is no recursion in phonology because there is no tree-building mechanism in this
module” and Scheer (2013: 70) states that: “recursion supposes the existence of trees.
It occurs when an item dominates another item of the same kind (e.g. a CP dominates
another CP). In an environment without trees, this kind of domination cannot exist.”
Similarly, Neeleman & van de Koot (2006: 1550) states: “Recursion, projection and
long-distance dependencies are characteristic of syntax, but are absent in phonology.
This follows if only syntax has trees.” Relatedly, it is often assumed that, as stated in
the oft-cited definition from Pinker & Jackendoff (2005: 211): “Recursion consists
of embedding a constituent in a constituent of the same type, for example a relative
clause inside a relative clause…This does not exist in phonological structure: a
syllable, for instance, cannot be embedded in another syllable.” And there have been
proposals about recursion of a broad range of prosodic constituent categories, e.g.,
from onsets, rimes, and syllables (van der Hulst 2010) to the prosodic word (Selkirk
1996; Peperkamp 1997) to the phonological phrase (Gussenhoven 2005; Schreuder
et al. 2009), to the intonational phrase (Ladd 1986).

There is a superfluity of senses in which the term “recursion” is used in math-
ematical and computational approaches to linguistics. The sense linguists often
mean, as evidenced in the quotes above, is the self-embedding of constituents,
as exemplified by the constituent of type A in Chomsky & Miller (1963: 290),

Table of Contents

1. Introduction
2. Self-embedding in building

phonological strings
3. Self-embedding in building

prosodic trees

4. Conclusion
References

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  79

redrawn in (1). A constituent is a string chunk that is represented as the sequence
of terminal symbols that label the leaves dominated by a single node in a tree.
Therefore, if the definition of recursion is taken to be embedding of a constituent
in a constituent of the same type, then recursion does presuppose trees as a data
structure. But that does not mean that recursion can only occur in trees and not in
strings. The trees in (1) are exemplars of derivation trees, which record the rewrite
rules (e.g., S → NP VP, A → B C) from a generative grammar that are applied to
build, i.e., derive, well-formed strings. From this derivational perspective, it is
uncontroversial that phonological grammars include trees as data structures as well
as strings. And as we explicate in §2, it is also uncontroversial that phonological
grammars are recursive, in the sense of constituent embedding in derivation trees.

(1)	 Types of recursion, redrawn from Chomsky & Miller (1963: Fig. 4, p. 290)

	 (a) Center-embedding1	 (b) Left-recursive	 (c) Right-recursive

The difference between syntax and phonology that has been characterized as
syntax having trees and phonology having only strings, seen from a derivational
lens, is instead a difference in restrictions on the structure of the derivation tree, i.e.,
restrictions on how the output string can be chunked into constituents, and which
string chunks recognized as constituents can further be recognized to have shared
properties by being constituents of the same category. These differing restrictions
define distinct, well-studied classes of grammars in the Chomsky Hierarchy of
grammars (Chomsky & Miller 1963; Chomsky 1956) in formal language theory.

A class of generative grammars that has been claimed to be sufficiently power-
ful to express all attested properties of phonological strings and transformations in
natural language is the class of finite state grammars (FSGs, also known as regular
grammars), see Heinz (2011) for an introduction.2 A finite state grammar derivation
tree is limited to self-embedding that is either left-recursive (1b), i.e., on the left edge

1.	 Chomsky & Miller (1963) refers to this as “self-embedding” but center-embedding is the more
common term used in contemporary parlance.

2.	 Work in computational phonology in the last decade has continued to further restrict the class of
grammars need to express phonological patterns to sub-classes of the finite state grammars, see
Heinz (2018) for a review.

80  CatJL 20, 2021	 Kristine M. Yu

of the tree, or right-recursive (1c), i.e., on the right edge of the tree, and cannot have
both (Chomsky 1963: 394). However, classic rewrite rules like S → NP VP from
introductory syntax lectures belong to the class of context-free grammars and are
not finite state. Context-free derivation trees can have left-recursion, and/or right-
recursion, as well as center-embedding, i.e., self-embedding internal to the tree (1a).
The claim that phonological grammars are finite state is thus a claim that phonologi-
cal grammars do not have center-embedding, while syntactic grammars can.

In this paper, we restrict our discussion of recursion to the sense of constitu-
ent self-embedding in derivation trees, i.e., recursion in grammars. We refer to
this sense of recursion as “self-embedding” (s.e.) and use the terms left- and right
recursion and center-embedding exemplified in (1) to refer to specific types of
self-embedding. Taking the perspective of building up strings and trees, the rest
of this paper consists of three main sections. The first, Section 2, explicates how
self-embedding is necessary in phonological grammars to build well-formed strings
of unbounded length, i.e., strings of arbitrary, finite length. The kinds of gram-
mars we describe in this section, FSGs, have the minimal structural complexity in
the Chomsky Hierarchy required to generate strings of unbounded length. These
grammars do not have sufficient power to chunk a string the way that prosodic
constituents have been proposed to, e.g., they cannot structure CVCV as two sister
syllable nodes, each picking out a CV chunk. While Section 2 begins by motivat-
ing self-embedding in phonological grammars by the lack of a principled bound
on word length, it ends by showing how the greater motivation for self-embedding
is that it is a side effect of recognizing phonological generalizations. The same
high-level line of thinking runs through Section 3, which moves from grammars
for strings to grammars for trees that can build prosodic constituents. Section 3
also shows how the consideration of how prosodic trees are built up provides a
computational perspective that can help elucidate what it means for constituents to
be labeled with the same prosodic category and clarify the relation between self-
embedding and notions of complexity.

As a final prefacing note, we point out that restricting this paper to the discus-
sion of recursion in grammars means that that we set aside process recursion (see
for instance discussions in Parker (2006); Tomalin (2007); Stabler (2014); Idsardi
(2018) a.o.), which concerns computing with deferred operations (Abelson et al.
1996, §1.2.1). A grammar defines procedures by which we can derive well-formed
strings (or trees). Self-embedding in the definition of the grammar is an instance
of procedural recursion. A procedure can be recursive, but be computed with a
recursive or an iterative process, see Abelson et al. (1996, §1.2.1) which illustrates
this point for the classic example of computing factorials.

2. Self-embedding in building phonological strings

There is no principled upper bound on the length of a word in natural language. To
generate all the phonotactically licit words of a language, a phonological grammar
must therefore have the capacity to generate words of arbitrary (finite) length.
A string rewrite grammar is defined over an alphabet Σ, where an alphabet is a

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  81

non-empty, finite set of symbols, e.g., Σ = {C, V}. Rewrite rules in a grammar
determine the set of licit strings over the alphabet by restricting which strings can
be derived. Derivational steps in finite state string grammars are restricted to two
moves: (i) extending a string by a single element in a single direction, e.g., to the
right—and only this single direction, over the entire course of the derivation—or
(ii) terminating the string. More formally, assuming a non-empty, finite alphabet
of terminal symbols, Σ, a finite set of nonterminal categories Cat disjoint from the
alphabet, and a start symbol category S ∈ Cat (that initiates the string derivation), a
(right-linear) finite state string rewrite grammar is restricted to a finite set of rewrite
rules of the form α → aβ and α → λ, where α, β ∈ Cat and a ∈ Σ (Chomsky & Miller
1963) and λ indicates the empty string (the string of length 0). These rewrite rules
may look familiar from context-free syntactic rules like S → NP VP, but note that
derivations with finite state grammars cannot include S → NP VP because there are
two categories on the right side: NP and VP.

Finite state rules can only add restrictions on string extension steps. For
instance, we could define rules to restrict strings to the concatenation of arbitrarily
many CV chunks, e.g., CV, CVCV, CVCVCVCVCV. In plain English, the restric-
tions would be stated as: a string must be initiated with a C, and if we extend with a
C, then we must immediately follow this with extending by a V. These restrictions
would be stated with the rewrite grammar in (2).

(2)	� Finite state string rewrite grammar for building strings of arbitrarily many CV
chunks

	 a.	 Assume Σ = {C, V}, Cat = {α, β}, start category α
	 b.	 α → C β (rule to extend string with suffix C)
	 c.	 β → V α (rule to extend string with suffix V)
	 d.	 α → λ (rule to terminate string)

Finite state rewrite grammars are called finite state because they can be mod-
eled with automata with finitely many states and transitions (Sipser 2013, Ch. 1).
The grammar in (2) is equivalent to the finite state acceptor (FSA) represented as
a transition diagram in (3), an automaton that accepts (or generates) the same set
of strings, with the same incremental steps. Both have the same alphabet Σ = {C,
V}; the set of categories Cat = {α, β} is the set of states in the automaton; the start
category α is the start state α, indicated by the initial arrow pointing to state α, and
the string termination rule α → λ is equivalent to defining α as a final state, indicated
by the double circle. The string extension rules in the re-write grammar correspond
to the transition function of the FSA, e.g., α → C β says “if the automaton is in
state α and processes (accepts or generates) a C, then it transitions to state β” and
β → V α says “if the automaton is in state β and processes (accepts or generates) a
V, then it transitions to state α”. All and only the strings that can be derived with
the grammar in (2) can be generated by (3) by traversing a path from the start state
α to the final state α, via allowed transitions between states. Finite state re-write
grammars and finite state automatons can thus be thought of as different notations

82  CatJL 20, 2021	 Kristine M. Yu

for defining finite state grammars, when we take the broad sense of a grammar
as a device that recognizes which string derivations (or tree derivations, for tree
grammars) are well-formed.

(3)	� Transition diagram specifying finite state acceptor (FSA) equivalent to (2)
with Σ = {C, V}, states {α, β}, start state α, and final state α

α βC
V

The process of building a string with a generative grammar is standardly rep-
resented with a derivation tree. We show the derivation tree for the string CVCV
with the grammar in (2) in (4). Starting from the start category α at the root of the
tree, each successive derivation step, i.e., each rule application, is represented by
the expansion of a mother node into its daughter(s), and the derived string can be
read off from the leaves in the tree, left to right. Stepping through the derivation
tree is equivalent to traversing a corresponding path in the FSA in (3), as shown
in (5). We return to the FSA perspective on building up strings to provide insight
into self-embedding in §2.2.

(4)	 Derivation tree for CVCV using finite state rewrite grammar (2)

(5)	� Steps in building CVCV string with finite state rewrite grammar in (2) and
finite state automaton in (3)
Step Finite state grammar Finite state automaton
0 Start with Cat α Start at start state α
1 α → C β Generate C, transition from state α to state β
2 β → V α Generate V, transition from state β to state α
3 α → C β Generate C, transition from state α to state β
4 β → V α Generate V, transition from state β to state α
5 α → λ End at final state α

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  83

Self-embedding is the mechanism that grammars have to build strings of
unbounded length. The grammar (2) is right-recursive because of the pair of rules
α → C β and β → V α: the category α appears on both the left-hand side of a rule as
well as the right-hand side of a rule. The self-embedding in FSG (2) is expressed
in corresponding FSA (3) as the cycle between α and β. More generally, self-
embedding in an FSG is expressed in an equivalent FSA as a cycle, i.e., a path
traversing the FSA that reaches a state that was already previously visited. The
derivation tree for CVCV in (4) is right-recursive, cf. (1c), because of self-embed-
ding of both α and β on the right edge of the tree. But what are these self-embedded
constituents? We described the grammar in (2) as generating strings of arbitrarily
many CV chunks. From that description, we might expect CVCV to be broken down
into exactly two CV-chunk sister constituents by the grammar: [CV][CV], where
constituents are indicated with brackets.

However, in the derivation tree (4) for CVCV, there are four constituents—all
the suffixes of CVCV: CVC[V], CV[CV], C[VCV], [CVCV], with suffix-constitu-
ents shown as enclosed in square brackets. (In formal language theory, a suffix
(prefix) of string s is a substring of s that ends (starts) at the end (start) of s.)
Prefix [CV]CV is not picked out by the derivation tree as a constituent. This
is not an accident: a (right-linear) finite state grammar like (2) can build up a
string only by suffixing, resulting in a purely right branching derivation tree (and
potentially right-recursion). Or, alternatively a (left-linear) finite state grammar
(restricted to prefix extension α → βa rather than suffix extension α → aβ) can
build up a string only by prefixing, resulting in a purely left-branching deriva-
tion tree and only prefix-constituents (and potentially left-recursion). A finite
state grammar cannot chunk a string into both prefix and suffix-constituents, as
needed to structure CVCV as [CV][CV]. It also can only pick out string chunks
aligned to the edge of the string, and thus cannot chunk out a middle CV-unit
such as CV[CV]CV.3

We can now see how the lack of a principled upper bound on the length of a
word implies that there is self-embedding in phonological grammars even if we do
not assume the existence of prosodic constituents such as syllables that would pro-
vide [CV][CV] chunking. The discrepancy between the description of the allowed
strings generated by the grammar in (2) and the actual string chunks picked out
by constituents in the derivation also points to a fundamental issue: we cannot tell
how a string was built only from the information in the string itself. We elaborate
on this point as we consider the implications of boundedness in string length due
to the finite realization of unbounded structure in physical systems.

3.	 Although FSGs defined over Σ = {C, V} cannot chunk CVCV as [CV][CV], if brackets were
admitted into the alphabet so that Σ = {C, V, [,]}, FSGs could define the language ([CV])n, i.e., a
language with an arbitrary number of repetitions of the string [CV]. We discuss bracketed string
representations of constituents in §2.3.

84  CatJL 20, 2021	 Kristine M. Yu

2.1. Building up strings of a bounded number of CV chunks

The evidence that there is no principled upper bound on the length of a word
obviously does not come from witnessing the actual production of words that are
unbounded in length. Rather, it is inferred because the principles that seem to
govern word composition up to reasonable lengths do not seem to include size
bounds, and the reason we do not see longer examples already has independent
explanations coming from finite restrictions on memory, attention, breath, and
life. Computers only have finite memory, e.g., the maximum length of an ASCII
character string in Python on a 64-bit system is 9223372036854775807.4 Humans
run out of breath and die, so there is no way that a human could utter or sign a word
of unbounded length.

The finite realization of physical systems implies that a phonological grammar
that only generates strings up to some bounded length would, in practice, be suf-
ficient for modeling observed phonological patterns in natural language: no self-
embedding needed, as shown in the non-s.e. finite state grammars that generate
strings of up to a bounded number of repetitions of CV, which we call “CV strings”:
(6) generates up to one repetition and (7) generates up to two. Corresponding FSAs
are given in (8)-(9). The FSAs contain no cycles (they are acyclic) because there is
no self-embedding in the corresponding FSGs.

(6)	 Non-s.e. finite state grammar for building CV-strings of up to one CV chunk
	 a.	 Assume Σ = {C, V}, Cat = {α, β, γ}, start category α
	 b.	 α → C β (rule to extend string with suffix C)
	 c.	 β → V γ (rule to extend string with suffix V)
	 d.	 α, γ → λ (two rules to terminate string)

(7)	 Non-s.e. finite state grammar for building CV-strings of up to two CV chunks
	 a.	 Assume Σ = {C, V}, Cat = {α, β, γ, δ, ε}, start category α
	 b.	 α → C β (rule to extend string with suffix C)
	 c.	 β → V γ (rule to extend string with suffix V)
	 d.	 γ → C δ (rule to extend string with suffix C)
	 e.	 δ → V ε (rule to extend string with suffix V)
	 f.	 α, γ, ε → λ (three rules to terminate string)

(8)	 Acyclic FSA for building CV-strings of up to one CV chunk

α βC γV

4.	 This can be checked with the Python commands import sys; sys.maxsize.

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  85

(9)	 Acyclic FSA for building CV-strings of up to two CV chunks

α βC γ δC εV V

In fact, an even less expressive structural class of grammars than non-s.e. finite
state grammars is sufficient to generate CV-strings up to some bounded string
length. (The more possible strings a grammar can generate, the more expressive it
is). With our alphabet of size 2, Σ = {C, V}, there are 2k+1 –1 possible strings for
strings up to length k.5 And in general, the set of possible vowels and consonants in
natural language is finitely bounded, so the number of possible strings up to some
bounded string length is finite. Therefore, we can simply list out all the licit strings
in the grammar. Grammars like this, that simply list the licit strings in a language,
form a structural class of grammars that can be called finite grammars, since they
can generate only a bounded finite number of words, i.e., a finite language (Nowak
et al. 2002). They fail to recognize any generalizations about which strings are licit,
so the number of words that can be derived is equivalent to the number of rules in
the grammar.

Finite grammars for building up CV-strings of up to one and two CV-chunks are
shown in (10-11). Finite grammars have only a single category, the start category,
e.g., α in (10-11). Because finite grammar rules simply list licit strings, α → s,
where s is a string over the alphabet Σ, they only have terminal elements on the
right-hand side and do not have the capacity for self-embedding.

(10)	Finite grammar for building CV-strings of up to one CV chunk

	 a.	 Assume Σ = {C, V}, Cat = {α}, start category α

	 b.	 α → CV (rule to generate CV)

	 c.	 α → λ (rule to generate empty string)

(11)	Finite grammar for building CV-strings of up to two CV chunks

	 a.	 Assume Σ = {C, V}, Cat = {α}, start category α

	 b.	 α → CV (rule to generate CV)

	 c.	 α → CVCV (rule to generate CVCV)

	 d.	 α → λ (rule to generate empty string)

We now have introduced three different kinds of grammars we can use to
derive a bounded CV-string like CVCV. Derivation trees for CVCV using these
different grammars are shown in (12), plus one that does chunk CVCV as two sister
constituents (12d). The sample of possible derivation trees for CVCV shown—a

5.	 See Appendix A.

86  CatJL 20, 2021	 Kristine M. Yu

finite grammar derivation using (11), a non-s.e. FSG derivation using (7), a right-
recursive FSG derivation using (2), and a context-free grammar (CFG) deriva-
tion (explicated in §3.1)—are only four of infinitely many possible derivations
of CVCV.6 How do we choose between the different derivation trees and their
corresponding grammar types?

(12)	Multiple derivations of CVCV over the alphabet Σ = {C, V}

	 (a) Finite grammar	 (b) Non-s.e. FSG 	 (c) Right-rec. FSG	 (d) CFG

A standard answer is to compare the relative succinctness of the grammars
based on some metric of the “size” of the grammar, e.g., the number of rules, and
to choose the most succinct grammar, e.g., see Chomsky & Halle (1968); Meyer &
Fischer (1971); Hartmanis (1980). For example, the number of rules needed to gen-
erate zero or more repetitions of (C)V (where C is optional) up to some finite bound
of repetitions, k, where k is a non-negative integer, is 4k + 1 for a non-s.e. finite
state grammar, but 2k+1 – 1 for a finite grammar.7 Thus, we can say that a non-s.e.
finite state grammar for bounded (C)V-strings is exponentially more succinct than
a finite grammar. But for each additional (C)V unit allowed, a non-s.e. finite state
grammar still needs to add an additional four rules. In comparison, a right-recursive
finite state grammar for (C)V-strings would require only four rules,8 regardless of
the number of (C)V chunks to be generated—a more succinct grammar than any
non-s.e. FSG for some finite bound. The observed data for a language with only
(C)V-strings can only ever be a finite sample, e.g., {V, CV, VV, CVV, VCV, CVCV},
but extending the set of licit strings in the language to be generated beyond that
finite sample to the infinite set of (C)V strings of arbitrary length, {(C)V}*, allows
a reduction in the size of the FSG defined, see Savitch (1993).

6.	 To see there are infinitely many possible derivations, consider context-free grammars, defined in
§3. We could define context-free rules that would allow telescoping out a unary branch from β to
the terminal elements C and V in (12d) with as many layers as we want with derivation steps that
rewrite one category as another, e.g., β → γ.

7.	 See Appendix §B for a sketch of a proof.
8.	 See (28) in Appendix §B.

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  87

But what if C isn’t optional, and we can only build up strings of up to two
CV-chunks? If we compare the grammars used in the derivations in (12), the finite
grammar (11) has three rules; the non-s.e. FSG (7) has seven rules, and the right-
recursive FSG (2) has three rules. By our succinctness criterion, the right-recursive
FSG is preferable to the non-s.e. FSG because it has fewer rules, but the right-
recursive FSG and finite grammar have the same number of rules and thus we
can’t decide between them. We could also tinker with the operationalization of
succinctness and leave rules for terminating strings out of the rule count, in which
case the finite grammar has two rules, the non-s.e. FSG has four rules, and the
right-recursive FSG has two rules. Regardless of the way we operationalize suc-
cinctness, it is clear that when string length is bounded to be as small as a handful
of symbols, there is little or no reason to prefer finite or non-s.e. FSGs over s.e.
FSGs due to succinctness.

However, even in cases where it takes fewer rules and symbols to write down a
finite grammar than a finite state grammar to generate the same set of licit strings,
a finite state grammar expresses structural generalizations that a finite grammar
doesn’t. Compare the non-recursive FSG in (7) that generates {λ, CV, CVCV} with
7 rules to the finite grammar with just 3 rules (11). The finite grammar recognizes
no shared properties between CV and CVCV other than that they are licit: no string
chunks smaller than an entire licit string can be recognized as a constituent, and
all licit strings are recognized as constituents of the same category, α. The non-s.e.
FSG recognizes at least that the licit strings have a prefix in common: building up
CVCV begins by building up CV, i.e., all (non-empty) words must begin with CV.
More generally, a non-s.e. FSG can encode phonotactic generalizations aligned
to a word edge, e.g., no words in English can begin with an /ŋ/ (for a grammar
over a segmental alphabet), all words must end in a vowel in Samoan. Given the
prevalence of phonotactic generalizations at word edges in natural language, finite
grammars are not a good choice compared to non-recursive FSGs—even in cases
where they may be, by some measures, more succinct.

Now comparing the non-s.e. and s.e. FSGs, even if we only consider CV-strings
up to two CV chunks (with only a tiny numerical difference of 4 vs. 2 string exten-
sion rules comparing the non-s.e. to the right-recursive grammar), the two additional
rules required in the non-s.e. FSG (7) are copies of the rules in the right-recursive
grammar (2), up to category labels. The non-s.e. FSGs fail to notice the generali-
zation that a C must always be followed by a V and that a (non-empty) string can
only end in a V. That the licit strings happen to follow this phonotactic restriction is
treated as accidental. Thus, even if we only need to be able to build CV-strings up
to two CV chunks, we must do this with the right-recursive grammar to capture the
generalization that the only licit strings are built up from concatenating CV units.
This is reminiscent of the programmer’s aphorism: “Two or more, use a for!”

2.2. Self-embedding and generalization

The connection between self-embedding and generalization becomes especially
clear when we take the FSA perspective and consider learning. Suppose a language

88  CatJL 20, 2021	 Kristine M. Yu

learner is exposed to CV, CVCV, and CVCVCV (and the empty string) as a sample
of learning data, and that only CV-strings are licit in the language. If the learner
simply memorizes that the strings in the input data comprise the set of licit strings
in the language, without noticing any patterns across them, then the learned gram-
mar could be the finite grammar in (11) with an additional rule α → CVCVCV. We
can represent this finite grammar with the FSA in (13) if we define the alphabet to
be a list of the three licit non-empty strings, Σ = {CV, CVCV, CVCVCV}, define
transitions generating each of those three strings, and force any non-empty string
generated by the FSA to terminate after a single transition.9

(13)	�FSA representation of finite grammar that generates exactly the language
sample input to the learner

α β
CV
CVCV
CVCVCV

If the FSA in (13) represents the learner’s knowledge of licit strings in the
language after exposure to an input of CV, CVCV, and CVCVCV, then the learner
has faithfully remembered all the distinctions between the licit strings. Generating
any of these three strings results in the same, single-transition path through the
FSA, from state α to state β. Because the FSA representation of a finite grammar
provides no mechanism of decomposing a licit string into its subparts—each licit
string is a non-decomposable atom listed in the alphabet—there is no way for such
an FSA to recognize any shared properties between the licit strings that were in
the input. The learner has no way of noticing that so far, the strings in the input all
begin with CV, much less to make the inductive leap, “Aha, all licit strings begin
with CV!”, because there is no mechanism for the learner to “forget” the rest of a
string after the initial CV-prefix.

Another possible learned grammar that remembers all the distinctions in the
input is the finite state grammar represented by the FSA in (14a). But unlike
the FSA in (13), the FSA in (14a) maximally decomposes each licit string into
its subparts: each string extension step results in entering a new state. With this
unit-by-unit decomposition into individual Cs and Vs, the learner leaves open the
possibility of recognizing shared properties between licit strings by forgetting
certain distinctions between them. First, there is a way for the learner to notice that
all the strings in the input so far begin with CV, and that both CVCV and CVCVCV
begin with CVCV. That is, there are many redundancies in (14a) because CV and
CVCV are both prefixes of CVCVCV, so we can compress the FSA by merging
states. States β1, β2, β3 have the same set of licit prefixes, {C}, so they can be
merged into a single state β (14b). Similarly, states γ1, γ2, γ3, which have the same

9.	 The FSA must indicate string termination by having a transition into a final state, so a finite gram-
mar rule like α → CV must be rewritten as a finite state grammar rule α → CVβ, where β is a final
state and there are no transitions out of β.

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  89

set of licit prefixes, {CV}, can be merged into γ (14c). States δ1, δ2, which share
the same set of licit prefixes {CVC} can also be merged into δ, and states ε1, ε2,
which share the same set of licit prefixes {CVCV}, can be merged into ε (14d).

(14)	State merging for generalization in learning

α

β₁
C

β₂C

β₃

C

γ₁

ε₁

η

V

γ₂V δ₁C V

γ₃V δ₂C ε₂V ζC V
	

α βC

γ₁

ε₁

η

V

γ₂V

γ₃

V
δ₁C V

δ₂C ε₂V ζC V

	 (a) Step 0: Memorization	 (b) Step 1: Merge states β1, β2, β3

α βC γ

δ₁C

δ₂
C

ε₁

η

V

V

ε₂V ζC V

	 α βC γ δC ε ζC ηV V V

	 (c) Step 2: Merge states γ1, γ2, γ3	 (d) Steps 3/4: Merge δ1, δ2; merge ε1, ε2

α βC γ-ε-η δ-ζCV
V

	
α-γ-ε-η β-δ-ζC

V

	 (e) Step 5: Merge γ, ε, η; merge δ, ζ	 (f) Step 6: Merge α, γ-ε-η; merge β, δ-ζ

The FSA in (14d) has compressed the learning data as much as possible without
loss of information by noticing where strings in the language have prefixes in
common. But it still does not generalize about what is phonototactically licit in the
language beyond the finite learning data sample, nor does it make the inductive
leap that the only licit strings are built from repeating CVs. The only way to do so
is via further state-merging that will result both in self-embedding in the equiva-
lent FSG and in loss of information about certain aspects of the learning data. The
decisions about which states will be merged depend on what inductive biases we
assume that the learner has.

One kind of bias that has been studied for learning stress patterns is a bias
whereby the learner assumes that it is not an accident, if multiple states have the
same incoming path of length k, e.g., k = 2 (see Heinz (2009) and Heinz et al. (2016,
§3.5) for introduction). If they do, that is good enough for the learner to treat them as
if they were the same and no longer keep track of any distinctions between them
further back than 2 steps. With this bias, the learner would merge γ, ε, η, which
share the incoming path of length two CV and δ, ζ, which share incoming path of
length two VC, resulting in (14e), where we have labeled the merged states with the
original states that were merged, to be explicit. We can compress (14e) into (14f)
without any change in the set of licit strings generated. The learner has now made
the inductive leap that the only licit strings are built from repeating CVs, resulting
in the right-recursive phonotactic grammar and cyclic FSA we started with in (2) and
(3), in which we revisit the states α and then β each time we add another CV. That
is, self-embedding is a consequence of generalization in learning. Furthermore, the

90  CatJL 20, 2021	 Kristine M. Yu

unboundedness of string length that is a result of introducing self-embedding into
the grammar is simply a side effect of this generalization.

The FSA perspective also provides insight into what a constituent is. Recall
that a state in an FSA is equivalent to a category in a finite state grammar. The
non-s.e. grammar (7) and corresponding acylic FSA (14d) both build up CVCV
with the steps shown in the derivation tree in (12b). Prior to the generalization
step in (14e), each string extension step in building up CVCV with the grammar
results in a new string chunk that is not recognized as having any properties in
common with any previous string chunk because each node in the derivation tree,
i.e., each constituent, is of a different category type. In contrast, the derivation
of CVCV after the generalization state-merging steps in (14e, f), shown in (12c)
(and repeated from (4)), recognizes a shared property between string chunks. The
right-recursive grammar partitions the string resulting from each string-extension
step in the derivation into two types: α-constituents that result from (rightward)
string extension with a C, and β-constituents that result from string extension with
a V. The distinctions lost in the generalization step enable the learner to coarsen
the partition of constituents from as fine as possible, to just two categories. This
provides a perspective that obscuring or “forgetting” certain distinct properties
between different strings to notice shared properties among them is what it means
to recognize constituents as the same type. This perspective is different from one
commonly brought up in arguments against self-embedding in phonology, e.g., “A
constituent is understood to be a particular type of string, and all constituents of a
given type exhibit the same properties, regardless of the size or internal structure
of the constituent … In addition, by using the same term, Phonological Word, for
both types of structures, we obscure the fact that there are, in fact, different types
of strings that exhibit distinct properties.” (Vogel 2009: 70-71).

2.3. Interim summary and building up to tree grammars

At this point, we have shown that, if we accept that there is no principled bound
on the length of a word, then phonological grammars and derivation trees must
be self-embedding. We introduced finite state string grammars, their equivalent
representations as finite state acceptors, and derivation trees as representations of
how strings are built up step by step. We also pointed out, though, that in physi-
cal systems such as humans, the realization of an unbounded structure can only
ever be bounded. This boundedness implies that a non-s.e. grammar is sufficiently
expressive to generate any word observed empirically. In fact, even a finite string
grammar that simply lists the licit strings is sufficiently expressive, and for the
short string lengths that may be observable from elicited utterances, may even
by some measures be more succinct than a finite state grammar. However, only a
self-embedding grammar can start to move towards the generalization that a string
is built out of repeating chunks such as CV-substrings.

We have also disentangled the issues of self-embedding, prosodic constituents,
and whether or not phonology is defined over trees rather than or in addition to
strings. All self-embedding discussed up to this point has been without reference

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  91

to prosodic constituents such as syllables, feet, and prosodic words. And we have
shown even the simplest class of grammars—finite grammars that list each licit
string—build up strings in a way that is standardly represented as a derivation tree,
e.g., the finite grammar derivation tree of CVCV in (12a). Finite grammars do not
have the capacity for self-embedding. The only constituent is the whole string that
was built up: no string chunks smaller than the entire string can be recognized as
a constituent. Thus, the finite grammar derivation tree in (12a) underscores that
whether a grammar has the capacity for self-embedding is not whether or not it “has
trees”. Even building up a string in a single step, i.e., simply listing the string, can
be represented with the derivation tree as in (12a). Rather, what determines whether
or not a grammar has the capacity for self-embedding is what restrictions there are
on the derivation tree, which is in turn determined by what restrictions there
are on the form of the rewrite rules. A grammar can be self-embedding, so long
as the rewrite rules in a grammar are flexible enough to allow rules that have a
category on the right-hand side as well as rules that have a category on the left-hand
side. Finite state grammars allow such rules, but cannot express the structure of a
mother node branching into daughter nodes typical in prosodic trees, e.g., like in
a binary foot, Ft → σσ.

In moving to building hierarchical prosodic structure, like binary feet, we move
from building strings to building trees because the output structure is defined by
how it is chunked into subtree constituents. For example, constraints on what kinds
of constituents can dominate one another stated in various versions of the Strict
Layer Hypothesis, e.g., Selkirk (1996, (4)), are constraints defined on trees, not
strings. But all grammars in the Chomsky Hierarchy—finite grammars, finite state
grammars and even more expressive grammars such as context free grammars
(introduced in §3.1)—are grammars for strings, not trees. They define which strings
are acceptable (or can be generated) by the grammar, even if what determines gram-
maticality is the structure of the derivation tree of the output string.

The rest of the paper extends the derivational and computational perspectives
we have taken in discussing string grammars to tree grammars. But first, we note
that there is a way to mimic prosodic constituent subtrees with bracketed string
representations. For some phonologists, bracketed string representations are just a
shorthand notational convenience for trees. For others, e.g., see Neeleman & van
de Koot (2006); Idsardi (2018) and references therein, they are crucially strings
and not trees, so that phonology is finite state, i.e., so that FSGs are sufficiently
expressive to describe all phonological patterns of natural language. Indeed, FSGs
may not allow rules like Ft → σσ, but they do allow rules that can generate the
string [Ft[σma]σ[σma]σ]Ft, assuming the alphabet Σ = {a, m, [Ft, [σ,]Ft,]σ}.

The standard mathematical approach one would use to prove that bracketed
string representations are in fact insufficient for prosodic structures would be to
claim that natural language requires unbounded depth of recursive embedding of
prosodic constituents and to notice that bracketed string representations cannot
provide that (Dolatian et al. 2021). So long as we only ever need to keep track
of a bounded number of layers of recursion over some prosodic category, we can
label each layer with distinct symbols, e.g., [ϕmin ,]ϕmin , [ϕmax ,]ϕmax

 for self-embed-

92  CatJL 20, 2021	 Kristine M. Yu

ding of ϕ, see also Yu (2019, (31)). But it is impossible to label an unbounded
number of layers with distinct symbols, given a finite alphabet. We pointed out in
§2.2, though, that unboundedness is really just a side effect of generalization, and
arguments from unboundedness don’t go through if one is considering the finite
realization of physical systems.

There is an even better reason to take prosodic constituents seriously and
work with tree representations rather than bracketed strings: bracketed strings
make edge effects an accident and can be misleading. As pointed out in Selkirk
(1980, §3), since boundary symbols are in the alphabet like any other symbol, it
would simply have to be stipulated that they happen to appear only at edges.
It would be an accident that strings like ma]σ[Ft[σ]Ftm]σ[σ a are ungrammatical, rather
than an inherent consequence of the labeled brackets being boundaries. And the
fundamental idea of prosodic theory that the edge of a higher prosodic constituent
is also the edge of lower prosodic constituents, e.g., the right edge of a foot is also
the right edge of a syllable which in turn is also the right edge of a mora, would
also be an accident. Without trees, there is nothing for the brackets to structurally
be edges of and no inherent ordering due to dominance relations.

As an example of how bracketed string representations can be misleading, even
if they can describe the phonological pattern at hand, we briefly consider encliti-
zation patterns in Italian varieties. In Standard Italian, enclitization has no effect
on the stress pattern on the lexical word host and enclitics cannot be stressed. In
Neapolitan Italian, enclitics can receive stress, with no effect on stress in the lexical
word: if there are two enclitics, the first enclitic receives primary stress; if there is
only one enclitic, it does not get stressed. In Lucanian Italian, enclitization affects
stress on the host: primary stress only occurs on the penultimate syllable of the host
plus enclitics, whether that syllable might in the host or a clitic. These patterns are
exemplified in (15), based on Peperkamp (1997); Vogel (2009).

(15)	�Stress patterns in enclitization in varieties of Italian (Vogel 2009, (18)-(19))

	 Standard Italian	 Neapolitan Italian	 Lucanian Italian
	 véndi	 ‘sell’	 cóntә	 ‘tell’	 vínnә	 ‘sell’
	 véndi lo	 ‘sell it’	 cóntә lә	 ‘tell it’	 vәnní llә	 ‘sell it’
	 véndi me lo	 ‘sell me it’	 cóntә tí lә	 ‘tell yourself it’	 vinnә mí llә	 ‘sell me it’

Vogel (2009, (20)-(21)) proposes the same prosodic tree for all varieties of
Italian: a composite group (CG) with three daughter nodes: (i) a prosodic word
(PWd) constituent for the lexical word and (ii) two clitic syllable daughters, and
Vogel (2009, (22), (23)) proposes rules for stress assignment for each of the three
Italian varieties (16) that operate on this tree. The composite group is taken to be
the common domain of stress assignment across the varieties. The difference in
stress patterns across the varieties is attributed to the difference in the formulation
of the stress assignment rules.

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  93

(16)	�Stress assignment rules defined with labeled bracketed strings (Vogel 2009,
(22), (23))

	 a.	 Standard Italian: σ[+stress] → [+stress]  /___ . . .]PW . . .]CG

	 b.	 Neapolitan Italian: σ → [+stress]  / ]PW ___ σ]CG

	 c.	 Lucanian Italian: σ → [+stress]  /___ σ]CG

The rule for Standard Italian is intended to preserve stress assignment made
inside the prosodic word at the level of the composite group (Vogel 2009: 72).
There is a mathematically precise way in which we can enforce the idea that
Standard Italian grammar cannot dig inside the prosodic word to alter stress
assignment once it has already been built: we can define grammars that build trees
“bottom-up”, constituent by constituent, bottom to top, leaves to root. In such a
tree grammar, after the PWd constituent is formed, the grammar cannot peer over
the edges of the PWd to dig inside the constituent and affect the syllables within it.
Within a bracketed string like (16a), though, if the [PWd,]PWd and [CG,]CG matched
bracket pairs are no different from any other pair of terminal symbols in the pho-
nological grammar, then their presence does not imply a barrier in the way that
building a PWd constituent in a tree does.

Moreover, in (16), the Lucanian variety seems intuitively the simplest, in the
sense that the only boundary symbol that is of relevance in (16c) is]CG: stress
the syllable that is one syllable to the left of]CG.10 This is misleading, because
in the tree, there is no such thing as the syllable that is one over to the left from the
right edge of the CG. Rather, there is the syllable that dominates the penultimate
leaf, and that syllable could be a daughter of the CG or the PWd node, depending
on the number of clitics. Stating the syllable that gets stressed explicitly in terms
of the tree structure makes the lack of generalizability about that syllable apparent.
This lack of generalizability is also a clear way in which Lucanian Italian in fact
has the most complex rather than the simplest stress pattern. One way Lucanian
stress can be analyzed is via re-footing inside the prosodic word as clitics are
added (Peperkamp 1997: §5.4.2). The next section (§3) introduces finite state
bottom-up tree grammars that can compute this kind of “re-structuring” and
returns to the Italian example in §3.3.

3. Self-embedding in building prosodic trees

We can extend the FSA perspective introduced for strings in §2 to define grammars
for trees. To preview, the FSA perspective reveals that the equivalence between

10.	 In fact, for (16c) to correctly generate all three Lucanian stress assignments from zero to two enclit-
ics, the]PWd symbol must either be erased prior to the application of the stress rule, or ignored,
cf. Selkirk (1980: 128). Stated as is, (16c) does not assign any stress in the lexical word or in the
enclitic cluster when there are zero or one clitics. The intervening]PWd in σ]PWd]CG for zero clitics
and]PWd σ]CG for one clitic prevents the input string from matching the structural description of
σσ]CG. A revision of (16c) that could (accidentally) work would introduce optionality of]PWd in the
structural description: σ → [+stress] / ___ (]PWd) σ (]PWd)]CG.

94  CatJL 20, 2021	 Kristine M. Yu

states in the acceptor and categories in the grammar, see (5), does not hold once
we are building up trees rather than strings. The consequences are: (i) a precise
mechanism by which prosodic constituents of the same type can still have distinct
phonological properties (§3.1), as well as (ii) two kinds of recursion in prosodic
trees with differing implications for phonological generalization (§3.2). The FSA
tree-building perspective also shows how self-embedding can affect the succinct-
ness and expressiveness of the grammar (§3.3).

3.1. Building prosodic trees: a first example

An example of a typical phonological representation with prosodic constitu-
ents is shown in the tree in (17), which shows the Japanese word /nikoN/ ‘brand
name’ chunked into prosodic words (ω), syllables (σ) and moras (μ), taken from
Gussenhoven (2018: Table 11.2). The /N/ represents a ‘moraic/coda nasal’,
which can only appear in the second mora of a syllable and is phonologically
and phonetically distinct from the /n/ at the beginning of /nikoN/. Moraic nasals
assimilate in place to a following stop and surface as uvulars before a pause (Vance
1987). We can read off a possible “top-down” (from roots to leaves) grammar
fragment used to build up the string /nikoN/ from the prosodic tree in (17): the
alphabet is Σ = {n, i, k, o, N}, the set of categories is Cat = {ω, σ, μ}, the start
category is ω, and the rules are given in (17).

(17)	Prosodic tree for /nikoN/ and corresponding grammar fragment

a.	 ω → σσ

b.	 σ → μ, σ → μμ

c.	 μ → ni, μ → ko, μ → N

d.	 n, i, k, o, N → λ (terminal elements)

The ability to chunk the string as [ni][koN] or [ni][ko][N] (without adding
brackets to the alphabet) like in (17) is beyond the right- and left-linear string exten-
sion rules of finite state grammars. This is because finite state grammars can only
have a single symbol from the alphabet followed (or preceded) by a single category
symbol on the right-hand side of a string extension rule (§2). Consequently, each
constituent in a finite state derivation smaller than the entire string is nested inside
another constituent, e.g., as in [n[i[k[oN]]]]. A natural way to allow sisters to be
separate, non-nested constituents is to have rewrite rules that have two categories
on the right-hand side, such as ω → σσ, σ → μμ in (17). One well-studied class of
grammars that allow such rules in the derivation tree for the string is the structural
class in the Chomsky Hierarchy known as context-free grammars (CFGs). These
are restricted to rewrite rules of the form α → (Σ ∪ Cat)*, where α ∈ Cat, i.e., rules
that rewrite a category as a (finite) string of symbols drawn from the alphabet and

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  95

set of categories. CFGs are the kinds of grammars that are familiar from syntactic
derivations using rules like S → NP VP, VP → V. The derivation trees in (1) are all
context-free because they each have a mother node A branching into two daughter
nodes B and C.

The prosodic tree in (17) is the derivation tree for the output string nikoN and is
context-free because it is built with rules with multiple categories on the right-hand
side. But, as mentioned in §2.3, what phonologists are interested in is not (only) the
string yield nikoN from the leaves of the tree, but also the branches of the tree—
that is, the derivation tree in (17) itself as the output of the derivation, called the
“derived tree”.11 Thus, we want grammars that can build up trees and that recognize
which trees are grammatical. In §2.2, we showed how an FSG derivation of a string
could be represented with an equivalent sequence of steps through a finite state
string acceptor. Similarly, the derivation of a tree like (17) can be represented as a
sequence of steps through finite state acceptors—but for trees rather than strings
(Baker 1978; Comon et al. 2007). Each step in a string acceptor can grow a string
by concatenating in a new substring; each step in a tree acceptor can grow a tree,
constituent by constituent, “bottom-up” (from leaves to root) by extending a unary
subtree or by merging smaller subtrees to form a bigger subtree.12

To work up to self-embedding of prosodic constituents, we first sketch how to
build the simple tree in (17) with steps through a bottom-up tree acceptor to explore
what it means for prosodic constituents to share the same category label. There are
three key points this exercise highlights: (i) in the same way that we cannot tell how
a string was built only from the information in the string itself (see (12)), we also
cannot tell how a tree was built if all we know is what the tree is, but (ii) unlike in
building constituents in FSGs with string acceptors (see (5)), building two prosodic
constituents of the same type does not imply also reaching the same state via the
same transition in the tree acceptor; thus, (iii) prosodic constituents with the same
category label can nevertheless have distinct phonological properties due to distinct
derivational histories, as discussed at the end of §2.2.

Recall that well-formed derivations of an finite state string rewrite grammar
can be recognized by a string acceptor, e.g., (5), and so finite state string gram-
mars can be defined using the notation of rewrite rules or finite state automata.
Well-formed derivations of a finite state tree rewrite grammar can be recognized
by a bottom-up tree automaton (Baker 1978; Comon et al. 2007). Here we use the
notation of finite state tree automata to define our tree grammars (Rounds 1970). A
bottom-up tree automaton can be thought of as a generalization of a (string) finite
state automaton that can process multiple branches rather than a single branch (a

11.	 See Stabler (2019) for a similar perspective on syntax.
12.	 There are other ways to build up trees, e.g., top-down, see Comon et al. (2007, §1.6, 6.4.2), but

we take the bottom-up direction as a starting point since it is a standard way to process a tree and
is parallel with processing a string left to right as we have discussed with FSAs. When an FSG
(FSA) derives (generates/accepts) a string left to right, as exemplified in the discussion of (4, 5),
the categories (or states) can encode some information about what came to the left, a history of the
derivation. And going bottom-up in a tree, categories (or states) can encode something about what
is beneath them.

96  CatJL 20, 2021	 Kristine M. Yu

string). A string finite state automaton processes a string from left to right, one
symbol at a time, and enters one of finitely many states after each step. A string
derivation is recognized as well-formed if and only if the automaton enters a final
state after processing the entire string. A bottom-up tree automaton processes a tree
from leaves towards the root, one subtree at a time, and enters one of finitely many
states after each step. A tree derivation is recognized as well-formed if and only if
the automaton enters a final state after processing the tree all the way up to the root.

As a first introduction to tree derivations, we show the grammar and steps
to build up just the initial syllable /ni/ in (17) in (18), using the bottom-up tree
automaton described by the transition rules in (19).13 In the rules, the /n/ is sub-
sumed under C and /i/ under V. The automaton described is a tree transducer, since
it not only takes an input tree and processes it like a tree acceptor, but additionally
returns an output tree. It is the simplest kind of transducer, an identity transducer,
which accepts an input and returns an output identical to the input—a fully faithful
mapping from an underlying form to a surface form. The derivation in (18) defines
the fully faithful mapping /ni/T → [ni]T, where the T subscript is a reminder that we
are mapping prosodic trees and not just segments. We describe (19) as an identity
transducer rather than an acceptor to set the stage for later derivations in the paper
where the transductions do change the input tree. All the automata we’ve been
working with up until now have been acceptors and can only compute phonotactic
patterns, e.g., licit configurations of sibilants under sibilant harmony, restrictions
on voicing word-finally, licit sequences of stressed and unstressed syllables, since
they only accept or generate, without modifying the input string or tree. Computing
a phonological process, e.g., assimilation, devoicing, stress assignment, tonal inser-
tion, requires a transducer, which specifies an output in addition to an input at each
transition.

The rules in (19) take the input tree shown as the leftmost tree in (18) and
returns an output tree identical to the input tree as the output tree, the rightmost
tree in (18), (ignoring the gray filled circle). A gray filled circle decorating a tree
in (18) indicates which state the transducer enters after the application of the tran-
sition rule labeling the rewrite arrow to the left of the tree, and the output at each
step is shown as the subtree under the state. By convention, a state is positioned as
the mother node of the subtree that has just been processed, but isn’t actually part
of the tree—it’s just an annotation like a “you are here” marker. Since the trans-
ducer is an identity transducer, (18) shows that the output at each step is simply
the subtree that just has been processed. This can be seen in each of the transition
rules defined in (19).

13.	 It might seem strange for us to call (18) a derivation building up the /ni/-syllable tree when the input
to the transduction is already the /ni/-syllable tree. But this is no different than when we showed
how the finite state string acceptor in (3) derives CVCV in (5), taking CVCV as an input string.
The flip from the generator to the acceptor perspective in (5) can be accomplished by replacing
the word “generate” with “accept” and treating the input string as the object incrementally read-in
rather than written out. Similarly, to see (18) as a generative process, we treat the input tree as the
object incrementally written out rather than read in.

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  97

(18)	Derivation of /ni/T → [ni]T syllable subtree in (17)

(19)	Grammar fragment for derivation of /ni/T → [ni]T ; qσ is a final state
	 [0a]	 C()	 → qC(C())	 Enter C leaf
	 [0b]	 V()	 → qV(V())	 Enter V leaf
	 [1a]	 μ(qC(t1), qV(t2))	 →	qμ1

 (μ(t1, t2))	 Merge C, V to build mora
	 [2a]	 σ(qμ1

 (t))	 →	qσ(σ(t))	 Build unary syllable

The left-hand side of a rule shows the structure required for the rule to be
applied, and its format differs depending on whether the transducer is at a leaf or
a non-terminal node. When the transducer is at a leaf, e.g., Rules [0a], [0b], the
left-hand side of the rule is just the leaf, which by definition, has no daughters
underneath—indicated by the empty parentheses following the leaf label, e.g., C()
in Rule [0a]. If the transducer is at a C leaf, then Rule [0a] can apply, as shown in
the first step in (18). The right-hand side shows the state entered, as well as the
output, shown in the immediately following parentheses. For example, Rule [0a]
processes the leaf C(), transitions the transducer to state qC, and returns the input
leaf C() unaltered, as output. And the first step in (18) shows the transducer pro-
cessing leaf C (Rule [0a]) to enter state qC on the left branch and outputting back
C on the left branch, which is shown as the daughter of the qC node. Similarly, the
transducer outputs V on the right branch after processing leaf V (Rule [0b]). Rules
[0a] and [0b] could apply in the order shown in (18), or the reverse order, since
they process different branches.

The gray circles in (18) move from the leaves towards the root over the course
of the derivation since the tree is processed bottom-up. When the transducer is at
a non-terminal node, e.g., Rules [1a], [2a], the current node label and the state(s)
that the transducer is in must match the left-hand side of a rule for the rule to apply.
Rule [1a] is a merge rule that states that if the transducer is at a binary-branching μ
node with its left daughter (t1) in state qC and its right daughter (t2) in state qV, then
the transducer can enter qμ1

 and output back the μ subtree with its daughters (t1, t2)
unchanged. The third step in (18) shows the transducer applying this merge rule.

The transduction of the input tree can end successfully if the transducer com-
pletes processing the tree up to the root node and enters a final state—a state where
the derivation can optionally terminate. Rule [2a] states that if the transducer is

98  CatJL 20, 2021	 Kristine M. Yu

at a σ node with a single daughter (t) in state qμ1
, then the transducer can enter qσ

and output back the σ subtree with its daughter (t) unaltered. For the purposes of
processing just a syllable like /ni/ rather than an entire prosodic word like /nikoN/,
we designate qσ as a final state. Upon the application of Rule [2a], the transducer
has processed the entire tree up to the root, enters final state qσ (positioned as
the mother node of the root node), and returns the output tree (identical to the
input tree), which is shown as the daughter of qσ. Thus, the tree grammar in (19)
recognizes that the derivation of the input tree given in (18) is well-formed and
transduces it to an identical output tree.14

In fact, that input tree is the only tree that the tree grammar recognizes as well-
formed because the steps taken in (18) are the only ones that bring the transducer
to a final state upon processing the root. For example, there is no way to build a
unary V-syllable, since the only rule that builds a μ-subtree requires two daughters,
not one. If the input tree to the transducer is a unary V-syllable tree, then the trans-
ducer does not return an output because that tree is ill-formed according to (19).
There is also no way to build a VC syllable because there is no way to build a VC
mora, since Rule [1a] requires a left branch in qC and right branch in qV and not
vice versa. That a VC syllable is ill-formed accurately describes Japanese phonol-
ogy. But the transducer also does not allow us to build a moraic nasal, i.e., an N
mora, or a bimoraic syllable, which we need to build the ω-tree for /nikoN/. We
need additional rules beyond those in (19) to do that, as shown in (20), using the
transition rules stated in (21)—a superset of the rules in (19).

The derivation in (20) for /nikoN/T → [nikoN]T begins with building the left
σ-branch to enter qσ on that branch, following the steps in (18), as well as the appli-
cation of [0a], [0b], and [1a], just as in (18), to build the second mora and enter qμ1

on that branch. The only difference is that in the grammar in (19), qσ is not a final
state; instead, qω is. The first steps not already shown in (18) are to process the
moraic nasal leaf N with Rule [0c] and then build a μ node on top of that with Rule
[1b] to enter qμ2

 , and output the processed μ subtree, as shown in the third tree in
(20). We show Rules [0c] and [1b] applying in a single step to save space. With
the transducer now at a σ node with daughter branches in states qμ1

 and qμ2
, Rule

[2b] can apply to merge the daughters and build the 2nd σ subtree, and now both
daughters of the root node are in state qσ (4th tree in derivation). Finally, Rule [3]
can now apply to merge these two branches, each in state qσ, to build the ω tree,
and the transducer enters final state qω upon processing the tree up through the
root node and returns an output tree identical to the input tree. This successfully
terminates the derivation. Unlike the transducer described in (19), the transducer in
(21) can derive more than just one tree. Using the same rules as in (20), we could
also derive, for instance, a prosodic word with two CV syllables, or one with a CVN
syllable followed by a CV syllable.

14.	 The definition of a tree acceptor for the /ni/ syllable would differ from the definition of the identity
transducer in (19) only by returning no output, i.e., the rules would all contain empty parentheses
following the state, e.g., the right-hand side of Rule [1a] would just be qμ1

 ().

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  99

(20)	Derivation trees showing steps for /nikoN/T → [nikon]T in (17)

(21)	�Grammar fragment for building the prosodic tree for /nikoN/T → [nikoN]T in
(17), qω a final state

	 [0a]	 C()	 →	 qC(C)	 Enter C leaf
	 [0b]	 V()	 →	 qV(V)	 Enter V leaf
	 [0c]	 N()	 →	 qN(N)	 Enter N leaf
	 [1a]	 μ(qC(t1), qV(t2))	 →	 qμ1

 (μ(t1, t2))	 Merge C, V to build σ-initial mora
	 [1b]	 μ(qN(t))	 →	 qμ2

 (μ(t))	 Build unary σ-final mora N
	 [1c]	 μ(qV(t))	 →	 qμ1

 (μ(t))	 Build unary σ-initial mora V
	 [2a]	 σ(qμ1

 (t))	 →	 qσ(σ(t))	 Build unary syllable
	 [2b]	 σ(qμ1

 (t1), qμ2
 (t2))	 →	 qσ(σ(t1, t2))	 Merge μs to build σ

	 [3]	 ω(qσ(t1), qσ(t2))	 →	 qω(ω(t1, t2))	 Merge σs to build ω

The sequence of steps in (20) is only one way we could build up the prosodic
tree in (17). An alternative is to merge states qμ1

 and qμ2
 to a single state qμ, i.e.,

to replace all instances of qμ1
 and qμ2

 in (21) with qμ. Why we didn’t choose this
alternative becomes evident only when we consider the space of possible trees that
could be derived with the rules in (21). While building the tree for /nikoN/ doesn’t
require Rule [1c], we included it so we could show the consequence of reaching
the same state with Rules [1b] and [1c], which both build unary-branching moras.15

15.	 A full grammar for building Japanese prosodic trees would also include a Rule [1d] to build a
syllable-final mora containing just V, reaching qμ2

.

100  CatJL 20, 2021	 Kristine M. Yu

Having a single state qμ would fail to distinguish between the initial and final
unary-branching moras merged in Rule [2b] to build a bimoraic syllable. We could
then build syllables like NV even though N is licit only as a final mora. Reaching
a distinct state upon building a mora with N enforces the phonotactic restrictions
on syllable shape. State merging like in (14) would overgeneralize over syllable-
initial and syllable-final moras: the distinction between them is not one that can
be “forgotten”.

Another analytic choice that would build a slight variant of the output /nikoN/
tree in (17) would be to have distinct prosodic category types for syllable-initial
and syllable-final moras, e.g., μ1 and μ2—matching category labels with state
labels qμ1

 and qμ2
 in Rules [1a, 1b, 1c]. This choice would replace the rightmost

μ in the tree in (17) with μ2 and the other two μs with μ1. Here is where the
foundation we lay in §2 with the equivalence between states in finite state string
acceptors and FSG categories breaks down once we make the jump to finite
state tree acceptors and tree grammar categories. Namely, what labels we give
to the categories of the constituents built with Rules [1a, 1b, 1c] has no effect
on determining phonotactic restrictions on syllable-initial versus syllable-final
moras. Those restrictions arise because of the distinctness of states reached in the
derivation, not because of the distinctness of category types in the final output
tree. Maintaining distinct category types μ1 and μ2 while merging states qμ1

 and
qμ2

 as the single state qμ would fail to enforce phonotactic restrictions on syllable
shape. And so long as we have maintain distinct states qμ1

 and qμ2
 , the phonotactic

restrictions are enforced—regardless of whether there are distinct category types
μ1 and μ2 or a single category type μ.

What then, is the consequence of two prosodic constituents sharing the same
category type? The derivation of the /nikoN/ tree in (17) exemplifies that there are
two ways in which nodes in a prosodic tree can end up sharing the same category
label: (i) by the choice of the analyst to use common category labels for different
constituents built by different rules, like using μ as a common category label
across Rules [1a, 1b, 1c], or (ii) as a consequence of applying the same rule, like
applying Rule [1a] twice to build the two CV moras, which are thus necessarily
both of category type μ. From the derivational perspective, when two nodes share
the same category label because of the choice of the analyst, it is accidental; when
two nodes share the same category label because they were both built by the same
rule, it is not. In FSG derivation trees building up strings, the only way for two
nodes to share the same category label is because they were built by the same
(set of) rule(s). But once we are building trees, the consequence of two prosodic
constituents sharing the category type depends on whether it is by the choice of the
analyst or due to being built by the same rule. As we just explicated in the case of
category type μ shared across Rules [1a, 1b, 1c], when the shared category type is
due to the choice of the analyst, it does not result in phonological generalizations
based on the category type. When the shared category type is a consequence of the
constituents being built by the same rule, though, it can, e.g., if Rule [1a] in (21)
is the only rule to build binary-branching moras, then it enforces that all binary-
branching moras must be CV and not VV, or NC, etc.

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  101

The derived prosodic tree in (17) is non self-embedding and obeys the principles
of the Strict Layer Hypothesis (assuming a prosodic hierarchy without a foot), e.g.,
as given in Nespor & Vogel (1986: 7). Self-embedding of a prosodic category is just
a special case of two constituents sharing the same category type, though, so the two
different ways constituents can end up sharing the same category label discussed
here sets the foundations for our discussion of self-embedding in prosodic trees
in the next section. Moreover, a technical but important detail, given the rivalry
typically assumed between adhering to the Strict Layer Hypothesis and prosodic
self-embedding, is that while the output tree and grammar fragments in (17, 21) are
non self-embedding, this is only because any prosodic tree that we write down can
only have a finite number of nodes, and so any n-ary branching rule we recover from
a tree we write down will be bounded in n, e.g., ω → σσ, rather than ω → σσ…σ. But
in fact, statements of the Strict Layer Hypothesis are clear that there is no principled
upper bound on n, e.g., “Following Beckman (1986), branching is held to be n-ary
(a node can have any number of daughter nodes)” (Pierrehumbert & Beckman 1988:
21), see also ellipses in Ito & Mester (2003, 1992, (9)). And as discussed in §2, there
is no way to generate a sequence of an unbounded number of elements without
recursion in the grammar, e.g., ω → σ , ω → σ + σ, ω → σ + ω.

Neeleman & van de Koot (2006, (13)) writes a seemingly non self-embedding
rule with a form like ω → σ+, where σ+ indicates a sequence of one or more
instances of σ. σ+ is not a string of atomic terminal symbols and category symbols,
but a regular expression (see for instance Sipser (2013, §1.3) for an introduction to
regular expressions): itself an FSG that generates an unbounded number of strings.
Grammars that allow rules like this, with a single category on the left-hand side
and a regular expression on the right, have been called extended context-free gram-
mars and are used to abbreviate CFGs, see, e.g., Alberta et al. (2001). Extended
CFGs only define languages that CFGs do, but can conceal self-embedding in
regular expressions in the right-hand side of a rule. A standard CFG equivalent
of the extended CFG rule ω → σ+ would be the set of rules, with Cat = {ω, σ}: ω
→ σ, ω → σσ, σ → σσ, which makes the recursion explicit. If, alternatively, ω →
σ+ was taken as an infinite list of rules, ω → σ, ω → σσ, …, ω → σσ … σ, …, then
this list would no longer be a grammar, which is a finite device. Thus, there is a
contradiction inherent to the Strict Layer Hypothesis—the generalization afforded
by assuming no principled upper bound on n-ary branching is incompatible with a
non self-embedding grammar. Without self-embedding, n-ary branching for arbi-
trary n could only be expressed with an upper bound on n and a set of rules, e.g.,
ω → σ, ω → σσ, ω → σσσ for n capped at 3, that would fail to recognize any pattern
across the rules.

3.2. Two ways to build self-embedded prosodic constituents

Self-embedding of a constituent in an FSG string derivation tree occurs if and only
if the corresponding FSA state labeled with that category type is revisited due to a
cycle in the automaton (§2). (There can be no self-embedding of a constituent in the
derived string, by definition.) But due to the independence of states and categories

102  CatJL 20, 2021	 Kristine M. Yu

in tree derivations just discussed in §3.1, there are two different sources of self-
embedded constituents in a derived tree due to the tree transduction: (i) successive
application of a (set of) rule(s) that defines a transition starting and ending in the
same state (the analogue of a cycle), and (ii) the application of different rules that
happen to process/output a constituent of the same category. Recognizing the dis-
tinction between these sources of self-embedding can give us insight into the differ-
ence between analyses proposing different projections (“prosodic sub-categories”)
of the same prosodic category, e.g., minimal and maximal prosodic words, ω[+min],
ω[+max] (Ito & Mester 2007), and those proposing different categories for each
different projection, e.g., ω vs. CG (Vogel 2009). The same state on the left and
right hand sides of a transition rule (set) implies self-embedding of constituents
in the output derived tree, but not vice versa. Moreover, the same state on the left
and right hand sides enforces identity between two constituents of the same type
built by the same rule(s)—there can be no differences between the phonological
processes conditioned by them from that one rule (set).

Exactly such a case has been proposed for Kaqchikel prefixal phonology:
“each ω-level associated with a high-attaching prefix conditions exactly the
same phonotactic patterns” (Bennett 2018: 22). In Kaqchikel, glottal stops are
epenthesized word-initially in underlyingly vowel-initial stems to avoid onsetless
syllables (Bennett 2018, (5)). This [ʔ]-epenthesis process interacts with prefixation,
as exemplified in (22), data from Bennett (2018, (20)). (22a) shows that onsetless
(i.e., V-initial) monomorphemic stems surface with an initial [ʔ]. (22b) shows that
this stem-initial [ʔ]-epenthesis does not occur if the V-initial stem is preceded by the
prefix /r-/ ‘his/her’, which becomes an onset. However, stem-initial [ʔ]-epenthesis
does occur if the V-initial stem is preceded by the prefix /aχ-/ ‘agentive’, and
moreover, the V-initial prefix itself surfaces with an epenthetic [ʔ] onset (22c). If
the /aχ-/ prefix itself is preceded by the /r-/ prefix, though, it does not surface with
an epenthetic [ʔ] onset; instead, the [r-] becomes the onset (22d).

Bennett (2018) analyzes the pattern exemplified in (22) by noticing that there
are two classes of prefixes: (i) a “high-attaching” class—which syllabifies sepa-
rately from the stem and undergoes [ʔ]-epenthesis, including /aχ-/ [ʔaχ-] ‘agentive’
(Bennett 2018, (10a)) and (ii) a “low-attaching” class, which syllabifies together
with the stem, including /r-/ ‘his/her’ (Bennett 2018, (20)). To account for the
distinction between these two classes, Bennett (2018) proposes that low-attaching
prefixes merge internal to the minimal prosodic word ω[+min] (which dominates
no other ωs) and that syllabification cannot cross ω junctures; high-attaching
prefixes merge above ω[+min], and each initiates an additional non-minimal ω.
Under this analysis, initial [ʔ]-epenthesis occurs only before an onsetless syllable
initiating a prosodic word layer. Although Bennett (2018) describes his proposal
as “unbounded recursion”, stacking of only up to three high-attaching prefixes
occurs, e.g. (23)—another kind of finiteness of realization (§2.2), this kind arising
from morphosyntax.

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  103

(22)	[ʔ]-epenthesis and prefixation in Kaqchikel (Bennett 2018, (6))
	 (a)	/ikˀ/	 [ʔikˀ]	 ‘month’	 V-initial root

	 (b)	/r-ikˀ/	 [r-ikˀ]	 ‘his/her month’	 Low-attaching prefix

	 (c)	/aχ-ikˀ/	 [ʔaχ=ʔikˀ]	 ‘domestic worker’	 (AGT-month)
					 High-attaching prefix

	 (d)	/r-aχ-ikˀ/	 [r-aχ=ʔikˀ]	 ‘his/her domestic worker’	High- and low-attaching

(23)	�Example of stacking of three high-attaching prefixes in at achajmak (Bennett
2018, (22-23))

	 /at = at͡ʃ = aχ = makʰ/ → [ʔat = ʔat͡ʃ = ʔaχ = makʰ]
	 ‘2SG.ABS = COM = AGT = sin’
	 ‘you are an accomplice’

We illustrate the two ways a derivation can result in self-embedding of a pro-
sodic constituent, using Kaqchikel prefixation as an example. First, as a warm-up,
we show the derivation of the prosodic tree transduction for /r-ikˀ/T → [r-ikˀ]T (22b)
in (24), which is an identity transduction like (20). Then, we show the derivation
for /ikˀ/T → [ʔikˀ]T′ (22a) in (26): our first example of a non-identity tree trans-
duction, due to the [ʔ]-epenthesis. The subscript change from T to T′ in /ikˀ/T →
[ʔikˀ]T′ indicates that the output tree differs from the input tree. Finally, building
on that derivation, we show in (27) the derivation of a prosodic tree with self-
embedding of the prosodic word for /atʃ͡ = aχ = makh/T → [ʔatʃ͡ = ʔaχ = makh]T′, the
first two high-attaching prefix layers of (23). All three derivations use the trans-
duction rules in the tree grammar fragment in (25).16 In the grammar, the only
final state is qω, the state entered when an ω subtree is built. All consonants
except [ʔ] are subsumed under C, and all vowels under V.

The tree transduction for /r-ikˀ/T → [r-ikˀ]T is an identity transduction since no
[ʔ]-epenthesis occurs. It builds a tree with a ω root node with a single σ-daughter,
as shown in the first tree in (24), the input tree, which is identical to the output tree.
Since /r-/ is a low-attaching prefix, it is syllabified together with the root inside the
same minimal prosodic word.

16.	 The rules in (25) are only intended to illustrate the aspects of Kaqchikel prefixal phonology touched
on in this paper.

104  CatJL 20, 2021	 Kristine M. Yu

(24)	Steps for building /r-ikˀ/T → [r-ikˀ]T in Kaqchikel following Bennett (2018)

(25)	�Grammar fragment for building the Kaqchikel prosodic trees in (24, 27) fol-
lowing Bennett (2018), qω a final state

	 [K0a]	 C()	 →	 qC(C)	 Enter C leaf
	 [K0b]	 V()	 →	 qV(V)	 Enter V leaf
	 [K1a]	 R(qV(t1), qC(t2))	 →	 qR(R(t1, t2))	 Merge V, C to build rime
	 [K1b]	 Ons(qC(t))	 →	 qO(Ons(t))	 Build unary onset
	 [K2]	 σ(qO(t1), qR(t2))	 →	 qσ(σ(t1, t2))	 Merge Ons, R to build σ
	 [K3]	 ω(qσ(t))	 →	 qω(ω(t))	 Build unary ω
	 [K4]	 σ(qR(t))	 →	 qI(ʔ, t)	 Insert ʔ, delete σ
	 [K5a]	 ω(qI(t1, t2))	 →	 qω(ω(σ(Ons(t1), t2)))	 Attach ʔ, build Ons, σ, ω
	 [K5b]	 ω(qI(t1, t2), qω(t3))	 →	 qω(ω(σ(Ons(t1), t2), t3)	 Attach ʔ, build Ons, σ, ω

The derivational steps for /r-ikˀ/T → [r-ikˀ]T (24) are very similar to those for
/nikoN/T → [nikoN]T (20). The first step shown abbreviates three rule applications
as a single step: C and V leaves are processed with [K0a] and [K0b], respectively,
the transducer enters qC and qV states, and it also outputs the C and V leaves. The
notation [K0a]2 under the arrow indicates that [K0a] is applied twice. The second
step abbreviates the applications of Rules [K1a] and [K1b] as a single step and
processes and outputs the C onset and VC rime, and the transducer enters states qO
and qR. [K2] then applies to process and output the σ-subtree, and the transducer

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  105

enters qσ. Finally, [K3] applies to process and output the ω-tree up to the root node
and the transducer enters final state qω, successfully terminating the derivation.

The derivation of /r-ikˀ/T → [r-ikˀ]T we just walked through is still an identity
transduction, but the derivation of /ikˀ/T → [ʔikˀ]T′ in (26) is our first example of a
non-identity transduction. Without the /r-/ prefix attached, /ikˀ/ is onsetless and sur-
faces with a initial, epenthetic [ʔ]. Since Bennett (2018) describes the [ʔ]-epenthesis
as re-syllabification, a natural way to define the mapping /ikˀ/T → [ʔikˀ]T′ is to begin
with an input tree with a defective syllable—a syllable that has only a rime as a
daughter—and to repair the syllable by inserting a [ʔ] onset as a daughter of the
syllable node in the output tree. Up through the first two steps shown in (26) that
process (and output) the VC rime and transition the transducer into state qR, there’s
nothing we haven’t already seen in the /r-ikˀ/T → [r-ikˀ]T transduction.

(26)	Steps for /ikˀ/T → [ʔikˀ]T′ in Kaqchikel following Bennett (2018)

However, the rest of the derivation is new—it first inserts the epenthetic [ʔ] as
a sister to the rime and then attaches it as an onset when the ω node is processed.
Why insert and attach in two different steps? Attaching [ʔ] as an onset can occur
only if the VC rime branch in state qR is ω-initial. Thus, the [ʔ] cannot be inserted
as an onset until the tree is processed all the way up through the ω node. Only then
does the transducer have information about whether or not the rime is ω-initial.
At the same time, the transducer also can’t build the σ with just R in it and then
insert the onset [ʔ] later, since bottom-up tree transductions cannot change
structures that have already been created. Rather, the onset, syllable, and prosodic
word nodes need to be processed all at once so that the transducer can “wait”
until the ω node is being processed to insert [ʔ] as an onset. That ω formation is
precisely what forces the last-resort [ʔ]-epenthesis to avoid an onsetless syllable,
due to syllabification being ω-bounded.

For all those nodes to be processed at once and [ʔ]-insertion to be dependent on
the ω node, we need to introduce a new kind of transduction step: a “multi” step
which requires carrying multiple subtrees up the derivation rather than just one
(Lilin 1978; Engelfriet et al. 2009). [K4] and [K5a], as well as [K5b] (not used in
(26)) are “multi” steps. Unlike any of the other transition rules, they include a state
followed by more than one tree in parentheses, e.g., qI(t1, t2). As shown in (26),
[K4] processes the σ node, inserts [ʔ] as a sister to the rime, deletes the σ node, and

106  CatJL 20, 2021	 Kristine M. Yu

takes the transducer to state qI. Unlike any other tree resulting from a transduction
step so far, the result of Rule [K4] has a qI gray circle that is not positioned as a
mother node to a constituent because [ʔ] and R have not been merged to build
a constituent. The deletion of the σ node allows the [ʔ] and the rime subtree to
be visible to the transduction when the ω node is processed. From qI, Rule [K5a]
processes the root ω nodes and inserts Ons and σ all at once to build an onset with
daughter [ʔ], merge the onset with the VC rime to build a σ-constituent, build
an ω-constituent with the σ-constituent as its daughter, successfully terminate in
the final state qω, and output the output tree. As is often done in similar syntactic
derivations, we can interpret the output from Rule [K5a] as a multidominance
structure (Gärtner 2002), where a single terminal node has two parents. The final
tree explicitly indicates the multiple dependencies of the [ʔ] by showing it as having
two mothers: (i) the Ons node, at its original insertion site as sister to the rime, and
(ii) the ω node, the node processed when it is attached.

We need only the addition of a variant of Rule [K5a], which we call Rule
[K5b], to move from deriving /ikˀ/T → [ʔikˀ]T′ in (26) to deriving /at͡ ʃ = aχ = makʰ/T
→ [ʔat͡ ʃ = ʔaχ = makʰ]T′ , shown in (27). This transduction is our first that builds
self-embedded prosodic constituents, that is, three ω-layers. The transduction
begins with the steps in (24) to process the minimal prosodic word, ω[+min], for
the stem /makʰ/T → [makʰ]T (not shown). The stem already has an onset, so no
[ʔ]-epenthesis occurs at the left edge of ω[+min]. At this point, the transducer is in
final state qω and can optionally terminate. This is the starting point for the input
tree shown in (27). If the derivation were only of /makʰ/T → [makʰ]T, we could suc-
cessfully terminate here. But the derivation continues because there are two prefixes
to merge in and the transducer is not yet at the root node. Both prefixes are V-initial
and high-attaching and thus initiate ω layers and force [ʔ]-epenthesis ω-initially.
(27) shows that the two [ʔ]-epentheses take almost the same steps as those already
shown in /ikˀ/T → [ʔikˀ]T′ in (26), i.e., Rules [K4, K5b]. Rule [K5b] differs from
[K5a] (used in (26)) only in processing an ω node that has an ω daughter in addition
to a branch in state qI.

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  107

(27)	�Transduction of /at͡ ʃ = aχ = makʰ/T → [ʔat͡ ʃ = ʔaχ = makʰ]T′ in Kaqchikel fol-
lowing Bennett (2018)

Holding component parts separately in memory and carrying them up the
derivation until they are ready to be assembled, like in Rules [K4, K5a, K5b],
pushes up the expressivity of the grammar. In general, any kind of process described
as re-syllabification, re-footing, stress shift, etc., in phonology (and, for instance,
movement or binding in syntax) requires “multi” rules that carry forward more
than one tree up the derivation. This is because processes described as restructuring
require defining relations between two or more locations in the prosodic tree. In
Bennett (2018)’s proposal of ω-initial [ʔ]-epenthesis, the glottal stop enters as a
leaf (location one) since it’s a segment but then it is merged to build an onset only
when it becomes the leftmost daughter of a ω-node being built (location two).
Rules [K4, 5a, 5b] push the tree grammar in (25) into the class of multi bottom-up
tree transducers. String yields from trees that can be built with finite state bottom-
up tree transducers are context-free, i.e., strings that can be derived with CFG
grammars (Comon et al. 2007, §2.4). String yields from trees that can be built with
multi finite state bottom-up tree transducers are strings that can be derived
with multiple CFGs (Engelfriet et al. 2009), grammars that that are more expressive
than CFGs, in which one constituent can enter into relationships with two of its
ancestors, e.g., in syntactic movement, see Clark (2014) for an introduction.

108  CatJL 20, 2021	 Kristine M. Yu

Rule [K5b] expresses the generalization, that once we have already built a ω,
we are in a state (qω) where we can merge in a prefix, which surfaces with an initial
[ʔ] if the prefix is V-initial. And once we have merged in a prefix, we are still in the
same state where we can merge in another prefix, with the same phonotactically-
driven process of [ʔ]-epenthesis. Every time Rule [K5b] is successively applied,
it builds another ω because the output tree from applying it is labeled as an ω.
Self-embedding of ω is a consequence of generalization provided by Rule [K5b],
cf. discussion in §2.2. There is no way to build a constituent of a distinct category
with each successive prefixation, except by copying Rule [K5b] into a set of rules
differing only in the category label for the constituent formed and state reached.
It would then be an accident that these rules are copies up to category and state
labels—a missed generalization and a missed opportunity for succinctness in the
grammar (recall, “two or more, use a for!”), even if only up to three prefixes can
be stacked. The unboundedness introduced by Rule [K5b] is merely a side effect
of encoding the phonological generalization of a process conditioned by prosodic
structure.

The comparison of Rule [K5b] with Rule [K3]—both of which build ωs, also
illustrates the difference between the two kinds of self-embedding possible in
a derived prosodic tree. The self-embedding of ω due to building a constituent
with Rule [K3] and then with Rule [K5b] is the kind of recursion of a prosodic
category that is “accidental” due to the choice of the analyst. We could have
labeled the output tree from Rule [K5b] as a composite group or clitic group, in
which case the application of Rule [K3] followed by the application of Rule [K5b]
would not have resulted in self-embedding and successive applications of Rule
[K5b] would have resulted in self-embedding of clitic groups rather than prosodic
words. Bennett (2018, fn. 6) dismisses this possibility, but the fact that ω[+min] is
built by one rule (Rule [K3]), while all ω[−min]s are built by another (Rule [K5b])
provides a mechanism by which an ω[+min] could exhibit different phonological
behavior from all other ω projections, or by which the constituent built by Rule
[K3] and those built by Rule [K5b] could be distinct categories. From the point
of view of the transduction building the prosodic tree in (27), whether Rule [K3]
and Rule [K5b] build constituents of the same type or not is inconsequential. The
consequence of choosing between allowing self-embedded prosodic constituents
of some category or giving those constituents distinct category labels thus depends
on the source of the self-embedding in the derivation: (i) multiple application of
a rule that begins and ends in the same state that enforce building constituents
of the same category, like Rule [K5b] being applied twice, or (ii) the application of
multiple rules which happen to build prosodic constituents of the same category,
like Rules [K3] and [K5b].

3.3. Prosodic constituency, self-embedding, and generalizability

Having introduced how the multiple dependencies in “re-structuring” analyses can
be modeled with “multi” steps in bottom-up tree transductions, we can return to
the interaction of stress assignment and enclitization across varieties of Italian (15)

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  109

from §2.3 for one final brief case study focusing on generalizability and prosodic
tree building.17 While additional details of Italian phonology are relevant for a
full analysis of stress assignment in Italian, our goal here is not to argue for
a particular analysis, but rather to show how a computational perspective from tree
transduction can help illuminate the consequences of aspects of different analyses.

With respect to stress assignment, adding one clitic is the same as adding yet
another in Standard Italian: the process of merging in a clitic is generalizable. No
“multi” steps are necessary as clitics are stacked and enclitization could be expressed
in a single transduction rule with the same state on the left- and right-hand sides that
merges a syllable with a PWd or CG subtree (depending on the analysis chosen) to
build a new PWd/CG, adding a layer for each clitic, much like in Kaqchikel prefixa-
tion. Introducing this kind of transduction rule for encliticization (not an analysis
proposed by Vogel or Peperkamp, but nevertheless a possible one) would be an
alternative to: (i) having separate, unrelated tree transduction rules for each different
number of clitics that can be merged at once (see, e.g., end of §3.1), or (ii) introducing
“multi” steps to hold clitics until the final clitic is added to then merge all the clitics at
once at a single node. Relative to the two other alternatives mentioned, introducing a
rule with the same state on the left- and right-hand sides could affect the complexity
of the chosen analysis by: (i) increasing the succinctness of the grammar by reducing
the number of rules needed to add in clitics to just one, and (ii) limiting the expres-
sivity of the grammar class to standard rather than multi tree transducers. No such
rule for adding a clitic would be possible for Neapolitan or Lucanian because there is
no generalization to be made: adding one clitic is not the same as adding yet another
because stress assignment changes if one clitic vs. two clitics are added in these
two varieties. In fact, a natural way of implementing Peperkamp (1997, §5.4.2)’s
Lucanian analysis of re-footing inside the prosodic word as clitics are added would
require a “multi” step carrying up even syllables in the lexical word until the final
clitic is added and stress assignment is determined. However, there is a way to make
a generalization about the interaction between clitics and stress in Neapolitan Italian:
by connecting stress assignment with building a foot.

Peperkamp’s analyses propose that syllables are footed within the prosodic
word and that differing stress patterns across Italian varieties reflect differences
in the derived prosodic tree (Peperkamp 1997, §5.4)). And in the derived tree
for Neapolitan Italian, the host “inner” prosodic word (lexical word) and the
clitic foot are daughters of an “outer” prosodic word (if there is only one clitic,
then its syllable is a daughter node of the “outer” prosodic word), resulting in a
recursive PWd category (Peperkamp 1997, §5.4.1)). Adding one vs. two enclitics
changes stress patterns because feet are minimally binary for the light syllables
of the enclitics, just like for non-clitic syllables. The generalization that merging
two syllables builds a foot and assigns stress on the first syllable affects the
succinctness or expressivity of the grammar even if there is an upper bound of
two enclitics. Without the introduction of stress assignment as a consequence
of building a foot, Neapolitan Italian would require either separate rules for

17.	 We leave the specification of grammar fragments as an exercise for the reader.

110  CatJL 20, 2021	 Kristine M. Yu

merging different number of enclitics, or a “multi” rule to carry up the first
enclitic until the second is added. Finishing stress assignment as two syllables
are merged to build a trochaic foot instead allows two clitics to be merged in
together as a single stressed foot subtree with a PWd subtree. And under a natural
interpretation of Peperkamp (1997: §5.4.1)’s analysis, building a minimal PWd
(with no enclitics) or a PWd with a clitic foot reaches a final state qω from which
yet another clitic foot could be merged to build another PWd layer. That is, like
in the CV-string state-merging example in §2.2 or the introduction of Rule
[K5b] in Kaqchikel prefixation in §3.2, the presence of a transition rule with
the same state on the left- and right-hand sides, as well as unboundedness, are
consequences of recognizing a phonological generalization.

4. Conclusion

The tree transduction perspective on stress assignment in Neapolitan Italian
shows one way a phonological grammar can encode the generalization
that “word stress is a constituent (a foot)” (Gussenhoven 2018: 389): via a
derivational step that merges two syllables to build a foot and stresses a syllable
(indicated with str()), e.g., Ft(qσ(t1), qσ(t2)) → qFt(Ft(str(t1), t2)). This tree
grammar transduction rule is a natural way to directly define stress assignment
as part of the process of building a foot: “Simply put, if the representations are
right, then the rules will follow” (McCarthy 1988: 43). This connection between
stress assignment and prosodic structure could be imitated with grammars for
strings and bracketed strings, but only “accidentally”, in the sense described
in §2.3. While the examples in this paper have generally involved prosodic
domains at the level of the prosodic word and below, above the prosodic word,
too, bracketed strings representations mimicking subtree constituents miss
generalizations. If prosodic trees are transduced from syntactic trees, e.g., as
in Match Theory (Selkirk 2011), and constituency information is passed from
syntax to phonology via strings marked up with brackets, e.g., see Idsardi (2018:
215-16), any phonologically-conditioned changes to constituency passed in from
syntax, too, would be accidental.

Computational perspectives from string grammars have provided substantial
insights about phonological patterns, but perspectives from tree grammars have
much to offer as well. The insights explicated here illuminating perennial debates
about recursion and constituency in phonology just scratch the surface.

References
Abelson, Harold, Gerald Jay Sussman & Julie Sussman. 1996. Structure and interpreta-

tion of computer programs, 2nd edn. Cambridge, MA: MIT Press.
Alberta, Jürgen, Dora Giammarresi & Derick Wood. 2001. Normal form algorithms

for extended context-free grammars. Theoretical Computer Science 267: 35-47.
	 <https://doi.org/10.1016/S0304-3975(00)00294-2>

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  111

Baker, Brenda. 1978. Tree transducers and tree languages. Information and control
37: 241-266.

Bennett, Ryan. 2018. Recursive prosodic words in Kaqchikel (Mayan). Glossa 3(1):
67-133.

	 <https://doi.org/10.5334/gjgl.550>
Chomsky, Noam. 1956. Three descriptions of language. IRE Transactions in

Information Theory 2(3): 113-124.
Chomsky, Noam. 1963. Formal properties of grammars. In R. Duncan Luce, Robert

B. Bush & Eugene Galanter (eds.). Handbook of mathematical psychology, Vol. 2,
323-418. New York and London: John Wiley & Sons, Inc. Chap. 12.

Chomsky, Noam & Morris Halle. 1968. The sound pattern of English. Cambridge:
The MIT Press.

Chomsky, Noam & George A. Miller. 1963. Introduction to the formal analysis of
natural languages. In R. Duncan Luce, Robert B. Bush & Eugene Galanter (eds.).
Handbook of mathematical psychology, Vol. 2, 269-321. New York and London:
John Wiley & Sons, Inc. Chap. 11.

Clark, Alexander. 2014. An introduction to multiple context-free grammars
for linguists. Retrieved from <https://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.714.8708>.

Comon, H., M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison &
M. Tommasi. 2007. Tree Automata Techniques and Applications. Retrieved from
<http://www.grappa.univ-lille3.fr/tata>. Release October, 12th 2007.

Dolatian, Hossep, Aniello De Santo & Thomas Graf. 2021. Recursive prosody is not
finite-state. In Proceedings of SIGMORPHON 2021.

Engelfriet, Joost, Eric Lilin & Andreas Maletti. 2009. Extended multi bottom-up tree
transducers: Composition and decomposition. Acta Informatica 46(8): 561-590.

	 <https://doi.org/10.1007/s00236-009-0105-8>
Gärtner, Hans-Martin. 2002. Generalized transformations and beyond. Berlin:

Akademie Verlag.
Gussenhoven, Carlos. 2005. Procliticized phonological phrases in English: Evidence

from rhythm. Studia Linguistica 59: 174-193.
Gussenhoven, Carlos. 2018. Prosodic typology meets phonological representations. In

Larry M. Hyman and Frans Plank (eds.). Phonological typology, 389-418. Berlin/
Boston: Walter de Gruyter GmbH.

Hartmanis, Juris. 1980. On the succinctness of different representations of languages.
SIAM Journal on Computing 9: 114-120.

Heinz, Jeffrey. 2009. On the role of locality in learning stress patterns. Phonology
26(02): 303-351.

	 <https://doi.org/10.1017/S0952675709990145>
Heinz, Jeffrey. 2011. Computational phonology – part I: Foundations. Language and

Linguistics Compass 5(4): 140-152.
	 <https://doi.org/10.1111/j.1749-818X.2011.00269.x>
Heinz, Jeffrey. 2018. The computational nature of phonological generalizations. In

Larry M. Hyman and Frans Plank (eds.). Phonological typology, 126-195. Berlin/
Boston: De Gruyter Mouton.

Heinz, Jeffrey, Colin de la Higuera & Menno van Zaanen. 2016. Grammatical infer-
ence for computational linguistics. California: Morgan and Claypool Publishers.

112  CatJL 20, 2021	 Kristine M. Yu

Idsardi, William J. 2018. Why is phonology different? No recursion. In Ángel J. Gallego
& Roger Martin (eds.). Language, Syntax, and the Natural Sciences, 212-223.
Cambridge: Cambridge University Press.

	 <https://doi.org/10.1017/9781316591529.012>
Ito, Junko & Armin Mester. 1992. Weak layering and word binarity. Manuscript.

University of California Santa Cruz.
Ito, Junko & Armin Mester. 2003. Weak layering and word binarity. In Takeru Honma,

Masao Okazaki, Toshiyuki Tabata & Shin’ichi Tanaka (eds.). A new century of
phonology and phonological theory: a festschrift for Professor Shosuke Haraguchi
on the occasion of his sixtieth birthday, Vol. Revised version of Report LRC-92-09,
Linguistic Research Center, University of California, Santa Cruz (1992), 26-65.
Tokyo, Japan: Kaitakusha.

Ito, Junko & Armin Mester. 2007. Prosodic adjunction in Japanese compounds. Formal
Approaches to Japanese Linguistics: Proceedings of FAJL 4 55: 97-111.

Ladd, D. Robert. 1986. Intonational phrasing: The case for recursive prosodic structure.
Phonology Yearbook 3: 311-340.

Lilin, Eric. 1978. Une generalisation des transducteurs d’etats finis d’arbres: les
S-transducteurs. Thése 3éme cycle, Université de Lille.

McCarthy, John J. 1988. Feature geometry and dependency: a review. Phonetica 43:
84-108.

Meyer, A. R. & M. J. Fischer. 1971. Economy of description by automata, grammars,
and formal systems. In 12th Annual IEEE Symposium on Switching and Automata
Theory, 188-191.

Neeleman, Ad & J. van de Koot. 2006. On syntactic and phonological representations.
Lingua 116: 1524-1552.

	 <https://doi.org/10.1016/j.lingua.2005.08.006>
Nespor, Marina & Irene Vogel. 1986. Prosodic phonology. Dordrecht, The Netherlands:

Foris Publications.
Nowak, Martin A., Natalia L. Komarova & Partha Niyogi. 2002. Computational and

evolutionary aspects of language. Nature 417(6889): 611-617.
	 <http://dx.doi.org/10.1038/nature00771>
Parker, Anna R. 2006. Evolution as a constraint on theories of syntax: the case against

Minimalism. PhD diss, University of Edinburgh, Edinburgh, Scotland.
Peperkamp, Sharon Andrea. 1997. Prosodic words. PhD diss, Universiteit van

Amsterdam, Amsterdam.
Pierrehumbert, Janet & Mary Beckman. 1988. Japanese tone structure. Cambridge:

The MIT Press.
Pinker, Steven & Ray Jackendoff. 2005. The faculty of language: what’s special about

it? Cognition 95: 201-236.
Rounds, William C. 1970. Mappings and grammars on trees. Mathematical Systems

Theory 4(3): 257-287.
Savitch, Walter J. 1993. Why it might pay to assume that languages are infinite. Annals

of Mathematics and Artificial Intelligence 8: 17-25.
Scheer, Tobias. 2004. A lateral theory of phonology. Berlin/New York: Mouton de Gruyter.
Scheer, Tobias. 2013. Why phonology is flat: the role of concatenation and linearity.

Language Sciences 39: 54-74.
	 <https://doi.org/10.1016/j.langsci.2013.02.004>

Computational Perspectives on Phonological Constituency and Recursion	 CatJL 20, 2021  113

Schreuder, Maartje, Dicky Gilbers & Hugo Quené. 2009. Recursion in phonology.
Lingua 119: 1243-1252.

	 <https://doi.org/10.1016/j.lingua.2009.02.007>
Selkirk, Elisabeth. 1980. Prosodic domains in phonology: Sanskrit revisited. In M.

Aronoff and M. L. Keans (eds.). Juncture. Saratoga, California: Anma Libri.
Selkirk, Elisabeth. 1996. The prosodic structure of function words. In James Morgan &

Katherine Demuth (eds.). Signal to syntax: Bootstrapping from speech to grammar
in early acquisition, 187-213. Mahwah: Lawrence Erlbaum Associates.

Selkirk, Elisabeth. 2011. The syntax-phonology interface. In John Goldsmith, Jason
Riggle & Alan C. L. Yu (eds.). The handbook of phonological theory, 435-484.
Malden: Wiley-Blackwell.

	 <https://doi.org/10.1002/9781444343069.ch14>
Selkirk, Elisabeth O. 1984. Phonology and syntax: the relationship between sound and

structure. Cambridge, MA: MIT Press.
Sipser, Michael. 2013. Introduction to the theory of computation, 3rd edn. Boston, MA:

Cengage Learning.
Stabler, Edward P. 2014. Recursion in grammar and performance. In Tom Roeper

& Margaret Speas (eds.). Recursion: complexity in cognition, 159-177. Cham:
Springer.

Stabler, Edward P. 2019. Three mathematical foundations for syntax. Annual Review
of Linguistics 5(1): 243-260.

	 <https://doi.org/10.1146/annurev-linguistics-011415-040658>
Tomalin, Marcus. 2007. Reconsidering recursion in syntactic theory. Lingua 117: 1784-

1800.
	 <https://doi.org/10.1016/j.lingua.2006.11.001>
van der Hulst, Harry. 2010. A note on recursion in phonology. In Harry van der Hulst

(ed.). Recursion and human language, 301-341. Berlin/New York: De Gruyter
Mouton. Chap. 17.

Vance, Timothy J. 1987. An introduction to Japanese phonology. Albany, NY: State
University of New York Press.

Vogel, Irene. 2009. Universals of prosodic structure. In Sergio Scalise, Elisabetta Magni
& Antonietta Bisetto (eds.). Universals of language today, 59-82. Cham: Springer.

Yu, Kristine M. 2019. Parsing with Minimalist Grammars and prosodic trees. In Robert
C. Berwick & Edward P. Stabler (eds.). Minimalist parsing, 69-109. Oxford, UK:
Oxford University Press.

114  CatJL 20, 2021	 Kristine M. Yu

A. Sketch of proof for number of strings that can be built from Σ = {C, V}

There is only one string of length 0: λ. Extending a string built over an alphabet
Σ = {C, V} by one symbol presents two options: concatenating in a C or con-
catenating in a V. Thus, each symbol in such a string represents a “slot” with two
choices; a string of length 2 has two slots and thus 2 × 2 = 4 possibilities; a string of
length 3 has 23 = 8 possibilities. The total number of possible strings for strings up
to length 3 is therefore 20 +21 +22 +23. In general, the number of possible strings
that can be generated over an alphabet of size 2 for strings up to length k, where

k is a non-negative integer, is .

B. �Sketch of proof for succinctness comparison between grammars for
generating C(V) repetitions

Both a non self-embedding FSG and a finite grammar will need one rule to generate
an empty string, e.g., Cat0 → λ.

For a non self-embedding FSG, to generate up to n (C)V repetitions for n = 1
requires 4 other rules: Catn−1 → C Catn, Catn−1 → V Catn+1, Catn → V Catn+1,
Catn+1 → λ. Without self-embedding, generating from 1 to n = k (C)V repetitions,
k ≥ 1, requires k copies of each of the 4 rules needed for k = 1, plus one rule for the
empty string. Therefore, in general, generating up to n = k (C)V requires 4k rules,
plus one for the empty string, so 4k + 1 in total.

For a finite grammar, each possible non-empty string requires an additional rule
beyond the empty string rule. For each (C)V repetition, there are 2 possible sub-
strings: C and CV, so there are 2 × 2 possible (C)V(C)V strings, 2 × 2 × 2 possible
(C)V(C)V(C)V strings, and so on. Thus, there are 1 + 2 + 4 possible strings for 0

to k (C)V repetitions, where k = 2, and in general, possible

strings for any k, see (A) for the same kind of argument.

In comparison, with a self-embedding FSG, four rules suffice to generate an
unbounded number of (C)V repetitions (and nothing else):

(28)	Finite state grammar for building strings of arbitrarily many (C)V chunks
	 a.	 Assume Σ = {C, V}, Cat = {α, β}, start category α
	 b.	 α → V α
	 c.	 α → C β
	 d.	 β → V α
	 e.	 α → λ

